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Abstract
Recent advances in powerful pre-trained diffusion
models encourage the development of methods
to improve the sampling performance under well-
trained diffusion models. This paper introduces
Diffusion Rejection Sampling (DiffRS), which
uses a rejection sampling scheme that aligns the
sampling transition kernels with the true ones
at each timestep. The proposed method can
be viewed as a mechanism that evaluates the
quality of samples at each intermediate timestep
and refines them with varying effort depending
on the sample. Theoretical analysis shows that
DiffRS can achieve a tighter bound on sampling
error compared to pre-trained models. Empiri-
cal results demonstrate the state-of-the-art per-
formance of DiffRS on the benchmark datasets
and the effectiveness of DiffRS for fast diffu-
sion samplers and large-scale text-to-image dif-
fusion models. Our code is available at https:
//github.com/aailabkaist/DiffRS.

1. Introduction
Diffusion models have attracted considerable interest in var-
ious domains, such as image (Dhariwal & Nichol, 2021;
Rombach et al., 2022) and video generation (Ho et al.,
2022b; Voleti et al., 2022), due to their remarkable ability to
generate high-quality samples. The powerful generative ca-
pabilities of diffusion models have spurred extensive efforts
to further improve the sampling quality. A common strat-
egy is to reduce the sampling interval, thereby increasing
the iterative sampling count (Karras et al., 2022). How-
ever, this comes at the cost of a higher number of network
evaluations, which slows down the sampling speed. An
alternative approach is to improve the training of the reverse
diffusion process to accurately model the reverse transi-
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tion (Kim et al., 2022b; Rombach et al., 2022; Lai et al.,
2023; Zheng et al., 2023a). Nonetheless, these methods
require time-consuming training of the diffusion model.

In contrast to these approaches, recent advances in power-
ful pre-trained models (Rombach et al., 2022; Karras et al.,
2022) have led to a growing body of research focused on
leveraging them (Kim et al., 2023; Xu et al., 2023a; Ning
et al., 2024). In line with these efforts, our goal is to effec-
tively and efficiently leverage a well-trained diffusion model
to improve the sampling quality. We introduce a mechanism
that assesses the quality of a sample at each intermediate
timestep, allowing us to keep good samples as well as to
refine poor samples by injecting appropriate noise and by
going back to prior timesteps.

Specifically, we propose Diffusion Rejection Sampling
(DiffRS), which is based on the ratio of the true transition
kernel to the transition kernel of the pre-trained model for
each timestep, see Figure 1. The ratio can be estimated by
a time-dependent discriminator that distinguishes between
data and generated samples at each timestep. In cases where
samples are rejected, we adjust the noise intensity depending
on the rejected samples. We theoretically prove that discrim-
inator training leads to a tighter upper bound on the sam-
pling error of DiffRS compared to a pre-trained diffusion
model. In the experiments, DiffRS achieves new state-of-
the-art (SOTA) performance on CIFAR-10, and near-SOTA
performance on ImageNet 64×64 with fewer NFEs. More-
over, we demonstrate the effective application of DiffRS
to the fast diffusion samplers, such as DPM-Solver++ (Lu
et al., 2022b) and Consistency Model (Song et al., 2023),
and large-scale text-to-image generation models, including
Stable Diffusion (Rombach et al., 2022).

2. Preliminary
Diffusion Model Diffusion-based generative models (Ho
et al., 2020; Song et al., 2021b; Dhariwal & Nichol, 2021)
are one of the most prominent deep generative models that
aim to approximate the data distribution to the model distri-
bution. This model includes a forward diffusion process that
iteratively perturbs the data instances toward the prior distri-
bution, and a corresponding reverse process that inverts the
forward process to sample from the modeled distribution.
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Figure 1. Overview of DiffRS. We sequentially apply the rejection sampling on the pre-trained transition kernel pθt|t+1(xt|xt+1) (red) to
align the true transition kernel qt|t+1(xt|xt+1) (blue). The acceptance probability is estimated by the time-dependent discriminator dϕt .

The forward process is formulated by a fixed Markov chain
that constructs a set of latent variables x1:T by adding Gaus-
sian noises from data distribution q0(x0) (Ho et al., 2020):

q(x1:T |x0) :=
∏T

t=1 qt|t−1(xt|xt−1), (1)

where qt|t−1(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI) and

βt is a variance schedule parameter at time t. Most diffusion
models define the reverse process by a Markov chain with a
Gaussian transition kernel pt|t+1(xt|xt+1):

p(x0:T ) := pT (xT )
∏T−1

t=0 pt|t+1(xt|xt+1), (2)

where pT (xT ) is the prior distribution. Then, the goal of
the diffusion model is to approximate the transition kernel
pt|t+1(xt|xt+1) by a Gaussian with parameterized mean
µθ and time-dependent variance σ2

t+1,

pθt|t+1(xt|xt+1) := N (xt;µ
θ(xt+1, t+ 1), σ2

t+1I), (3)

using the objective of variational bound on the log likelihood.
When the parameterized transition kernel pθt|t+1 is obtained,
we proceed with iterative sampling from T to 0 using Eq. (2),
replacing a transition kernel with pθt|t+1:

xt = µθ(xt+1, t+ 1) + σ2
t+1z where z ∼ N (z;0, I). (4)

Refining Sampling Process from Pre-trained Models
While most previous methods require training of diffusion
models to reduce the sampling error, some recent work has
explored refining the sampling process from pre-trained dif-
fusion models. DG (Kim et al., 2023) corrects the transition
kernel by adding an auxiliary term from the discriminator
dϕt that distinguishes between real and generated samples:

µθ,ϕ(xt, t) := µθ(xt, t) + αt∇xt
log

dϕ
t (xt)

1−dϕ
t (xt)

, (5)

where αt is a time-dependent constant. After that, sampling
proceeds with the adjusted transition kernel µθ,ϕ to reduce
the network estimation error. We also use a fixed pre-trained
diffusion and utilize the discriminator, but our distinctive
method is the application of a rejection sampling scheme.

In addition, Restart (Xu et al., 2023a) introduces a strategy
of repeating the backward and forward steps at fixed time
interval [tmin, tmax]. Specifically, Restart iteratively samples
with a deterministic sampler, such as an ODE sampler, from
T to tmin. Then, it imposes stochasticity by adding large
noise and simulates a reverse process from tmax to tmin:

(Restart forward) xi+1
tmax

= xi
tmin

+ ϵtmin→tmax , (6)

(Restart reverse) xi+1
tmin

= ODEθ(x
i+1
tmax

, tmax → tmin), (7)

where ϵtmin→tmax denotes the injected noise of the forward
process from tmin to tmax and ODEθ represents the reverse
process using a deterministic sampler from tmax to tmin.
These processes are repeated, demonstrating an increased
contraction effect on accumulated errors. Our rejection sam-
pling differs in that the timesteps for applying the forward
process are determined probabilistically for each sample.

Rejection Sampling Rejection sampling is a numerical
sampling method to be used when a target distribution q(x)
can be evaluated whereas its direct sampling is difficult (Rip-
ley, 2009). For this, we need a proposal distribution p(x)
that can be evaluated and from which we can draw samples.
We also need to find a constant M satisfying q(x) ≤Mp(x)
for all x. Then, we accept a sample x drawn from p(x) with
probability of q(x)/Mp(x), and otherwise reject it.

Some work on generative models takes advantage of this
rejection sampling scheme. Grover et al. (2018) use it to
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Algorithm 1 OneStepDiffRS (t,xt+1, Lt+1)

Input: pθt|t+1, qt/pθt (or dϕt /[1− dϕt ]), Mt

Output: xt, Lt

1: xt ← None
2: while xt is None do
3: Sample x̃t from the transition kernel pθt|t+1(·|xt+1)

4: Compute Lt ← qt(x̃t)

pθ
t (x̃t)

and At ← Lt

MtLt+1

5: Sample u ∼ Uniform(0, 1)
6: if u < At then
7: xt ← x̃t

8: else
9: xt+1, Lt+1 ← Re-initialization(t+ 1, x̃t)

10: end if
11: end while

improve samples drawn from the variational posterior of the
variational autoencoder. Azadi et al. (2019); Turner et al.
(2019) generate data instances from the generative adversar-
ial network by evaluating the acceptance probability using
the discriminator. Compared to previous studies, the sam-
pling of diffusion models is iterative, which requires a se-
quential rejection sampling method over diffusion timesteps.

