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Abstract

Self-play is a technique for machine learning in multi-agent systems where a
learning algorithm learns by interacting with copies of itself. Self-play is useful
for generating large quantities of data for learning, but has the drawback that
the agents the learner will face post-training may have dramatically different
behavior than the learner came to expect by interacting with itself. For the special
case of two-player constant-sum games, self-play that reaches Nash equilibrium
is guaranteed to produce strategies that perform well against any post-training
opponent; however, no such guarantee exists for multi-player games. We show
that in games that approximately decompose into a set of two-player constant-sum
games (called polymatrix games) where global ϵ-Nash equilibria are boundedly
far from Nash-equilibria in each subgame, any no-external-regret algorithm that
learns by self-play will produce a strategy with bounded vulnerability. For the first
time, our results identify a structural property of multi-player games that enable
performance guarantees for the strategies produced by a broad class of self-play
algorithms. We demonstrate our findings through experiments on Leduc poker.

1 Introduction

Self-play is one of the most commonly used approaches for machine learning in multi-agent systems.
In self-play, a learner interacts with copies of itself to produce data that will be used for training.
Some of the most noteworthy successes of AI in the past decade have been based on self-play; by
employing the procedure, algorithms have been able to achieve super-human abilities in various
games, including Poker (Moravčík et al., 2017; Brown & Sandholm, 2018, 2019), Go and Chess
(Silver et al., 2016, 2018), Starcraft (Vinyals et al., 2019), Diplomacy (Paquette et al., 2019), and
Stratego (Perolat et al., 2022).

Self-play has the desirable property that unbounded quantities of training data can be generated
(assuming access to a simulator). But using self-play necessarily involves a choice of agents for
the learner to train with: copies of itself. Strategies that perform well during training may perform
poorly against new agents, whose behavior may differ dramatically from that of the agents that the
learner trained against. The problem of learning strategies during training that perform well against
new agents is a central challenge in algorithmic game theory and multi-agent reinforcement learning
(MARL) (Matignon et al., 2012; Lanctot et al., 2017). In particular, Lanctot et al. (2017) show that
interacting with agents from an independent self-play instance, differing only by random seed, can
lead to dramatically worse performance.

There are special classes of environments where the strategies learned through self-play generalize
well to new agents. In two-player, constant-sum games there exist strong theoretical results guar-
anteeing the performance of a strategy learned through self-play: Nash equilibrium strategies are
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maxmin strategies, which will perform equally well against any optimal opponent and can guarantee
the value of the game against any opponent.

a b
a 1, 1 0, 0
b 0, 0 1, 1

Figure 1: A simple coordination game

We lose these guarantees outside of two-player constant-
sum games. For example, consider the simple two-player
coordination game of Figure 1. If both players choose
the same action, both receive a utility of 1, otherwise they
receive 0. Suppose the row player learned in self-play to
choose a (which performs well against another a-player).
Similarly, column learned to play b. If these two players
played against each other, both agents would regret their actions. Upon the introduction of a new
agent who did not train with a learner, despite a and b being optimal strategies during training, they
fail to generalize to new agents. As this example demonstrates, equilibrium strategies in general are
vulnerable: agents are not guaranteed the equilibrium’s value against new agents–even if the new
agent’s also play an equilibrium strategy.

A related problem can arise due to a loss of correlation post-training. Many algorithms converge to a
mediated equilibrium, where a mediator recommends actions to each player (Von Stengel & Forges,
2008; Farina et al., 2019, 2020; Morrill et al., 2021b). The mediator can represent an external entity
that makes explicit recommendations, such as traffic lights mediating traffic flows. More commonly
in machine learning, correlation can arise through the shared history of actions of learning agents
interacting with each other (Hart & Mas-Colell, 2000). In this second scenario, new agents would not
have access to the actions taken by other agents during training, so players would no longer be able to
correlate their actions. In fact, even if all agents play a decorrelated strategy from the same mediated
equilibrium, the result may not be an equilibrium (please refer to the appendix for an example).

Despite the problems of equilibrium selection and loss of correlation, self-play has shown promising
results outside of two-player constant-sum games. For example, algorithms based on self-play have
outperformed professional poker players in multiplayer Texas hold-’em, despite the lack of theoretical
guarantees (Brown & Sandholm, 2019)

We seek to understand what structure in multiplayer games allows for self-play to compute a good
strategy. We show that any multiplayer game can be projected into a set of two-player constant-sum
games between each pair of players, called polymatrix games. The closer a game is to this space,
the less the problem of correlation affects the removal of a mediator. We additionally give sufficient
conditions for strategies learned in these games to have the desirable properties of two-player constant-
sum games, including the potential for any strategy learned in self-play to generalize to new agents.
Throughout this work, we take an algorithm-agnostic approach by assuming only that self-play
is performed by a regret minimizing algorithm. This is accomplished by analyzing directly the
equilibria that no-regret algorithms converge to—namely coarse correlated equilibria. As a result, our
analysis applies to a broad class of game-theoretically-inspired learning algorithms but also to MARL
algorithms that converge to coarse correlated equilibria (Marris et al., 2021; Liu et al., 2021; Jin et al.,
2021), since any policy can be transformed into a mixed strategy with Kuhn’s Theorem (Kuhn, 1953).

Decomposition-based approaches have been used in prior work to show convergence of fictitious
play to Nash equilibria in two-player games (Chen et al., 2022) and evolutionary dynamics (Tuyls
et al., 2018). Cheung & Tao (2020) decompose games into zero-sum and cooperative parts to analyse
the chaotic nature of Multiplicative Weights and Follow-the-Regularized-Leader. We focus less on
converge of algorithms per se, and focus instead of the generalization of learned strategies to new
agents and are, to the best of our knowledge, the first to do so.

After defining our structural properties and proving our main results, we conclude with experiments on
Leduc poker to elucidate why self-play performs well in multi-player poker. Our results suggest that
regret-minimization techniques converge to a subset of the game’s strategy space that is approximately
polymatrix.

2 Background

2.1 Normal Form Games

Normal Form Games A normal form game G is a 3 tuple G = (N,P, u) where N is a set of
players, P =×i∈N

Pi is a joint pure strategy space and Pi is a set of pure strategies for player i.
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Let n = |N |. Pure strategies are deterministic choices of actions in the game. We call ρ ∈ P a pure
strategy profile. u = (ui)i∈N is a set of utility functions where ui : P→ R. A player i can randomize
by playing a mixed strategy, a probability distribution si over i’s pure strategies. Let Si = ∆(Pi) be
the set of player i’s mixed strategies (where ∆(X) denotes the set of probability distributions over a
domain X), and let S =×i∈N

Si be the set of mixed strategy profiles. We overload the definition of
utility function to accept mixed strategies as follows: ui(s) =

∑
ρ∈P

(∏
i∈N si(ρi)

)
ui(ρ). We use

ρ−i and s−i to denote a joint assignment of pure (resp. mixed) strategies to all players except for i,
thus s = (si, s−i).

Hindsight Rationality The hindsight rationality framework (Morrill et al., 2021b) conceptualizes
the goal of an agent as finding a strategy that minimizes regret with respect to a set of deviations Φ. A
deviation ϕ ∈ Φ is a mapping ϕ : Si → Si that transforms a learners strategy into some other strategy.
Regret measures the amount the learner would prefer to deviate to ϕ(si): ui(ϕ(si), s−i)−ui(si, s−i).
An agent is hindsight rational with respect to a set of deviations Φ if the agent does not have positive
regret with respect to any deviation in Φ, i.e. ∀ϕ ∈ Φ, ui(ϕ(si), s−i) − ui(si, s−i) ≤ 0. Let
µ ∈ ∆(P) be a distribution over pure strategy profiles and (Φi)i∈N be a choice of deviation sets for
each player.

Definition 2.1 (ϵ-Mediated Equilibrium (Morrill et al., 2021b)). We say m = (µ, (Φi)i∈N ) is an
ϵ-mediated equilibrium if ∀i ∈ N,ϕ ∈ Φi we have Eρ∼µ [ui(ϕ(ρi), ρ−i)− ui(ρ)] ≤ ϵ. A mediated
equilibrium is a 0-mediated equilibrium.

