A Tensor Decomposition Perspective on Second-order RNNs

Maude Lizaire !

Abstract

Second-order Recurrent Neural Networks
(2RNNs) extend RNNs by leveraging second-
order interactions for sequence modelling. These
models are provably more expressive than their
first-order counterparts and have connections
to well-studied models from formal language
theory. However, their large parameter tensor
makes computations intractable. To circumvent
this issue, one approach known as MIRNN
consists in limiting the type of interactions used
by the model. Another is to leverage tensor
decomposition to diminish the parameter count.
In this work, we study the model resulting from
parameterizing 2RNNs using the CP decomposi-
tion, which we call CPRNN. Intuitively, the rank
of the decomposition should reduce expressivity.
We analyze how rank and hidden size affect
model capacity and show the relationships
between RNNs, 2RNNs, MIRNNs, and CPRNNSs
based on these parameters. We support these
results empirically with experiments on the Penn
Treebank dataset which demonstrate that, with a
fixed parameter budget, CPRNNs outperforms
RNNs, 2RNNs, and MIRNNs with the right
choice of rank and hidden size.

1. Introduction

Recurrent neural networks (RNNs) have been pivotal to
the deep learning revolution (Elman, 1990; Hopfield, 1982).
Given their strong inductive bias, they are a natural choice
when it comes to sequence modelling. Although transform-
ers (Vaswani et al., 2017) remain the de facto choice for
language modelling, there exists many domains in which
RNNSs still excel. Moreover, with the advent of state space

'Mila & DIRO, Universit¢é de Montréal, Montreal,
Canada >CIFAR Al Chair. Correspondence to: Maude
Lizaire <maude.lizaire @umontreal.ca>, Guillaume Rabusseau
< grabus @iro.umontreal.ca>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Michael Rizvi-Martel! Marawan Gamal Abdel Hameed ! Guillaume Rabusseau

12

2RNN CPRNN

R = Rmax

R = Rtyp-max

CPEIRNN

Figure 1. Overview of expressivity relationships among Recurrent
Neural Network architectures. 2RNNs (blue) encompasses all
other models. BIRNN (purple) and RNN (yellow) are a subclasses
of 2RNNSs as they only have first-order and second-order interac-
tions respectively. MIRNN (red) includes element wise multiplica-
tive interactions. CPRNNs expressive power varies with the rank
R, reaching the same capacity as 2RNNs when R = Rpmax-

models (Gu et al., 2020; 2021), such architectures have
seen an increase in popularity (Orvieto et al., 2023), es-
pecially with regard to long-range dependencies. Second-
order Recurrent Neural Networks (2RNNs) are a general-
ization of RNNs which integrates second-order interactions
between hidden states and inputs. These second-order in-
teractions make 2RNNS strictly more expressive than their
first-order counterparts. However, the tensors parameter-
izing the second-order term quickly become very large as
the hidden state and input dimensions grow (Giles et al.,
1989; Goudreau et al., 1994), thus making inference with
such models intractable. A simple but drastic approach to
reduce the parameter count is to keep only the second-order
interactions from the component-wise product between in-
put and hidden state (Wu et al., 2016). The resulting model,
Multiplicative Integration RNN (MIRNN), was shown to
alleviate the vanishing/exploding gradient problem and to
improve performance on language modelling tasks. A linear
version of this model without first-order interactions was
also introduced under the name Recurrent Arithmetic Cir-
cuits to analyze the benefits of depth in RNNs (Levine et al.,
2018).

A more sophisticated approach would be to leverage tensor

A Tensor Decomposition Perspective on Second-order RNNs

Haran (7) 22 Hopran (R, n)
Heperan (R, n) © Hornn (1)
Heppmran (R, n) € Hepeirnn (R + 1,1)

Hepran(R,n) € Hepran (R + 1,7)

L™ 0 Heppiran (R, n) = L7717 0 Heppran (R, n + 1)

HMIRNN(”) c HCPRNN(R7 ’I’L) Corollary 4

HCPBIRNN(R7 n) = HorNN (n)

Corollary 3

......... Theorem 1

Hcppirnn (R, n) = Heppiran (R + 1,7)

Theorem 1

Hepran(R,n) = Hepran (R + 1,71)

L™ 0 Heppiran (B, n) € L0 0 Heppman (B, n + 1)

n n%d

2n+d—2

>

2
Riyp—max Fmax min{n?, nd}

Figure 2. Relations of expressivity between CP(BI)RNNs, 2RNNs and MIRNN s as a function of the rank R of the CP(BI)RNN; n
denotes the hidden dimension, d the input dimension and Rmax (resp. Riyp—max) the maximal CP rank (resp. maximal typical CP rank).

Theorems 1&2 and Corollaries 3&4 detail these results.

decomposition to compress the third-order tensor param-
eterizing the 2RNN. While several decompositions could
be used to reduce parameter count in 2RNN:Ss, in this work
we focus on the popular CP decomposition (Kiers, 2000).
We call the resulting model CPRNN. Sutskever et al. (2011)
empirically demonstrated the potential of this architecture
by successfully deploying it on one of the largest RNN ap-
plications. However, there was no theoretical analysis of
this new model, a gap we propose to fill with this work.

It is interesting to note that while the model proposed
in Sutskever et al. (2011) is indeed a CPRNN—that is a
2RNN with second-order weights parameterized by a CP
decomposition— there is no mention of tensor decomposi-
tion or of the CP decomposition in their work.

Similarly to matrices, the sets of tensors of CP rank at most
R, for increasing values of R, form a nested family in the
space of tensors. Intuitively, an increase in rank strictly
increases the capacity up to a point of saturation. This
naturally leads to the following questions:

* How does increasing the capacity of the tensor param-
eter relate to the expressivity of CPRNNs?

* How does the point of saturation in the tensor parame-
ter space translate in the function space of CPRNNs?
In particular, how is it affected by the hidden dimen-
sion?

* More generally, how do the rank and the hidden dimen-
sion interplay in controlling the capacity of CPRNNs?

To the best of our knowledge, our work is the first to formally
address these questions. We start from the observation that
the rank in CPRNNSs acts as a hyper-parameter interpolating
between first-order and second-order RNNs. We formalize
this observation by showing that CPRNNSs are equivalent
to 2RNNs above some maximal rank. We also show that
MIRNN:Ss are a special case of CPRNNs. More precisely, we
show that MIRNNS correspond to a specific point on this

interpolation line where the rank and hidden dimension of a
CPRNN are both equal. In fact, we show that CPRNNs are
strictly more expressive than MIRNNSs past this threshold,
i.e., when rank is greater than hidden size. Tensor decompo-
sitions thus prove to be an effective approach to characterize
the expressivity of RNNs with different degrees of mul-
tiplicative interactions. Figure 1 illustrates the hierarchy
established by the rank of CPRNNs, where the threshold
values between different classes explored in this paper are
directly connected to the hidden size.

We investigate to which extent theory holds in practice for
models trained on real data by conduction a set of experi-
ments on the Penn Tree Bank dataset”. We first show that,
as expected, the performance of CPRNNs increases as ei-
ther the rank or hidden dimension grows, and that the rank
of CPRNNs naturally controls the parameter/expressivity
tradeoff, interpolating between RNNs and 2RNNS in a fine-
grained fashion. More interestingly, our experimental results
show that for any model size budget there always exists a
choice of hidden size and rank that fits the parameter bud-
get and outperforms all 2RNNs, RNNs and MIRNNs with
the same parameter count. Another interesting behavior of
CPRNNs illustrated by our experiments is that, since rank
and hidden size are tied when the number of parameters is
fixed, there are two underfitting regimes: one when the rank
is too small (where the rank acts as the bottleneck) and one
when it is too large (where it is the hidden dimension that is
too small and acts as a bottleneck).

Summary of contributions We present a formal study of
CPRNNSs: a natural approach to reducing parameter count
in second-order RNNs. While CPRNNs have been empiri-
cally considered previously, to the best of our knowledge,
this work is the first to thoroughly and rigorously analyze it
from a formal perspective. Our analysis establishes several
novel and non-trivial results related to the expressivity of

*Code base for this paper can be found at https://
github.com/MaudelLiz/cprnn

https://github.com/MaudeLiz/cprnn
https://github.com/MaudeLiz/cprnn

A Tensor Decomposition Perspective on Second-order RNNs

CPRNNSs, how the rank and hidden size of CPRNN interact,
and how CPRNNs encompass previous second-order recur-
rent models. Beyond this theoretical analysis, we design
several experiments on real data showcasing various proper-
ties and empirical behaviours of CPRNNs. In particular, we
show that CPRNNs always offer a better tradeoff between
expressivity and size than RNNs, 2RNNs and MIRNNS.