3. Methods
3.1. Diffusion Rejection Sampling (DiffRS)

We assume the existence of a pre-trained diffusion model
that allows the generation of samples using the transition
kernel pθt|t+1(xt|xt+1). The distribution of a sample x0

obtained through a sequence of transition samples xt|xt+1,
denoted pθ0(x0), may deviate from the true data distribution
q0(x0) if the pre-trained transition kernel pθt|t+1 differs from
the true transition kernel qt|t+1. Consequently, we apply a
rejection sampling scheme for each timestep in the transition
kernel to mitigate this discrepancy, as described in Figure 1.

Conceptually, DiffRS performs the rejection sampling of the
transition probability in reverse diffusion, pθt|t+1.1 During
the generation procedure, the sampling means selecting an
instance from pθt|t+1, which follows a Gaussian of Eq. (3), so
it can perform as a proposal distribution of the rejection sam-
pling. Meanwhile, the ordinary forward diffusion, qt+1|t,
follows a Gaussian distribution; but its reverse-time ver-
sion, qt|t+1, does not follow a Gaussian distribution, which
becomes the target distribution of the rejection sampling.

To formulate DiffRS, let qt(xt) and pθt (xt) represent the
marginal distributions of the forward diffusion process start-
ing from q0(x0) and pθ0(x0), respectively. We introduce a
one-step DiffRS procedure from t+1 to t to obtain a sample

1It should be noted that the rejection sampling is imposed on
the transition probability, pθt|t+1; not its marginal probability, pθt .

xt from qt, given a sample xt+1 from qt+1. This procedure
can be applied sequentially from T − 1 to 0, yielding a
sample from the data distribution q0.

Proposal Distribution At time t+ 1, we assume that we
have a sample xt+1 drawn from the perturbed data distri-
bution qt+1(xt+1) through the sampling iterations from T
to t + 1. Then, a sample xt at time t can be drawn using
the pre-trained transition kernel pθt|t+1 following the gen-
erative reverse process by Eq. (4). Our goal is to ensure
that the sampling closely follows the true transition kernel
qt|t+1 (blue in Figure 1). This is achieved by applying the
rejection sampling, where the proposal distribution is set by
the pre-trained transition kernel pθt|t+1 (red in Figure 1).

Acceptance Probability To implement the rejection sam-
pling scheme on the transition kernel, we need to compute
the acceptance probability At(xt,xt+1), which is expressed
as the ratio of the true and pre-trained transition kernel:

At(xt,xt+1) :=
1

Mt

qt|t+1(xt|xt+1)

pθt|t+1(xt|xt+1)
, (8)

where Mt is a constant that satisfies qt|t+1(xt|xt+1) ≤
Mtp

θ
t|t+1(xt|xt+1) for all xt and xt+1. The density ratio

can be further derived as follows:

qt|t+1(xt|xt+1)

pθt|t+1(xt|xt+1)
=

qt+1|t(xt+1|xt)

pt+1|t(xt+1|xt)

qt(xt)

pθt (xt)

pθt+1(xt+1)

qt+1(xt+1)

=
qt(xt)

pθt (xt)

pθt+1(xt+1)

qt+1(xt+1)
=

Lt(xt)

Lt+1(xt+1)
, (9)

where Lt(xt) :=
qt(xt)

pθ
t (xt)

. The first equality holds by Bayes’
rule, and we use the fact that the perturbed kernels, qt+1|t
and pt+1|t, are the same for the second equality. There-
fore, the acceptance probability At(xt,xt+1) of the one-
step DiffRS at time t can be expressed as follows:

At(xt,xt+1) =
Lt(xt)

MtLt+1(xt+1)
. (10)

Lt(xt) is estimated by the density ratio estimation via a
discriminator dϕt , which will be discussed in Section 3.2.

Algorithm of One-step DiffRS We formulate a one-step
DiffRS procedure in Algorithm 1. Note that Re-initialization
(line 9 in Algorithm 1) refers to the process of drawing a
new sample at timestep t + 1 after a rejection, which we
will explain further in Section 3.3.

3.2. Estimation of the Acceptance Probability

As indicated in Eq. (10), the acceptance probability is ex-
pressed as the ratio of the likelihood ratios at time t and t+1.
Therefore, if we can estimate the likelihood ratio Lt(xt) at
each timestep, we can compute the acceptance probabil-
ity. Following the approach of DG (Kim et al., 2023), we
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Figure 2. Overview of the proposed re-initialization.

estimate this ratio using a time-dependent discriminator, de-
noted by dϕt . This discriminator is designed to distinguish
between samples of qt and pθt at all timesteps.

To train the discriminator, we generate the samples of pθ0
using Eq. (4) with the pre-trained diffusion model. The
training objective is the time-weighted binary cross-entropy
loss using the real and generated samples:

LBCE(ϕ) :=Et

[
λ(t)Eq0(x0)qt|0(xt|x0)

[
− log dϕt (xt)

]
+ Epθ0 (x0)qt|0(xt|x0)

[
− log(1− dϕt (xt))

]]
, (11)

where λ(t) is the temporal weighting function. Then, the
optimal discriminator dϕ

∗

t satisfies the following equations:

dϕ
∗

t (xt) =
qt(xt)

qt(xt) + pθt (xt)
;Lt(xt) =

qt(xt)

pθt (xt)
=

dϕ
∗

t (xt)

1− dϕ
∗

t (xt)
.

(12)

Therefore, using the time-dependent discriminator dϕt , we
derive the estimators L̂ϕ

t and Âϕ
t for the ratio Lt and the

acceptance probability At, respectively:

Lt(xt) ≈ L̂ϕ
t (xt) :=

dϕt (xt)

1− dϕt (xt)
, (13)

At(xt,xt+1) ≈ Âϕ
t (xt,xt+1) :=

1

Mt

L̂ϕ
t (xt)

L̂ϕ
t+1(xt+1)

. (14)

3.3. Re-initialization

The primary challenge associated with the rejection sam-
pling is the increased number of sampling iterations caused
by rejections. This problem is particularly exacerbated in
diffusion models that use iterative sampling, since rejections
require resampling starting from the timestep T . To miti-
gate this challenge, we introduce a re-initialization method
tailored for diffusion models, utilizing rejected samples.

Motivated by the observation from Restart (Xu et al., 2023a)
that incorporating the forward process into the sampling

Algorithm 2 Re-initialization(t+ 1, x̃t)

Input: qt+1|t, qt+1/p
θ
t+1 (or dϕt+1/[1− dϕt+1]), M̃t+1

Output: xt+1, Lt+1

1: Sample x̃t+1 from the forward process qt+1|t(·|xt)

2: Compute Lt+1 ← qt+1(x̃t+1)

pθ
t+1(x̃t+1)

and Ãt+1 ← Lt+1

M̃t+1

3: Sample u ∼ Uniform(0, 1)
4: if (u < Ãt+1) or (t+ 1 == T ) then
5: xt+1 ← x̃t+1

6: else
7: xt+2, Lt+2 ← Re-initialization(t+ 2, x̃t+1)
8: xt+1, Lt+1 ← OneStepDiffRS(t+ 1,xt+2, Lt+2)
9: end if

Algorithm 3 Diffusion Rejection Sampling (DiffRS)

1: xT ← None
2: while xT is None do
3: Sample x̃T from the prior distribution pT (xT )

4: Compute LT ← qT (xT )
pT (xT ) and ÃT ← LT

M̃T

5: Sample u ∼ Uniform(0, 1)
6: if u < ÃT then
7: xT ← x̃T

8: end if
9: end while

10: for t = T − 1 to 0 do
11: xt, Lt ← OneStepDiffRS(t,xt+1, Lt+1)
12: end for

process reduces the accumulated error, we add noise to the
rejected samples xt. Unlike Restart, we inject different
amounts of noise for each sample based on the likelihood
ratio information we already have, as illustrated in Figure 2.

