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Abstract

Translate-train or few-shot cross-lingual trans-001
fer can be used to improve the zero-shot per-002
formance of multilingual pretrained language003
models. Few-shot utilizes high-quality low-004
quantity samples (often manually translated005
from the English corpus). Translate-train em-006
ploys a machine translation of the English cor-007
pus, resulting in samples with lower quality008
that could be scaled to high quantity. Given the009
lower cost and higher availability of machine010
translation compared to manual professional011
translation, it is important to systematically012
compare few-shot and translate-train, under-013
stand when few-shot is beneficial, and whether014
choosing the shots to translate increases the015
few-shot gain. This work aims to fill this gap:016
we compare and quantify the performance gain017
of few-shot vs. translate-train using a vary-018
ing number of samples for three tasks/datasets019
(XNLI, PAWS-X, XQuAD) spanning 17 lan-020
guages. We show that scaling up the train-021
ing data using machine translation gives a022
larger gain compared to using the small-scale023
(higher-quality) few-shot data. When few-shot024
is beneficial, we show that there are random025
sets of samples that perform better across lan-026
guages and that the performance on English027
and on the machine-translation of the samples028
can both be used to choose the shots to manu-029
ally translate for an increased few-shot gain.1030

1 Introduction031

With the emergence of large-scale multilingual Pre-032

trained Language Models like mBERT (Devlin033

et al., 2019) and XLM-R (Conneau et al., 2020), a034

significant amount of research went into exploring035

the cross-lingual transfer capabilities of these mod-036

els, allowing for an easier adaptation to a task in037

many various languages. This is achieved through038

a number of approaches.039

1Our code will be published under:
https://www.gihtub.com/***

Zero-shot cross-lingual transfer has become a re- 040

search focus, e.g. XTREME / XTREME-R bench- 041

mark (Hu et al., 2020; Ruder et al., 2021). In this 042

approach, transfer to new languages is done by 043

fine-tuning a multilingual PLM on the task at issue, 044

using only an English corpus (source language) 045

and reporting the performance on multiple target 046

languages. 047

Few-shot cross-lingual transfer was recently 048

shown to give an advantage over zero-shot cross- 049

lingual transfer (Lauscher et al., 2020). In this 050

approach, it’s shown that fine-tuning the model us- 051

ing a small amount of target-language task data 052

(few-shot) improves the performance, especially 053

for low-resource languages. 054

Translate-train is another common approach to 055

improve the performance. Here the full training 056

dataset is machine translated to the target language 057

and used for fine-tuning. There exists relatively 058

good Machine Translation (MT) systems for the 059

languages that are usually studied in the few-shot 060

approach2 that could be used in translate-train. 061

In the following, we use few-shot to refer to 062

fine-tuning using fewer samples of high-quality 063

professional manual translation. Translate-train 064

is used to refer to fine-tuning using lower-quality 065

machine translation that has the potential to be 066

scaled to a larger number of samples. Although 067

some research has dealt with few-shot cross-lingual 068

transfer and analyzing it (Lauscher et al., 2020; 069

Zhao et al., 2021), no systematic study was done to 070

compare it to translate-train. Given that both zero- 071

shot and few-shot cross-lingual transfer assume the 072

availability of a large-scale English corpus of the 073

task for source training, we hypothesize that the 074

translate-train approach might have an advantage 075

over few-shot given the scale of data that would be 076

available even if not at the best quality. 077

2All target languages in the studied datasets are supported
by e.g. Google Translate:
https://cloud.google.com/translate/docs/languages
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When there is, on the other hand, an actual need078

for or a benefit from doing few-shot cross-lingual079

transfer and therefore a need for professional trans-080

lation of some samples for training, this usually081

entails significantly more effort and cost compared082

to using MT. It is then important to find out which083

samples to manually translate given the high vari-084

ance in performance depending on the choice of085

samples (Zhao et al., 2021).086

In this work we investigate both those research087

directions on 3 high-level semantic tasks and088

datasets, XNLI (Natural Language Inference), X-089

PAWS (Paraphrase Detection) and XQUAD (Ques-090

tion Answering), spanning 17 diverse languages.091

We investigate the following research questions:092

Q1. How does the performance of few-shot cross-093

lingual transfer compare to that of translate-train?094

We show that there is a performance advantage095

for few-shot transfer over translate-train given the096

same number of samples, but that with the increase097

of samples used for translate-train, this gap shrinks,098

and using the full large-scale corpus in translate-099

train results in a clear advantage over few-shot.100

We show that at a scale of 10x-100x of machine-101

translation to manual-translation, quantity trumps102

quality and it’s recommended in this case to use103

translate-train if MT is available for the language.104

Few-shot transfer still has an advantage when less105

source data is available and it’s therefore not possi-106

ble to benefit from the scale gain of using MT.107

Q2. Are there sets of samples that have better108

few-shot performance if translated and how can109

those sets be identified?110

We show that when few-shot transfer is beneficial111

for the task, there are random sets of samples that112

perform better across most target languages and113

across different model initialization. We investi-114

gate using the performance on the English version115

of the samples and the machine-translated version116

to choose the best candidates to manually translate117

and use for few-shot transfer. We show that there118

is a correlation between the performance of the119

same set of shots across languages and that the few-120

shot samples that perform well on the source lan-121

guage, English, usually perform also better across122

languages and on average. The same correlation123

is seen between the performance of manual and124

machine translation. We show empirically that125

choosing the sets of samples for few-shot transfer126

using those heuristics or a model based on those127

features results in more bang for your shots.128

2 Related Work 129

Cross-lingual transfer: The cross-lingual trans- 130

fer capabilities of multilingual pretrained language 131

models have led to major recent advances and a 132

growing number of such models have been intro- 133

duced, e.g., mBERT (Devlin et al., 2019), XLM-R 134

(Conneau et al., 2020), mT5 (Xue et al., 2021) etc. 135

The cross-lingual transfer is usually exploited in a 136

zero-shot setup, and benchmarks are built based on 137

this assumption e.g. XTREME/XTREME-R (Hu 138

et al., 2020; Ruder et al., 2021). We conduct our ex- 139

periments on 3 datasets from the XTREME bench- 140

mark and use the provided machine-translated train- 141

ing data for our translate-train experiments. 142

Few-shot: There has been recently some focus 143

on few-shot cross-lingual transfer and its analy- 144

sis. Lauscher et al. (2020) shows the effectiveness 145

of few-shot compared to zero-shot cross-lingual 146

transfer especially in lower-resource and distant 147

languages, where zero-shot transfer is least effec- 148

tive and few-shot gives a bigger advantage. Zhao 149

et al. (2021) further analyzes few-shot cross-lingual 150

transfer emphasizing that the choice of shots has a 151

significant effect on the performance. The experi- 152

ments are conducted on few-shot at a smaller scale 153

at around 10 samples. We conduct larger-scale 154

few-shot experiments with a size up to hundreds of 155

samples and focus on choosing the best-performing 156

samples. 157

Translate-train: is commonly used to boost the 158

performance for a target language using machine 159

translation (Conneau et al., 2020; Hu et al., 2020) 160

but no systematic study has been done on the effect 161

of the size of the translated data and the interplay 162

of data quality vs. quantity in this context. 163

3 Datasets 164

Dataset |Train| |mDev| |mTest| |Langs| metric

XNLI 392,702 2,490 5,010 15 Acc
PAWS-X 49,401 2,000 2,000 7 Acc
XQuAD 87,599 261 1,190-261= 930 11 F1

Table 1: Datasets statistics. Train is the English train-
ing dataset. |mDev| and |mTest| are used to indicate the
size of the multilingual split of the dataset.

We focus on high-level tasks and conduct our 165

experiments on 2 classification tasks and a question 166

answering task (Table 1). The details and proper- 167

ties of the languages can be found in Appendix 168

Table 8. When attempting to choose the shots, we 169
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rely on measuring the performance of the same set170