Learning takes place in an online learning environment. At each iteration t, a learning agent i chooses
a strategy sti while all other agents choose a strategy profile st−i. No-Φ-regret learning algorithms
ensure that the maximum average positive regret tends to 0

lim
T→∞

1

T

(
max
ϕ∈Φ

T∑
t=1

ui(ϕ(s
t
i), s

t
−i)− ui(s

t
i, s

t
−i)

)
→ 0

If all agents use a no-regret learning algorithms w.r.t. a set of deviations Φi, the empirical dis-
tribution of play converges to a mediated equilibrium. Formally, let µ̂ ∈ ∆(P) where µ̂(ρ)

.
=∑T

t=1

(∏
i∈N sti(ρi)

)
be the empirical distribution of play. As T → ∞, µ̂ converges to µ of a

mediated equilibrium (µ, (Φi)i∈N ).

For normal-form games, the set of all possible deviations, called swap deviations, is denoted ΦSW ;
however the smaller set of internal deviations ΦI , which exchanges a particular action recommended
by the mediator with another, offers the same strategic power in hindsight (Foster & Vohra, 1999).
The set of external deviations ΦEX is even more restricted: ϕ ∈ ΦEX maps all (mixed) strategies
to some particular pure strategy; i.e. ΦEX = {ϕ ∈ ΦSW | ∃ρi,∀s′i, ϕ(s′i) = ρi}. The choice of
(Φi)i∈N determines the nature of the mediated equilibrium—provided the learning algorithm for
player i is no-Φi-regret (Greenwald et al., 2011). For example, if all players are hindsight rational
w.r.t. ΦEX , then µ̂ converges to the well-known solution concept coarse correlated equilibrium
(CCE) (Moulin & Vial, 1978) and if all players are hindsight rational w.r.t. ΦI then µ̂ converges to a
correlated equilibrium (Aumann, 1974).

A special case of mediated equilibria are Nash equilibria. If some mediated equilibrium m =
(µ, (Φi)i∈N ) is a product distribution (i.e. µ =

⊗
i∈N si for si ∈ Si) and Φi ⊇ ΦEX ∀i ∈ N then µ

is a Nash equilibrium. Similarly an ϵ-mediated equilibrium is an ϵ-Nash equilibrium if µ is a product
distribution and Φi ⊇ ΦEX ∀i ∈ N .

In sequential decision making scenarios (often modelled as extensive form games), the set of
deviations is even more rich (Morrill et al., 2021b). All of these deviation classes—with the exception
of action deviations (Selten, 1988) (which are so weak they do not even imply Nash equilibria in
two-player constant-sum games, see appendix)—are stronger than external deviations. This means
that the equilibria of any algorithm that minimizes regret w.r.t. a stronger class of deviations than
external deviations still inherit all the properties of CCE (for example Hart & Mas-Colell (2000);
Zinkevich et al. (2008); Celli et al. (2020); Steinberger et al. (2020); Morrill et al. (2021a)). Thus, we
focus on CCE since the analysis generalizes broadly. Moreover, CCE can be computed efficiently,
either analytically (Jiang & Leyton-Brown, 2011) or by a learning algorithm. When we refer to CCE,
we use the distribution µ to refer to the CCE, since Φ is implicit.
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3 Self-Play and Generalization

The choice of other agents during learning affects the strategy that is learned. Choosing which agents
make good “opponents" during training is an open research question (Lanctot et al., 2017; Marris
et al., 2021). One common approach, self-play, is to have a learning algorithm train with copies
of itself as the other agents. If the algorithm is a no-Φ-regret algorithm, the learned behavior will
converge to a mediated equilibrium; this gives a nice characterization of the convergence behavior of
the algorithm. For the remainder of this work, when we say “self-play" we are referring to self-play
using a no-Φ-regret algorithm.

However, the strategies in a mediated equilibrium are correlated with each other. This means that in
order to play a strategy learned in self-play, an agent must first extract it by marginalizing out other
agent’s strategies. This new marginal strategy can then be played against new agents with whom the
agent did not train (and thus correlate).
Definition 3.1 (Marginal strategy). Given some mediated equilibrium (µ, (Φi)

N
i=1), let sµi be the

marginal strategy for i, where sµi (ρi)
.
=
∑

ρ−i∈P−i
µ(ρi, ρ−i). Let sµ be a marginal strategy profile,

where each ∀i ∈ N plays sµi .

Once a strategy has been extracted via marginalization, learning can either continue with the new
agents (and potentially re-correlate), or the strategy can remain fixed. We focus on the case where
the strategy remains fixed. In doing so we can guarantee the performance of this strategy if learning
stops, but also the show guarantees about the initial performance of a strategy that continues to learn;
this is especially important in safety-critical domains.

Given a marginal strategy sµi , we can bound its underperformance against new agents that behave
differently from the (decorrelated) training opponents by its vulnerability.
Definition 3.2 (Vulnerability). The vulnerability of a strategy profile s for player i with respect to
S′
−i ⊆ S−i is

Vuli
(
s, S′

−i

) .
= ui(s)− min

s′−i∈S′
−i

ui(si, s
′
−i).

Vulnerability gives a measure of how much worse s will perform with new agents compared to its
training performance under pessimistic assumptions—that −i play the strategy profile in S′

−i that is
worst for i. We assume that −i are not able to correlate their strategies.

Thus, if a marginal strategy profile sµ is learned through self-play and Vuli
(
sµ, S′

−i

)
is small, then

sµi performs roughly as well against new agents −i playing some strategy profile in S′
−i. S

′
−i is used

to encode assumptions about the strategies of opponents. S′
−i = S−i means opponents could play

any strategy, but we could also set S′
−i to be the set of strategies learnable through self-play if we

believe that opponents would also be using self-play as a training procedure.

Some games have properties that make the vulnerability low. For example, in two-player constant-
sum games the marginal strategies learned in self-play generalize well to new opponents since any
Nash equilibrium strategy is also a maxmin strategy (von Neumann, 1928).

3.1 Polymatrix Games

Multiplayer games are fundamentally more complex than two-player constant-sum games (Daskalakis
& Papadimitriou, 2005; Daskalakis et al., 2009). However, certain multiplayer games can be decom-
posed into a graph of two-player games, where a player’s payoffs depend only on their actions and
the actions of players who are neighbours in the graph (Bergman & Fokin, 1998). In these polymatrix
games (a subset of graphical games (Kearns et al., 2013)) Nash equilibria can be computed efficiently
if player’s utilities sum to a constant (Cai & Daskalakis, 2011; Cai et al., 2016).
Definition 3.3 (Polymatrix game). A polymatrix game G = (N,E,P, u) consists of a set N of
players, a set of edges E between players, a set of pure strategy profiles P, and a set of utility
functions u = {uij , uji | ∀(i, j) ∈ E} where uij , uji : Pi × Pj → R are utility functions associated
with the edge (i, j).

We refer to the normal-form subgame between (i, j) as Gij = ({i, j},Pi × Pj , (uij , uji)). We use
ui to denote the global utility function ui : P → R where ui(ρ) =

∑
(i,j)∈E uij(ρi, ρj) for each

player. We use Ei ⊆ E to denote the set of edges where i is a player.
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Definition 3.4 (Constant-sum polymatrix). We say a polymatrix game G is constant-sum if for some
constant c we have that ∀ρ ∈ P,

∑
i∈N ui(ρ) = c.

Constant-sum polymatrix (CSP) games have the desirable property that all CCE factor into a product
distribution; i.e., are Nash equilibria (Cai et al., 2016). We give a relaxed version:
Proposition 3.5. If µ is an ϵ-CCE of a CSP game G, sµ is an nϵ-Nash of G.