Related work Extensive work has been done on the ex-
pressive power of RNNs and how they relate to formal lan-
guages (see e.g., Siegelmann and Sontag (1994); Chen et al.
(2017); Weiss et al. (2018); Korsky and Berwick (2019);
Merrill (2019); Merrill et al. (2020); Delétang et al. (2022)).
In the case of 2RNNS there is a direct correspondence with
finite states machines. Indeed, the linear form of 2RNNs was
shown to generalize weighted finite automaton (WFA) to
non-discrete inputs (Li et al., 2022). From a language mod-
elling perspective, multiplicative interactions draw interest
for their potential to represent more complex dependencies
such as compositional semantics (Irsoy and Cardie, 2014;
Jayakumar et al., 2020). This motivated the design of vari-
ous multiplicative RNNs architectures (Tjandra et al., 2016;
Krause et al., 2017; Sutskever et al., 2011; Wu et al., 2016;
Su et al., 2024), among which CPRNNs and MIRNNS stand
out for their parameter efficiency. At the same time, tensor
decomposition methods have been used to compress sequen-
tial models (Yang et al., 2017; Ye et al., 2018; Ma et al.,
2021; Wang et al., 2021; Tjandra et al., 2018) and tackle
optimization problems involving multivariate higher-order
polynomial functions (Yu et al., 2017; Ayvaz and De Lath-
auwer, 2022; Dubey et al., 2022). More broadly, tensor
decompositions have been used to study the expressivity
of different neural network architectures, in particular to
explore the benefits of depth (Cohen and Shashua, 2016a;
Cohen et al., 2016; Cohen and Shashua, 2016b; Sharir and
Shashua, 2017; Levine et al., 2018; Alexander et al., 2024;
Razin et al., 2024) and structural alignment between data
and model (Balda et al., 2018; Khrulkov et al., 2017; 2019).
The analysis in most of these work relies on comparing dif-
ferent tensor decomposition (or tensor network) structures,
in contrast, our analysis relies on studying the effect of the
rank of a fixed tensor network structure. This strategy of
leveraging the rank of a tensor decomposition to character-
ize the expressive power of models has also been used for
deep polynomial networks in (Kileel et al., 2019).

Finally, it is worth mentioning that the popular family of
state space models (Hamilton, 1994; Gu et al., 2021) also
have second-order counterparts (Sattar et al., 2022). These
model variants appear mostly in dynamical systems litera-
ture and are not quite as well known in the machine learning
community.

2. Preliminaries

We first introduce notations, tensor decomposition and the
various RNN models studied in this work.

2.1. Notation

Vectors, matrices and tensors are respectively repre-
sented in bold v € R%, uppercase bold M ¢
R41%d2 and calligraphic 7~ € R¥U*xdo. The n-
mode product of a tensor with a vector' is defined by:
(T Xn V)itsoin gty = Zf-l::l Tiv,.iy Vi,
The Hadamard product, or element-wise product, between
vectors of the same size is noted u ©® v. The outer product
noted u o v is given by (uo v);; = u;v;.

2.2. CP decomposition

A CP decomposition of rank R factorizes a tensor T~ €
R¢1%d2xd5 jnto a sum of rank one tensors, T = Y7 | a, o
b, oc, = [A,B,C], where a, € R%, b, € R% and
¢, € R%, and the factors matrices A € R4*E B ¢
R%=*E C ¢ R¥%*R have as columns the vectors a,, b,
and c,, respectively. Using a CP decomposition reduces
the number of parameters from O(d?) to O(Rd) where
d= max{dl, dg, dg}

The CP rank of a tensor, noted rankcp (7)), is the min-
imal value R for which an exact CP decomposition of
rank R exists. Note that what we call a CP decompo-
sition may not be minimal: writing a CP decomposition
T = [A, B, C] does not imply that rankcp (7)) = R, but
only that rankcp (7)) < R (i.e., there may exist a smaller
CP decomposition of 7).

2.3. Models

We now define the different RNN variants considered in
this work and briefly explain how they relate to one another.
Figure 3 summarizes the set models presented.

Definition 1 (RNN). A Recurrent Neural Network R =
(h° U, V,b, o) of hidden size n is parameterized by an ini-
tial hidden state h® € R, weight matrices U € R™*4 gnd
V € R"*™, q bias term b € R" and an activation function
o : R™ — R™ Given an input sequence (x',x2,...x7), a
RNN computes, for each time steps t, the following hidden
state:

h' = o(Vh'™! 4+ Ux' + b).

Second-order RNNs extend RNNs by incorporating bilinear
interactions between input and (previous) hidden state.

Definition 2 (2RNN). A Second-order Recurrent Neural

"Note that this notation slightly differs from the one introduced
in (Kolda and Bader, 2009) where X ,, denotes the n-mode product
of a tensor with a matrix.

A Tensor Decomposition Perspective on Second-order RNNs

Network A = (h°, A, U, V.,b, o) of hidden size n is pa-
rameterized by a recurrent weight tensor A € R"*2xn
and the other terms as in Definition 1. Given an input se-
quence (x,x% ..., xT), a 2RNN computes the following

hidden state for each time step t :

h! = 0(A x; h'™! xox' + Vh!™! 4 Ux' + b).

In the absence of the second-order term (A = 0), we recover
the definition of a (first-order) RNN. When the model is
restricted to the bilinear term (i.e. U, V and b are null),
it is referred to as a BIRNN. It is worth mentioning that
the class of linear BIRNNS s exactly corresponds to weighted
languages recognized by weighted finite automata (Li et al.,
2022). The next class of models, CPRNNs, parameterizes
the second-order weight tensor of 2RNNs using the CP
decomposition.

Definition 3 (CPRNN). A CP Recurrent Neural Network
Acp = (h°, A B, C, U, V,b, o) with hidden size n and
rank R is a 2RNN whose second-order term is parameter-
ized by a CP decomposition [A, B, C] with A € R"*E,
B ¢ R gnd C € R™ . Given an input sequence
(x',x2,...,xT), a CPRNN computes for each time steps t
the following hidden state:

h! = ¢([A,B,C] x; h'™! xy x' + Vh!™! + Ux’ +b).

When the first-order terms are null, the model is referred
to as a CPBIRNN (Acppr). Note that even though the
hyper-parameter R is called the rank of the CPRNN (or
CPBIRNN), the CP rank of the tensor [A, B, C] is only
upper-bounded by R (it can be strictly smaller, e.g. choos-
ing all weights to be ones, in which case the CP rank of
[A, B, C] would be one for any value of R). The last model
we introduce is the MIRNN, which was proposed in (Wu
et al., 2016) as a way to drastically reduce the number of
parameters of 2RNNs.

Definition 4 (MIRNN). A Recurrent Neural Net-
work with Multiplicative Integration Aprp =
(h°, o, B1,82,U,V,0) of hidden size n is parame-
terized as Definition 1 with additional gate vectors
a, 31, B2 € R™. The hidden state at time step t computed

by a MIRNN given an input sequence (x',x2,...,xT) is:

h! = o(a®Vh ' oUx'+ 8, OVhI ! + B, 0 Ux' +b).

The activation functions considered in this work are either
bijective (e.g. linear and tanh) or the Rectified Linear Unit
(ReLU) (Nair and Hinton, 2010) applied element-wise. We
use the notation a’ to refer to the pre-activation vectors at
each time step, that is the hidden state prior the activation
function, h! = o(at).

Tensor Network

Models (2nd order terms)

Hidden state

2RNN

(A x; ht™! xy xt) ,
CPRNN o([A, B, C] x; h*" x5 x' + Vh*™! + Ux! + b) b' '
CPBIRNN o([A, B, C] x1 b~ x5 x") ®
o(a® Vh'™ 0 Ux!
+B, ® Vh'™! + 8, ® Ux' + b)

MIRNN

o(Vh'~! + Ux' +b)

Figure 3. Different recurrent models considered in this work with
their hidden state computation and the tensor network representa-
tion of their second-order term (the diamond shape represents a
diagonal matrix).

3. Theoretical results

In order to compare the expressive power of CPRNNs for
different ranks and hidden sizes (and with other models),
we formally define the set of functions they can represent.

Definition 5. We denote by Hcprnn (R, n) the set of func-
tions h mapping input sequences to the hidden states se-
quences computed by CPRNNs of rank R and hidden size
n: h(xt, x2, ..., xT) = (h',h% ... hT), where the hidden
state vectors h' are defined in Def. 3,

In the same way, we define the classes of functions
Hepeirnn (R, 1), Hornn(n) and Harrnn(n) respec-
tively computed by CPBIRNNs, 2RNNs and MIRNNs of
hidden size n, respectively. The theoretical findings pre-
sented in this section are summarized in Figure 2.