of samples across different languages. This is why171

we are limited to datasets with parallel corpus, i.e.172

the target language corpus is created by translating173

the English corpus as opposed to collecting and174

annotating the target language corpus from scratch175

(refer to XTREME/XTREME-R for an overview).176

XNLI: The Cross-lingual Natural Language In-177

ference corpus (Conneau et al., 2018) is a transla-178

tion of the dev and test set of the MultiNLI dataset179

(Williams et al., 2018) by professional translators180

into 14 languages. The dataset consists of pairs181

of sentences, a premise and a hypothesis, where182

the task is to predict whether the premise entails,183

contradicts, or is neutral to the hypothesis. The full184

English training data from MultiNLI is used for185

source training.186

PAWS-X: The Cross-lingual Paraphrase Adver-187

saries from Word Scrambling (Yang et al., 2019)188

dataset is a translation of the dev and test set of the189

PAWS dataset (Zhang et al., 2019) by professional190

translators into 6 languages. The dataset consists of191

pairs of sentences and the task is to predict whether192

those two sentences are paraphrases of each other.193

The full English training data from PAWS is used194

for source training.195

XQuAD: The Cross-lingual Question Answer-196

ing Dataset (Artetxe et al., 2020b) is a professional197

translation of the dev set from SQuAD v1.1 (Ra-198

jpurkar et al., 2016) into 10 other languages. The199

dataset consists of a paragraph and a set of ques-200

tions. The task is to select the span of the para-201

graph that answers the question. We reserve 10202

paragraphs from the multilingual split, similar to203

Lauscher et al. (2020), as our dev set resulting in a204

total of 261 question/answer samples. The rest is205

used as test set.206

4 Experiments207

For each task, we fine-tune XLM-R base on the208

source language (English) corpus for 5 epochs with209

early stopping using the loss on the English dev210

set. We then continue fine-tuning the model on the211

target language either in a few-shot or translate-212

train setup as explained in the following sections.213

For the two classification tasks, we use a maximum214

sequence length of 128. We limit hyperparmeter215

tuning to a search for the learning rate in {7e −216

6, 1e− 5, 3e− 5} and use a batch size of 32. For217

Question Answering, we use a maximum sequence218

length of 384 with a paragraph slide of 128. We219

train using a learning rate of 3e − 5 and a batch 220

size of 12 for 2 epochs. More details about training 221

can be found in Appendix A. 222

4.1 Few-shot experiments 223

We use samples from the multilingual dev set as 224

training samples. Few-shot fine-tuning is done as 225

follows: for each language, we separately continue 226

fine-tuning the source model for one epoch on 227

n ∈ {10, 50, 100, 500, 1k} samples from the tar- 228

get language corpus for the two classification tasks 229

and for n ∈ {10, 50, 100, 250} for the Question 230

Answering task, given the smaller amount of data 231

available for training in this case. We report the 232

results on the test set for each target language. 233

For each n number of samples, the performance 234

is averaged across 5 different sets of randomly- 235

chosen samples using 5 different fine-tuned models 236

with different random initialization, 25 runs in to- 237

tal. This is done to ensure more robust results when 238

measuring the gain over zero-shot given the high 239

variance across the different sets of samples (Zhao 240

et al., 2021) as well as the variance in zero-shot per- 241

formance across the random initialization (Keung 242

et al., 2020) 243

For comparing the performance across shots, we 244

make sure to use the same set of parallel samples 245

across languages, using the sample ids, to compare 246

how a set of samples performs when translated to 247

different languages. This is possible due to our 248

selection of tasks and datasets that have a parallel 249

corpus for the various target languages. 250

4.2 Translate-train experiments 251

We train using a machine translation of the En- 252

glish train set to each target language3 and adapt 253

a similar setup as few-shot (Section 4.1): for each 254

language, we separately continue fine-tuning on 255

n ∈ {10, 50, 100, 500, 1k, 10k, |dataset|} sam- 256

ples from the machine-translated train set and re- 257

port the results on the test set of the target language. 258

5 Results 259

In the following sections, we present our findings 260

while attempting to answer the following questions: 261

1. How to translate? Using manual or machine 262

translation? (Section 5.1) 2. How to choose the 263

best shots to manually translate? (Section 5.2) 264

3We use the Machine Translation provided by the
XTREME Benchmark:
https://console.cloud.google.com/storage/browser/xtreme_translations

3
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5.1 How to translate your samples? Few-shot265

vs. translate-train266

XNLI PAWS-X XQuAD

English 84.04±0.65 93.99±0.35 83.10±0.29
cross-lingual transfer (average over all languages)

zero-shot -10.26±0.34 -11.92±0.92 -12.60±0.35
few-shot -8.54±0.30 -11.16±0.52 -12.42±0.30
translate-train -7.09±0.32 -8.93±0.66 -10.95±0.16

Table 2: Gap to English performance. Performance
gap between the average performance for all languages
compared to the performance for English

To demonstrate the full potential for each ap-267

proach, Table 2 shows a summary of the results268

for zero-shot, few-shot and translate-train when269

the maximum possible number of samples is used.270

The gap to English performance is the average271

of the gap between the target language performance272

and the performance on the English test set. Both273

few-shot and translate-train help bridge the gap, but274

using translate-train on a large scale has an advan-275

tage in further narrowing the gap as compared to276

the small scale that is possible with few-shot trans-277

fer. This results in a further gain for translate-train278

over few-shot by 1.45%, 2.22%, 1.47% on average279

for XNLI, PAWS-X and XQuAD.280

To see the effect of the available dataset size in281

each scenario, Figure 1 shows the average perfor-282

mance across languages for few-shot vs. translate-283

train for various number of samples. We can see284

an advantage of having manual translation over285

machine translation resulting in a clear gap in per-286

formance in XNLI for the same number of samples287

as seen in Figure 1a. This gap increases with the288

increase of the size of training samples as seen289

at 1k samples. The availability of manual trans-290

lation for few-shot transfer is limited though and291

starting from 10k-100k, the scale of translate-train292

has an advantage for all tasks. The performance on293

PAWS-X and XQuAD does not improve much with294

few-shot as shown in Figure 1b and Figure 1c , and295

the clear boost comes from using the large scale296

machine-translated dataset. We discuss the ob-297

served large variance on XQuAD across languages298

in the following paragraph.299

The detailed results for zero-shot, few-shot and300

translate-train are shown for XNLI in Figure 2. We301

focus here on XNLI because it was the task with a302

clear few-shot gain (refer to Figure 5 and 6 in the303

Appendix for PAWS-X and XQuAD). We report304
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Figure 1: Average performance across languages for
translate-train vs. few-shot. The biggest performance
boost comes from using translate-train

the performance gains for few-shot and translate- 305

train over zero-shot for each language across vary- 306

ing sizes of samples. We notice a performance 307

advantage in general across the different sizes for 308

both few-shot and translate-train (mostly starting 309

from 1k). The gain is larger for low-resource lan- 310

guages like Swahili (sw) and non-European lan- 311

guages like Chinese (zh). Those languages also 312

tend to have a larger zero-shot performance gap 313

to English and this observation is seen for both 314
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ar
bg
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avg

71.98±0.50
77.73±0.25
76.59±0.26
76.42±0.42
79.02±0.23
78.64±0.57
70.40±0.96
75.99±0.45
65.49±0.56
71.90±0.85
73.17±0.30
66.57±0.69
75.39±0.63
73.75±0.48

73.79

0.24±0.79 0.97±0.52 1.33±0.63 -0.22±0.68 0.13±0.99 -0.29±0.83 1.18±0.53 2.70±0.53 3.73±0.45
0.36±0.73 1.13±0.43 1.43±0.44 0.42±0.56 0.31±0.80 -0.20±0.73 0.38±0.58 1.30±0.59 2.29±0.39
0.45±0.64 1.14±0.52 1.84±0.55 0.37±0.63 -0.04±0.74 0.30±0.70 1.19±0.50 2.38±0.26 3.02±0.28
0.33±0.52 0.56±0.54 1.15±0.42 0.00±0.62 -0.32±1.09 -0.76±0.88 -0.08±0.54 1.65±0.29 2.25±0.34
0.25±0.52 0.48±0.45 1.18±0.57 0.08±0.68 -0.30±0.99 -0.44±0.75 -0.06±0.42 0.94±0.53 2.20±0.36
0.25±0.71 0.65±0.63 0.65±0.65 -0.01±0.73 -0.62±1.26 -0.69±0.87 -0.12±0.60 0.70±0.57 1.85±0.30
0.49±1.05 1.35±0.70 2.10±0.66 0.13±1.12 -0.26±1.55 -0.70±0.94 0.82±0.62 2.37±0.54 3.49±0.46
0.23±0.54 0.91±0.38 1.38±0.33 -0.06±0.87 0.36±0.68 -0.30±0.88 0.22±0.53 1.68±0.32 2.50±0.36
0.04±0.76 0.10±0.80 1.34±0.71 0.17±0.53 -0.70±1.14 -0.83±1.05 1.87±0.55 4.08±0.36 5.42±0.42
0.31±1.28 1.83±0.49 2.61±0.43 0.55±0.78 0.55±0.97 0.52±0.96 1.77±0.47 3.46±0.60 4.46±0.52
0.43±0.61 1.00±0.65 1.47±0.59 0.46±0.84 -0.35±0.97 -0.78±0.80 0.51±0.60 2.07±0.49 3.20±0.42
0.76±0.99 2.19±0.56 2.33±0.76 1.26±0.61 1.46±0.98 1.33±0.49 2.13±0.51 1.46±0.61 2.15±0.32
0.35±1.02 1.62±0.57 2.18±0.54 0.40±0.85 0.28±1.10 0.13±0.67 1.08±0.51 2.34±0.48 3.57±0.31
0.52±0.75 1.91±0.63 2.97±0.51 0.56±0.94 0.29±1.13 0.69±0.85 1.67±0.71 2.88±0.42 4.15±0.48

0.36 1.13 1.71 0.29 0.06 -0.14 0.90 2.14 3.16

zer-shot few-shot translate-train

Figure 2: Detailed Results on XNLI. Gains in performance over zero-shot for few-shot and translate-train. Low-
resource languages like Swahili have the most gains in both cases

few-shot and translate-train. Once the full machine-315

translated training set is used, a clear advantage for316

translate-train is seen across almost all languages317

and in all tasks. We can see that the gain for Urdu318

(ur) is the highest up until 100k when it starts de-319

creasing. We think this might be due to a lower-320

quality machine translation. The same effect is321

seen for Thai (th) on XQuAD with a significant322

performance degrade when the full training dataset323

is used (details in the Appendix in Figure 6). This324

is also the reason for the degrade and high variance325

seen at this point in Figure 9b.326

We investigated whether training for more327

epochs would have changed the results and would328

have been beneficial, especially for the few-shot329

scenario where longer training on the manual high-330

quality translation might be beneficial. We split the331

available set of samples into train/dev and train for332

10 epochs with early stopping on dev. Although333

some languages seem to benefit from this setup, it334

still yields comparable results and translate-train335

still has a clear advantage. (See Figure 7 and 8 in336

the Appendix for the detailed results).337

5.2 How to choose your shots? Which338

samples to translate for few-shot?339

Few-shot can still have an advantage over translate-340

train when the English dataset is not large enough341

to benefit from the scale effect of translate-train.342
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Figure 3: XNLI accuracy variance on different shots.
High variance decreases with an increased data size