This means no-external-regret learning algorithms will converge to Nash equilibria, and thus do not
require a mediator to enable the equilibrium. However, they do not necessarily have the property of
two-player constant-sum games that all (marginal) equilibrium strategies are maxmin strategies (Cai
et al., 2016). Thus Nash equilibrium strategies in CSP games have no vulnerability guarantees. Cai
et al. (2016) show that CSP games that are constant sum in each subgame are no more or less general
than CSP games that are constant sum globally, since there exists a payoff preserving transformation
between the two sets. For this reason we focus on CSP games that are constant sum in each subgame
without loss of generality. Note that the constant need not be the same in each subgame.

4 Self-Play in Multiplayer Games

4.1 Subgame Stability

However, some polymatrix games do have have bounded vulnerability; we call these subgame stable
games. In subgame stable games, global equilibria imply equilibria at each pairwise subgame.
Definition 4.1 (Subgame stable profile). Let G be a polymatrix game with global utility functions
(ui)i∈N . We say a strategy profile s is γ-subgame stable if ∀(i, j) ∈ E, we have (si, sj) is a γ-Nash
of Gij ; that is uij(ρi, sj)−uij(si, sj) ≤ γ ∀ρi ∈ Pi and uji(ρj , si)−uji(sj , si) ≤ γ ∀ρj ∈ Pj

Definition 4.2 (Subgame stable game). Let G be a polymatrix game. We say G is (ϵ, γ)-subgame
stable if for any ϵ-Nash equilibrium s of G, s is γ-subgame stable.

Subgame stability connects the global behavior of play (ϵ-Nash equilibrium in G) to local behavior in
a subgame (γ-Nash in Gij). If a polymatrix game is both constant-sum and is (0, γ)-subgame stable
then we can bound the vulnerability of any marginal strategy.
Theorem 4.3. Let G be a CSP game. If G is (0, γ)-subgame stable, then for any CCE µ of G, we
have Vuli (sµ, S−i) ≤ |Ei|γ.

Theorem 4.3 tells us that using self-play to compute a marginal strategy sµ on constant-sum polymatrix
games will have low vulnerability against worst-case opponents if γ is low. Thus, these are a set of
multiplayer games where self-play is an effective training procedure.

Proof idea. Since G is a CSP game, sµ is a Nash equilbrium. Since G is (0, γ)-subgame stable,
(sµi , s

µ
j ) is a γ-Nash equilibrium in each subgame, which bounds the vulnerability (which coincides

with exploitability in 2-player constant-sum games) in each subgame. This is because

min
s−i∈S−i

ui(s
µ
i , s−i) =

∑
(i,j)∈Ei

min
sj∈Sj

uij(s
µ
i , sj)

since players j ̸= i can minimize i’s utility without coordinating, as G is a polymatrix game.

4.2 Vulnerability on a Simple Polymatrix Game

We next demonstrate the relationship between subgame stability and vulnerability on a simple 3-
player game called Offense-Defense (Figure 2a). There are 3 players: 0, 1 and 2. Players 1 and
2 have the option to either attack 0 (a0) or attack the other (e.g. a1); player 0, on the other hand,
may either relax (r) or defend (d). If either 1 or 2 attacks the other while the other is attacking 0,
the attacker gets β and the other gets −β in that subgame. If both 1 and 2 attack 0, 1 and 2 get 0
in their subgame and if they attack each other, their attacks cancel out and they get 0. If 0 plays d,
they defend and will always get 0. If they relax, they get −β if they are attacked and 0 otherwise.
Offense-Defense is a CSP game, so any CCE is a Nash equilibrium.

Note that ρ = (r, a2, a1) is a Nash equilibrium. Each i ∈ {1, 2} are attacking the other j ∈
{1, 2} \ {i}, so has expected utility of 0. Deviating to attacking 0 would leave them open against
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f  0
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−β/2
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β
0
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f  0

−β
β/2
β/2


c

(b)

Figure 2: (a) Offense-Defense, a simple CSP polymatrix game. We only show payoffs for the row
player, column player payoffs are zero minus the row player’s payoffs. (b) Bad Card: a game that is
not overall polymatrix, but the subset of strategies learnable by self-play are. At the terminals, we
show the dealers utility first, followed by players 0, 1 and 2, respectively.

the other, so a0 is not a profitable deviation, as it would also give utility 0. Additionally, 0 has no
incentive to deviate to d, since this would also give them a utility of 0. However, ρ is β-subgame
stable, since all i ∈ {1, 2} has a profitable deviation in their subgame against 0. However, if 1 and 2
were to both deviate to a0, and 0 continues to play their Nash equilibrium strategy of r, 0 would lose
2β utility from their equilibrium value; in other words, the vulnerability of player 0 is 2β.

4.3 Approximate Polymatrix Games

Most games are not factorizable into polymatrix games. However, we can take any game G and
project it into the space of constant-sum polymatrix (CSP) games.

Definition 4.4 (δ-constant sum polymatrix ). A game G is δ-constant sum polymatrix (δ-CSP) if there
exists a CSP game Ǧ with global utility function ǔ such that ∀i ∈ N, ρ ∈ P, |ui(ρ) − ǔi(ρ)| ≤ δ.
We denote the set of such CSP games as CSPδ(G).

Proposition 4.5. In a δ-CSP game G the following hold.

1. Any CCE of G is a 2δ-CCE of any Ǧ ∈ CSPδ(G).

2. The marginal strategy profile of any CCE of G is a 2nδ-Nash equilibrium of any Ǧ ∈
CSPδ(G).

3. The marginal strategy profile of any CCE of G is a 2(n+ 1)δ-Nash equilibrium of G.

From (3) we have that the removal of the mediator impacts players utilities by a bounded amount in
δ-CSP games. We give a linear program in the appendix that will find the minimum δ such that G is
δ-CSP and returns a CSP game Ǧ ∈ CSPδ(G).

Combining δ-CSP with (ϵ, γ)-subgame stability lets us bound vulnerability in any game.

Theorem 4.6. If G is δ-CSP and ∃Ǧ ∈ CSPδ(G) that is (2nδ, γ)-subgame stable and µ is a CCE of
G, then

Vuli (sµ, S−i) ≤ |Ei|γ + 2δ ≤ (n− 1)γ + 2δ.

Theorem 4.6 shows that games that are close to the space of subgame stable CSP games are cases
where the marginal strategies learned through self-play have bounded worst-case performance. This
makes them suitable for any no-external-regret learning algorithm.
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5 Vulnerability Against Other Self-Taught Agents

Theorem 4.6 bounds vulnerability in the worst-case scenarios, where −i play any strategy profile to
minimize i’s utility. In reality, however, each player j ∈ −i has their own interests and would only
play a strategy that is reasonable under these own interests. In particular, what if each agent was also
determining their own strategy via self-play in a separate training instance. How much utility can i
guarantee themselves in this set up?

No-external-regret learning algorithms converge to the set of CCE. However, other assumptions can
be made with additional information about the type of regret being minimized. No-external-regret
learning algorithms will also play strictly dominated strategies with vanishing probability and CFR
will play dominated actions with vanishing probability (Gibson, 2014). These refinements can also
tighten our bounds, since the part of the game that no-regret learning algorithms converge to might
be closer to a CSP game than the game overall.

Consider the game shown in Figure 2b, called “Bad Card”. The game starts with each player putting
β/2 into the pot. A dealer player d—who receives utility 0 regardless of the strategies of the other
players—then selects a player from {0, 1, 2} to receive a “bad card”, while the other two players
receive a “good card”. The player who receives the bad card has an option to fold, after which the
game ends and all players receive their ante back. Otherwise if this player calls, the other two players
can either fold or call. The pot of β is divided among the players with good cards who call. If one
player with a good card calls, they win the pot of β. If both good card players call then they split the
pot. If both players with good cards fold, then the player with the bad card wins the pot.

Bad Card does not have a constant-sum polymatrix decomposition; in fact it does not have any
polymatrix decomposition. Since Bad Card is an extensive-form game without chance1, each pure
strategy profile leads to a single terminal history. Let P(z) be the set of pure strategy profiles that
play to a terminal z. In order for Bad Card to be polymatrix, we would need to find subgame utility
functions such that ∀ρ ∈ P, u0(ρ) = u0,d(ρ0, ρd) + u0,1(ρ0, ρ1) + u0,2(ρ0, ρ2), equivalently, we
could write ∀z ∈ Z, ρ ∈ P(z), u0(z) = u0,d(ρ0, ρd) + u0,1(ρ0, ρ1) + u0,2(ρ0, ρ2) where Z is the
set of terminals. A subset of these constraints results in an infeasible system of equations.