Specifically, we first apply a one-step forward transition
qt+1|t to the rejected sample xt at time t to obtain the candi-
date sample xt+1 at time t+1. Then, we apply an additional
rejection sampling procedure to the candidate sample xt+1

based on the marginal distributions qt+1 and pθt+1. If the
sample is rejected again, we iterate through the one-step
forward transition and the marginal rejection sampling. Con-
sequently, the intensity of the noise is adjusted based on the
probability that a rejected sample is drawn from the true
distribution. We present this re-initialization procedure in
Algorithm 2. Empirically, we find that this re-initialization
procedure leads to effective and efficient sample generation.

3.4. Overall Algorithm

Algorithm 3 presents the overall algorithm of DiffRS. First,
we sample xT from the prior distribution pT and then per-
form the marginal rejection sampling with the acceptance
probability AT (xT ) =

qT (xT )
MT pT (xT ) (lines 1-9). This process

aims to bring the prior distribution closer to qT , thereby
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Figure 3. Illustration of the sampling process for DiffRS. The path with the green background represents the DiffRS sampling process,
and the rightmost images are generated from the intermediate images using a base sampler without rejection. Timesteps are expressed as
the noise level σ from the EDM scheme (Karras et al., 2022).

reducing the prior mismatch error. Subsequently, we iter-
atively apply the one-step DiffRS from T − 1 to 0 (lines
10-12), ultimately obtaining a sample x0 on the data space.

Figure 3 visually illustrates the DiffRS process, highlighted
with a green background. The rightmost images show the
generated samples when continuing to sample from the
intermediate images without rejection. The sample is refined
by finding new sampling paths through rejection.

It is important to note that DiffRS can enhance sample
quality for most diffusion samplers. A necessary condition
is that the sampler aims to sample from the true perturbed
data distribution qt(xt) at time t. This condition holds true
for most samplers, including diffusion distillation methods.

Practical Consideration The implementation of DiffRS
requires the determination of the rejection constant Mt. It
should be noted that Mt exists for all t, since the diffusion
process is based on a Gaussian distribution, so the support
of the transition kernels becomes the entire space. However,
finding an exact value for Mt is nearly impossible, and even
if it were possible, it would be computationally intractable
in practice. In accordance with previous research (Azadi
et al., 2019), we determine Mt as follows: we store the ratio

L̂ϕ
t (xt)

L̂ϕ
t+1(xt+1)

of samples from the base sampler and select the

γth percentile of these stored values as Mt. We apply this
method similarly to the marginal rejection sampling.

3.5. Theoretical Analysis

We provide a theoretical analysis of the DiffRS algorithm
based on distribution divergence. Ho et al. (2020) derived
the upper bound of the Kullback-Leibler (KL) divergence

between the data distribution q0(x0) and the pre-trained
distribution pθ0(x0) in diffusion models:

DKL(q0||pθ0) ≤ DKL(qT ||pθT ) (15)

+

T−1∑
t=0

Eqt+1

[
DKL(qt|t+1||pθt|t+1)

]
=: J(θ).

Therefore, to minimize the KL divergence on the data space,
we need to match prior distributions, qT and pθT ; and tran-
sition kernels, qt|t+1 and pθt|t+1; which is the purpose of
DiffRS.

For further theoretical analysis, let pθ,ϕ∗ be the distribution
refined by DiffRS. We also define the unnormalized accep-

tance probability Āϕ
t := MtÂ

ϕ
t =

L̂ϕ
t (xt)

L̂ϕ
t+1(xt+1)

. Then, the

refined prior distribution and the refined transition kernels
of DiffRS are expressed by the pre-trained distribution and
the acceptance probability:

pθ,ϕT (xT ) = pθT (xT )Ā
ϕ
T (xT ), (16)

pθ,ϕt|t+1(xt|xt+1) = pθt|t+1(xt|xt+1)Ā
ϕ
t (xt,xt+1). (17)

Theorem 3.1 formulates the upper bound of the KL diver-
gence between the data and refined distribution.

Theorem 3.1. The KL divergence between data distribution
q0 and refined distribution pθ,ϕ0 is bounded by:

DKL(q0||pθ,ϕ0 ) ≤ J(θ) +R(ϕ) =: J(θ,ϕ), (18)

where R(ϕ) := EqT [− log Āϕ
T ]+

∑T−1
t=0 Eqt,t+1

[− log Āϕ
t ].

Moreover, this bound attains equality for the optimal ϕ∗,
and in such cases the value becomes 0.
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Table 1. Performance comparison on CIFAR-10. The values in the
first block are taken from the original paper.

Model
Unconditional Conditional

FID↓ NFE↓ FID↓ NFE↓
DDPM (Ho et al., 2020) 3.17 1000 - -
DDIM (Song et al., 2021a) 4.16 100 - -
ScoreSDE (Song et al., 2021b) 2.20 2000 - -
iDDPM (Nichol & Dhariwal, 2021) 2.90 1000 - -
LSGM (Vahdat et al., 2021) 2.10 138 - -
CLD-SGM (Dockhorn et al., 2022b) 2.25 312 - -
STF (Xu et al., 2022b) 1.90 35 - -
ST (Kim et al., 2022b) 2.33 2000 - -
PFGM (Xu et al., 2022a) 2.35 110 - -
INDM (Kim et al., 2022a) 2.28 2000 - -
PFGM++ (Xu et al., 2023b) 1.93 35 - -
PSLD (Pandey & Mandt, 2023) 2.10 246 - -
ES (Ning et al., 2024) 1.95 35 1.80 35

EDM (Heun) (Karras et al., 2022) 2.01 35 1.83 35
2.03 65 1.90 89

EDM+DG (Kim et al., 2023) 1.78 35 1.66 35
1.90 65 1.72 89

EDM+Restart (Xu et al., 2023a) 1.95 43 1.85 43
1.93 65 1.90 89

EDM+DiffRS (ours) 1.59 64.06 1.52 88.22

The proof is in Appendix A. If the discriminator is com-
pletely indistinguishable, i.e., dϕt ≡ 0.5 for all t, then
R(ϕ) = 0 because Āϕ

t ≡ 1 for all t, indicating that all
instances are accepted in the rejection sampling process.
Therefore, the refined distribution from DiffRS is same as
the distribution from the pre-trained diffusion model. As the
discriminator is trained, R(ϕ) converges to−J(θ)(≤ 0) ac-
cording to Theorem 3.1, making the upper bound for DiffRS
tighter than that for the pre-trained diffusion model.

4. Experiments
In this section, we empirically validate the proposed
method, DiffRS. First, we conduct experiments on stan-
dard benchmark datasets for image generation tasks, such
as CIFAR-10 (Krizhevsky, 2009), and ImageNet 64×64
and 256×256 (Deng et al., 2009). Next, we present the
analysis of DiffRS and its applicability to fast diffusion sam-
plers. Finally, we perform experiments on large-scale text-
conditional image generation using Stable Diffusion (Rom-
bach et al., 2022) with a resolution of 512×512.

Experimental Setting We primarily use the pre-trained net-
works on CIFAR-10 and ImageNet 64×64 from EDM (Kar-
ras et al., 2022), which is known for the superior perfor-
mance of the pre-trained models. For ImageNet 256×256,
we use the checkpoint from DiT (Peebles & Xie, 2023).
Additional results on other datasets (e.g., FFHQ (Karras
et al., 2019), AFHQv2 (Choi et al., 2020)) and networks
(e.g., DDPM++ cont. (Song et al., 2021b)) are provided

Table 2. Performance comparison on class-conditional ImageNet
64×64. The values in the first block are from the original paper.

Model FID↓ NFE↓
DDPM (Ho et al., 2020) 11.0 250
iDDPM (Nichol & Dhariwal, 2021) 2.92 250
ADM (Dhariwal & Nichol, 2021) 2.07 250
CFG (Ho & Salimans, 2021) 1.55 250
CDM (Ho et al., 2022a) 1.48 8000
RIN (Jabri et al., 2023) 1.23 1000
VDM++ (Kingma & Gao, 2023) 1.43 511

EDM (Heun) (Karras et al., 2022) 2.18 511
EDM (SDE) (Karras et al., 2022) 1.38 511
EDM+DG (Kim et al., 2023) 1.38 511
EDM+Restart (Xu et al., 2023a) 1.37 623
EDM+DiffRS (ours) 1.26 273.93

100 200 300 400 500
NFE ( )

1

2

3
FI

D
 (

)
EDM (Heun)
DG
DiffRS

EDM (SDE)
Restart

Figure 4. FID vs. NFE on ImageNet 64×64 with EDM.

in Appendix D. All settings related to the discriminator
are identical to Kim et al. (2023), which is provided in
Appendix C.2. Note that the process of sampling from a
pre-trained model and training a discriminator requires sig-
nificantly less time and memory than training a diffusion
model. Further experimental details are specified in Ap-
pendix C. We mainly evaluate the generation performance
using the Fréchet Inception Distance (FID) (Heusel et al.,
2017) on 50K samples, and we report the number of func-
tion evaluations (NFE) on the diffusion network. In the case
of DiffRS, the NFE varies for each sample, so we take the
average NFE of the samples.