It can also be necessary when adapting to a target 343

language that does not have an existing machine 344

translation system or does not have a good one. 345

Creating few-shot samples, in this case, can be 346

done by collecting and labeling new samples or 347

by translating samples from the available English 348

dataset. The latter is a common method and 4 out 349

of the 7 non-retrieval datasets in XTREME use 350

manual professional translation to create samples 351

in the target languages (all of which high-level 352

semantic tasks). It is beneficial then to support 353

in selecting the samples with higher-performance 354

potential to translate and do few-shot training on. 355
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ar bg de el en es fr hi ru sw th tr ur vi zh

ar 1.00 0.76 0.76 0.75 0.77 0.76 0.72 0.65 0.51 0.56 0.75 0.85 0.74 0.85 0.77
bg 0.76 1.00 0.74 0.65 0.59 0.76 0.59 0.63 0.59 0.69 0.73 0.65 0.62 0.82 0.64
de 0.76 0.74 1.00 0.69 0.62 0.77 0.50 0.69 0.64 0.61 0.77 0.72 0.63 0.80 0.71
el 0.75 0.65 0.69 1.00 0.69 0.74 0.56 0.66 0.45 0.69 0.65 0.77 0.55 0.73 0.67
en 0.77 0.59 0.62 0.69 1.00 0.73 0.79 0.66 0.15 0.62 0.57 0.79 0.38 0.65 0.55
es 0.76 0.76 0.77 0.74 0.73 1.00 0.55 0.60 0.51 0.71 0.66 0.75 0.50 0.77 0.66
fr 0.72 0.59 0.50 0.56 0.79 0.55 1.00 0.65 0.17 0.39 0.55 0.73 0.52 0.63 0.51
hi 0.65 0.63 0.69 0.66 0.66 0.60 0.65 1.00 0.53 0.62 0.79 0.70 0.63 0.77 0.74
ru 0.51 0.59 0.64 0.45 0.15 0.51 0.17 0.53 1.00 0.42 0.65 0.44 0.69 0.68 0.69
sw 0.56 0.69 0.61 0.69 0.62 0.71 0.39 0.62 0.42 1.00 0.63 0.60 0.35 0.65 0.54
th 0.75 0.73 0.77 0.65 0.57 0.66 0.55 0.79 0.65 0.63 1.00 0.74 0.74 0.83 0.85
tr 0.85 0.65 0.72 0.77 0.79 0.75 0.73 0.70 0.44 0.60 0.74 1.00 0.64 0.78 0.76
ur 0.74 0.62 0.63 0.55 0.38 0.50 0.52 0.63 0.69 0.35 0.74 0.64 1.00 0.77 0.79
vi 0.85 0.82 0.80 0.73 0.65 0.77 0.63 0.77 0.68 0.65 0.83 0.78 0.77 1.00 0.82
zh 0.77 0.64 0.71 0.67 0.55 0.66 0.51 0.74 0.69 0.54 0.85 0.76 0.79 0.82 1.00
avg 0.75 0.70 0.71 0.68 0.64 0.70 0.59 0.69 0.54 0.61 0.73 0.73 0.64 0.77 0.71

Table 3: XNLI Pearson correlation of the performance between languages

ar bg de el es fr hi ru sw th tr ur vi zh

0.65 0.86 0.89 0.75 0.88 0.88 0.80 0.75 0.72 0.85 0.86 0.61 0.89 0.89

Table 4: XNLI Pearson correlation between the performance of machine translation and manual translation

To emphasize the significance of choosing the356

samples to translate and how the performance is357

affected by this choice, we plot in Figure 3 the358

XNLI performance variance on different shots359

(using the same model initialization) across 20 sets360

of random few-shot samples varying in size from361

10 to 1000 samples. We can see that the perfor-362

mance varies, sometimes significantly, depending363

on the set of samples used. Zhao et al. (2021) has364

shown similar variance observations on a smaller365

number of samples (around 10). We consider here366

a larger size range that is more representative of367

the expected data size if a manual translation is368

conducted. The performance variance across shots369

decreases with the increased number of shots in370

particular starting at 100 samples. This means that371

choosing the shots to translate is more important372

when smaller size of samples is used. (A somewhat373

similar observation is shown in the Appendix on374

PAWS-X and XQuAD in Figure 9a and 9b although375

for the latter the variance increases with the size).376

In the following, we focus mainly on XNLI as377

the task that had the most few-shot gain. We inves-378

tigate whether there are sets of samples that have a379

potential for better performance across languages380

and what could be an indication of that. For a set of381

shots, we consider two indicators: the performance382

of this set in another language, and the performance383

on the MT of the samples in the set.384

5.2.1 Correlation between performance 385

across languages 386

If the performance of a set of samples for one lan- 387

guage can be an indication of its performance on an- 388

other language, we expect to see a high correlation 389

between the performance for both languages. To 390

estimate this, we calculate the performance using 391

the different manual translations across languages 392

of the same set of training samples (shots). We 393

then calculate the Pearson correlation of the per- 394

formance across 5 random sets of samples (with 395

varying sample-set sizes) using 5 models with dif- 396

ferent random initialization. As seen in Table 3, 397

there is a high positive correlation between the per- 398

formance on XNLI for the various languages. This 399

is also the case, but to a lesser degree for PAWS-X 400

as seen in the Appendix Table 10. XQuAD, on the 401

other hand, has low and sometimes even negative 402

correlation as seen in the Appendix Table 13. This 403

might be due to the nature of the task or the fact 404

that we have less data in this case for both training 405

and test. It is also worth noting that the correla- 406

tion is lower for both tasks, PAWS-X and XQuAD, 407

which had low few-shot gain. 408

We can see that English has a good correlation 409

for XNLI and PAWS-X, so we can consider the 410

performance on English an indication of how well 411

the set of samples would perform if translated to 412

another language. A breakdown of the English 413
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A B C D E

en
ar
bg
de
el
es
fr
hi
ru
sw
th
tr
ur
vi
zh

avg

0.36% -0.12% 0.30% -0.36% 0.36%
0.80% -0.52% 0.72% 0.32% 0.16%
0.14% -0.71% 0.86% -0.06% 0.62%
0.84% -0.10% 1.07% -0.02% 0.72%
0.62% 0.06% 0.28% 0.04% 0.44%
0.56% -0.04% 0.54% -0.40% 0.44%
0.58% -0.24% 0.56% 0.00% -0.14%
0.06% -0.34% 0.52% 0.20% 1.28%
0.76% 0.12% 0.58% -0.44% 0.16%
0.68% -1.00% 0.40% -0.10% 0.44%
0.58% -1.14% 1.41% 0.12% 0.46%
1.26% 0.22% 1.26% 0.38% 0.40%
1.08% -0.68% 2.19% 1.75% 1.67%
0.68% -0.16% 1.10% 0.28% 1.20%
0.72% -0.22% 1.26% 0.36% 0.18%
0.67% -0.34% 0.91% 0.17% 0.57%

A B C D E

en
ar
bg
de
el
es
fr
hi
ru
sw
th
tr
ur
vi
zh

avg

-0.86% -1.65% -0.96% -1.71% -0.80%
0.80% -1.00% 1.11% 0.36% 0.78%
0.94% -1.37% 1.12% -0.26% 0.86%
0.84% -0.68% 1.23% -0.12% 0.94%
0.96% 0.08% 1.06% 0.66% 0.86%
0.30% -0.64% 0.46% -0.44% 0.42%
-0.04% -1.65% -0.14% -0.62% -0.18%
-0.16% -1.48% 0.62% -0.40% 0.44%
1.00% 0.12% 1.10% 0.60% 1.04%
0.10% -0.66% 0.26% -1.30% 0.52%
1.20% -1.56% 2.07% 0.60% 1.51%
0.50% -0.39% 1.10% -0.12% 0.16%
0.80% -0.26% 2.47% 1.41% 1.51%
1.34% -0.32% 1.98% -0.38% 1.90%
0.36% -1.34% 1.12% -0.10% -0.34%
0.64% -0.80% 1.11% -0.01% 0.74%