Consider the terminals in the subtree shown in Figure 2b: z1 = (0, c, c, c) , z2 = (0, c, c, f),
z3 = (0, c, f, c) and z4 = (0, c, f, f). Let ρci be any pure strategy that plays c in this subtree and ρfi
be any strategy that plays f in this subtree for player i. In order for Bad Card to decompose into a
polymatrix game we would need to solve the following infeasible system of linear equations:

u0(z
1) = u0,d(ρ

c
0, 0) + u0,1(ρ

c
0, ρ

c
1) + u0,2(ρ

c
0, ρ

c
2) = −β

u0(z
2) = u0,d(ρ

c
0, 0) + u0,1(ρ

c
0, ρ

c
1) + u0,2(ρ

c
0, ρ

f
1 ) = −β

u0(z
3) = u0,d(ρ

c
0, 0) + u0,1(ρ

c
0, ρ

f
1 ) + u0,2(ρ

c
0, ρ

c
2) = −β

u0(z
4) = u0,d(ρ

c
0, 0) + u0,1(ρ

c
0, ρ

f
1 ) + u0,2(ρ

c
0, ρ

f
2 ) = β

Thus, Bad Card is not a constant-sum polymatrix game, although it is a β-CSP game. However, if
we prune out dominated actions (i.e., those in which a player folds after receiving a good card), the
resulting game is indeed a 0-CSP game.

LetM(A) be the set of mediated equilibria than an algorithm A converges to. For example, if A
is a no-external-regret algorithm,M(A) is the set of CCE without strictly dominated strategies in
their support. Likewise, if A is CFR,M(A) is the set of (CF)(CCE) (Morrill et al., 2021b). Let
S(Ai) = {sµ | (µ, (Φi)i∈N ) ∈M(Ai)} be the set of marginal strategy profiles ofM(Ai), and let
Si(Ai) = {si | s ∈ S(Ai)} be the set of i’s marginal strategies from S(Ai).

Now, consider if each player i learns with their own self-play algorithm Ai. Let AN = (A1, ...An)
be the profile of learning algorithms, then S(AN ) =×i∈N

Si(Ai). Summarizing, if each player
learns with a no-regret-learning algorithm Ai, they will converge to the set ofM(Ai) equilibrium.
The set of marginal strategies from this set of equilibria is Si(Ai) and the set of marginal strategy
profiles is S(Ai). If each player plays a (potentially) different learning algorithm, S(AN ) is the set
of possible joint match-ups if each player plays a marginal strategy from their own algorithms set of
equilibria.

1See the appendix for details on extensive-form games.
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Definition 5.1. We say a game G is δ-CSP in the neighborhood of S′ ⊆ S if there exists a CSP
game Ǧ such that ∀s ∈ S′ we have |ui(s)− ǔi(s)| ≤ δ. We denote the set of such CSP games as
CSPδ(G,S′).

Definition 5.2. We say a CSP game G is γ-subgame stable in the neighborhood of S′ if ∀s ∈
S′,∀(i, j) ∈ E we have that (si, sj) is a γ-Nash of Gij .

These definitions allow us to prove the following generalization of Theorem 4.6.

Theorem 5.3. If G is δ-CSP in the neighborhood of S(AN ) and ∃Ǧ ∈ CSPδ(G,S(AN )) that is
γ-subgame stable in the the neighborhood of S(Ai) ∀i ∈ N , then for any s ∈ S(Ai)

Vuli
(
s, S(AN )

)
≤ |Ei|γ + 2δ ≤ (n− 1)γ + 2δ.

An implication of Theorem 5.3 is that if agents use self-play to compute a marginal strategy from
some mediated equilibrium and there is a subgame stable CSP game that is close to the original game
for these strategies, then this is sufficient to bound vulnerability against strategies learned in self-play.

6 Experiments on Leduc Poker

Approaches using regret-minimization in self-play have been shown to outperform expert human
players in some multiplayer games, the most notable example being multiplayer no-limit Texas
hold-’em (Brown & Sandholm, 2019), despite no formal guarantees.

Conjecture 6.1. Self-play with regret minimization performs well in multiplayer Texas hold-’em
because “good" players (whether professional players or strategies learned by self-play) play in a part
of the games’ strategy space that is close to a subgame stable CSP game for some low values of γ, δ.

While multiplayer no-limit Texas hold-’em is too large to directly check the properties developed in
this work, we use a smaller poker game, called Leduc poker (Southey et al., 2012), to suggest why
regret-minimization “works" in multiplayer Texas hold-’em. Leduc poker was originally developed
for two players but was extended to a 3-player variant by Abou Risk et al. (2010). The game has 8
cards with 4 ranks and 2 suits. At the start, each player antes 1 and receives one card privately before
an initial round of betting commences. A public card is then revealed before the second round of
betting. The bet values in the first and second round are 2 and 4, respectively.

We use CFR to compute a set of approximate marginal strategies.2 Vanilla CFR is a deterministic
algorithm, so we use different random initializations of CFR’s initial strategy in order to generate a
set of CCE. We train 30 random initializations of CFR for 10,000 iterations. CFR computes these
marginal strategies by averaging its iterates.3

Making this formal, we use Ai = CFR as a learning algorithm for each i ∈ N . Then S(CFR) is the
set of strategy profiles learned by CFR, with Si(CFR) be the set of mixed strategies for player i and
S(CFRN ) =×i∈N

Si(CFR) is the set of match ups between agents trained in self-play with CFR.

We used the following algorithm to find a CSP game Ǧ that minimizes our bounds, by iteratively
adding constraints to a linear program until we find a CSP game that is subgame-stable in the
neighborhood of S(CFR), after which we output the δ so that Ǧ is δ-CSP in the neighborhood of
S(CFRN ). We start with CSP game Ǧ0 with utility function ǔ0

ij(·) = 0 ∀i ̸= j. At each iteration
t ≥ 1, we compute a best response for each player i in each subgame Gt−1

ij against each CFR strategy
of their opponent sj ∈ Sj(CFR): stij ∈ argmaxs′i∈Si

ǔt−1
ij (s′i, sj). This strategy is added to a set

of strategies BRt−1
ij (sj) = {s1ij , . . . st−1

ij } to produce BRt
ij(sj) = {s1ij , . . . stij}. We then solve the

2We use the OpenSpiel implementation (Lanctot et al., 2019).
3Note that these average strategies do not converge to CCE themselves; computing a CCE requires additional

machinery; for example, CFR-JR is a variant of CFR that does indeed converge to a CCE (Celli et al., 2019).
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following linear program to produce Ǧt with utility functions ǔt
ij(·).

min
γt,δt,(ǔt

ij(·),ctij)∀i,j

(n− 1)γt + 2δt

s.t. ǔt
ij(s

′
i, sj)− ut

ij(si, sj) ≤ γt ∀i ̸= j ∈ N, s′i ∈ BRt
ij(sj), s ∈ S(CFR)∑

(i,j)∈Ei

ǔt
ij(si, sj)− ui(s) ≤ δt ∀i ∈ N, s ∈ S(CFR)

ui(s)−
∑

(i,j)∈Ei

ǔt
ij(si, sj) ≤ δt ∀i ∈ N, s ∈ S(CFR)

ǔt
ij(ρ) + ut

ji(ρ) = ctij ∀i ̸= j ∈ N ×N, ρ ∈ P

δt, γt ≥ 0

The algorithm terminates when ∀i, j, sj ∈ Sj(CFR) we have stij = st−1
ij . At this point all stij

are best responses w.r.t. ut
ij(·), so Ǧt is γt-subgame stable ∀i ∈ N . Lastly, we compute δ =

maxs∈S(CFRN)

∣∣∣ui(s)−
∑

(i,j)∈Ei
ut
ij(si, sj)

∣∣∣. Note that we implemented this algorithm using
the extensive-form representation of Leduc poker for compactness and efficiency. We express the
algorithm here using mixed strategies for brevity; please refer to the appendix for more detail.