3.1. Expressive power of CPRNNs: Relating tensor
space to function space through rank

Intuitively, the rank of a CPRNN is an hyper-parameter con-
trolling the tradeoff between expressive power and parame-
ter efficiency. We thus expect the expressivity to increase
with rank, up to some potential saturating point. Let Ry,ax
be the maximal CP rank for a family of tensors sharing the
same dimensions:

Rit%s = max{rankcp(T) | T € RN *%2xds),

Rmax represents the saturation point in tensor space, which
translates into a saturation in expressivity of CPRNNs for
ranks above that threshold. This comes from the fact that an
inclusion over the space of tensors parameterizing CPRNNs
directly implies an inclusion in the space of functions com-
puted by CPRNNS .

Indeed, to see this, consider CPRNNSs of ranks R and R + 1.
The second-order terms computed by CPRNNSs of rank R

A Tensor Decomposition Perspective on Second-order RNNs

are parameterized by CP decompositions that are less ex-
pressive than the ones from CPRNNs with rank R + 1 (i.e.
there is inclusion in the tensor space). Looking at the com-
putation of their hidden state h?, it is easy to see that any
function computed by a CPRNNs A¢p of rank R can be
computed by a CPRNNSs of rank R + 1. It suffices to use the
same weights as A¢ p and to pad the extra dimensions with
zeros. When R > R, .x, CPRNNSs of ranks R and R + 1
become equally expressive. Indeed, the expressive power of
the CP decompositions parameterizing their second-order
terms saturates, therefore they both can be parameterized by
a minimal CP decomposition padded with zeros.

Now, to show that a class of CPRNNS is strictly more ex-
pressive than another one, the direct implication from the
expressivity of the tensor space does not hold. Indeed, un-
der the argument for inclusion discussed above, lies the
assumption that the computation at each time step h? is a
function of two variables, (x*, h!~1) h? and that h*~! is
“free”. But it is not, it is a function of h® and the previous
inputs. This is crucial when trying to prove strict inclusion
results: a strict inclusion of sets of tensor parameters does
not imply strict inclusion of the corresponding classes of
recurrent functions. In other words, the recurrent nature
of the function h cannot be ignored. The relation between
tensor space and function space thus becomes non-trivial
when considering strict inclusion, raising the question: un-
der which conditions does the expressive power of CPRNNs
strictly increase with rank?

To address this question we consider the notion of #ypi-
cal ranks. These are CP rank values that have a non-zero
probability of occurring in random tensors (i.e. ranks R’s
such that the set of tensors of CP rank R have positive
Lebesgue measure). Our first theoretical result states that
the expressivity of CPBIRNNS increases with the rank up
to the maximal typical rank Ry, max. The result general-
izes to CPRNNs with linear activation function. Theorem 1
also provides Ry,.x as a bound above which the expres-
sive power of CPRNNs saturates. Whether the inclusion
is strict or not in the gap between Riyp_max and Ryax for
CPBIRNNS remains an open question.

Theorem 1. The following hold for any n and d:

* HceprRNN (R, n) C HceprNN (R +1, n) for any R.

* Hepran(R,n) = Hepraw(R + 1,n) for any R >
Rmaa:‘

Moreover, assuming n < d:

* HepeirnN (R, n) € Heprnn (R + 1, 1) for any R <
Riyp—max and any real analytic invertible activation func-
tion.

* Hepran (R, n) € Hepran (R + 1,n) for a linear acti-
vation function and any R < Riyp_max.

Note that the first two points also hold for CPBIRNNS (since
they are CPRNNSs restricted to second-order interactions).
We conjecture that the third and fourth points of this theorem
generalize to any common activation function (hyperbolic
tangent, ReLLU and linear). For the strict inclusions (third
and fourth points), the assumption n < d is made in order
to preserve the emphasis of the results and the proofs on
the interplay between rank and hidden size, as opposed to a
limitation coming from the input size.

a1:X1>—>al

Case R<n

®

Xl

V CPBIRNN .

rank R

S 3 CPBIRNN 2
dim(ay(RY)=R+1 — rankcp(8")=R+1

Figure 4. Elements of proof for strict inclusion of CPBIRNNS in
Theorem 1. Details of the proof can be found in the Appendix.

rankcp (Sh) <R

dim(a;(RY)) <R ~—

Sketch of proof The method to prove inclusions and sat-
uration consists in finding explicit parameterizations such
that there is equality between the latent vectors h’s, as
outlined in the beginning of this section.

To show strict inclusion, that is Heppirnn(R + 1,n) &
Hepairnn (R, n), two cases are considered: R < n and
R > n. Figure 4 illustrated the key elements of these proofs.
The idea behind the proof when R < n is to consider the
linear mapping of the first pre-activation vector a; : x!
a! € R™. For CPBIRNNS of rank R the dimension of the
image of a; is upper bounded by R. At the same time, we
show that there exists a & computed by a CPBIRNN of rank
R + 1 for which the pre-activation map a; has an image of
dimension equal to R + 1. This implies that the dimension
of the manifold formed by the hidden vectors h! = o (a')
of this CPBIRNNSs is R + 1 (for invertible o). This cannot
be the case of any CPBIRNN of rank R, as this dimension
is upper bounded by R, which concludes the case R < n.

In the case R > n, the rank does not act as a bottleneck on
the dimension of the space of first hidden states.Therefore,
we turn to the computation of the second hidden state
h2, looking at the mapping of the pre-activation vector
as(xt,x2) — a2. We consider the tensor 8" ¢ RIxdxn
defined by Sfj x = la2(e;, ej)], where e; denotes the ith
vector of the canonical basis of R¢. Intuitively, S h gath-
ers all the second hidden states obtained by applying the
CPBIRNN to length 2 sequences of one-hot encodings and,
crucially, is a witness to the low CP rank structure of the
model.

A Tensor Decomposition Perspective on Second-order RNNs

More precisely, we show that (i) the CP rank of this tensor
is upper bounded by the rank of the CPBIRNN and (ii) there
exists a parameterization such that this limit can be reached
when the rank is smaller or equal to Rtyp_max. Therefore,
for R < Riyp—max, We conclude that there exists a function
computed by a CPBIRNN of rank R + 1 whose tensor S”
has CP rank R + 1, and thus cannot be computed by a
CPBIRNN of rank R.

For CPRNNSs, we again look at the computation of the sec-
ond hidden state vector, hy : (x',x?) — h2. This time
however, because the activation function is linear, ho can
be decomposed in four terms: ha(x',x?) = a(x!,x?) +
B(x!)+v(x?)+§ where « is a bilinear map containing only
second-order terms. This decomposition is such that given
two functions h and }AL if « # & then h # h. Therefore, we
define the tensor 87 = [a(e;, €;)]) and apply a similar
argument as for CPBIRNNs. The complete proof can be
found in Appendix.

Explicit bounds Note that unlike matrices, for higher
order tensors R%1:42:93 js not given by the smallest dimen-
sion min{dy, da, d3}; it can even be greater than the largest
dimension. For a third-order tensor, a loose upper-bound is
given by R41d2:45 < min{d;dy, d;d3, dads}, but the exact
value is in general unknown and bounding it is a non-trivial
problem (see e.g. (Howell, 1978)). In the context of Theo-
rem 1, this upper bound implies that the saturation result is
valid for R > min{nd, n?}. Similarly, while the notion of
typical rank for matrices leads to a unique value that coin-
cides with Ry, ., for higher-order tensors there can be a set
of typical ranks that does not necessarily include Ry ax. The
characterization of typical ranks is also a complex problem,
but there is a known lower bound on the smallest typical
rank which guarantees that the last two bullets of Theorem 1
hold when R < (2#2;72) (Strassen, 1983; Brockett, 1976;
Comon et al., 2009).

3.2. Expressive power of CPRNNs: interplay between
rank and hidden size

We have established that the rank plays a key role in the ex-
pressive power of CPRNNs. The following natural question
is to what extent increasing hidden size impacts the mod-
els expressivity for a fixed rank. Comparing the classes of
functions Hceppirnn (R, 1) and Hepprnn (R, n + 1) is,
however, an ill-defined problem because their output space
is different. It nonetheless makes sense to compare the ex-
pressiveness of these classes after being composed with an-
other family of simple functions bringing them to a common
space. We naturally consider linear maps. Let £™9 denote
the space of linear maps from R™ to R? with ¢ > 1. To for-
mally study the impact of hidden size in CPRNNs, we com-
pare the composition of functions : L% 0 HcpprNN (R, 1)

which can be thought of as an output layer. The following
theorem shows that the rank of the CP decomposition acts
as a bottleneck to the expressive power of CPRNNs: for
hidden sizes below the CPRNN rank, the expressive power
of CPRNNs improves with its hidden size; however, once
the hidden size gets larger than the rank, the expressivity of
the model saturates.

Theorem 2. The following hold for any d and n.:

« L™oHoppran (R, n) C LMo HoppiraN (R, n41)
for any R and n.