A B C D E

en
ar
bg
de
el
es
fr
hi
ru
sw
th
tr
ur
vi
zh

avg

0.50% 0.12% 0.46% 0.14% 0.60%
2.17% 0.88% 2.11% 1.10% 1.67%
0.58% -0.67% 0.94% -0.41% 0.60%
0.72% 0.26% 1.11% -0.06% 1.13%
1.67% 0.70% 1.10% 1.00% 1.56%
0.82% -0.04% 0.82% -0.24% 0.36%
1.18% 0.46% 1.38% 0.74% 0.82%
0.86% 0.26% 1.16% 0.00% 1.36%
0.50% -0.30% 0.64% -0.62% 0.40%
0.18% -0.50% -0.02% -0.76% 0.26%
2.05% -0.28% 2.61% 0.96% 1.55%
1.86% 0.66% 1.78% 0.82% 0.90%
1.65% 0.70% 2.77% 1.73% 1.83%
1.44% 0.26% 2.38% 0.02% 2.36%
0.54% -0.38% 1.08% 0.06% 0.62%
1.16% 0.14% 1.42% 0.31% 1.10%

Figure 4: XNLI few-shot gain over zero-shot across 5 sets of samples (size=10) for 3 different model initializa-
tions. Sets C, A, and E yield better performance for the 3 different initializations. The English performance can be
used as an indicator when choosing samples to translate

correlation based on data size is show in the Ap-414

pendix Table 9 and 11. As an example of this,415

Figure 4 shows XNLI few-shot gain over zero-416

shot performance for 5 random sets of samples417

{A,B,C,D,E} each containing 10 samples. The418

performance is shown for 3 different model initial-419

izations. We can see that the sets {A,C,E} per-420

form better than {B,D} across target languages421

and on average as well as across different initializa-422

tions. The performance on English can be used as423

an indicator of the best shots to choose and translate424

to a target language as seen when comparing the425

English performance (top) to the average (bottom,426

excluding the English performance). This is here427

the case even when further fine-tuning a model on428

English samples results in a decreased English per-429

formance as seen for the 2nd model initialization.430

The least negative sets of samples still correspond431

to the best performing shots. The results generalize432

for varying sizes of few-shot sets as seen for exam-433

ple in the case of 1000 samples in the Appendix434

Figure 10.435

5.2.2 Correlation between manual and436

machine translation performance437

Another possible indicator of the best performing438

set of samples could be the performance of the439

samples in the set when they are machine trans-440

lated from English to the target language. Artetxe441

et al. (2020a) has shown that subtle patterns in the442

(machine or manual) translated samples can have a443

notable impact on the model performance, so it is444

important to empirically study the relation between445

both. Similar to the above, we calculate the correla- 446

tion between the performance for both manual and 447

machine translation of the same set of samples for 448

each target language. As seen for XNLI in Table 4, 449

there is an even higher correlation than with the En- 450

glish performance. A somewhat lower correlation 451

is seen for PAWS-X in Appendix Table 12. Lower 452

correlation might be a result of lower-quality ma- 453

chine translation or a result of the different patterns 454

introduced by machine translation that affects the 455

performance as mentioned before. 456

5.2.3 Gain from choosing shots and 457

performance prediction 458

We show in Table 5 the few-shot performance 459

gain resulting from choosing the shots with the 460

highest English performance and the highest 461

machine-translation performance. This is in com- 462

parison to the average few-shot gain across the 463

different shots in no choosing (avg), but also to the 464

minimum in no choosing (min), because an impor- 465

tant aspect of choosing the shots is avoiding the 466

worst-performing ones (Comparing to the average 467

hides the fact that we might accidentally use a very 468

bad set of shots). We exclude XQuAD from our 469

results because of the low few-shot gains and the 470

low correlations which resulted in no gains when 471

choosing the shots (detailed results in Appendix 472

Figure 12). We can see a clear gain when using 473

en performance or mt performance for both XNLI 474

and PAWS-X. The few-shot gain with chosen-shots 475

is most significant at smaller data sizes where the 476

gain is almost double that from no choosing (avg). 477
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10 50 100 500 1000 avg

XNLI no choosing (avg) 0.36 0.64 1.13 1.38 1.71 1.04
no choosing (min) 0.04 -0.15 0.10 0.36 0.65 -2.26
en performance 0.71 1.15 1.32 1.82 1.90 1.38
mt performance 0.88 1.08 1.36 1.81 2.01 1.43
en + mt model 0.85 1.11 1.42 1.85 2.01 1.45
+ lang features 0.83 1.13 1.44 1.85 2.03 1.46

PAWS-X no choosing (avg) 0.19 0.02 -0.20 0.44 0.76 0.24
no choosing (min) -0.34 -0.43 -1.05 -0.23 0.10 -4.70
en performance 0.17 0.10 0.23 0.53 0.71 0.35
mt performance 0.38 0.19 0.09 0.42 0.73 0.36
en + mt model 0.32 0.09 0.13 0.44 0.76 0.35
+ lang features 0.26 0.04 0.00 0.52 0.84 0.33

Table 5: Chosen-shots performance gain. Gain over
zero-shot performance when choosing the best set of
shots using a heuristic (en or mt performance) or a lin-
ear model that predicts the performance. No gain is
observed for XQuAD

XNLI PAWS-X
MSE RMSE MSE RMSE

avg (baseline) 1.05±0.56 0.99±0.26 1.26±0.76 1.08±0.34
model using features:
en performance 0.68±0.41 0.80±0.23 1.08±0.92 0.97±0.42
mt performance 0.34±0.28 0.56±0.20 0.92±0.56 0.93±0.28
en + mt performance 0.33±0.26 0.55±0.18 0.91±0.56 0.92±0.28
+ lang features 0.32±0.25 0.54±0.18 0.58±0.27 0.75±0.17
only lang features 0.93±0.47 0.93±0.24 1.01±0.45 0.98±0.25

Table 6: Performance prediction error. Predicting
the few-shot performance gain using models with the
English and MT performance as features. +lang fea-
tures further adds features from lang2vec

We investigate improving our choices by com-478

bining the various performance values as features479

to a linear model that predicts the performance gain.480

This is also helpful to avoid selecting any set of481

samples if none are expected to result in a positive482

and significant improvement. We use the perfor-483

mance metrics as a dataset based on 5 different ran-484

dom sets of samples for 5 different model initializa-485

tion with varying sample sizes across all languages486

(excluding English). This results in 1750, 750,487

1100 data points for XNLI, PAWS-X and XQuAD.488

For each language, we train the model using the489

data from all other languages and evaluate on the490

selected language. Cross-validation is done on the491

data after excluding the selected language to choose492

the best hyperparameters. For each language, the493

average performance gain for all other languages494

is used as a baseline.495

The following features are considered: the En-496

glish performance gain for the set of samples cor-497

responding to each data point and/or the machine498

translation performance gain for the samples in the499

set. In all cases, we consider: the zero-shot perfor-500

mance (since the gain is usually larger when the501

zero-shot performance is lower), and the number 502

of samples used for that data point. We also inves- 503

tigate whether adding language features can im- 504

prove the prediction. We consider syntax, phonol- 505

ogy, inventory, family and geographical location as 506

features similar to the analysis by Lauscher et al. 507

(2020). lang2vec 4 from Littell et al. (2017) is used 508

to obtain the feature vectors for each language. The 509

cosine similarity between the English vectors and 510

the vectors for each language are added as 5 new 511

scalar features (values are in Appendix Table 8). 512

Those features can help the model better use the 513

English performance depending on the similarity 514

between the language and English. 515

The prediction error is reported in Table 6. 516

Having a combination of English and MT perfor- 517

mance with language features achieves the best 518

results. We can also see in Table 5 that using the 519

models further improves the chosen-shots perfor- 520

mance gain for XNLI with the best result, as before, 521

using a combination of all features. This is not the 522

case for PAWS-X where the improvement in per- 523

formance seems to be a general improvement and 524

not specific to the different sets of samples. This 525

could also be partially due to having a smaller per- 526

formance data and fewer languages to train on (7 as 527

compared to 15 languages for XNLI). The detailed 528

results for the different languages are in the Ap- 529

pendix Figure 11. Choosing the shots improves the 530

few-shot performance on XNLI for all languages 531

across almost all sample sizes. For PAWS-X, there 532

is mixed gain/loss but the improvement when using 533

English performance at maximum size is concen- 534

trated in the European languages. 535

6 Conclusion and Future Work 536

In this work, we conducted a systematic compar- 537

ison between translate-train and few-shot cross- 538

lingual transfer. We quantified the performance 539

gain for each and showed that starting from 1k 540

samples, machine-translated data could be used to 541

improve over zero-shot performance, and that at 542

10k-100k, there’s an advantage for translate-train 543

over few-shot. For the tasks that benefit from few- 544

shot, we show that there are random sets of samples 545

that perform better across languages and that the 546

English performance of the samples in those sets 547

can help us identify them. The performance of the 548

machine translation of the samples can also be used 549

as another indicator. 550

4https://github.com/antonisa/lang2vec
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A Training Details 680

Software: We use the Huggingface Transformers 5 for fine-tuning the pretrained language models. We 681

use scikit-learn 6 to train the performance prediction models. Our code will be made publicly available 7. 682

Hardware: NVIDIA GeForce GTX 1080 Ti with 11G memory is used for most experiments. The linear 683

model is trained locally on a CPU. 684

Model: XLM-Rbase has ∼270M parameters with 12-layers, 768-hidden-state, 3072 feed-forward hidden- 685

state, 8-heads, and trained on on 2.5 TB of newly created clean CommonCrawl data in 100 languages8. 686

Hyperparameters: The used learning rate along with the dev performance for a model with seed=42 is 687

reported in Table 7. We use four other models fine-tuned on the English train split with seed ∈ {2, 4, 8, 16} 688