Using this algorithm, we found a CSP game Ǧ that was 0-subgame stable in the neighborhood
of the CFR strategy profiles (i.e. the CFR profiles are Nash equilibria in every subgame between
players) and δ = 0.097-CSP (i.e. we need to perturb the utility function by at most 0.097), implying
that ∀i ∈ N, s ∈ S(CFR) we have Vuli

(
s, S(CFRN )

)
≤ 0.194. For better intuition, consider

normalizing our bounds by the range of the utility function to give a relative value Vulrel = 2(n−
1)γ + 2δ/ (maxρ∈P ui(ρ)−minρ∈P ui(ρ)) . In Leduc poker, Vulrel = 0.194/12 ≈ 0.016. In other
words, because CFR converges to a part of the game that is near polymatrix and subgame stable,
players can lose at most 1.6% of the range of their utility functions against players from a separate
training instance. How vulnerable are the CFR strategies in actuality? We computed the vulnerability
with respect to the CFR-computed strategies by evaluating each strategy against each other and
taking the maximum. We found that Vulrel = 0.009/12 ≈ 0.0008; our bounds thus do a good job of
bounding vulnerability, but are not fully tight.

It was previously believed that CFR does not compute an ϵ-Nash equilibrium on 3-player Leduc for
any reasonable value of ϵ. Abou Risk et al. (2010) found CFR computed a 0.130-Nash equilibrium
after 108 iterations. However, we found that all of our strategies converged to an approximate Nash
equilibrium with the maximum ϵ = 0.017 after only 104 iterations.

Summarizing, we found that the part of the strategy space of Leduc poker that CFR converges to is
close to a subgame stable CSP game. If new players have strategies within this part of Leduc poker
(e.g., if they also learned with a different initialization of CFR), then the strategies learned by CFR
bound the loss in utility against these new players.

7 Conclusion

Self-play has been incredibly successful in producing strategies that perform well against new
opponents in two-player constant-sum games. Despite a lack of theoretical guarantees, self-play
seems to also produce good strategies in some multiplayer games (Brown & Sandholm, 2019). We
identify a structural property of multiplayer, general-sum game that allow us to establish guarantees
on the performance of strategies learned via self-play against new opponents. We show that any game
can be projected into the space of constant-sum polymatrix games, and if there exists a game with
this set with high subgame stability (low γ), strategies learned through self-play have bounded loss of
performance against new opponents.

We conjecture that Texas hold-’em is one such game. We investigate this claim on Leduc poker, and
find that CFR plays strategies from a nearly subgame stable part of the strategy space within Leduc
poker. This work lays the groundwork for guarantees for self-play in multiplayer games. However,
there is room for algorithmic improvement and efficiency gains for checking these properties in very
large extensive-form games.
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Moravčík, M., Schmid, M., Burch, N., Lisỳ, V., Morrill, D., Bard, N., Davis, T., Waugh, K., Johanson,
M., and Bowling, M. Deepstack: Expert-level artificial intelligence in heads-up no-limit poker.
Science, 356(6337):508–513, 2017.

Morrill, D., D’Orazio, R., Lanctot, M., Wright, J. R., Bowling, M., and Greenwald, A. R. Efficient
deviation types and learning for hindsight rationality in extensive-form games. International
Conference on Machine Learning, 2021a.

Morrill, D., D’Orazio, R., Sarfati, R., Lanctot, M., Wright, J. R., Greenwald, A. R., and Bowling, M.
Hindsight and sequential rationality of correlated play. AAAI Conference on Artificial Intelligence,
2021b.

Moulin, H. and Vial, J. Strategically zero-sum games: The class of games whose completely mixed
equilibria cannot be improved upon. International Journal of Game Theory, 7(3):201–221, 1978.

Paquette, P., Lu, Y., Bocco, S. S., Smith, M., O-G, S., Kummerfeld, J. K., Pineau, J., Singh, S.,
and Courville, A. C. No-press diplomacy: Modeling multi-agent gameplay. Neural Information
Processing Systems, 2019.

Perolat, J., Vylder, B. D., Hennes, D., Tarassov, E., Strub, F., de Boer, V., Muller, P., Connor, J. T.,
Burch, N., Anthony, T., McAleer, S., Elie, R., Cen, S. H., Wang, Z., Gruslys, A., Malysheva,
A., Khan, M., Ozair, S., Timbers, F., Pohlen, T., Eccles, T., Rowland, M., Lanctot, M., Lespiau,
J.-B., Piot, B., Omidshafiei, S., Lockhart, E., Sifre, L., Beauguerlange, N., Munos, R., Silver, D.,
Singh, S., Hassabis, D., and Tuyls, K. Mastering the game of stratego with model-free multiagent
reinforcement learning. Science, 378(6623):990–996, 2022.

Selten, R. Reexamination of the perfectness concept for equilibrium points in extensive games. In
Models of Strategic Rationality, pp. 1–31. Springer, 1988.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484–489, 2016.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L.,
Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., and Hassabis, D. A general reinforcement
learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419):
1140–1144, 2018.

11



Southey, F., Bowling, M. P., Larson, B., Piccione, C., Burch, N., Billings, D., and Rayner, C. Bayes’
bluff: Opponent modelling in poker. arXiv preprint arXiv:1207.1411, 2012.

Steinberger, E., Lerer, A., and Brown, N. Dream: Deep regret minimization with advantage baselines
and model-free learning. arXiv preprint arXiv:2006.10410, 2020.

Tuyls, K., Pérolat, J., Lanctot, M., Ostrovski, G., Savani, R., Leibo, J. Z., Ord, T., Graepel, T., and
Legg, S. Symmetric decomposition of asymmetric games. Scientific reports, 8(1):1–20, 2018.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H.,
Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre,
L., Cai, T., Agapiou, J. P., Jaderberg, M., Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V.,
Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Gülçehre, Ç., Wang, Z., Pfaff, T., Wu, Y., Ring, R.,
Yogatama, D., Wünsch, D., McKinney, K., Smith, O., Schaul, T., Lillicrap, T. P., Kavukcuoglu,
K., Hassabis, D., Apps, C., and Silver, D. Grandmaster level in Starcraft II using multi-agent
reinforcement learning. Nature, 575(7782):350–354, 2019.

von Neumann, J. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295–320, 1928.

Von Stengel, B. and Forges, F. Extensive-form correlated equilibrium: Definition and computational
complexity. Mathematics of Operations Research, 33(4):1002–1022, 2008.

Zinkevich, M., Johanson, M., Bowling, M., and Piccione, C. Regret minimization in games with
incomplete information. Neural Information Processing Systems, 2008.

12



A Decorrelated Strategies From a CCE Are Not a CCE

a b
a 1, 0 −1,−1
b −1,−1 0, 1

Figure 3

Consider a distribution µ ∈ ∆(P) s.t. µ(a, a) = 0.5 and µ(b, b) = 0.5. µ is a CCE: Eρ∼µ [ui(ρ)] =
0.5 for each player. If row (r) were to player a and column continues to play according to µ, row’s
utility is 0; if r plays b instead, their utility is now −0.5. Thus r has no profitable deviations from the
CCE recommendations. Column does not either.

Row’s marginal strategy sµr plays a with probability 0.5 and b with probability 0.5, sµc does likewise.
ur(s

µ
r , s

µ
c ) = uc(s

µ
r , s

µ
c ) = −0.25. However, a is a profitable deviation for r now since 0 > −0.25,

thus the decorrelated strategies a CCE are also not a CCE.

B Hindsight Rationality w.r.t. Action Deviations Does Not Imply Nash

Here we show that hindsight rationality with respect to action deviations does not imply Nash
equilibrium in 2 player constant-sum games. We show this with a 1 player game and assume the
second player is a dummy player. Consider the agents strategy, shown in blue, which receives utility
of 1. Deviating to [I1 : b, I2 : a] will increase the player’s utility to 2, so the blue strategy is not a
Nash equilibrium. However, this would require two simultaneous action deviations, one at I1 to b and
one at I2 to a. Neither of these deviations increases the player’s utility on their own, so the player is
hindsight rational w.r.t. action deviations.