« LM%M cppirnN (R, n) = LT 9oH cppirnn (R, n+1)
for any n > R and linear activation function.

Moreover, assuming n < d:

« L™9oHoppmran(R,n) & Lo Hoppran (R, n41)
for any n < R and any invertible activation function
satisfying o(0) = 0.

We conjecture that the second point (saturation) and the
third point (strict inclusion) of the theorem also hold for any
real analytic activation function. Note that this theorem is
intentionally stated only for CPBIRNNs. In CPRNNSs the
expressivity would also be impacted by the difference in
hidden size of the first-order and bias terms, while our focus
is to compare the second-order terms.

L% Heppran (R, n+1) ¢ L™% Heppran(R, 1)

| |

Lemma 1

dim(@;(RY))=n+1 > dim(a;(RY)) <n
> dim((¢(%)) END Vh

Loocop ¢ Looor]» I
(6(X))
[o] : E
s Y

dim

. .
Heppirnn (R, 7 + 1) Hepirnn (R,)

Figure 5. Schematic representation of Lemma 1 and its application
in the context of Theorem 2.

Sketch of proof The main technical challenge of the proof
is to show the strict inclusion (details for inclusion and
saturation can be found in appendix). We want to show that,
whenn < R, L™90Hcpprnn (R, n) is strictly included in
L1490 Heppirnn (R, n + 1). The key idea is to leverage
the following two facts:

e the dimension of the linear space formed by all
first hidden states pre-activation computed by a func-
tion h € Hceppirnn(R,n) is bounded by n, i.e.
dim(a; (R?)) < n,

« there exists a function h € Heppirnn (R, n + 1) for
which the corresponding linear space is of dimension
n+1,ie. dim(a; (RY)) = n + 1.

A Tensor Decomposition Perspective on Second-order RNNs

While these two facts are obvious (when n < R), it is
not trivial to show that they imply the existence of a func-
tion o h € L™ o Heppmran(R,n + 1) that cannot
be computed by any function in £L™? o Heppirnn (R, 1),
since (in some very loose sense) the strictly greater intrin-
sic linear dimension of A is collapsed into a g-dimensional
space through an activation function and a linear projection
(note that if ¢ > n and the activation is linear, the result is
somehow trivial).

This difficulty is addressed by the following lemma showing
that as long as the activation ¢ is a homeomorphism, the
linear bottleneck on the space of pre-activations implies
a strict inclusion of the function classes after non-linear
transformation through o and linear projection. This result
is schematically illustrated in Figure 5 as well as how it is
applied to demonstrate the strict inclusion of Theorem 2.

Lemma 1. Let V' be a vector space of dimension d, ¢, :
X — V two maps whose images ¢(X) and (X)) are
subspaces of V. and o an homeomorphism. Lastly, let
L(V) denote the set of all linear forms on'V (i.e. L(V)
is the dual space V*). If dim(¢p(X)) > dim(¢(X)), then
L(V)oood ¢ L(V)oaoy.

Note that this lemma could be applied more broadly to other
neural network architectures.

3.3. Comparison with RNNs, 2RNNs and MIRNNs

First, it is trivial to check that CPRNNs are strictly more
expressive than RNNs since both models share the same
first-order terms. In fact, one can view RNNs as CPRNNs
with rank R = 0. Similarly, one can easily check that
there is no inclusion relation (one way or the other) between
RNNs and CPBIRNN:S since the latter only contain second-
order terms while the former only captures first-order ones.

Turning to the comparison with 2RNNs, Theorem 1 natu-
rally implies that (i) 2RNNSs are strictly more expressive than
CPBIRNNS for ranks smaller than the maximal typical rank
and (ii) the expressivity of CPRNNSs saturates when they
become as expressive as 2RNNs, that is at R, leading to
the following corollary.

Corollary 3. For any d and n, we have:

* Heprn (R, n) = Harnn(n) for any R > Rpyaq (for
any activation function)

Moreover, assuming n < d:

* Heppmran(R, 1) C Hornn(n) for any R < Riyp—max
and any real analytic invertible activation function.

Note that the second point (strict inclusion) also holds
for CPRNNSs with linear activation functions (as a corol-
lary of Theorem 1) and the first point also holds for CP-
BIRNNS (trivially).

Another approach suggested to introduce second-order
terms to RNNs while preserving a similar number of param-
eters is the MIRNN. Inspired by the gated mechanisms of
LSTM and GRU, MIRNNS limit second-order interactions
to terms that are linear in the component-wise/Hadamard
product of the hidden state and input (see Def. 4):

diag(a)(Vh*™' ® Ux").

At the same time, the CP decomposition of the second-
order term in CPRNN can also be expressed in terms of a
Hadamard product:

[A,B,C] x; h'™! xox! =C(ATh""' © B x).

This illustrates that MIRNNSs are in fact CPRNNs of rank
n whose matrix C is constrained to be diagonal. Conse-
quently, Hyrnn (n) € Hepran (1, n). The constraint on
the matrix C to be diagonal means that each component of
the second-order term of a MIRNN hidden state is computed
by a rank one matrix while for a CPRNN it is rank R. This
suggests that CPRNNs are strictly more expressive than
MIRNNS for ranks greater than the hidden size. To prove it,
it suffices to use the strict inclusion of Theorem 1 for linear
CPRNN:Ss. Indeed, in this case and when R > n we have
Humran (1) € Heopran(n,n) € Hopran (R, 7). When
the rank is smaller than the hidden dimension, there is no
clear inclusion relation (in one way or the other) between
the two model families. The following corollary (whose
proof can be found in appendix) formalizes this result.

Corollary 4. Assuming n < d, forany R > n,
* Humrnn(n) € Hepran (R, 1)

* Hyirnn(n) © Heprnn(R,n) for linear activation
function

4. Experiments

We investigate to which extent our theoretical results hold
empirically in the context of character level sequence mod-
elling subject to gradient based training. We perform ex-
periments on the Penn Treebank dataset (Marcus et al.,
1993) measuring bits-per-character (BPC) using the same
train/valid/test partition as in Mikolov et al. (2012). All mod-
els were trained using truncated back propagation through
time (Werbos, 1990) with sequence length of 50, batch
size of 128 and using the Adam optimizer (P. Kingma and
Ba, 2015) to minimize the negative log likelihood. Ini-
tial weights were drawn from a uniform random distribu-
tion U [—ﬁ, ﬁ] For all experiments, we use the tanh
activation function. For training, we use early stopping and
a scheduler to reduce the learning rate (initialized at 0.001)
by half on plateaus of the validation loss. All the results
presented are on the test set. Each point on the plots is an
average over 10 experiments run with different seeds and
the variance is represented by a shaded area.

A Tensor Decomposition Perspective on Second-order RNNs

RNN
—&— MIRNN
3.0 .-@-- CPRNN R=50

CPRNN R=101
CPRNN R=350
CPRNN R=1500

BPC

2.0

Hidden Size

Figure 6. BPC as a function of hidden size of RNN, MIRNN,
2RNN and CPRNN with ranks 50, 101, 350 and 1500. As rank
increases, CPRNNs approaches 2RNNs having greater capacity
for fixed hidden sizes.

Importance of hidden size We first assess how the hid-
den size affects performance for RNNs, MIRNNs, 2RNNs
and CPRNNSs of various ranks. Figure 6 shows that the per-
formance of all models increases with the hidden dimension.
We note a slight inflexion point past a hidden size corre-
sponding to the alphabet size, d = 101. Interestingly, this is
also where MIRNN starts to separate from RNN, showing
the advantage of multiplicative interactions. As the hidden
size increases, we note that the CPRNN’s performance be-
comes closer and closer to the 2RNN’s. This is also the
case for rank values; as the rank increases, the CPRNN’s
performance gradually matches the 2RNN’s. Both these ob-
servations are coherent with our theoretical results. More so,
it is interesting to note that the 2RNN still outperforms all
other models. This is also consistent with theory as 2RNNs
encompass all other RNN models considered in this study.
It should be noted that since the hidden size (n) directly im-
pacts the number of parameters, the memory requirements
of these models are O(nd + n?) for RNNs and MIRNNG,
O(Rn + nd) for CPRNNs and O(n?d) for 2RNNs. This
difference in model size is also reflected in training time.
Reaching early stopping with a hidden size of 512 takes on
average 12mins for a RNN, 25mins to 1h for CPRNNs of
ranks 1500 to 50, and 1.5h for a 2RNN.

Comparing models of the same size The observations
made in the previous paragraph could simply be explained
by the respective parameter count of each model, as the
number of parameters directly affects expressivity. As such,
we conduct an analysis where we keep model size con-
stant. Figure 7 gives the BPC of all considered models
as a function of parameter count. For CPRNNs, as many
configurations of rank and hidden size can correspond to
the same parameter count, we choose the best configuration

28 RNN
—&— MIRNN
2.6 —— 2RNN
24 —e— CPRNN
o 22
o
2]
2.0
1.8
1.6

1 1
104 10° 108
Number of parameters

Figure 7. BPC as a function of the number of parameters in RNN,
MIRNN, 2RNN and CPRNN. Tuning rank and hidden size allows
to find a CPRNN that outperforms all other models of same size.