XNLI PAWS-X XQuAD

1e-5 7e-6 3e-5
84.82 92.45 89.10

Accuracy Accuracy F1

Table 7: learning rate and English dev performance

Training & Evaluation Runs: Starting from each of the 5 source fine-tuned models, we fine-tune on the 689

target language for 5 different sets of samples. This is repeated for for each size resulting in 25 runs per 690

size. The runtime for the target language fine-tuning varies based on the number of samples used and the 691

number of languages in each dataset. For smaller sample sizes, most runtime is spent for the evaluation 692

on the large test set. 693

B Languages 694

code
language properties(1) cosine similarity to English(2)

XNLI PAWS-X XQuAD
name size(3) script language family syntax phonology inventory family geo

ar Arabic 1.02 Arabic Afro-Asiatic 0.65 0.70 0.71 0.00 0.97 x x
vi Vietnamese 1.24 Latin Austro-Asiatic 0.66 0.78 0.75 0.00 0.85 x x
de German 2.37 Latin IE: Germanic 0.90 0.81 0.76 0.54 1.00 x x x
en English 5.98 Latin IE: Germanic 1.00 1.00 1.00 1.00 1.00 x x x
el Greek 0.17 Greek IE: Greek 0.78 0.95 0.65 0.15 0.99 x x
hi Hindi 0.13 Devanagari IE: Indo-Aryan 0.62 0.78 0.71 0.13 0.91 x x
ur Urdu 0.15 Perso-Arabic IE: Indo-Aryan 0.62 0.86 0.72 0.13 0.93 x
es Spanish 1.56 Latin IE: Romance 0.82 0.86 0.64 0.10 1.00 x x x
ro Romanian 0.42 0.42 IE: Romance 0.80 0.90 0.73 0.12 0.99 x
fr French 2.16 Latin IE: Romance 0.81 0.75 0.74 0.10 1.00 x x
ru Russian 1.58 Cyrillic IE: Slavic 0.81 0.86 0.65 0.17 0.96 x x
bg Bulgarian 0.26 Cyrillic IE: Slavic 0.86 0.86 0.68 0.14 0.99 x
ja Japanese 1.18 Ideograms Japonic 0.50 0.67 0.65 0.00 0.86 x
ko Korean 0.47 Hangul Koreanic 0.55 0.75 0.71 0.00 0.87 x
th Thai 0.13 Brahmic Kra-Dai 0.64 0.78 0.75 0.00 0.85 x x
sw Swahili 0.05 Latin Niger-Congo 0.46 0.91 0.76 0.00 0.92 x
zh Mandarin 1.09 Chinese ideograms Sino-Tibetan 0.71 0.73 0.70 0.00 0.88 x x x
tr Turkish 0.34 Latin Turkic 0.51 0.82 0.67 0.00 0.98 x x

(1) properties taken from XTREME
(2) similarity calculated using lang2vec
(3) size is the #wikipedia articles in millions

Table 8: Languages in the Datasets

5https://github.com/huggingface/transformers
6https://github.com/scikit-learn/scikit-learn
7https://www.gihtub.com/***
8from https://huggingface.co/transformers/pretrained_models.html

11

https://github.com/huggingface/transformers
https://github.com/scikit-learn/scikit-learn
https://www.gihtub.com/***
https://huggingface.co/transformers/pretrained_models.html


C More Results Details695

0 10 100 1k 10 100 1k 10k 50k

de
es
fr
ja
ko
zh

avg

86.75±0.95
87.94±0.65
88.74±0.85
75.91±0.59
73.95±1.32
79.16±1.43

82.07

-0.34±0.97 -0.42±1.18 0.17±0.74 -0.29±1.00 -0.33±1.02 -0.52±1.12 0.46±1.00 1.29±0.82
0.02±0.53 -0.52±1.18 0.24±0.55 -0.82±0.97 -0.91±1.17 -0.01±0.64 0.77±0.70 1.77±0.38
-0.16±0.73 -0.18±0.86 0.10±0.65 -0.07±0.58 -0.59±0.93 0.11±0.57 0.68±0.56 1.58±0.57
0.07±0.56 -1.05±1.60 0.63±0.87 0.10±0.51 0.10±0.85 0.34±0.85 1.96±0.68 3.31±0.80
1.02±0.93 0.85±0.77 1.92±0.88 -0.18±1.75 0.81±0.94 0.96±1.03 4.05±0.78 6.43±1.07
0.52±0.66 0.11±1.13 1.49±0.63 0.20±1.43 0.07±1.08 1.14±1.00 2.65±0.57 3.54±0.59

0.19 -0.20 0.76 -0.18 -0.14 0.34 1.76 2.99

zer-shot few-shot translate-train
Figure 5: Detailed Results on PAWS-X. Gains in performance over zero-shot for few-shot and translate-train.
Non-European language show the most gain especially Korean.

0 10 100 250 10 100 250 1k 10k 88k

ar
de
el
es
hi
ru
th
tr
vi
zh

avg

67.76±0.61
74.75±1.02
73.01±0.32
76.16±0.70
68.36±1.17
73.53±0.96
66.40±1.08
67.11±1.19
73.84±0.33
64.19±0.94

70.51

0.08±0.57 -0.32±0.86 -0.29±0.81 0.29±0.52 -0.03±0.66 0.17±0.75 1.49±0.74 3.68±0.81 3.31±0.37
-0.26±0.90 -0.70±1.00 -1.31±0.85 0.03±0.87 -0.67±0.97 -1.05±1.00 -1.04±0.90 0.22±0.55 1.00±0.29
-0.36±0.37 -0.75±0.75 -0.99±0.54 -0.35±0.45 -1.06±0.88 -1.29±0.56 -0.89±0.60 0.27±0.63 2.36±0.41
-0.13±0.52 -0.45±0.54 -0.53±0.64 -0.13±0.57 -0.53±0.64 -0.16±0.72 0.35±0.75 1.07±0.58 2.88±0.16
-0.00±0.84 -0.22±0.83 -0.40±0.68 0.23±0.95 -0.13±0.80 0.20±0.91 0.98±0.89 3.25±0.64 4.73±0.44
-0.10±0.86 -0.76±0.76 -1.08±0.64 -0.04±0.84 -0.26±0.77 -0.58±0.76 -0.38±0.77 0.72±0.52 2.74±0.86
0.79±0.92 1.58±0.88 2.53±1.12 0.67±1.09 1.72±1.09 3.36±1.35 7.24±0.81 1.73±1.63 -15.94±1.56
-0.05±1.14 -0.13±1.33 -0.34±0.66 -0.06±0.95 -0.17±0.69 0.22±1.05 1.44±0.89 3.61±0.65 4.22±0.65
-0.04±0.43 0.04±0.77 0.39±0.94 0.05±0.41 -0.02±0.71 -0.20±0.63 0.73±0.71 2.27±0.43 3.39±0.35
0.46±0.76 1.51±0.94 3.75±1.08 -0.39±0.85 -0.54±1.20 0.09±1.08 1.95±0.89 9.88±0.79 7.78±1.84

0.04 -0.02 0.17 0.03 -0.17 0.08 1.19 2.67 1.65

zer-shot few-shot translate-train

Figure 6: Detailed Results on XQuAD. Gains in performance over zero-shot for few-shot and translate-train.
Non-European languages show the most gain especially Chinese. Thai shows a significant degrade when using the
full machine-translated dataset. This might be due to lower-quality machine translation for Thai.
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0 10 100 1k 10 100 1k 10k 100k 400k

ar
bg
de
el
es
fr
hi
ru
sw
th
tr
ur
vi
zh

avg

71.98±0.50
77.73±0.25
76.59±0.26
76.42±0.42
79.02±0.23
78.64±0.57
70.40±0.96
75.99±0.45
65.49±0.56
71.90±0.85
73.17±0.30
66.57±0.69
75.39±0.63
73.75±0.48

73.79

0.44±1.06 1.15±0.70 1.44±0.80 -2.15±2.34 -0.11±1.12 0.40±0.86 0.82±1.14 1.77±0.21 4.29±0.47
0.46±0.99 1.07±0.36 1.39±0.48 0.09±1.36 0.18±0.83 -0.69±1.68 0.55±0.45 1.87±0.32 1.82±0.48
0.58±0.99 1.05±0.52 1.91±0.56 0.40±1.02 -0.15±0.96 0.06±1.41 1.17±0.51 1.69±0.68 2.93±0.48
0.06±0.99 0.53±0.75 1.28±0.47 -0.31±1.20 0.02±0.80 -1.10±1.55 0.23±0.61 0.88±0.27 0.79±0.23
0.24±0.92 0.30±0.64 1.06±0.57 -0.04±0.72 -0.41±0.86 -1.15±1.07 0.26±0.65 0.65±0.49 1.81±0.26
0.24±0.85 0.32±0.73 0.77±0.64 -0.31±1.09 -0.65±1.20 -0.35±1.07 -0.08±0.91 1.03±0.41 1.42±0.27
0.49±1.40 1.31±0.94 1.98±0.73 -0.38±1.37 -0.05±1.38 -1.07±1.59 0.97±1.23 2.68±0.26 2.76±0.56
0.17±0.81 0.84±0.46 1.21±0.28 -0.43±1.10 -0.09±0.75 -0.15±0.61 0.25±0.87 1.39±0.29 1.45±1.07
-0.10±0.83 0.53±0.99 1.32±0.89 -0.03±0.81 -0.73±1.21 -0.37±1.56 2.38±0.63 3.50±0.33 4.87±0.84
0.79±1.68 2.17±0.36 2.72±0.63 0.07±1.64 0.62±1.24 1.04±0.70 2.14±0.73 3.66±0.08 4.22±0.37
-0.02±1.20 1.07±0.68 1.44±0.62 0.43±1.03 -0.08±0.95 -0.50±1.06 0.89±0.88 1.52±0.45 1.97±0.44
0.85±1.56 1.91±0.68 2.51±0.50 0.07±1.09 0.72±0.67 0.80±0.66 0.21±0.81 -0.43±0.29 0.49±0.46
0.92±1.51 1.71±0.62 2.03±0.67 0.40±1.11 0.53±0.98 -0.11±1.19 1.31±0.74 2.22±0.31 3.24±0.27
0.70±1.45 2.13±0.48 3.00±0.48 -0.44±1.52 -0.13±1.23 0.56±1.51 2.06±0.92 2.73±0.48 3.61±0.31