I1

1

a b
I2

2

a

0

b

Figure 4

C Omitted Proofs

Proposition C.1 (Cai et al. (2016)). In CSP games, for any CCE µ, if i deviates to si, then their
expected utility if other players continue to play µ is equal to their utility if other player where to
play the marginal strategy profile sµ−i:

Eρ∼µ[ui(si, ρ−i)] = ui(si, s
µ
−i) ∀si ∈ Si

C.1 Proof of Proposition 3.5

Proposition 3.5. If µ is an ϵ-CCE of a CSP game G, sµ is an nϵ-Nash of G.

Proof. Since µ is an ϵ-CCE, ∀i ∈ N , we have

max
ρ′
i∈Pi

Eρ∼µ [ui(ρ
′
i, ρ−i)]− Eρ∼µ [ui(ρ)] ≤ ϵ

which implies (by Proposition C.1) that ∀i ∈ N

max
ρ′
i∈Pi

ui(ρ
′
i, s

µ
−i)− Eρ∼µ [ui(ρ)] ≤ ϵ

=⇒ max
ρ′
i∈Pi

ui(ρ
′
i, s

µ
−i) ≤ ϵ+ Eρ∼µ [ui(ρ)]
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Summing over N , we get∑
i∈N

max
ρ′
i∈Pi

ui(ρ
′
i, s

µ
−i) ≤

∑
i∈N

(ϵ+ Eρ∼µ [ui(ρ)]) (1)

=
∑
i∈N

ϵ+
∑
i∈N

Eρ∼µ [ui(ρ)] (2)

= nϵ+ c (3)

= nϵ+
∑
i∈N

ui(s
µ) (4)

Where (3) and (4) use the fact that ∀ρ ∈ P,
∑

i∈N ui(ρ) = c for some constant. The above
inequalities give us ∑

i∈N

max
ρ′
i∈Pi

ui(ρ
′
i, s

µ
−i) ≤ nϵ+

∑
i∈N

ui(s
µ)

Rearranging, we get ∑
i∈N

max
ρ′
i∈Pi

ui(ρ
′
i, s

µ
−i)− ui(s

µ)︸ ︷︷ ︸
≥0

≤ nϵ

All terms in the sum are are non-negative because ρ′i is a best-response to sµ−i. Then any particular
term in the summation is upper bounded by nϵ and we are done.

C.2 Proof of Theorem 4.3

Definition C.3 (Exploitability). Let s be a strategy profile of a 2 player constant-sum game. The
exploitability of s for player i is

ui(s)− min
s′−i∈S−i

ui(si, s
′
−i)

We say a strategy profile is ϵ-exploitable for player i if
ui(s)− min

s′−i∈S−i

ui(si, s
′
−i) ≤ ϵ

Proposition C.4 (Fudenberg & Tirole (1991)). In two-player constant-sum games, the set of ϵ-Nash
equilibria are ϵ-exploitable for each player.
Theorem 4.3. Let G be a CSP game. If G is (0, γ)-subgame stable, then for any CCE µ of G, we
have Vuli (sµ, S−i) ≤ |Ei|γ.

Proof. Any marginal strategy sµ of a CCE µ is a Nash equilibrium of G (Cai et al., 2016). Then,

Vuli (sµ, S−i)
.
= ui(s

µ)− min
s−i∈S−i

ui(s
µ
i , s−i)

=
∑

(i,j)∈Ei

uij(s
µ
i , s

µ
j )− min

s−i∈S−i

 ∑
(i,j)∈Ei

uij(s
µ
i , sj)


=

∑
(i,j)∈Ei

uij(s
µ
i , s

µ
j )−

∑
(i,j)∈Ei

min
sj∈Sj

uij(s
µ
i , sj)

Where the last line uses the fact that G is polymatrix and −i only care about minimizing i′s utility,
so given sµi can do so without coordinating. Continuing,

=
∑

(i,j)∈Ei

(
uij(s

µ
i , s

µ
j )− min

sj∈Sj

ui(s
µ
i , sj)

)
(5)

≤
∑

(i,j)∈Ei

γ (6)

≤ |Ei|γ (7)
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Where by (0, γ)-subgame stability of each Gij , (sµi , s
µ
i ) is a γ-Nash of Gij . By Proposition C.4, sµ

is γ-exploitable for i in each subgame since vulnerability coincides with exploitability for 2 player
constant-sum games.

C.3 Proof of Proposition 4.5

Proposition 4.5. In a δ-CSP game G the following hold

1. Any CCE of G is a 2δ-CCE of any Ǧ ∈ CSPδ(G).

2. The marginalized strategy profile of any CCE of G is a 2nδ-Nash equilibrium of any
Ǧ ∈ CSPδ(G).

3. The marginalized strategy profile of any CCE is a 2(n+ 1)δ-Nash equilibrium of G

Proof. First we prove claim 1. Let ǔi denote the utility function of i in Ǧ. Note that ∀ρ ∈ P we have
|ǔi(ρ)− ui(ρ)| ≤ δ ∀i ∈ N . Then,

Eρ∼µ [ui(ρ
′
i, ρ−i)− ui(ρ)] ≤ 0 ∀i ∈ N, ρ′i ∈ Pi

=⇒ Eρ∼µ [ǔi(ρ
′
i, ρ−i)− δ − (ǔi(ρ) + δ)] ≤ 0 ∀i ∈ N, ρ′i ∈ Pi

=⇒ Eρ∼µ [ǔi(ρ
′
i, ρ−i)− ǔi(ρ)] ≤ 2δ ∀i ∈ N, ρ′i ∈ Pi

Next, claim 2 is an immediate corollary of claim 1 and Proposition 3.5. Lastly, we show claim 3. By
claim 2, we have the marginalized strategy of µ, sµ is a 2nδ-Nash equilibrium of Ǧ ∈ CSPδ(G).
That is,

ǔi(ρi, s
µ
−i)− ǔi(s

µ
i , s

µ
−i) ≤ 2nδ ∀i ∈ N, ρi ∈ Pi

However, since G is δ-CSP:(
ui(ρi, s

µ
−i)− δ

)
−
(
ui(s

µ
i , s

µ
−i) + δ)

)
≤ ǔi(ρi, s

µ
−i)− ǔi(s

µ
i , s

µ
−i) ≤ 2nδ ∀i ∈ N, ρi ∈ Pi

Which gives us

ui(ρi, s
µ
−i)− ui(s

µ
i , s

µ
−i) ≤ 2nδ + 2δ = 2(n+ 1)δ ∀i ∈ N, ρi ∈ Pi

C.4 Proof of Theorem 4.6

Theorem 4.6. If G is δ-CSP and ∃Ǧ ∈ CSPδ(G) that is (2nδ, γ)-subgame stable and µ is a CCE of
G, then

Vuli (sµ, S−i) ≤ |Ei|γ + 2δ ≤ (n− 1)γ + 2δ.