(w.r.t. the validation set) for each fixed model size. The key
takeaway of this figure is that it is always possible to find a
CPRNN which outperforms the other models, regardless of
the number of parameters. We also notice that 2RNNs have
rather poor performance below the 1M parameter threshold.
This can be explained by their small hidden size values (no
larger than n = 64). Interestingly, 2RNNs match the per-
formance of the other models at a parameter count of 1.7M,
corresponding to a hidden size of 128, which is just above
the input size of d = 101. This is equally the threshold after
which vanilla RNNs start overfitting, hence demonstrating
the limited capacity of first-order interactions.

Hidden size vs. rank in CPRNNs Going back to the
interplay between rank and hidden size, Figure 8 compares
the BPC of CPRNNSs as a function of the rank for differ-
ent hidden sizes. We include the BPC values for RNNs
and 2RNN’s of corresponding hidden sizes on the left and
right ends of the figure, respectively. This illustrates how
CPRNNSs naturally interpolate between first and second-
order RNNs. We observe that for high values of hidden size
(n = 1024), the performance gain is substantial between
RNNs and CPRNNs, even for very small ranks. Indeed,
with a CPRNN of rank 4, which only increases the number
of parameters by 2%, the BPC already decreases by 59% of
the relative difference between RNN and 2RNN. Similarly
to Figures 6 and 7, we observe a slight inflection point when
the rank gets greater then the input size d = 101.

Bias-variance tradeoff in CPRNNs Figures 6 and 8 illus-
trate how increasing the rank and hidden size improves the
capacity of CPRNNs, which is in line with our theoretical re-
sults. When it comes to comparing models at a fixed size, as
done in Figure 7, those two parameters are tied together and
vary in opposite directions. Figure 4 presents the BPC of

A Tensor Decomposition Perspective on Second-order RNNs

2.4
- ¢ 2RNN
® RNN
2.2 —e— CPRNN
— n=64
| | JR— —
20 n=128
— n=256
g — n-1024
@ |
1.8
*
|
16 .\""—O—O—H*H s
1 1 1 ‘
10’ 10? 108
Rank

Figure 8. BPC of CPRNN as a function of the rank alongside RNN
and 2RNN for hidden sizes 64, 128, 256 and 1024. Variation of
the rank in CPRNN interpolates between the performance of the
first and second order model.

CPRNNs and CPBIRNNSs as a function of rank, keeping the
number of parameters fixed at 1.7M and 111K. We observe
two underfitting regimes for CPBIRNNS, one corresponding
to the rank being too low and the other corresponding to the
hidden size being too low (which corresponds to high values
of the rank). The optimal combination of rank and hidden
size thus lies in between, maximizing neither of these pa-
rameters. When the number of parameters is sufficiently
large (1.7M), the overfitting regime is more sensitive to the
hidden size. By comparing CPBIRNNs and CPRNNSs, we
see the importance of first-order terms in the interplay be-
tween rank and hidden size. In CPRNNS, there is almost
no underfitting for small rank. Increasing the hidden size
makes the first-order term gain importance in the total num-
ber of parameters. Thus, the resulting model is similar to
a RNN, preserving some expressive power, whilst without
this term, the limitation of small rank is clear.

5. Conclusion

In this work, we formally and empirically characterize the
expressivity of RNN models with various levels of second-
order interactions and show how they relate to one another.
In particular, we use the rank of CPRNNSs as a means of
interpolation between RNNs (only first-order interactions),
MIRNN:S (restricted second-order interactions) and 2RNNs
(unrestricted second-order interactions). Our analysis sheds
light on how of the rank and hidden size affects the expres-
sivity of CPRNNs by providing thresholds above which it
saturates. We determine in which measure CPRNNSs are
strictly more powerful than MIRNNs and when they are
equivalent to 2RNNs. We corroborate our theoretical results
with language modelling experiments on the Penn Treebank
dataset. These empirical results demonstrate that for a fixed

T T T T
T CPBIRNN —¥—
30 CPRNN —e—

test ——

BPC

2.0

111K parameters 1.7M parameters
1 1 1

1 1
10’ 10° 102 108 104
Rank Rank

Figure 9. BPC of CPRNN and CPBIRNN for 111K parameters
(left) and 1.7M parameters (right). CPBIRNN underfits when
rank or hidden size gets low, while in CPRNN the first-order
term maintain performance at low rank (i.e. high hidden size).
Training and testing curves are approximately the same for 111K
parameters, while they show overfitting at 1.7M of parameters.

number of parameters, we can always find CPRNNs that
outperform 2RNNs and MIRNNSs. This supports the hypoth-
esis that tensor decompositions are an effective approach
to optimize the bias-variance tradeoff in machine learning
and motivates us to extend our study to other decomposi-
tions such as Tensor-Train (Oseledets, 2011) and tensor ring
(Zhao et al., 2016). Such study could be extended to other
classes of models, including state space models and their
second-order variants. Additionally, it could be applied
to other types of problems, as multiplicative interactions
have proven beneficial in contexts beyond sequential learn-
ing (Cheng et al., 2024). Furthermore, exploring neural net-
work architectures based on tensor network structures opens
the possibility to introduce higher-order interactions as well
as studying the impact of depth on expressivity along the
lines of (Cohen and Shashua, 2016a; Cohen et al., 2016; Co-
hen and Shashua, 2016b; Sharir and Shashua, 2017; Levine
et al., 2018; Alexander et al., 2024; Razin et al., 2024). An-
other interesting avenue for future work is to explore how
these model classes compare in terms of approximation in-
stead of exact realization of the functions they compute,
similarly to what was done in, e.g., (Cohen et al., 2016).

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

A Tensor Decomposition Perspective on Second-order RNNs

Acknowledgement

M. Lizaire’s research is supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC,
Vanier Scholarship) and IVADO (PhD Excellence Scholar-
ship). G. Rabusseau’s research is supported by the CIFAR
Al Chair program and NSERC. In addition, we acknowledge
material support from NVIDIA Corporation in the form of
computational resources.

References

Yotam Alexander, Nimrod De La Vega, Noam Razin, and
Nadav Cohen. What makes data suitable for a locally
connected neural network? a necessary and sufficient
condition based on quantum entanglement. Advances in
Neural Information Processing Systems, 36, 2024.

Muzaffer Ayvaz and Lieven De Lathauwer. Cpd-structured
multivariate polynomial optimization. Frontiers in Ap-
plied Mathematics and Statistics, 8:836433, 2022.

Emilio Rafael Balda, Arash Behboodi, and Rudolf Mathar.
A tensor analysis on dense connectivity via convolutional
arithmetic circuits. 2018.

R. W. Brockett. On the generic degree of a 3-tensor. unpub-
lished manuscript, 1976.

Yining Chen, Sorcha Gilroy, Andreas Maletti, Jonathan May,
and Kevin Knight. Recurrent neural networks as weighted
language recognizers. arXiv preprint arXiv:1711.05408,
2017.

Yixin Cheng, Grigorios Chrysos, Markos Georgopoulos,
and Volkan Cevher. Multilinear operator networks. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=bbCL5aRjUx.

Nadav Cohen and Amnon Shashua. Convolutional rectifier
networks as generalized tensor decompositions. In Inter-
national conference on machine learning, pages 955-963.
PMLR, 2016a.

Nadav Cohen and Amnon Shashua. Inductive bias of deep
convolutional networks through pooling geometry. arXiv
preprint arXiv:1605.06743, 2016b.

Nadav Cohen, Or Sharir, and Amnon Shashua. On the
expressive power of deep learning: A tensor analysis. In
Conference on learning theory, pages 698—728. PMLR,
2016.

Pierre Comon, Jos MF Ten Berge, Lieven De Lathauwer,
and Josephine Castaing. Generic and typical ranks of

10

multi-way arrays. Linear Algebra and its Applications,
430(11-12):2997-3007, 2009.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim
Genewein, Li Kevin Wenliang, Elliot Catt, Chris Cundy,
Marcus Hutter, Shane Legg, Joel Veness, et al. Neural
networks and the chomsky hierarchy. arXiv preprint
arXiv:2207.02098, 2022.

Abhimanyu Dubey, Filip Radenovic, and Dhruv Mahajan.
Scalable interpretability via polynomials. Advances in
neural information processing systems, 35:36748-36761,
2022.

Jeffrey L Elman. Finding structure in time.
science, 14(2):179-211, 1990.