4.1. Analysis on Benchmark Datasets

CIFAR-10 Table 1 presents the performance of previous
diffusion models and our proposed method on CIFAR-10.
The proposed method achieves new SOTA with FID scores
of 1.59 for the unconditional case and 1.52 for the class-
conditional case.
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Table 3. Performance comparison on class-conditional ImageNet
256×256 with DiT-XL/2-G (Peebles & Xie, 2023). ‘Time’ is the
average sampling time to generate 100 samples in minutes.

Sampler NFE↓ Time↓ FID↓ sFID↓ IS↑ Prec↑ Rec↑ F1↑

DDPM
(Ho et al., 2020)

250 3.71 2.30 4.72 277.2 0.826 0.579 0.681
300 4.38 2.33 4.69 280.8 0.830 0.582 0.684
415 5.91 2.30 4.68 279.8 0.831 0.572 0.678

DG
(Kim et al., 2023)

250 4.02 1.88 5.15 284.1 0.786 0.633 0.701
300 4.76 1.98 5.35 287.9 0.793 0.621 0.696
375 5.87 1.83 4.99 287.9 0.791 0.624 0.698

DG+DiffRS (ours) 306.88 5.87 1.76 4.68 279.1 0.796 0.629 0.703

(a) σ = 28.4 (b) σ = 1.92 (c) σ = 0.002

Figure 5. Generated images with the highest (top) and lowest (bot-
tom) acceptance probability at each timestep, obtained using the
EDM (Heun) sampler on CIFAR-10. σ = {28.4, 1.92, 0.002}
corresponds to the t = {15, 9, 1}, respectively, with T = 18.

For a detailed analysis, the second block of Table 1 com-
pares samplers that improve the sampling process using
the same fixed pre-trained diffusion model on CIFAR-10.
DiffRS exhibits the best performance under the same dif-
fusion checkpoint. DiffRS is based on Heun’s 2nd order
sampler (Heun) with 35 NFEs, and the NFE is increased
due to rejection. For a fair comparison, we evaluate the
baseline samplers with the same NFEs as DiffRS, and we
observe that DiffRS still outperforms other baseline sam-
plers under the same NFEs.

ImageNet 64×64 Table 2 shows the performance for
class-conditional image generation on ImageNet 64×64.
We report the best FID performances over NFE for each
method. DiffRS achieves competitive performance on class-
conditional ImageNet 64×64, approaching SOTA with an
FID score of 1.26 while requiring fewer NFEs compared to
the current SOTA model (1.23 with 1000 NFEs).

In Figure 4, we evaluate the FID values of various NFEs for
each method with the fixed pre-trained diffusion checkpoint
on ImageNet 64×64. We compare with the deterministic
sampler (Heun) and the stochastic sampler (SDE) proposed
by EDM (Karras et al., 2022), DG (Kim et al., 2023), and
Restart (Xu et al., 2023a). DG and DiffRS utilize Heun as
the base sampler for small NFE regime and switch to the
SDE sampler for large NFE regime. Restart employs Heun
as the base sampler because the method is inherently based
on the ODE sampler. DiffRS adjusted the backbone sam-
pler and the value of γ to measure performance on different
NFEs, as detailed in Appendix C.3. Notably, DiffRS con-

Table 4. Ablation studies on unconditional CIFAR-10.

Methods FID↓ NFE↓
No rejection sampling 2.01 35

(a) No sequential rejection sampling 3.73 295.34
(b) Marginal sequential rejection sampling 1.66 63.57

(c) Re-init. to t+ 1 by one-step forward only 1.84 47.69
(d) Re-init. to T by prior distribution 1.72 138.07

DiffRS 1.59 64.06

sistently outperforms on all NFE regimes. We include the
uncurated generated images in Appendix D.7. These results
highlight the effective and efficient sampling capabilities of
DiffRS from the provided pre-trained network information.

ImageNet 256×256 We perform the experiment on high-
resolution class-conditional image generation using Ima-
geNet 256×256 with DiT-XL/2-G (Peebles & Xie, 2023).
We apply DiffRS to DG sampler, and we also measure the
performances of DDPM and DG on comparable NFEs and
sampling time. As shown in Table 3, DiffRS performs bet-
ter than DDPM and DG on the FID metric. Additionally,
DiffRS achieves performance on par with the best results for
the sFID and F1 metrics, while DDPM and DG have lower
performance on one of these metrics. Therefore, DiffRS can
be effectively used for sample refinement in high-resolution
image generation.

Acceptance Probability Figure 5 visualizes the top 10
and bottom 10 images for each timestep, determined by
calculating the acceptance probability for 50,000 generated
CIFAR-10 images sampled by the EDM (Heun) sampler.
We observe that the top images have better visual qual-
ity. Conversely, for the bottom images, the images at large
timesteps often have an overall unclear appearance, and the
images at small timesteps have distortions in finer details.
DiffRS effectively eliminates these problematic images, re-
sulting in new high-quality images.

4.2. Ablation Studies

Sequential Rejection Sampling We investigate the effect
on the sequential rejection sampling based on the transition
kernel, considering two scenarios: (a) marginal rejection
sampling only at t = 0 using L0, and (b) sequential re-
jection sampling based on the marginal probability using
Lt. As seen in (a) of Table 4, performance deteriorates
without sequential rejection sampling, attributed to the chal-
lenges of density ratio estimation in high-dimensional data
space (Rhodes et al., 2020). Additionally, rejections require
iterative sampling from the prior distribution, significantly
increasing the NFE. In contrast, DiffRS performs sequential
rejection sampling utilizing the time-dependent density ra-
tios. As t increases, the two distributions in the ratio become
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Figure 8. FID vs. NFE on unconditional
CIFAR-10 with DPM-Solver++ (DS++).

closer, leading to relatively accurate ratio estimation (Kim
et al., 2024). Moreover, rejections at intermediate timesteps
contribute to a relative reduction in NFE. On the other hand,
in case of (b), using the marginal probability for sequential
rejection sampling leads to performance degradation due to
the mismatch between sampling and proposal distributions.

Re-initialization The third block in Table 4 presents the
variants of the re-initialization methods. In the case of rejec-
tion at timestep t, the first method, denoted (c), performs
only one-step forward to t+ 1 and continues DiffRS from
t + 1; and the second method, denoted (d), transitions to
timestep T and restarts DiffRS from the prior distribution.
The results show that both variants outperform the backbone
sampler, but fall short of the performance of the proposed
re-initialization method. In the case of (c), the re-initialized
samples could deviate from the true distribution qt+1, lead-
ing to a drop in performance. In the case of (d), there is a
significant increase in NFE because sampling is restarted
from timestep T . In contrast, our re-initialization method
performs additional rejection sampling on the samples ob-
tained through the forward step, attempting to initialize
similar to the true distribution. Furthermore, by conducting
the adequate number of forward steps for each sample, our
method achieves superior performance at suitable NFEs.

Rejection Constant Figure 6 shows the effect of the hy-
perparameter γ on FID and NFE on CIFAR-10, where the
rejection percentile γ determines the rejection constants Mt

in the experiment. We observe that the NFE increases expo-
nentially with increasing γ. While DiffRS generally has a
better FID than the base sampler, there is an increase beyond
an extreme threshold of γ. We empirically observe that the
FID tends to increase when the NFE exceeds 2-3 times that
of the base sampler. Therefore, we set γ to keep the NFE at
this level, typically in the range of [75, 85].