Proof. Let Ǧ = (N,E,P, ǔ) be a polymatrix games that is (2nδ, γ)-subgame stable such that
Ǧ ∈ CSPδ(G). Let ǔi denote the utility function of i in Ǧ. By Proposition 4.5, µ is a 2nδ-Nash
equilibrium of Ǧ. Then

Vuli (sµ, S−i)
.
= ui(s

µ)− min
s−i∈S−i

ui(s
µ
i , s−i)

≤ ǔi(s
µ)− min

s−i∈S−i

ǔi(s
µ
i , s−i) + 2δ

Since G is δ-CSP. Then

=
∑

(i,j)∈Ei

ǔij(s
µ
i , s

µ
j )− min

s−i∈S−i

∑
(i,j)∈Ei

ui(s
µ
i , sj) + 2δ (8)

=
∑

(i,j)∈Ei

ǔij(s
µ
i , s

µ
j )−

∑
(i,j)∈Ei

min
sj∈Sj

ui(s
µ
i , sj) + 2δ (9)
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Where, as in Theorem 4.3, the last line uses the fact that Ǧ is polymatrix, Gij is constant-sum and −i
minimize i′s utility and can do so by without coordinating. Continuing, we have∑

(i,j)∈Ei

ǔij(s
µ
i , s

µ
j )−

∑
(i,j)∈Ei

min
sj∈Sj

ui(s
µ
i , sj) + 2δ (10)

=
∑

(i,j)∈Ei

(
ǔij(s

µ
i , s

µ
j )− min

sj∈Sj

ui(s
µ
i , sj)

)
+ 2δ (11)

≤
∑

(i,j)∈Ei

γ + 2δ (12)

= |Ei|γ + 2δ (13)
≤ (n− 1)γ + 2δ (14)

Where by (2nδ, γ)-subgame stability of each Gij , (sµi , s
µ
i ) is a γ-Nash of Gij . By Proposition C.4,

sµ is γ-exploitable for i in each subgame since vulnerability coincides with exploitability for 2 player
constant-sum games.

C.5 Proof of Theorem 5.3

Theorem 5.3. If G is δ-CSP in the neighborhood of S(AN ) and ∃Ǧ ∈ CSPδ(G,S(AN )) that is
γ-subgame stable in the the neighborhood of S(Ai) ∀i ∈ N , then for any s ∈ S(Ai)

Vuli
(
s, S(AN )

)
≤ |Ei|γ + 2δ ≤ (n− 1)γ + 2δ.

Proof.

Vuli (s, S(A)) .
= ui(s)− min

s′−i∈S−i(AN )
ui(s, s

′
−i)

since G is δ-CSP in the neighborhood of S(AN )

≤ ǔi(s)− min
s′−i∈S−i(AN )

ǔi(si, s
′
−i) + 2δ

Since Ǧ is a polymatrix game:

ǔi(s)− min
s′−i∈S−i(AN )

ǔi(si, s
′
−i) + 2δ

=
∑

(i,j)∈Ei

ǔij(si, sj)− min
s′−i∈S−i(AN )

∑
(i,j)∈Ei

ǔij(si, sj) + 2δ

=

 ∑
(i,j)∈Ei

ǔij(si, sj)− min
s′j∈Sj(Aj)

ǔij(si, s
′
j)

+ 2δ

Where, as in Theorem 4.3 and Theorem 4.6, the last line uses the fact that Ǧ is polymatrix, Gij is
constant-sum and −i minimize i′s utility and can do so by without coordinating.

Since Ǧ is γ-subgame stable in the neighborhood of S(Ai) and s ∈ S(Ai), then means (si, sj) is a
γ-Nash for each subgame Ǧij , so has bounded vulnerability within that subgame.

≤

 ∑
(i,j)∈Ei

γ

+ 2δ

≤|Ei|γ + 2δ

≤(n− 1)γ + 2δ
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D Normal-Form Algorithms

D.1 Finding Constant-Sum Polymatrix Decomposition

LP 2 Below we give a linear program that takes as input a normal-form game G = (N,P, u) and
(1) computes the minimum δ such that G is a δ-CSP game and (2) constant-sum polymatrix game
Ǧ = (N,E,P, ǔ) such that |ui(ρ)− ǔi(ρ)| ≤ δ for all ρ ∈ P. The decision variables are the values
of ǔij(ρ) for all i ̸= j ∈ N, ρ ∈ P, δ and constants for each subgame cij for all i ̸= j.

min
ǔij(·),δ,cij

δ (15)

ui(ρ)−
∑
j∈−i

ǔij(ρi, ρj) ≤ δ ∀i ∈ N, ρ ∈ P (16)

ui(ρ)−
∑
j∈−i

ǔij(ρi, ρj) ≥ −δ ∀i ∈ N, ρ ∈ P (17)

ǔij(ρi, ρj) + ǔji(ρi, ρj) = cij ∀i ̸= j ∈ N, (ρi, ρj) ∈ Pij , (18)

D.2 Computing γ for (0, γ)-Subgame Stability

Given a constant-sum polymatrix game, we can compute the minimum γ such that G is (0, γ)-
subgame stable using Algorithm 1.

Algorithm 1 Compute γ

Input: G = (N,E,A, u), a polymatrix game
γ ← −∞
for i ∈ N do

for j ̸= i ∈ N do
for ρ̄i ∈ Pi do
γ′ ← LP3(i, j, ρ̄i)
γ ← max(γ, γ′)

end for
end for

end for

Where LP3(i, j, ρ̄i) is a linear program that computes a Nash equilibrium of a CSP game G that
maximizes the incentive to deviate to some candidate strategy ρ̄i in the subgame between i and j.
This linear program is given as follows. Let ai(ρi, µ) be the advantage of deviating to ρi from a joint
distribution over pure strategies:

ai(ρi, µ)
.
=

∑
(i,j)∈Ei

ui,j(ρi, s
µ
j )︸ ︷︷ ︸

(a)

−Eρ∼µ

 ∑
(i,j)∈Ei

ui,j(ρi, ρj)


︸ ︷︷ ︸

(b)

(19)

Note that (a) is a linear function of µ, since sµj is a marginal strategy. (b) is also a linear function of
µ, and so ai(ρi, µ) is a linear function of µ. Likewise, let

ai,j(ρi, µ)
.
= ui,j(ρi, s

µ
j )− Eρ∼µ [ui,j(ρi, ρj)] (20)

be the advantage of ρi restricted to the subgame between i and j. LP3(i, j, ρ̄i) is given below. The
decision variables are the weights of µ for each ρ ∈ P and γ
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LP 3

max
µ(·),γ

γ (21)

s.t. ai(ρi, µ) ≤ 0 ∀i ∈ N, ρi ∈ Pi (22)
ai,j(ρi, µ) ≥ γ (23)∑
ρ∈P

µ(ρ) = 1 (24)

µ(ρ) ∈ [0, 1] ∀ρ ∈ P (25)

We can get away with computing a CCE rather than targeting Nash equilibria is because the marginals
of any CCE are Nash equilibria in constant-sum polymatrix games (Cai et al., 2016).

E Extensive-Form Games

Here we detail the algorithms and methods we used for computing Ǧ for Leduc Poker. Before giving
the full algorithm, we give some background on extensive-form games (EFG).

E.1 Background

We use the imperfect information extensive form game as a model for strategic multi-agent decision
situations. An imperfect information extensive form game is a 10-tuple (N,A, H, Z,A, P, u, I, c, πc)
where N is a set of players, A is a set of actions, H is a set of sequences of actions, the possible
histories, Z ⊆ H is a set of terminal histories, A : H → A is a function that maps a history to
available actions, P : H → N is the player function, which assigns a player to choose an action at
each non-terminal history, u = {ui}i∈N is a set of utility functions where ui : Z → R is the utility
function for player i, I = {Ii}i∈N where Ii is a partition of the set {h ∈ H : P (h) = i} such that if
h, h′ ∈ I ∈ Ii then A(h) = A(h′). We call an element I ∈ Ii an information set. The chance player
c, who has a function πc(h, a) ∀h : P (h) = c which returns the probability of random nature events
a ∈ A. Let Nc = N ∪ {c}.
For some history h, the jth action in h is written hj . A sub-history of h from the jth to kth actions is
denoted hj:k and we use h:k as a short-hand for h0:k. If a history h′ is a prefix of history h, we write
h′ ⊑ h′ and if h′ is a proper prefix of h, we write h′ ⊏ h′.

We assume extensive-Form games have perfect recall.

Strategies We use ρi : Ii → 2A to denote a pure strategy of player i, and the set of all pure
strategies as Pi. si ∈ ∆(Pi) = Si is a mixed strategy, where ∆(X) denotes the set of probability
distributions over a domain X . We use πi ∈ Πi to denote a behavior strategy of player i, which,
given I ∈ Ii returns ∆(A(I)), a probability distribution over actions available at I . ρ, s and π are
then used to denote pure, mixed and behavior strategy profiles, respectively. Note that P is a subset
of both Π and S.