0.41 1.15 1.72 -0.19 -0.02 -0.19 0.94 1.80 2.55

zer-shot few-shot translate-train

Figure 7: Detailed Results on XNLI using a part of the available data as dev. The few-shot performance only
changes slightly with minor increases and decreases for across the languages. The highest increase on average is
at 10 samples with an increase of 0.05%. Translate-train performance decreases for almost all languages and on
average.

0 10 100 1k 10 100 1k 10k 50k

de
es
fr
ja
ko
zh

avg

86.75±0.95
87.94±0.65
88.74±0.85
75.91±0.59
73.95±1.32
79.16±1.43

82.07

-1.20±1.58 -0.25±0.71 0.22±0.75 -0.64±1.42 -1.12±0.97 -0.85±1.22 0.17±1.04 1.69±0.42
-0.57±0.97 0.08±0.51 0.26±0.46 -1.40±1.44 -0.31±1.06 -0.56±0.85 0.64±0.54 2.53±0.60
-0.77±1.33 -0.27±0.74 -0.08±0.78 -0.82±1.39 -0.61±1.17 -0.30±0.85 0.29±1.07 2.49±0.38
-0.56±1.29 0.05±0.55 0.26±1.07 -0.77±1.38 -0.44±0.94 0.03±1.13 2.13±0.82 5.42±0.40
-0.33±1.65 1.09±1.04 2.19±0.76 -0.26±2.11 0.49±1.39 1.23±1.57 4.27±1.05 7.71±0.64
0.53±0.79 0.55±0.95 1.20±0.85 -0.10±1.47 -0.12±1.32 0.61±1.02 2.42±0.53 4.71±0.18

-0.48 0.21 0.67 -0.67 -0.35 0.03 1.65 4.09

zer-shot few-shot translate-train
Figure 8: Detailed Results on PAWS-X using a part of the available data as dev. The few-shot performance
shows mixed gains decreasing by ∼0.60% for 10 samples, increasing by ∼0.40% at 100 then decreasing againg
by ∼0.10%. Translate-train performance decreases util the full dataset is used where it increases by ∼1%.
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(a) PAWS-X Performance variance on different shots.
Variance decreases with an increased data size
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(b) XQuAD Performance variance on different shots.
Variance increases with an increased data size

Figure 9: Performance variance on different shots
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lang ar bg de el es fr hi ru sw th tr ur vi zh avg

10 0.64 0.42 0.42 0.51 0.63 0.75 0.49 -0.25 0.63 0.48 0.70 0.19 0.48 0.42 0.50
50 0.82 0.59 0.59 0.76 0.74 0.87 0.66 0.11 0.70 0.81 0.84 0.54 0.73 0.56 0.69
100 0.76 0.53 0.47 0.46 0.64 0.77 0.69 -0.50 0.58 0.58 0.64 0.06 0.73 0.33 0.52
500 0.84 0.64 0.77 0.79 0.73 0.81 0.77 0.18 0.67 0.71 0.88 0.54 0.77 0.73 0.72
1000 0.72 0.63 0.74 0.69 0.72 0.84 0.60 0.10 0.06 0.51 0.80 0.03 0.51 0.75 0.58
all 0.77 0.59 0.62 0.69 0.73 0.79 0.66 0.15 0.62 0.57 0.79 0.38 0.65 0.55 0.64

Table 9: XNLI Pearson correlation between the performance on English and the performance on other languages
using the same set of samples.

de en es fr ja ko zh

de 1.00 0.66 0.52 0.56 0.21 0.54 0.64
en 0.66 1.00 0.56 0.41 0.11 0.37 0.36
es 0.52 0.56 1.00 0.57 0.22 0.54 0.57
fr 0.56 0.41 0.57 1.00 0.03 0.59 0.55
ja 0.21 0.11 0.22 0.03 1.00 0.16 0.32
ko 0.54 0.37 0.54 0.59 0.16 1.00 0.54
zh 0.64 0.36 0.57 0.55 0.32 0.54 1.00
avg 0.59 0.50 0.57 0.53 0.29 0.54 0.57

Table 10: PAWS-X Pearson correlation of the performance between languages.

lang de es fr ja ko zh avg

10 0.47 0.65 0.34 -0.22 0.53 0.56 0.48
50 0.81 0.56 0.57 -0.35 0.53 0.48 0.51
100 0.78 0.53 0.42 0.40 0.47 0.44 0.57
500 0.52 0.55 0.53 0.16 0.41 0.11 0.47
1000 0.75 0.77 0.30 -0.01 -0.02 0.35 0.45
all 0.66 0.56 0.41 0.11 0.37 0.36 0.50

Table 11: PAWS-X Pearson correlation between the performance on English and the performance on other
languages using the same set of samples.

de es fr ja ko zh

0.66 0.62 0.68 0.45 0.38 0.52

Table 12: PAWS-X Pearson correlation between the performance of machine translation and manual translation.
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ar de zh vi en es hi el th tr ru ro

ar 1.00 -0.14 0.03 0.07 0.12 -0.02 0.01 -0.03 0.07 0.25 0.12 -0.06
de -0.14 1.00 -0.54 -0.18 0.35 0.57 0.42 0.22 -0.26 0.40 -0.09 -0.00
zh 0.03 -0.54 1.00 0.16 -0.37 -0.38 -0.21 -0.41 0.55 -0.17 -0.24 -0.22
vi 0.07 -0.18 0.16 1.00 -0.08 -0.02 -0.08 -0.01 0.02 -0.18 -0.12 -0.26
en 0.12 0.35 -0.37 -0.08 1.00 0.46 0.08 0.07 -0.17 0.06 -0.04 -0.06
es -0.02 0.57 -0.38 -0.02 0.46 1.00 0.10 0.02 -0.31 0.09 -0.29 -0.24
hi 0.01 0.42 -0.21 -0.08 0.08 0.10 1.00 0.18 0.06 0.37 0.27 0.18
el -0.03 0.22 -0.41 -0.01 0.07 0.02 0.18 1.00 -0.15 0.01 0.34 0.13
th 0.07 -0.26 0.55 0.02 -0.17 -0.31 0.06 -0.15 1.00 0.17 0.07 0.10
tr 0.25 0.40 -0.17 -0.18 0.06 0.09 0.37 0.01 0.17 1.00 0.33 0.27
ru 0.12 -0.09 -0.24 -0.12 -0.04 -0.29 0.27 0.34 0.07 0.33 1.00 0.56
ro -0.06 -0.00 -0.22 -0.26 -0.06 -0.24 0.18 0.13 0.10 0.27 0.56 1.00
avg 0.12 0.15 -0.07 0.03 0.12 0.08 0.20 0.11 0.10 0.22 0.16 0.12

Table 13: XQuAD Pearson correlation of the performance between languages.

lang ar de zh vi es hi el th tr ru ro avg

10 0.54 0.41 0.08 -0.40 0.30 0.05 -0.10 0.43 0.44 -0.25 -0.23 0.19
50 0.37 0.24 -0.28 0.11 -0.01 0.19 0.27 0.12 0.21 -0.04 -0.08 0.18
100 -0.37 0.35 -0.54 -0.03 0.71 0.02 0.08 -0.09 -0.08 -0.40 -0.12 0.05
250 0.08 0.20 -0.25 0.03 0.65 -0.16 -0.38 -0.31 -0.45 -0.33 -0.34 -0.02
all 0.12 0.35 -0.37 -0.08 0.46 0.08 0.07 -0.17 0.06 -0.04 -0.06 0.12

Table 14: XQuAD Pearson correlation between the performance on English and the performance on other lan-
guages using the same set of samples.