Figure 7 visualizes the rejection constant Mσ over timesteps

on unconditional CIFAR-10 under various rejection per-
centile γ. As the rejection constant is inversely propor-
tional to the acceptance probability (Ripley, 2009), a higher
rejection constant implies a higher proportion of rejected
samples. The distribution of the rejection constant over
timesteps is bell-shaped, with a peak around σ = 0.1. Inter-
estingly, Restart (Xu et al., 2023a) also adds noise around
this timestep, which was chosen heuristically.

To further analyze this interval, we include the test label
accuracy of a time-dependent classifier trained by CIFAR-10
(blue dotted line). This result indicates the level of semantic
information in the images at each timestep. We observe that
the sample quality becomes distinguishable once a certain
level of semantic information is reached. Also, in regions
very close to the data space, the rejection rate decreases as
the sample quality is almost determined.

4.3. Application to Fast Sampler

Diffusion models inherently suffer from problems of sam-
pling speed due to the need for iterative sampling. To
address this, various methods for fast sampling, such as
the use of efficient ODE and SDE solvers, have been pro-
posed (Jolicoeur-Martineau et al., 2021; Lu et al., 2022a;
Dockhorn et al., 2022a; Zhang & Chen, 2023). Most of
these methods aim to follow the perturbed data distribution
qt(xt) at time t, making it possible to apply DiffRS to these
fast samplers.

We verify this experimentally on unconditional CIFAR-10
with DPM-Solver++, one of the few-step accelerated sam-
pling methods (Lu et al., 2022a;b). As shown in Figure 8,
when comparing stars and line segments of the same color,
we observe that although additional NFEs are incurred, the
performance is improved compared to the base sampler.
Additionally, we find that the performance is improved com-
pared to the same NFEs of DPM-Solver++.
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4.4. Application to Distillation Methods

Diffusion distillation methods are an alternative approach
to accelerating the sampling process. They aim to obtain a
distilled generative model with fewer NFEs from the infor-
mation of the existing diffusion model process (Salimans
& Ho, 2022; Song et al., 2023; Meng et al., 2023). As dis-
cussed in Section 3.4, DiffRS can be applied to diffusion
distillation methods where an intermediate sample xt is
required to follow a perturbed data distribution qt(xt).

To investigate the effectiveness of DiffRS in distillation
methods, we apply it to the Consistency Distillation
(CD) (Song et al., 2023). We use CD with 2 and 7 NFEs as
base samplers. For DiffRS, we adjust the hyperparameter
γ to observe the changes in FID over NFE. Figure 9 shows
that the combination of CD and DiffRS can generate images
with an FID of less than 3.0 at an NFE nearly 10. This
result suggests that DiffRS can also be effectively applied
to diffusion distillation models.

4.5. Application to Large-scale Text-conditional Model

We further show that DiffRS can be applied to large-scale
text-conditional diffusion models such as Stable Diffu-
sion (Rombach et al., 2022). We use the publicly available
Stable Diffusion v1.5 pre-trained on LAION-5B (Schuh-
mann et al., 2022) with a resolution of 512×512. We apply
DiffRS to DDIM (Song et al., 2021a) with 100 NFEs. Fol-
lowing the evaluation protocol of previous studies (Nichol
et al., 2022; Xu et al., 2023a), we generate 5,000 images
from captions randomly sampled from the COCO (Lin
et al., 2014) validation set using the classifier-free guidance
method (Ho & Salimans, 2021). We evaluate the sample
quality using the FID metric and measure the image-text
alignment through the CLIP score (Hessel et al., 2021).

Figure 10 plots the trade-off between FID and CLIP scores,
varying the classifier-free guidance weights. DiffRS exhibits
a superior FID for the same CLIP score, with an average
of 166 NFEs. In contrast, the performance of DDIM did
not significantly improve even with an increased number

(b) DDIM (NFE=200)(a) DDIM (NFE=100) (c) DDIM (NFE=100)
 + DiffRS (ours)

A plate of food with a fried egg and colorful vegetables.

A small cat sitting down on a chair.

Figure 11. Example of generated images with Stable Diffusion
v1.5. We use a classifier-free guidance weight of 2, and images
on the same row are generated from the same noise from the prior
distribution and the text prompt located above.

of NFEs. Figure 11 visualizes the example of images gen-
erated by DDIM and ours. These results demonstrate the
scalability of our model to effectively improve the sam-
pling performance of a well-trained diffusion model even in
text-to-image generation scenarios.

5. Conclusion
We present Diffusion Rejection Sampling (DiffRS), a new
diffusion sampling approach that ensures alignment be-
tween the reverse transition and the true transition at each
timestep. The acceptance probability is estimated by train-
ing a time-dependent discriminator. We also propose the
re-initialization method for DiffRS to effectively and ef-
ficiently refine the rejected samples. Theoretical analysis
shows that discriminator training tightens the upper bound
on the divergence between the data distribution and the re-
fined distribution by DiffRS. Empirically, DiffRS achieves
the state-of-the-art performances on the benchmark datasets,
and DiffRS demonstrates its effectiveness on few-step ac-
celerated samplers, diffusion distillation models, and large-
scale text-to-image generation models.

Potential future work includes applying advanced sampling
methods, such as Metropolis-Hastings sampling (Turner
et al., 2019), to diffusion models. Additionally, develop-
ing methods to deal with discrepancies between the data
distribution learned by a pre-trained diffusion model and
the target data distribution, such as focusing on minority
samples or the presence of label noise (Um et al., 2024; Na
et al., 2024), will be promising applications of DiffRS.
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A. Proof of Theoretical Analysis
In this section we provide a proof of Theorem 3.1.

Theorem 3.1. The KL divergence between data distribution q0 and refined distribution pθ,ϕ0 is bounded by:

DKL(q0||pθ,ϕ0 ) ≤ J(θ) +R(ϕ) =: J(θ,ϕ), (18)

where R(ϕ) := EqT [− log Āϕ
T ] +

∑T−1
t=0 Eqt,t+1

[− log Āϕ
t ]. Moreover, this bound attains equality for the optimal ϕ∗, and

in such cases the value becomes 0.

Proof. First, we provide the derivation of Eq. (15), the upper bound of KL divergence between the data distribution and the
model distribution, comes from (Ho et al., 2020).

DKL(q0||pθ0) = Eq0 [− log pθ0(x0)]−H(q0) (19)

≤ Eq0:T

[
− log

pθ0:T (x0:T )

q1:T |0(x1:T |x0)

]
−H(q0) (20)

= Eq0:T

[
− log pθT (xT )−

T−1∑
t=0

log
pθt|t+1(xt|xt+1)

qt+1|t(xt+1|xt)

]
−H(q0) (21)

= Eq0:T

[
− log pθT (xT )−

T−1∑
t=0

log
pθt|t+1(xt|xt+1)

qt|t+1(xt|xt+1)

qt(xt)

qt+1(xt+1)

]
−H(q0) (22)

= Eq0:T

[
− log

pθT (xT )

qT (xT )
−

T−1∑
t=0

log
pθt|t+1(xt|xt+1)

qt|t+1(xt|xt+1)
− log q0(x0)

]
−H(q0) (23)

= DKL(qT ||pθT ) +
T−1∑
t=0

Eqt+1

[
DKL(qt|t+1||pθt|t+1)

]
=: J(θ). (24)

If we substitute pθ0 with pθ,ϕ0 in the above, the following equation for the refined distribution pθ,ϕ0 by DiffRS holds:

DKL(q0||pθ,ϕ0 ) ≤ DKL(qT ||pθ,ϕT ) +

T−1∑
t=0

Eqt+1

[
DKL(qt|t+1||pθ,ϕt|t+1)

]
. (25)

By the relationship between pθ and pθ,ϕ, as described in Eqs. (16) and (17), each term in the upper bound is further derived
as follows:

DKL(qT ||pθ,ϕT ) = EqT [− log pθ,ϕT (xT ) + log qT (xT )] (26)

= EqT [− log pθT (xT )− log Āϕ
T (xT ) + log qT (xT )] (27)

= DKL(qT ||pθT ) + EqT [− log Āϕ
T (xT )], (28)

DKL(qt|t+1||pθ,ϕt|t+1) = Eqt|t+1
[− log pθ,ϕt|t+1(xt|xt+1) + log qt|t+1(xt|xt+1)] (29)

= Eqt|t+1
[− log pθt|t+1(xt|xt+1)− log Āϕ

t (xt,xt+1) + log qt|t+1(xt|xt+1)] (30)

= DKL(qt|t+1||pθt|t+1) + Eqt|t+1
[− log Āϕ

t (xt,xt+1)] (31)
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Therefore, we can derive the upper bound of the KL divergence as follows:

DKL(q0||pθ,ϕ0 ) ≤ DKL(qT ||pθT ) + EqT [− log Āϕ
T (xT )] +

T−1∑
t=0

Eqt+1

[
DKL(qt|t+1||pθt|t+1) + Eqt|t+1

[− log Āϕ
t (xt,xt+1)]

]
(32)

= J(θ) + EqT [− log Āϕ
T (xT )] +

T−1∑
t=0

Eqt,t+1
[− log Āϕ

t (xt,xt+1)] (33)

= J(θ) +R(ϕ) =: J(θ,ϕ). (34)

where R(ϕ) := EqT [− log Āϕ
T ] +

∑T−1
t=0 Eqt,t+1

[− log Āϕ
t ].