Given a behavior strategy profile, let

pπi
i (z)

.
=

∏
z:k⊑z:P (z:k)=i

πi(zk+1; z:k)

be the contribution of πi to reaching z. Let pπ(z) .
=
∏

i∈Nc
pπi
i (z) be the reach probabilities over

z ∈ Z induced by π.

We over load the utility function to accept behavior strategies:

ui(π)
.
= Ez∼(π) [ui(z)] =

∑
z∈Z

pπ(z)ui(z) =
∑
z∈Z

(∏
i∈Nc

pπi
i (z)

)
ui(z)

E.2 Poly-EFGs

We can straight-forwardly generalize our definitions to extensive-form games.
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Definition E.1 (Poly-EFG). A poly-EFG (N,E,G) is defined by a graph with nodes N , one for each
player, a set of edges E and a set of games G = {Gij | ∀(i, j) ∈ E} where Gij ∈ G is a two player
EFG between i and j. We require that each player plays the same strategy in each game they take
part in.

We assume that each Gij has perfect recall.

Let ǔij be the utility function of i against j

ǔij(πi, πj) = Ez∼(πi,πj ,πc) [ǔij(z)]

Then,

ǔi(π) =
∑

(i,j)∈Ei

ǔij(πi, πj)

Definition E.2 (Constant-sum (polymatrix)). We say a poly-EFG G is constant-sum if for some
constant c we have that ∀Gij ∈ G, z ∈ Zij , ǔij(z) + ǔji(z) = c where Zij is the set of terminal
histories of Gij .

Definitions of subgame stability and δ-CSP also generalize.

Definition E.3 (Subgame stable (profile)). Let G be a poly-EFG. We say a strategy profile π is
γ-subgame stable if ∀(i, j) ∈ E, we have (πi, πj) is a γ-Nash of Gij .

Definition E.4 (Subgame stable (game)). Let G be a poly-EFG e. We say G is (ϵ, γ)-subgame stable
if for any ϵ-Nash equilibrium π of G, π is γ-subgame stable.

Definition E.5 (δ-constant sum polymatrix ). An EFG G is δ-constant sum polymatrix (δ-CSP) if
there exists a constant sum poly-EFG Ǧ with global utility functions ǔ such that ∀i ∈ N, π ∈ Π,
|ui(π)− ǔi(π)| ≤ δ. We denote the set of such CSP games as CSPδ(G). We assume that ∀(i, j), Gij

has the same strategy space as G for i and j.

Definition E.6. Given a poly-EFG G = (N,E,G) , the induced normal-form polymatrix game is a
polymatrix game G′ = (N,E,P, u′) such that Pi is the same as i’s set of pure strategies in all Gij

and u′
ij(ρi, ρj) = uij(ρi, ρj).

In games of perfect recall every behavior strategy πi has an equivalent mixed strategy sπi (Kuhn,
1953). This means for some EFG G, we can use the poly-EFG representation instead of turning G
into a normal-form game then using a normal-form polymatrix game.

Corollary E.7. For an extensive-form game G, if G is δ-constant sum polymatrix in the sense of
Definition E.5 then the induced normal form of G, G′ is δ-constant sum polymatrix in the sense of
Definition 4.4 and if π is γ subgame stable for a poly-EFG Ǧ, then sπ is γ subgame stable in the
induced normal-form polymatrix game of Ǧ.

This is an immediate corollary of Kuhn’s Theorem (Kuhn, 1953) and the assumption that each
Gij ∈ G has perfect recall.

Definition E.8. We say an EFG game G is δ-CSP in the neighborhood of Π′ ⊆ Π if there exists a
constant-sum poly-EFG Ǧ such that ∀π ∈ Π′ we have |ui(π)− ǔi(π)| ≤ δ. We denote the set of
such CSP games as CSPδ(G,Π′).

Definition E.9. We say a constant-sum poly-EFG is γ-subgame stable in the neighborhood of Π′ if
∀π ∈ Π′,∀(i, j) ∈ E we have that (πi, πj) is a γ-Nash of Gij .

E.3 Finding a Poly-EFG for Leduc Poker

Here we show how to find a poly-EFG for Leduc Poker. The structure of each Gij ∈ G needs to be
such that i and j have the same strategy space as the original game. To do so, we define Gij to have
the same structure as Leduc poker, except we replace all information sets belonging to to players
k ∈ N \ {i, j} with chance nodes, where chance plays uniformly at random. Thus, we only need to
compute ǔij(z) ∀z ∈ Z for each subgame.
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Algorithm 2 Compute Ǧ

Input: G, an extensive-form game; Π′, a set of behavior strategy profiles.
ǔij(z)← 0 ∀i ̸= j ∈ N, z ∈ Z

BR0
ij(πj)← {} i ̸= j ∈ N ×N, πj ∈ Π′

j
converged← false
t← 0
while not converged do
t← t+ 1
{Compute best-responses to each subgame.}
for i ̸= j ∈ N ×N do

for πj ∈ Π′
j do

compute πt
ij ∈ argmaxπ′

i∈Πi
ǔt−1
ij (π′

i, πj)

BRt
ij(πj) = BRt−1

ij (πj) ∪ {πt
ij}

end for
end for
ǔt ← UpdateUtility()
{Next, check convergence.}
converged← true
for i ̸= j ∈ N ×N do

for πj ∈ Π′
j do

if πt
ij ̸= πt−1

ij for πt
ij , π

t−1
ij ∈ BRt

ij(πj) then
converged← false

end if
end for

end for
end while
{Last, output δ.}
Π× ←×i∈N

Π′
i

δ ← maxπ∈Π×

∣∣∣ui(π)−
∑

j∈−i u
t
ij(πi, πj)

∣∣∣
return ǔt(·), γt, δ

E.4 Algorithm For Computing Ǧ in Large games

Here we give the full algorithm that we described in Section 6. We describe it in more general terms:
instead of S(CFR), we write Π′ and Π× as S(CFRN ) since this algorithm need not necessariliy
used CFR-computed strategies.

We use sequence-form linear programming to compute argmaxπ′
i∈Πi

ǔt−1
ij (π′

i, πj).

UpdateUtility() The decision variables are γt, δt, ǔt
ij(z) ∀i ̸= j ∈ N ×N, z ∈ Zij and ctij ∀i ̸=

j ∈ N ×N .

min
γt,δt,(ǔt

ij(·))∀i,j ,(ǔt
ij(·))∀i,j

(n− 1)γt + 2δt

s.t. ǔt
ij(π

′
i, πj)− ut

ij(πi, πj) ≤ γt ∀i ̸= j ∈ N ×N, π′
i ∈ BRt

ij(πj), π ∈ Π′∑
j∈−i

ǔt
ij(πi, πj)− ui(π) ≤ δt ∀i ∈ N, π ∈ Π′

ui(π)−
∑
j∈−i

ǔt
ij(πi, πj) ≤ δt ∀i ∈ N, π ∈ Π′

ǔt
ij(z) + ut

ji(z) = ctij ∀i ̸= j ∈ N ×N, z ∈ Zij

δt, γt ≥ 0
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E.5 Experimental Details

We used the OpenSpiel library to compute our CFR strategies. We used vanilla CFR (Zinkevich et al.,
2008) without any additional modifications (e.g. linear averaging or alternating updates) with the
exception of allowing for random initializations. It took roughtly 100 hours to train each of the 30
instances of CFR on leduc poker for 10,000 iterations. Running Algorithm 2 took approximately
17,000s on a server with 100gb of memory. We used Gurobi as an LP solver.

E.6 Nash Equilibrium in Leduc Poker

Figure 5 shows the values of ϵ = maxs′i ui(s
′
i, s−i)−ui(s) for each of the CFR strategies s computed

by CFR in Leduc Poker. Each column is for one of the players and each point is one of the random
seeds. We see the maximum value of ϵ after 10,000 iterations is 0.017.

1 2 3
Player

0.008

0.010

0.012

0.014

0.016

Figure 5: ϵ-Nash in Leduc Poker
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