A B C D E

en
ar
bg
de
el
es
fr
hi
ru
sw
th
tr
ur
vi
zh

avg

1.89% 1.17% 1.69% 1.29% 1.27%
2.30% 1.12% 1.80% 1.68% 1.08%
2.35% 1.59% 2.55% 1.83% 1.85%
2.03% 0.94% 1.75% 1.28% 1.32%
1.40% 0.92% 1.02% 1.08% 0.84%
1.70% 0.78% 1.08% 1.40% 1.56%
1.06% 0.72% 0.84% 0.34% 0.52%
2.27% 1.95% 2.15% 1.80% 1.78%
2.01% 1.48% 2.03% 1.44% 1.06%
1.84% 0.90% 1.34% 1.62% 0.92%
3.51% 3.27% 3.47% 2.81% 3.11%
2.52% 1.26% 2.50% 2.38% 1.76%
3.77% 2.29% 3.73% 2.99% 2.91%
3.45% 2.52% 2.66% 2.97% 2.32%
3.43% 2.94% 3.00% 3.02% 2.80%
2.44% 1.64% 2.18% 1.92% 1.73%

A B C D E

en
ar
bg
de
el
es
fr
hi
ru
sw
th
tr
ur
vi
zh

avg

1.24% 0.68% 1.22% 0.84% 1.04%
2.85% 2.21% 2.19% 2.37% 1.89%
1.92% 1.54% 1.82% 1.54% 1.36%
2.87% 1.79% 2.63% 1.65% 2.45%
1.56% 1.46% 2.47% 1.36% 2.09%
2.32% 0.76% 1.84% 1.72% 1.58%
0.90% 0.44% 0.82% 0.04% 0.46%
1.24% 1.80% 1.86% 1.22% 1.70%
1.89% 0.82% 1.12% 1.18% 1.10%
2.08% 2.00% 2.31% 2.59% 0.96%
3.61% 3.91% 3.77% 3.39% 3.29%
2.36% 1.14% 2.16% 1.84% 1.76%
2.27% 1.87% 2.79% 1.87% 1.47%
3.17% 2.46% 3.21% 3.09% 1.92%
3.00% 2.92% 2.76% 2.68% 2.08%
2.29% 1.79% 2.27% 1.90% 1.72%

A B C D E

en
ar
bg
de
el
es
fr
hi
ru
sw
th
tr
ur
vi
zh

avg

1.20% 1.06% 0.88% 1.00% 1.02%
2.95% 2.35% 2.83% 2.77% 2.29%
1.72% 0.82% 2.02% 1.38% 1.42%
2.21% 1.13% 2.41% 2.09% 2.43%
1.61% 1.50% 1.97% 1.69% 2.27%
1.56% 0.82% 1.46% 1.76% 1.44%
1.78% 0.66% 1.56% 0.78% 1.28%
1.62% 2.31% 2.65% 1.90% 1.90%
1.40% 0.94% 1.36% 1.89% 1.55%
0.92% 1.18% 0.78% 1.04% 0.84%
3.41% 3.19% 2.77% 3.11% 3.03%
2.20% 1.72% 2.38% 2.04% 2.42%
3.65% 3.05% 3.63% 2.23% 3.25%
3.61% 2.99% 3.65% 3.53% 3.17%
3.32% 2.82% 3.30% 2.52% 3.12%
2.28% 1.82% 2.34% 2.05% 2.17%

Figure 10: XNLI few-shot gain over zero-shot across 5 sets of samples (size=1000) for 3 different model inital-
izations. Sets A and C yield better performance for the 3 different initalizations. The English performance can be
used as an indicator.
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10 50 100 500 1000

ar
bg
de
el
es
fr
hi
ru
sw
th
tr
ur
vi
zh

avg

0.37(+0.62) 0.60(+1.00) 0.04(+1.01) 0.57(+1.78) 0.28(+1.61)
0.37(+0.72) 0.74(+1.25) 0.40(+1.53) 0.42(+1.34) 0.29(+1.72)
0.44(+0.89) 0.25(+1.15) 0.24(+1.39) 0.61(+2.24) 0.37(+2.21)
0.29(+0.62) 0.51(+0.79) 0.33(+0.89) 0.31(+0.98) 0.12(+1.27)
0.26(+0.51) 0.57(+0.80) 0.38(+0.85) 0.32(+1.22) 0.28(+1.46)
0.17(+0.41) 0.32(+0.72) 0.09(+0.74) 0.57(+0.99) 0.32(+0.97)
0.46(+0.95) 0.30(+1.09) 0.25(+1.60) 0.51(+2.26) -0.16(+1.94)
0.31(+0.55) 0.33(+0.90) 0.03(+0.94) 0.14(+1.35) 0.21(+1.58)
0.55(+0.59) 0.90(+0.75) 0.52(+0.63) 0.57(+0.93) 0.00(+1.35)
0.59(+0.89) 0.42(+1.66) 0.10(+1.93) 0.26(+2.46) 0.10(+2.71)
0.01(+0.44) 0.53(+1.14) 0.14(+1.14) 0.40(+1.56) 0.25(+1.72)
0.14(+0.90) 0.61(+1.85) -0.04(+2.15) 0.43(+2.90) 0.25(+2.58)
0.68(+1.02) 0.80(+1.54) 0.22(+1.84) 0.78(+2.51) 0.15(+2.34)
0.25(+0.77) 0.38(+1.50) -0.02(+1.89) 0.27(+2.91) 0.22(+3.19)
0.35(+0.71) 0.52(+1.15) 0.19(+1.32) 0.44(+1.82) 0.19(+1.90)

(a) XNLI chosen-shots gain
using English performance

10 50 100 500 1000
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avg

0.52(+0.76) 0.22(+0.61) -0.02(+0.95) 0.08(+1.29) -0.09(+1.25)
0.32(+0.68) 0.47(+0.99) 0.23(+1.36) 0.58(+1.49) 0.13(+1.56)
0.59(+1.04) 0.29(+1.19) 0.19(+1.34) 0.35(+1.99) 0.35(+2.19)
0.35(+0.68) 0.37(+0.66) 0.37(+0.93) 0.25(+0.92) 0.31(+1.46)
0.30(+0.55) 0.68(+0.91) 0.28(+0.76) 0.28(+1.17) 0.39(+1.57)
0.38(+0.63) 0.36(+0.76) 0.08(+0.73) 0.51(+0.93) 0.27(+0.92)
0.41(+0.90) 0.36(+1.15) 0.18(+1.53) 0.86(+2.61) 0.20(+2.30)
0.41(+0.64) 0.29(+0.86) 0.24(+1.15) 0.08(+1.29) 0.28(+1.65)
0.22(+0.26) 0.47(+0.31) 0.54(+0.64) 0.48(+0.84) 0.33(+1.67)
1.19(+1.50) 0.50(+1.74) 0.34(+2.17) 0.78(+2.98) 0.29(+2.90)
0.69(+1.12) 0.17(+0.78) 0.02(+1.02) 0.31(+1.47) 0.39(+1.85)
0.83(+1.59) 0.87(+2.12) 0.35(+2.54) 0.44(+2.92) 0.59(+2.92)
0.79(+1.13) 0.67(+1.41) 0.17(+1.79) 0.76(+2.50) 0.40(+2.58)
0.32(+0.84) 0.55(+1.67) 0.17(+2.08) 0.35(+3.00) 0.38(+3.35)
0.52(+0.88) 0.45(+1.08) 0.23(+1.36) 0.44(+1.81) 0.30(+2.01)

(b) XNLI chosen-shots gain
using machine translation performance

10 50 100 500 1000

ar
bg
de
el
es
fr
hi
ru
sw
th
tr
ur
vi
zh

avg

0.52(+0.76) 0.41(+0.80) -0.02(+0.95) 0.51(+1.72) -0.09(+1.25)
0.32(+0.68) 0.47(+0.99) 0.23(+1.36) 0.48(+1.40) 0.12(+1.55)
0.53(+0.97) 0.29(+1.19) 0.19(+1.34) 0.51(+2.14) 0.37(+2.21)
0.35(+0.68) 0.52(+0.81) 0.37(+0.93) 0.23(+0.90) 0.31(+1.46)
0.30(+0.55) 0.68(+0.91) 0.42(+0.90) 0.32(+1.22) 0.32(+1.50)
0.36(+0.61) 0.30(+0.70) 0.04(+0.69) 0.51(+0.93) 0.31(+0.96)
0.37(+0.86) 0.36(+1.15) 0.63(+1.98) 0.86(+2.61) 0.20(+2.30)
0.35(+0.59) 0.29(+0.86) 0.20(+1.11) 0.08(+1.29) 0.28(+1.65)
0.22(+0.26) 0.56(+0.40) 0.60(+0.70) 0.48(+0.84) 0.33(+1.67)
1.19(+1.50) 0.57(+1.82) 0.32(+2.15) 0.78(+2.98) 0.29(+2.90)
0.69(+1.12) 0.36(+0.97) 0.28(+1.28) 0.24(+1.40) 0.39(+1.85)
0.74(+1.50) 0.79(+2.04) 0.38(+2.57) 0.45(+2.93) 0.59(+2.92)
0.79(+1.13) 0.67(+1.41) 0.16(+1.78) 0.76(+2.50) 0.40(+2.58)
0.21(+0.74) 0.37(+1.49) 0.18(+2.09) 0.35(+3.00) 0.30(+3.28)
0.50(+0.85) 0.47(+1.11) 0.29(+1.42) 0.47(+1.85) 0.29(+2.01)