Moreover, the optimal discriminator ϕ∗ satisfies that:

Āϕ∗

T (xT ) =
qT (xT )

pθT (xT )
, and Āϕ∗

t (xt,xt+1) =
qt|t+1(xt|xt+1)

pθt|t+1(xt|xt+1)
. (35)

Substituting Āϕ∗

T (xT ) into Eq. (27) and Āϕ∗

t (xt,xt+1) into Eq. (30) respectively, we observe that each KL term becomes
zero. Consequently, the upper bound J(θ,ϕ) = 0, which leads to the KL divergence on the data space, DKL(q0||pθ,ϕ0 ), to
be zero.

B. Related Works
B.1. Reducing Sampling Error of Diffusion Models

The sampling error can be measured by the distribution discrepancy between the data distribution and the generated
distribution. This error is decomposed into three factors: the network approximation error, the prior mismatch error, and the
temporal-discretization error (Kim et al., 2022a). To reduce the temporal-discretization error, reducing the sampling interval,
which increases the iterative sampling count, is a common strategy; but it comes at the cost of a higher number of network
evaluations, which slows down the sampling speed.

A significant amount of research has focused on improving the expressiveness of diffusion models through advances in
network architecture or objective structure. For example, some studies proposed loss weights for timesteps or regularization
methods for the diffusion objectives (Kim et al., 2022b; Kingma & Gao, 2023; Lai et al., 2023). Additionally, alternative
approaches involve the investigation of the effective latent space (Vahdat et al., 2021; Rombach et al., 2022; Kim et al.,
2022a). Other efforts aim at learning an implicit prior distribution to minimize the prior mismatch error and reduce the
sampling length (Zheng et al., 2023a). However, these methods require time-consuming training of the diffusion model.

B.2. Rejection Sampling

Several researches utilize rejection sampling to discard poor samples for better generation quality in generative models.
Grover et al. (2018) propose the rejection sampling on the approximated variational posterior of variational autoencoder.
Azadi et al. (2019) introduce the rejection sampling by utilizing the discriminator of the generative adversarial network
(GAN) to adjust the implicit distribution of the GAN generator. Similarly, Turner et al. (2019) combine the Metropolis-
Hastings algorithm and GAN. However, there is no previous attempt to improve the sampling quality of the diffusion model
via rejection sampling. It should be noted that it is difficult to naively apply the rejection sampling to the diffusion model
due to the nature of its iterative sampling process.

C. Additional Experimental Settings
C.1. Configurations of Baseline Samplers

We use the baseline samplers as follows: Heun’s 2nd ODE sampler (Heun) (Karras et al., 2022), Improved SDE sampler
(SDE) (Karras et al., 2022), DG (Kim et al., 2023), and Restart (Xu et al., 2023a) for the standard benchmark datasets; and
DDIM (Song et al., 2021a) for the text-to-image generation task. We adopt the sampling hyperparameter settings from the
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experiments of the original papers. In cases where the experiment was not performed in the original paper, we used settings
as similar as possible. In the CIFAR-10, FFHQ, and AFHQv2 experiments, we use the Heun sampler serves as the backbone
sampler for DG and Restart. In the ImageNet 64×64 experiments, we use the better sampler between Heun and SDE at
each NFE as the backbone sampler for DG, while we use Heun for Restart. In the ImageNet 256×256 experiments, we
use the DDPM sampler as the backbone sampler for DG. For DPM-Solver++ (Lu et al., 2022b), we apply the singlestep
DPM-Solver++. For the diffusion distillation method, we apply the multi-step consistency sampling for the consistency
distillation model (Song et al., 2023).

C.2. Settings of Discriminator Training

We follow DG (Kim et al., 2023) to train a time-dependent discriminator by utilizing the code and some checkpoints
from the DG repositories.23 We use the provided checkpoints for CIFAR-10 and FFHQ generation, and we train our own
discriminator for other datasets. Our discriminator is trained on a single NVIDIA GeForce RTX 4090 GPU using CUDA
11.8 and PyTorch 1.12 versions. The discriminator structure consists of two stacked U-net encoders. The pre-trained U-net
encoder is from ADM (Dhariwal & Nichol, 2021) utilized as a feature extractor.4 We utilize a randomly initialized feature
extractor for the COCO dataset and pre-trained extractor with ImageNet classification for the remaining dataset. The shallow
U-net encoders are only the trainable parameters for discriminating, which maps from feature to logits. For the conditional
diffusion backbones, the shallow U-net encoders are also designed as a conditional model. The specific configurations are
described in Table 5.

Table 5. Configurations of the discriminator.

CIFAR-10 ImageNet64 ImageNet256 FFHQ AFHQv2 COCO

Diffusion Backbone
Model EDM EDM EDM CD DiT-XL/2 EDM EDM Stable Diffusion
Conditional model ✗ ✔ ✔ ✔ ✔ ✗ ✗ ✔

Feature Extractor
Model ADM ADM ADM ADM ADM ADM ADM ADM
Architecture U-Net encoder U-Net encoder U-Net encoder U-Net encoder U-Net encoder U-Net encoder U-Net encoder U-Net encoder
Pre-trained ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✗
Depth 4 4 4 4 4 4 4 4
Width 128 128 128 128 128 128 128 128
Attention Resolutions 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8
Input shape (data) (B,32,32,3) (B,32,32,3) (B,64,64,3) (B,64,64,3) (B,32,32,4) (B,64,64,3) (B,64,64,3) (B,64,64,4)
Output shape (feature) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,384) (B,8,8,512) (B,8,8,512) (B,8,8,512)

Discriminator
Model ADM ADM ADM ADM ADM ADM ADM ADM
Architecture U-Net encoder U-Net encoder U-Net encoder U-Net encoder U-Net encoder U-Net encoder U-Net encoder U-Net encoder
Pre-trained ✔ ✔ ✗ ✗ ✗ ✔ ✗ ✗
Depth 2 2 2 2 2 4 2 2
Width 128 128 128 128 128 128 128 128
Attention Resolutions 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8
Input shape (feature) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,512) (B,8,8,384) (B,8,8,512) (B,8,8,512) (B,8,8,512)
Output shape (logit) (B,1) (B,1) (B,1) (B,1) (B,1) (B,1) (B,1) (B,1)

Discriminator Training
Time scheduling VP VP Cosine VP Cosine VP VP Cosine VP Cosine VP Cosine VP
Time sampling Importance Importance Importance Importance Importance Importance Importance Importance
Time weighting g2

σ2
g2

σ2
g2

σ2
g2

σ2
g2

σ2
g2

σ2
g2

σ2
g2

σ2

Batch size 128 128 128 128 512 128 128 128
# data samples 50,000 50,000 50,000 50,000 50,000 60,000 15,803 5,000
# generated samples 25,000 50,000 50,000 50,000 50,000 60,000 15,803 5,000
# Epoch 60 250 20 50 20 250 20 10

C.3. Configurations of DiffRS

We integrate DiffRS into the code implementation of each base sampler: DG codebase2 for EDM-based samplers; DG-
ImageNet codebase3 for ImageNet 256×256; DPM-Solver-v3 (Zheng et al., 2023b) codebase5 for DPM-Solver++; Con-

2https://github.com/alsdudrla10/DG
3https://github.com/alsdudrla10/DG_imagenet
4https://github.com/openai/guided-diffusion
5https://github.com/thu-ml/DPM-Solver-v3
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Table 6. Configuration details for each experimental result.