Cognitive

C. Giles, Guo-Zheng Sun, Hsing-Hen Chen, Yee-Chun Lee,
and Dong Chen. Higher order recurrent networks and
grammatical inference. In D. Touretzky, editor, Advances
in Neural Information Processing Systems, volume 2.
Morgan-Kaufmann, 1989.

Mark W Goudreau, C Lee Giles, Srimat T Chakradhar, and
Dong Chen. First-order versus second-order single-layer
recurrent neural networks. IEEE Transactions on Neural
Networks, 5(3):511-513, 1994.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christo-
pher Ré. Hippo: Recurrent memory with optimal poly-
nomial projections. Advances in neural information pro-
cessing systems, 33:1474-1487, 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently
modeling long sequences with structured state spaces.
arXiv preprint arXiv:2111.00396, 2021.

James D Hamilton. State-space models. Handbook of
econometrics, 4:3039-3080, 1994.

John J Hopfield. Neural networks and physical systems with
emergent collective computational abilities. Proceedings
of the national academy of sciences, 79(8):2554-2558,
1982.

Thomas D Howell. Global properties of tensor rank. Linear
Algebra and its Applications, 22:9-23, 1978.

Ozan Irsoy and Claire Cardie. Modeling compositionality
with multiplicative recurrent neural networks. CoRR,
abs/1412.6577, 2014.

Siddhant M. Jayakumar, Wojciech M. Czarnecki, Jacob
Menick, Jonathan Schwarz, Jack Rae, Simon Osindero,
Yee Whye Teh, Tim Harley, and Razvan Pascanu. Mul-
tiplicative interactions and where to find them. In In-
ternational Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=rylnK6VtDH.

https://openreview.net/forum?id=bbCL5aRjUx
https://openreview.net/forum?id=bbCL5aRjUx
https://openreview.net/forum?id=rylnK6VtDH
https://openreview.net/forum?id=rylnK6VtDH

A Tensor Decomposition Perspective on Second-order RNNs

Valentin Khrulkov, Alexander Novikov, and Ivan Oseledets.
Expressive power of recurrent neural networks. arXiv
preprint arXiv:1711.00811, 2017.

Valentin Khrulkov, Oleksii Hrinchuk, and Ivan Oseledets.
Generalized tensor models for recurrent neural networks.
arXiv preprint arXiv:1901.10801, 2019.

Henk AL Kiers. Towards a standardized notation and termi-
nology in multiway analysis. Journal of Chemometrics:
A Journal of the Chemometrics Society, 14(3):105-122,
2000.

Joe Kileel, Matthew Trager, and Joan Bruna. On the expres-
sive power of deep polynomial neural networks. Ad-

vances in neural information processing systems, 32,
2019.

Tamara G Kolda and Brett W Bader. Tensor decompositions
and applications. SIAM review, 51(3):455-500, 2009.

Samuel A Korsky and Robert C Berwick. On the computa-
tional power of rnns. arXiv preprint arXiv:1906.06349,
2019.

Ben Krause, Iain Murray, Steve Renals, and Liang Lu.
Multiplicative LSTM for sequence modelling. ICLR
Workshop track, 2017. URL https://openreview.
net/forum?id=SJCS5rXF1.

Yoav Levine, Or Sharir, and Amnon Shashua. Benefits of
depth for long-term memory of recurrent networks. 2018.

Tianyu Li, Doina Precup, and Guillaume Rabusseau. Con-
necting weighted automata, tensor networks and recur-
rent neural networks through spectral learning. Machine
Learning, pages 1-35, 2022.

Ruixin Ma, Chuang Wang, and Xin Li. Cp decom-
position for fast training of bi-Istm. In 2027 IEEE
Intl Conf on Dependable, Autonomic and Secure Com-
puting, Intl Conf on Pervasive Intelligence and Com-
puting, Intl Conf on Cloud and Big Data Computing,
Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), pages 244-248.
IEEE, 2021.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. Building a large annotated corpus of
english: The penn treebank. 1993.

William Merrill. Sequential neural networks as automata.
arXiv preprint arXiv:1906.01615, 2019.

William Merrill, Gail Weiss, Yoav Goldberg, Roy Schwartz,
Noah A Smith, and Eran Yahav. A formal hierarchy of rnn
architectures. arXiv preprint arXiv:2004.08500, 2020.

11

Tomads Mikolov, Ilya Sutskever, Anoop Deoras, Hai-Son Le,
Stefan Kombrink, and Jan Cernocky. Subword language
modeling with neural networks. preprint (http://www. fit.
vutbr. cz/imikolov/rnnlm/char. pdf), 8(67), 2012.

Boris Samuilovich Mityagin. The zero set of a real analytic
function. Mathematical Notes, 107(3-4):529-530, 2020.

Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In Icml, 2010.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan
Fernando, Caglar Gulcehre, Razvan Pascanu, and So-
ham De. Resurrecting recurrent neural networks for long
sequences. arXiv preprint arXiv:2303.06349, 2023.

Ivan V Oseledets. Tensor-train decomposition. SIAM Jour-
nal on Scientific Computing, 33(5):2295-2317, 2011.

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations, 2015.

Noam Razin, Tom Verbin, and Nadav Cohen. On the ability
of graph neural networks to model interactions between
vertices. Advances in Neural Information Processing
Systems, 36, 2024.

Yahya Sattar, Samet Oymak, and Necmiye Ozay. Finite
sample identification of bilinear dynamical systems. In
2022 IEEE 61st Conference on Decision and Control
(CDC), pages 6705-6711. IEEE, 2022.

Or Sharir and Amnon Shashua. On the expressive power of
overlapping architectures of deep learning. arXiv preprint
arXiv:1703.02065, 2017.

Hava T Siegelmann and Eduardo D Sontag. Analog compu-
tation via neural networks. Theoretical Computer Science,
131(2):331-360, 1994.

Volker Strassen. Rank and optimal computation of generic
tensors. Linear algebra and its applications, 52:645-685,
1983.

Zhan Su, Yuqin Zhou, Fengran Mo, and Jakob Grue Si-
monsen. Language modeling using tensor trains. arXiv
preprint arXiv:2405.04590, 2024.

Ilya Sutskever, James Martens, and Geoffrey E Hinton. Gen-
erating text with recurrent neural networks. In Proceed-
ings of the 28th international conference on machine
learning (ICML-11), pages 1017-1024, 2011.

Andros Tjandra, Sakriani Sakti, Ruli Manurung, Mirna Adri-
ani, and Satoshi Nakamura. Gated recurrent neural tensor
network. In 2016 International Joint Conference on Neu-
ral Networks (IJCNN), pages 448-455. IEEE, 2016.

https://openreview.net/forum?id=SJCS5rXFl
https://openreview.net/forum?id=SJCS5rXFl

A Tensor Decomposition Perspective on Second-order RNNs

Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Ten-
sor decomposition for compressing recurrent neural net-
work. In 2018 International Joint Conference on Neural
Networks (IJCNN), pages 1-8. IEEE, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, L.ukasz Kaiser, and
Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Dingheng Wang, Bijiao Wu, Guangshe Zhao, Man Yao,
Hengnu Chen, Lei Deng, Tianyi Yan, and Guoqi Li. Kro-
necker cp decomposition with fast multiplication for com-
pressing rnns. IEEE Transactions on Neural Networks
and Learning Systems, 2021.

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the prac-
tical computational power of finite precision rnns for
language recognition. arXiv preprint arXiv:1805.04908,
2018.

Paul J Werbos. Backpropagation through time: what it
does and how to do it. Proceedings of the IEEE, 78(10):
1550-1560, 1990.

Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio,
and Russ R Salakhutdinov. On multiplicative integra-
tion with recurrent neural networks. Advances in neural
information processing systems, 29, 2016.

Yinchong Yang, Denis Krompass, and Volker Tresp. Tensor-
train recurrent neural networks for video classification.
In International Conference on Machine Learning, pages
3891-3900. PMLR, 2017.

Jinmian Ye, Linnan Wang, Guangxi Li, Di Chen, Shandian
Zhe, Xinqgi Chu, and Zenglin Xu. Learning compact
recurrent neural networks with block-term tensor decom-
position. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 9378-9387,
2018.

Rose Yu, Stephan Zheng, Anima Anandkumar, and Yisong
Yue. Long-term forecasting using higher order tensor
rnns. arXiv preprint arXiv:1711.00073,2017.

Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and
Andrzej Cichocki. Tensor ring decomposition. arXiv
preprint arXiv:1606.05535, 2016.

12

A Tensor Decomposition Perspective on Second-order RNNs

A. Proofs

In this section, we present the proofs of Theorems 1, 2 and Corollary 4.

A.1. Proof of Theorem 1

Theorem 1. The following hold for any n and d:

* Hepran(R,n) € Hepran (R + 1,n) for any R.