(c) XNLI chosen-shots gain
using (en + mt) model

10 50 100 500 1000

ar
bg
de
el
es
fr
hi
ru
sw
th
tr
ur
vi
zh

avg

0.51(+0.75) 0.65(+1.05) -0.02(+0.95) 0.50(+1.72) 0.01(+1.34)
0.31(+0.66) 0.47(+0.99) 0.35(+1.48) 0.42(+1.34) 0.36(+1.79)
0.53(+0.97) 0.29(+1.19) 0.19(+1.34) 0.51(+2.14) 0.37(+2.21)
0.35(+0.68) 0.52(+0.81) 0.49(+1.05) 0.23(+0.90) 0.31(+1.46)
0.33(+0.58) 0.68(+0.91) 0.42(+0.90) 0.32(+1.22) 0.32(+1.50)
0.36(+0.61) 0.33(+0.73) 0.04(+0.69) 0.51(+0.93) 0.31(+0.96)
0.36(+0.85) 0.36(+1.15) 0.63(+1.98) 0.86(+2.61) 0.20(+2.30)
0.35(+0.59) 0.29(+0.86) 0.20(+1.11) 0.31(+1.52) 0.28(+1.65)
0.22(+0.26) 0.56(+0.40) 0.67(+0.78) 0.48(+0.84) 0.33(+1.67)
1.19(+1.50) 0.60(+1.84) 0.32(+2.15) 0.56(+2.76) 0.35(+2.96)
0.57(+1.01) 0.37(+0.98) 0.28(+1.28) 0.24(+1.40) 0.39(+1.85)
0.55(+1.31) 0.79(+2.04) 0.15(+2.34) 0.45(+2.93) 0.60(+2.93)
0.79(+1.13) 0.62(+1.36) 0.37(+1.98) 0.88(+2.61) 0.40(+2.58)
0.21(+0.74) 0.37(+1.49) 0.18(+2.09) 0.35(+3.00) 0.30(+3.28)
0.47(+0.83) 0.49(+1.13) 0.31(+1.44) 0.47(+1.85) 0.32(+2.03)

(d) XNLI chosen-shots gain
using (en + mt + lang features) model

10 50 100 500 1000

de
es
fr
ja
ko
zh

avg

-0.22(-0.56) 0.10(-0.10) 0.43(+0.01) 0.15(+0.09) 0.15(+0.32)
-0.06(-0.04) 0.36(+0.20) 0.54(+0.02) 0.09(+0.33) 0.41(+0.65)
0.04(-0.12) 0.13(-0.30) -0.04(-0.22) -0.09(-0.32) 0.18(+0.28)
0.12(+0.19) 0.09(-0.26) 1.08(+0.03) -0.37(-0.27) -0.10(+0.53)
0.07(+1.09) 0.12(+1.09) 0.14(+0.99) 0.47(+2.03) -0.85(+1.07)
-0.06(+0.46) -0.28(+0.00) 0.45(+0.56) 0.30(+1.33) -0.05(+1.44)
-0.02(+0.17) 0.08(+0.10) 0.43(+0.23) 0.09(+0.53) -0.04(+0.71)

(e) PAWSX chosen-shots gain
using English performance

10 50 100 500 1000

de
es
fr
ja
ko
zh

avg

0.23(-0.11) 0.10(-0.10) 0.34(-0.08) 0.16(+0.10) -0.29(-0.12)
0.22(+0.24) 0.38(+0.22) 0.12(-0.40) -0.08(+0.16) -0.13(+0.11)
0.18(+0.02) 0.06(-0.37) 0.13(-0.05) 0.11(-0.12) 0.35(+0.45)
0.25(+0.32) 0.32(-0.03) 1.10(+0.05) -0.23(-0.13) -0.26(+0.37)
-0.01(+1.01) 0.04(+1.01) 0.07(+0.92) -0.28(+1.28) 0.16(+2.08)
0.26(+0.78) 0.16(+0.44) -0.01(+0.10) 0.20(+1.23) 0.03(+1.52)
0.19(+0.38) 0.17(+0.19) 0.29(+0.09) -0.02(+0.42) -0.02(+0.73)

(f) PAWS-X chosen-shots gain
using machine translation performance

10 50 100 500 1000

de
es
fr
ja
ko
zh

avg

0.22(-0.12) 0.05(-0.15) 0.26(-0.16) 0.12(+0.06) 0.03(+0.20)
0.20(+0.22) 0.38(+0.22) 0.57(+0.05) -0.17(+0.07) -0.13(+0.11)
0.05(-0.11) 0.09(-0.34) 0.08(-0.10) -0.06(-0.29) 0.38(+0.48)

-0.04(+0.03) 0.26(-0.09) 1.00(-0.05) -0.02(+0.08) -0.31(+0.32)
0.10(+1.12) 0.09(+1.06) -0.02(+0.83) -0.04(+1.52) -0.01(+1.91)
0.29(+0.81) -0.41(-0.13) 0.12(+0.23) 0.14(+1.17) 0.03(+1.52)
0.14(+0.32) 0.07(+0.09) 0.33(+0.13) -0.00(+0.44) -0.00(+0.76)

(g) PAWS-X chosen-shots gain
using (en + mt) model

10 50 100 500 1000

de
es
fr
ja
ko
zh

avg

0.20(-0.14) -0.10(-0.30) 0.26(-0.16) 0.12(+0.06) 0.13(+0.30)
-0.03(-0.01) 0.19(+0.03) 0.57(+0.05) -0.17(+0.07) -0.13(+0.11)
0.05(-0.11) 0.09(-0.34) 0.13(-0.05) -0.06(-0.29) 0.16(+0.26)
-0.08(-0.01) 0.26(-0.09) 1.00(-0.05) 0.43(+0.53) 0.20(+0.83)
0.10(+1.12) 0.07(+1.04) -0.06(+0.79) -0.04(+1.52) -0.01(+1.91)
0.29(+0.81) -0.44(-0.16) -0.17(-0.06) 0.24(+1.27) -0.16(+1.33)
0.09(+0.28) 0.01(+0.03) 0.29(+0.09) 0.09(+0.53) 0.03(+0.79)

(h) PAWS-X chosen-shots gain
using (en + mt + lang features) model

Figure 11: Chosen-shots gain in performance. The gain of choosing shots over the average of no-choosing
(average over 5 random sets). The actual few-shot gain (compared to zero-shot) is shown in parenthesis as follows:
chosen-shots-gain (few-shot-gain). When chosen-shots-gain is positive (green), choosing the shots results in more
gain. When negative (red), it hurts and results in less gain.
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10 50 100 250

ar
de
el
es
hi
ro
ru
th
tr
vi
zh

avg

0.58(+0.67) 0.13(+0.15) -0.58(-0.90) -0.12(-0.41)
-0.15(-0.41) 0.00(-0.52) -0.21(-0.91) -0.10(-1.42)
-0.15(-0.51) 0.12(-0.60) 0.09(-0.66) 0.05(-0.94)
-0.17(-0.30) -0.13(-0.41) 0.05(-0.40) 0.22(-0.31)
0.04(+0.03) -0.09(-0.27) -0.15(-0.37) -0.29(-0.69)
-0.15(-0.09) -0.23(-0.49) 0.17(-0.19) -0.11(-0.76)
0.12(+0.02) -0.05(-0.39) -0.04(-0.80) 0.18(-0.91)
-0.02(+0.77) 0.10(+1.45) -0.08(+1.50) 0.02(+2.54)
0.10(+0.05) -0.15(-0.16) 0.13(+0.01) -0.18(-0.52)
-0.18(-0.22) 0.26(+0.44) -0.19(-0.14) 0.06(+0.45)
-0.20(+0.26) -0.04(+1.10) -0.34(+1.17) 0.16(+3.90)
-0.02(+0.02) -0.01(+0.03) -0.10(-0.15) -0.01(+0.09)

(a) XQuAD chosen-shots gain
using English performance

10 50 100 250

ar
de
el
es
hi
ro
ru
th
tr
vi
zh

avg

0.58(+0.67) 0.13(+0.15) -0.58(-0.90) -0.12(-0.41)
-0.15(-0.41) 0.00(-0.52) -0.21(-0.91) -0.10(-1.42)
-0.15(-0.51) 0.12(-0.60) 0.09(-0.66) 0.05(-0.94)
-0.17(-0.30) -0.13(-0.41) 0.05(-0.40) 0.22(-0.31)
0.04(+0.03) -0.09(-0.27) -0.15(-0.37) -0.29(-0.69)
-0.15(-0.09) -0.23(-0.49) 0.17(-0.19) -0.11(-0.76)
0.12(+0.02) -0.05(-0.39) -0.04(-0.80) 0.18(-0.91)
-0.02(+0.77) 0.10(+1.45) -0.08(+1.50) 0.02(+2.54)
0.10(+0.05) -0.15(-0.16) 0.13(+0.01) -0.18(-0.52)
-0.18(-0.22) 0.26(+0.44) -0.19(-0.14) 0.06(+0.45)
0.36(+0.82) 0.15(+1.29) 0.06(+1.57) 0.35(+4.09)
0.03(+0.07) 0.01(+0.04) -0.07(-0.12) 0.01(+0.10)

(b) XQuAD chosen-shots gain
using en performance model

Figure 12: XQuAD chosen-shots gain in performance (no gain!). The gain of choosing shots over the average
of no-choosing (average over 5 random sets). The actual few-shot gain (compared to zero-shot) is shown in
parenthesis as follows chosen-shots-gain (few-shot-gain). We can see that there is no gain in choosing the shots.
Experiments with adding language features to the model further decrease the performance.
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