Pre-trained diffusion Performance Configuration

Dataset Task Model FID↓ NFE↓ Base sampler Rejection percentile γ Max. iteration K

CIFAR-10 Unconditional DDPM++ cont. 1.91 151.86 EDM (SDE) (NFE=63) 85 ∞
EDM 1.59 64.06 EDM (Heun) (NFE=35) 75 105

1.88 41.37 EDM (Heun) (NFE=35) 30 ∞
1.86 41.52 EDM (Heun) (NFE=35) 40 ∞
1.82 43.78 EDM (Heun) (NFE=35) 50 ∞
1.73 48.61 EDM (Heun) (NFE=35) 60 ∞
1.74 52.13 EDM (Heun) (NFE=35) 65 ∞
1.65 56.45 EDM (Heun) (NFE=35) 70 ∞
1.60 62.28 EDM (Heun) (NFE=35) 75 ∞
1.64 73.84 EDM (Heun) (NFE=35) 80 ∞
1.79 91.17 EDM (Heun) (NFE=35) 85 ∞

EDM 3.08 14.60 DPM-Solver++ (NFE=13) 20 ∞
2.94 15.74 DPM-Solver++ (NFE=13) 30 ∞
2.82 17.41 DPM-Solver++ (NFE=13) 40 ∞
2.68 18.34 DPM-Solver++ (NFE=13) 50 ∞
2.59 19.56 DPM-Solver++ (NFE=13) 60 ∞
2.60 19.88 DPM-Solver++ (NFE=15) 40 ∞
2.48 20.85 DPM-Solver++ (NFE=15) 45 ∞
2.41 22.10 DPM-Solver++ (NFE=15) 50 ∞
2.27 25.06 DPM-Solver++ (NFE=15) 60 ∞
2.08 25.25 DPM-Solver++ (NFE=20) 40 ∞
2.01 27.74 DPM-Solver++ (NFE=20) 50 ∞
1.91 30.86 DPM-Solver++ (NFE=20) 60 ∞
1.81 35.48 DPM-Solver++ (NFE=20) 70 ∞

CIFAR-10 Class-conditional EDM 1.52 88.22 EDM (Heun) (NFE=35) 80 105

FFHQ Unconditional EDM 1.60 198.65 EDM (Heun) (NFE=71) 90 213

AFHQv2 Unconditional EDM 1.80 144.92 EDM (Heun) (NFE=71) 85 213

ImageNet 64×64 Class-conditional EDM 1.97 48.23 EDM (Heun) (NFE=27) 60 ∞
1.76 60.95 EDM (Heun) (NFE=27) 70 ∞
1.55 98.60 EDM (Heun) (NFE=27) 80 ∞
1.50 123.00 EDM (SDE) (NFE=63) 60 ∞
1.38 171.95 EDM (SDE) (NFE=63) 70 ∞
1.26 273.93 EDM (SDE) (NFE=127) 70 ∞
1.27 353.60 EDM (SDE) (NFE=127) 75 ∞
1.27 1169.67 EDM (SDE) (NFE=511) 70 ∞

CD 3.30 7.00 CD (NFE=2) 70 ∞
3.07 8.01 CD (NFE=2) 75 ∞
2.95 12.58 CD (NFE=2) 85 ∞
2.88 19.07 CD (NFE=2) 90 ∞
2.63 17.81 CD (NFE=7) 60 ∞
2.49 23.11 CD (NFE=7) 80 ∞
2.42 28.69 CD (NFE=7) 85 ∞
2.43 37.96 CD (NFE=7) 90 ∞

ImageNet 256×256 Class-conditional DiT-XL/2 1.76 306.88 DDPM+DG (NFE=250) 65 ∞
COCO Text-to-image Stable Diffusion (weight=2) 13.46 166.95 DDIM (NFE=100) 80 ∞

Stable Diffusion (weight=3) 13.58 166.36 DDIM (NFE=100) 80 ∞
Stable Diffusion (weight=5) 16.19 217.13 DDIM (NFE=100) 80 ∞
Stable Diffusion (weight=8) 18.82 115.24 DDIM (NFE=100) 80 ∞

sistency Models codebase6 for CD; and Restart codebase7, built on Diffusers8, for Stable Diffusion. For the benchmark
datasets, we utilize a single NVIDIA GeForce RTX 4090 GPU, CUDA 11.8, and PyTorch 1.12. For the text-to-image
generation, we use a single NVIDIA L40S GPU with CUDA 11.8 and PyTorch 2.1. Our implementation is available at:
https://github.com/aailabkaist/DiffRS.

To estimate the rejection constant Mt, we generate 1,000 samples with evaluating the unnormalized acceptance probability

Āϕ
t =

L̂ϕ
t (xt)

L̂ϕ
t+1(xt+1)

using the trained discriminator. Then, we select the γth percentile values from these values as the rejection

6https://github.com/openai/consistency_models
7https://github.com/Newbeeer/diffusion_restart_sampling
8https://github.com/huggingface/diffusers
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Table 7. Performance on FFHQ and AFHQv2 with EDM (Karras et al., 2022).

Sampler
FFHQ AFHQv2

FID NFE FID NFE

EDM (Heun) (Karras et al., 2022) 2.41 71 2.00 71
2.43 199 2.05 145

DG (Kim et al., 2023) 1.96 71 1.88 71
1.93 199 1.85 145

DiffRS (ours) 1.60 198.65 1.80 144.92

Table 8. Performance on CIFAR-10 with DDPM++ cont. (Song et al., 2021b).

Sampler FID↓ NFE↓
EDM (Heun) (Karras et al., 2022) 2.89 63
EDM (SDE) (Karras et al., 2022) 2.35 1023
Restart (Xu et al., 2023a) 2.11 519
DiffRS (ours) 1.91 151.86
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Figure 12. Trade-off between FID and NFE on
unconditional CIFAR-10 varying the last rejec-
tion timestep.

constant for each timestep, with the minimum value of Mt set to one. Additionally, we set a maximum iteration K to prevent
looping within a single path. If this limit is exceeded, we initialize the sampling again from the prior distribution. In most
cases, we set K to either∞ or three times the NFE of the base sampler. The hyperparameters for each experiment, along
with their corresponding performance, are provided in Table 6.

C.4. Configurations of Pre-trained Diffusion Models

For CIFAR-10, we employ the pre-trained DDPM++ cont. and EDM models obtained from the EDM repository.9 For
FFHQ and AFHQv2, we use the pre-trained EDM models also available in the EDM repository.9 In the case of ImageNet
64×64, we use the pre-trained EDM model from the EDM repository9, and the consistency distillation model from the
Consistency Model repository.6 For ImageNet 256×256, we use the pre-trained DiT-XL/2 from the DiT repository.10 In the
text-to-image generation task, we use Stable Diffusion v1.5 pre-trained on LAION-5B, available from HuggingFace.11

C.5. Evaluation Procedure

We evaluate the performance of diffusion models using Fréchet Inception Distance (FID). FID calculations are performed
using the DG (Kim et al., 2023) code, and we report the results for the random seeds. For ImageNet 256×256, we also
report Inception Score (IS) (Salimans et al., 2016), sFID (Nash et al., 2021), Precision (Prec), Recall (Rec), and F1 of
Prec and Rec (Kynkäänniemi et al., 2019), evaluated by ADM (Dhariwal & Nichol, 2021) code. In the stable diffusion
experiment, FID and CLIP score calculations are conducted using the Restart code. CLIP scores are evalated using the
open-sourced ViT-g/14 (Ilharco et al., 2021).

D. Additional Experiment Results
D.1. Experimental Results on FFHQ and AFHQv2

In Table 7, we present the performance on FFHQ (Karras et al., 2019) and AFHQv2 (Choi et al., 2020). We use the Heun
with 71 NFEs as the base sampler for DffRS and compare DiffRS to Heun and DG. Remarkably, DiffRS demonstrates
significant improvements in FID over the base sampler on these benchmark datasets (+0.81 for FFHQ and +0.20 for
AFHQv2). In addition, our method exhibits superior performance even with similar NFEs.