* Hepran(R,n) = Hepran(R + 1, n) for any R > Ryaq-
Moreover, assuming n < d:

* Heppmran(R,n) € Hepsirnn (R + 1,n) for any R < Riyp—max and any real analytic invertible activation function.

* Hepran (R, n) € Hepran (R + 1, 1) for a linear activation function and any R < Riyp—max-
Proof.

Inclusion for CP(BI)RNN (all bullet points) The proof for the inclusion is the same whether we consider CPRNN or
CPBIRNN. We show that for any h € Hceprn (R, n) there exists h € Hepran (R+ 1,n) such that h = h to conclude
that Hepran (R, n) € Hepran (R + 1,7n). Let b be parameterized by Acp = (h’, A, B, C, U, V, b, o). Now consider
h parameterized by Acp = (h?, A, B, C, U, V, b, o) using the same activation function, initial hidden state, first-order
and bias terms as A¢ p, and padding the extra dimension of the factor matrices with Os, ie. Aij = A;j and Ai, r+1 = 0 for
alli=1,--- ,nandall j < R, likewise for the matrices B and C. One can easily check that with these parameterizations
h = h.

Saturation (second bullet point) We show that Hcprnn (R, 1) 2 Hepran(R + 1,n) for all R > R, This is easy,
since any he Hepran (R + 1,7n) can be computed by a CPRNN whose second-order term is parameterized by a minimal
CP decomposition of rank R,,,,,. Thus, a function h € ”7'-101:;{1\11\1(1%7 n) computed by a CPRNN using this parameterization
with zero padding for the extra dimensions is such that h = h. We conclude from this and the previous inclusion result
(Hepran (R, n) € Hopran (R + 1, 1)) that Hepran (R, n) = Hepran (R + 1,1) VR > Rygs.

Strict inclusion for CPBIRNN (third bullet point) The fact that the inclusion is strict for R < Riyp—max, i.€.
Heppirnn (R + 1,n) ¢ Hepirnn (R, n), is the key technical element of the proof of this theorem.

We begin with the easiest case R < n, where we can show that not all maps x! — h! computed by CPBIRNNS of rank
R + 1 can be computed by CPBIRNNS of rank R. Consider the linear mapping leading to the first pre-activation vector,
a; : x! — a' € R™. One can easily check that:

(i) the dimension of the image of a; is upper-bounded by R for CPBIRNNS of rank R, i.e. dim(a;(R%)) < R,

(ii) aslong as R < n, there exist parameters A, B, C, h® of a CPBIRRN of rank R + 1 such that the image a; (Rd) has
dimension exactly equal to R + 1 (e.g. taking diag(A "h), B, C full rank), and

(iii) the dimension of the manifold formed by the hidden vectors h' = o(a') is the same as a; (R?) for any invertible
activation functions, since they are homeomorphisms.

Therefore, any function computed by a CPBIRNN of rank R + 1 for which the manifold of o (a; (R?)) is of dimension R + 1
can not be computed by a CPBIRNN of rank R. This concludes the case R < n (< Riyp—max): Hoppirnn(R + 1,n) ¢
Hceppirnn (R, n) for any invertible activation function.

We now turn to the case R > n. Here an argument over the dimension of the first hidden state space can not be made as it
is limited by the hidden size n and not the rank R. Therefore, we turn to the computation of the second hidden state h?,
looking at the mapping of the second pre-activation vector as(x!, x?) — a? (h? = o(a?)). For any h € Hcppran (R, 1)

13

A Tensor Decomposition Perspective on Second-order RNNs

parameterized by Acppr = (h°, A, B, C, o), consider the tensor defined by S Z » = laz2(e;, e;)]x. For intuition, when the

activation function is linear, this tensor computes the second hidden state vector h? = S by x! xg x2.

First, one can check that 8" = [o(Bdiag(A Th°)CT)A, B, C] (where o is applied component-wise) and therefore
rankcp(S”) < rankcp([A, B, C]) < R.

Second, we show that there exists h e Hcepairnn (R + 1,n) parameterized by Acppr = <f10, A, B, C, o) such that

rankcp (S h) = R+ 1. This part of the proof relies on the following lemma, whose proof is in Appendix A.1.1 and leverages
the fact that the probability of drawing A, B, C (from a distribution which is continuous w.r.t. the Lebesgues measure) such
that rankcp ([A, B, C]) = Riyp—max is strictly positive.

Lemma 2. Foralln < d <1 < Riyp_max(n,d,n), there exist matrices A,C € R"*" B ¢ R*" and a vector hy € R™

such that rankcp ([A, B, C]) = r and rank(Bdiag(A "hy)CT) = rank(tanh(Bdiag(A "ho)C ")) = n (where tanh is
applied component-wise).

It follows from this lemma that there exist A € RFX(’?H), B¢ RdX(RJF}), C € R?X({”l) and hy € R” such that
rankcp([A, B, C]) = R + 1 and rank(Bdiag(A "h)C") = rank(tanh(Bdiag(A "ho)C")) = n. We thus have that
sh = [[MA7 B, C] where M € R4X™ is a left invertible matrix (both when o is the hyperbolic tangent and the identity),
which in turn implies that (see Lemma 4)

rankcp (S") = rankcp ([MA, B, C]) = rankep ([A, B, C]) = R + 1.

We conclude that ¢ Hcepeiran (R, 1) since rankcp (Sh) = R+1 while Vh € Hcppiran (R,) we have rankcp (Sh) <R.

Strict inclusion for linear CPRNNs (fourth bullet point) In the case of linear CPRNNs, we again consider the function
computing the second hidden state, but this time we only look at the term with second-order interactions between x! and x?
and use a similar argument to the one used for the strict inclusion of CPBIRNNs. The argument is however slightly simpler
in this case and can be used for both cases R < n and R > n.

For any h € Hcopran (R, n) parameterized by Acp = (h°, A;B,C,U,V,b,0 = I), let hy : (x!,x?) — h? be the
associated function mapping the two first inputs to the second hidden state. First observe that since 0 = I, the associated ho
can be decomposed in four terms: ha(x!,x?) = a(x!,x?) + B(x!) + v(x?) + § where « is the bilinear map containing
only the second order terms (i.e. « is a linear map of the Kronecker product of x! and x?). Note that this decomposition is
such that given two functions h, h, if o = G then h # h. One can check that

a(x',x?) = [(UT + Bdiag(ATh°)CT)A, B, C] x; x;1 X2 X2
It follows that defining the tensor §* € R¥***" by 8¢, = [a(e;, €;)]. we have
rankcp(8) < rankcp([A, B, C]) < R.

Now, since R < Riyp—max, there exist parameters of a function he Hepran (R + 1, 1) such that rankcp([[A, B, C]]) =
R + 1. Moreover, since n < d, U € R™*? can always be chosen such that (U" + Bdiag(ATh?)C") € R¥*" is left
invertible, in which case (see again Lemma 4)

rankcp (8%) = rankcp ([(UT + Bdiag(ATh°)CT))A, B, C]) = rankcp([A,B,C]) = R+ 1.
By construction we thus have rankcp(Sd) = R + 1 while rankcp(8®) < R for all h € Hcepran(R,n), hence
h & Hepran (R, n).
O

A.1.1. PROOF OF LEMMA 2

Lemma 2. Foralln < d <1 < Riyp—max(n, d,n), there exist matrices A,C € R"*" B € R*" and a vector hy € R™
such that rankcp ([A, B, C]) = r and rank(Bdiag(A "Thy)C") = rank(tanh(Bdiag(A "h)CT)) = n (where tanh is
applied component-wise).

14

A Tensor Decomposition Perspective on Second-order RNNs

The proof of the lemma relies on the following result whose proof can be found in (Mityagin, 2020)*.

Lemma 3. Let A(z) be a real analytic function on (a connected open domain U of) R%. If A is not identically zero, then its
zero set
Z(A)={zcU|A(x) =0}

has a zero measure.

Proof of Lemma 2. Let A, B, C, hgy be randomly drawn from a distribution which is continuous w.r.t. the Lebesgue measure.
On the one hand, since 7 < Ryiyp—max (1, d, 1), the measure of the set of matrices A, B, C such that rankcp ([A, B, C]) =
r is stricly positive, and thus the probability that the random matrices A, B, C are such that rankcp([A, B, C]) = ris
strictly greater than 0. On the other hand, consider the real analytic function

F(A,B,C,hy) = det[(Bdiag(A "ho)CT)1.,..] - det[tanh(Bdiag(A "ho)C).,

where the notation M., . denotes the matrix containing the first n rows of M. One can check that by letting A, B, C be
identity matrices padded with 0’s and hy be a vector full of ones, we have F (A, B.C, flo) # 0, and thus F is not identically
zero. It then follows from Lemma 3 that the set of A, B, C, hy such that F(A,B, C,hy) = 0 has measure 0. Hence,
with probability one, both Bdiag(A Thy)CT and tanh(Bdiag(A "hy)C ") are full rank, i.e. of rank n (since n < d < 7).
Combining these two observations lead to the existence of matrices A, B, C and a vector hy satisfying the claim of the
lemma. O

A.2. Proof of Theorem 2
Theorem 2. The following hold for any d and n.:

« L™9 0 Heppiran (R, n) € L7149 0 Heppirnn (R, n + 1) for any R and n.

o L% 0 Heppran (R, n) = L9 0o Heppmran (R, n + 1) for any n > R and linear activation function.
Moreover, assuming n < d:

o L0HeppIRNN (R, n) C LMo cppran (R, n+1) for any n < R and any invertible activation function satisfying
o(0) =0.

Proof.

Inclusion (all bullet points) We first show that £™9 o HcpBIrRNN (R, n) C L£rtha o HCPBIRNN (R,n + 1) (both
when n < R and n > R). Consider a function [o h € L™9 o Hepirnn (R, n) with [defined by I[(v) = W for
some W in R9*" and h parameterized by the CPBIRNN Acppr = (h’, A B, C,0). Now consider the function

lohin £ o Heppmran (R, n + 1) with [defined by I(v) = Wv where W' = ((‘)’VB) and h parameterized by

Acppr = <BO,A,B,C,0> where A = (o-jﬁo)’ C = (090) and hy = (IBO). One can check that [o h = [o h.

This construction thus shows that for any function in £" o Hcpprnn(R,n) we can find an equivalent function in
L o Heppran (R, n + 1), ie. L7 0 Heppiran (R, n) € LM% 0 Heppiran (R, n + 1).

Saturation (second bullet point) Since we already showed that L0 Hcppirnn (R, n) € LM 0H cppirnN (R, n+1)
for any invertible activation function (including linear ones), we just need to show that L£rthao ’HCPBIRNN(R n+ 1) C
LMo HCPBIRNN(R n) Let h € HCPBIRNN(R n —+ 1) parameterlzed by -ACPBI = <h A B,C,0 = I) andl V
Wv € £7154, Since R < n+ 1, we can factorize A and C into A = PA and C = CQ where A CeR™landP,Q €
R"™+1X" are rank n. The functions h € Heppirnn (R,) parameterized by Acppr = (h” = PThO AB,Co=1
andl : v — QTWV € L™4 are such that [o h = [o h which shows that £"19 o Hoppryn (R, n + 1) € L™ 0
Hceppirnn (R, n). Note that without the restriction of a linear activation function is key here as it is what allows the
factorization matrix Q" to be introduced in the parameterization of [(QTW).

*Mityagin, Boris Samuilovich. “The zero set of a real analytic function.” Mathematical Notes 107.3-4 (2020): 529-530.

15

A Tensor Decomposition Perspective on Second-order RNNs

Strict inclusion (third bullet point) We now show that the inclusion is strict for n < R, i.e., that

L0 0 Heppmran(R,n+ 1) ¢ L9 0 Hoppirnn (R, n).

It suffices to show the result for ¢ = 1 which we will do. Indeed, suppose the result is true for ¢ = 1 and let lohe
L5 o Hoppirnn (R, n + 1) be s.t. loh#lohforallloh e L™ o Heppirnn (R, n). It is easy to see that, for any
q>1,themapl: v — (l(YO --- 0)T € £"+14 is such that [o h ¢ L™ o Heppirnn (R,). Then the proof goes as
follow:

(i) First, observe that for any h € Hcpprn (R, n) parameterized by Acppr = (h°, A, B, C, o), the image of the
first pre-activation mapping a; : x! — a' = [A, B, C] x; h® x5 x! is a linear space of dimension at most 7, i.e.
dim(a; (RY)) < n.

(ii) Second, consider h € HcpeirnN (R, 7 + 1) parameterized by Acppr = (fl A B,C , o) such that dlag(ATflo) B

and C are full rank matrices (e.g. Ay. is a row of 1’s and h° = e). Since n < R < d, one can check that the i image of
ay : x' + a' has dimension n + 1, i.e. dim(a;(R%)) =n + 1.

(iii) Third, let z : v = (v 0) T be a mapping that augments the dimension while leaving the original transformation intact.
We have that z o a; (R?) and @, (R?) are both linear subspaces of R"*! and that dim(z o a;(R%)) < dim(a; (R%)).

It thus follows from Lemma 1 that L1 o g0 d; ¢ L5 0 0 0 2 0 ay. Since for any activation function such that
o(0) = 0 we have L' 0 0 = L"T11 0 0 0 2, we conclude that L 11 o 50 ay ¢ L™ 0 0 0 a;. We thus have shown that
there exists h € Hepprnn (R, n + 1) such that for any i € Hepprnn (R,) we have L7701 o hy ¢ L1 o hy (where
hi and hy denote the function mapping the first input vector to the first hidden state of the respective CPRNNSs), which
concludes the proof.

O

A.2.1. PROOF OF LEMMA 1

Lemma 1. Let V' be a vector space of dimension d, ¢, : X — V two maps whose images ¢(X) and 1)(X) are subspaces
of V and o an homeomorphism. Lastly, let L(V') denote the set of all linear forms on'V (i.e. L(V) is the dual space V*).

If dim(¢(X)) > dim(p(X)), then L(V)ooop ¢ L(V)oagoi.

Proof. We suppose L(V) oo 0o¢ C L(V) o o o1 and show it leads to a contradiction. Let Iy, . . .4 be d linear forms from
L(V) that are linearly independent. By hypothesis, there exist l1,...lgsuchthatl; oo o ¢> =000 Yforalli=1,...,d.
Consider the mappings v, 7 : V — V givenby v : u — Zle li(u)v; and D : u +— Zi:l I;(w)v; where vy, ..., vgis an
arbitrary basis of V. The previous equality ([; 0o 0 0 ¢ = lioogo 1)) implies that v o 0 0 ¢ = © 0 ¢ 0 1. On the one hand,
since v is invertible by construction, v o ¢ is an homeomorphism and the dimension of the manifold (noted dim) of the
image of v o g o ¢ is the same as the dimension of the image of ¢, i.e.

dim (v o o 0 (X)) = dim(p(X)).
On the other hand, since 7 is a linear transformation it can not increase the dimension of the manifold, thus
dimpap (P oo o (X)) < dim(¢(X)) < dim(p(X)).

This is a contradiction since the hypothesis led to v 0 0 0 ¢ = ¥ o ¢ o ¥ which implies dimp((Z 0 o 0 ¥)(X))
dim g ((7 0 0 0 @) (X)).

o

A.3. Proof of Corollary 4

Corollary 4. Assuming n < d, forany R > n,

* Harnn () € Hepran (R, n)

* Haarnn(n) © Heprnn (R, n) for linear activation function
Proof.

16

A Tensor Decomposition Perspective on Second-order RNNs

Inclusion We show that for any Hyrnn(n) € Heprnn(R,n) for R > n. Note the inclusion is valid for CPRNNs
and without restrictions on the first order and biais terms of MIRNNSs. First observe that an equality between the second-
order terms of a CPRNN and a MIRNN corresponds to Zf:l AiB;C = Vi Uy forall i,k = 1,--- ,n and
j=1,---,d. Thus, for any h € Hyrrnn(n) parameterized by Ay = (h°, U, V, @, 81, B2, b, o) a CPRNN given by
Acp = <hO,A,B,C,U =061 ® I_J,V =062 @V,b,0> with

A, = V, ifri=1...n B, — I_er ifrzl...njzl...deT: o ifk=r
0 else 0 else 0 else

computes a function A that is equal to h.

Strict inclusion The strict inclusion comes from the observation that since we have Hyrnn (1) € Heprnn (R, 1). As
Theorem 1 states that for linear activation function and R < Ryax Hepran (R, 1) € Heprn (R + 1,n), it follows that
for any R > n and a linear activation function Hyrnn () € Hopran (R, n). O

A.4. Additional Lemmas
Lemma 4. Let T be a tensor of CP rank R and let T = [A, B, C] be a minimal (i.e. rank R) CP decomposition of T.
Then, for any left invertible matrix M, rankcp (T) = rankcp ([MA, B, C]).

Proof. Letay,--- ,ag be the columns of A, by,--- , bg the columns of B and ¢y, - - - , cg be the columns of C.

First, it is trivial to show that R > rankcp([MA, B, C]) since [MA, B, C] is a rank R CP decomposition. To show
the result, we need to show that this CP decomposition is minimal. Suppose it is not the case, i.e., there exists a rank
S < R CP decomposition [MA, B, C] = [A, B, C] where A, B, C all have S columns. Then, one can easily check that
T = [[Mﬂ&, B, é], where M is the left inverse of M, i.e. 7 admits a CP decomposition of rank S < R, a contradiction.

O

17