9https://github.com/NVlabs/edm
10https://github.com/facebookresearch/DiT
11https://huggingface.co/runwayml/stable-diffusion-v1-5
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Figure 13. Accuracy of discrimina-
tor over each timestep varying dis-
criminator training epochs, on un-
conditional CIFAR-10.
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Figure 14. Entropy of discrimina-
tor over each timestep varying dis-
criminator training epochs, on un-
conditional CIFAR-10.
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Figure 15. FID performance over discriminator training
epochs on unconditional CIFAR-10.
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Figure 16. Ablation studies of the discriminator configurations on unconditional CIFAR-10. Each subfigure is for (top) batch size, (middle)
depth of U-Net, and (bottom) width of U-Net. bz stands for batch size and #param. is the number of discriminator parameters.

D.2. Experimental Results on DDPM++ cont.

Table 8 shows the performance with the DDPM++ cont. model (Song et al., 2021b) on the unconditional CIFAR-10 dataset.
The baseline results are taken from the reported performance of Restart (Xu et al., 2023a). We find that DiffRS shows the
superior performance. Therefore, DiffRS works effectively for other diffusion backbones as well.

D.3. Additional Ablation Studies

Figure 12 shows the changes in FID and NFE when DiffRS is applied only up to S instead of applying it to all timesteps. As
S increases, indicating a smaller interval for applying rejection sampling, the FID degrades. Similar to the analysis of the
rejection constant in the main manuscript (Figure 7), a drastic change in FID and NFE is observed around σ = 0.1.

D.4. Ablation Studies of Discriminator

Training Curve As shown in Figures 13 and 14, unlike GAN training, the discriminator training of our method is stable.
This is because the score network that serves as the generator is pre-trained and fixed. Therefore, this is a single directional
optimization process without min-max game, such as GAN. Experimentally, we plot the sample performance according to
the number of discriminator training epochs. As shown in Figure 15, we find that the performance improves and stabilizes
already from the early epochs.

Configurations We perform an ablation study to explore the effects of the discriminator configurations. We measured the
sample performance across training epochs, varying the discriminator training batch size, and the depth and width of the
U-Net. As shown in Figure 16, we observed superior performance compared to the base sampler across all settings.
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Figure 17. Relative sampling time varying discriminator configurations. The numbers in parentheses indicate the number of parameters in
the discriminator.
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Figure 18. Ablation studies of the number of training samples for the discriminator on unconditional CIFAR-10. The tuple in the legend
represents (number of training data, number of generated data).

Also, we plot the sampling time according to the discriminator structure in Figure 17. As shown in the figure, although the
sampling time increases slightly as the discriminator parameter size increases, the evaluation time of the diffusion models
accounts for a larger proportion, resulting in a non-significant difference.

Number of Samples We examine the performance according to the number of discriminator training data. We perform
experiments on unconditional CIFAR-10 in two settings: 1) using all training images (50k examples) and varying the number
of generated images, 2) using the same number of training images as generated images.

As shown in Figure 18, when using all training images, even generating only 10% of the training images (5k images)
outperforms the base sampler. Also, we observe improved performance as the number of generated images increases.
However, when matching the number of training images to the number of generated images, we observe a decrease in
performance as training progresses when the number of samples is small. This also happens when all training images are
used, but the number of generated images is small. We attribute this to the reduced number of training images leading to
overfitting problems, resulting in inaccurate density ratio estimation by the discriminator.

Therefore, it is preferable to use all of the given training data, and more generated data generally improves performance.
However, even using only 10% of the training data can provide better performance than the base sampler.
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Table 9. Sampling time (seconds) to generate 100 samples at 63 NFEs.

EDM (Heun) EDM (SDE) DG DiffRS

45.69 45.97 59.66 54.69
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Figure 20. FID vs. Sampling time (seconds per 100
images) on ImageNet 64×64 with EDM.

D.5. Estimation of Rejection Constant Mt

Theoretically, Mt should always be greater than the ratio of the target distribution to the proposal distribution for all instances.
Therefore, a proper estimator of Mt would be the maximum value of the density ratio extracted from the samples, i.e.,
the rejection percentile γ = 100(%). However, in most our experiments, adjusting γ in the range of [75, 85] worked well.
Specifically, Figure 6 in the main manuscript illustrates the performance variation with respect to γ, where it can be observed
that the FID increases significantly as γ becomes very large.
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Figure 19. Sensitivity analysis of γ with
early-stage discriminator (trained by 5-
epochs) on unconditional CIFAR-10.

We believe that such cases are due to problems with the discriminator network
used to estimate the density ratio. To investigate this, we measure the entropy
and accuracy of the discriminator outputs of the training dataset for each timestep
over discriminator training epochs. As shown in Figures 13 and 14, for small
epochs, both prediction confidence and accuracy are low, and as the epochs
increase, confidence and accuracy increase significantly. This could indicate
that overconfidence problems occur as training progresses, possibly leading to
an inaccurate density ratio estimate that is skewed toward extreme values, thus
degrading performance.

In this case, we believe that lowering the rejection constant Mt by the rejection
percentile γ helped alleviate the problem of overconfidence in the discriminator.
To investigate this further, we did a small experiment by limiting the training of
discriminator to suppress the overconfidence problem. We examine the perfor-
mance changes with respect to γ for the early-stage discriminator (i.e., trained
by 5-epochs). As shown in Figure 19, the early-stage discriminator continues to
perform better as γ increases. While the performance is generally better than the
baseline, it did not reach the best performance (FID=1.59) of the final discriminator
(trained by 60-epochs). Therefore, while it is necessary to train the discriminator
beyond a certain level, the overconfidence problem of neural networks can occur, but this can be mitigated by adjusting γ.

D.6. Sampling Time

DG and DiffRS require additional sampling time due to the use of an auxiliary discriminator network. DG requires
discriminator evaluation and gradient computation at each timestep, while DiffRS only requires discriminator evaluation
at each timestep. Table 9 shows the sampling time taken to generate 100 samples at the same NFE. DiffRS takes longer
than the base samplers because of the discriminator evaluation, and DG takes more time due to the gradient computation.
Figure 20 illustrates the FID changes in terms of the sampling time required to generate 100 samples. As seen in the figure,
our model demonstrates superior performance for the same sampling time.

D.7. Generated Images

Figures 21 to 24 show the generated images of DiffRS on the benchmark datasets. Figures 25 and 26 provide the uncurated
conditional generated images using the base sampler and DiffRS on the ImageNet 64×64 to enable direct comparison of
sample quality. For the consistency distillation model, Figure 27 compares the generated images of the base samplers and
our method. Figure 28 provides the text-conditional generated images with a resolution of 512×512 from Stable Diffusion.
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Figure 21. The uncurated generated images of DiffRS on unconditional CIFAR-10 with EDM (NFE=64.06, FID=1.59).

Figure 22. The uncurated generated images of DiffRS on conditional CIFAR-10 with EDM (NFE=88.22, FID=1.52).
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Figure 23. The uncurated generated images of DiffRS on unconditional FFHQ with EDM (NFE=198.65, FID=1.60).

Figure 24. The uncurated generated images of DiffRS on unconditional AFHQv2 with EDM (NFE=144.92, FID=1.80).
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(a) EDM (SDE) (NFE=127, FID=1.79) (b) EDM (SDE) + DiffRS (NFE=273.93, FID=1.26)

Figure 25. The uncurated generated images of flamingo class of ImageNet 64×64 with EDM.

(a) EDM (SDE) (NFE=127, FID=1.79) (b) EDM (SDE) + DiffRS (NFE=273.93, FID=1.26)

Figure 26. The uncurated generated images of baseball class of ImageNet 64×64 with EDM.
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(a) CD (NFE=2, FID=4.68)

(b) CD (NFE=8, FID=3.97)

(c) CD (NFE=2) + DiffRS (NFE=8.01, FID=3.07)

Figure 27. The uncurated generated images of (a-b) CD-based sampler and (c) DiffRS on conditional ImageNet 64×64 dataset with CD.
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(a) DDIM (NFE=100, FID=15.90) (b) DDIM (NFE=200, FID=15.29) (c) DDIM (NFE=100) + DiffRS (ours)
(NFE=166.95, FID=13.21)

Figure 28. The uncurated generated images, with a resolution of 512×512, corresponding to the text prompt A photo of an
astronaut riding a horse on mars, using Stable Diffusion v1.5 with a classifier-free guidance weight of 2.
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