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Abstract

The contextual multi-armed bandit (MAB) is a
widely used framework for problems requiring se-
quential decision-making under uncertainty, such
as recommendation systems. In applications in-
volving a large number of users, the performance
of contextual MAB can be significantly improved
by facilitating collaboration among multiple users.
This has been achieved by the clustering of ban-
dits (CB) methods, which adaptively group the
users into different clusters and achieve collabo-
ration by allowing the users in the same cluster to
share data. However, classical CB algorithms typ-
ically rely on numerical reward feedback, which
may not be practical in certain real-world applica-
tions. For instance, in recommendation systems, it
is more realistic and reliable to solicit preference
feedback between pairs of recommended items
rather than absolute rewards. To address this lim-
itation, we introduce the first ”clustering of du-
eling bandit algorithms” to enable collaborative
decision-making based on preference feedback.
We propose two novel algorithms: (1) Cluster-
ing of Linear Dueling Bandits (COLDB) which
models the user reward functions as linear func-
tions of the context vectors, and (2) Clustering of
Neural Dueling Bandits (CONDB) which uses a
neural network to model complex, non-linear user
reward functions. Both algorithms are supported
by rigorous theoretical analyses, demonstrating
that user collaboration leads to improved regret
bounds. Extensive empirical evaluations on syn-
thetic and real-world datasets further validate the
effectiveness of our methods, establishing their
potential in real-world applications involving mul-
tiple users with preference-based feedback.
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1. Introduction
The contextual multi-armed bandit (MAB) is a widely
used method in real-world applications requiring sequential
decision-making under uncertainty, such as recommenda-
tion systems, computer networks, among others (Li et al.,
2010; Wang et al., 2023; Dai et al., 2024b). In a contextual
MAB problem, a user faces a set of K arms (i.e., context
vectors) in every round, selects one of these K arms, and
then observes a corresponding numerical reward (Lattimore
& Szepesvári, 2020). In order to select the arms to maxi-
mize the cumulative reward (or equivalently minimize the
cumulative regret), we often need to consider the trade-off
between the exploration of the arms whose unknown re-
wards are associated with large uncertainty and exploitation
of the available observations collected so far. To carefully
handle this trade-off, we often model the reward function
using a surrogate model, such as a linear model (Chu et al.,
2011) or a neural network (Zhou et al., 2020).

Some important applications of contextual MAB, such as
recommendation systems, often involve a large number (e.g.,
in the scale of millions) of users, which opens up the pos-
sibility of further improving the performance of contextual
MAB via user collaboration. To this end, the method of
online Clustering of Bandits (CB) has been proposed, which
adaptively partitions the users into a number of clusters and
leverages the collaborative effect of the users in the same
cluster to achieve improved performance (Gentile et al.,
2014; Wang et al., 2024a; Li et al., 2019).

Classical CB algorithms usually require an absolute real-
valued numerical reward as feedback for each arm (Wang
et al., 2024a). However, in some crucial applications of con-
textual MAB, it is often more realistic and reliable to request
the users for preference feedback. For example, in recom-
mendation systems, it is often preferable to recommend a
pair of items to a user and then ask the user for relative
feedback (i.e., which item is preferred) (Yue et al., 2012).
As another example, contextual MAB has been successfully
adopted to optimize the input prompt for large language
models (LLMs), which is often referred to as prompt opti-
mization (Lin et al., 2024a;b). In this application, instead of
requesting an LLM user for a numerical score as feedback,
it is more practical to show the user a pair of LLM responses
generated by two candidate prompts and ask the user which
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response is preferred (Lin et al., 2024a; Verma et al., 2024).

A classical and principled approach to account for prefer-
ence feedback in contextual MAB is the framework of con-
textual dueling bandit (Saha, 2021; Bengs et al., 2022; Saha
& Krishnamurthy, 2022; Li et al., 2024). In every round of
contextual dueling bandits, a pair of arms are selected, af-
ter which a binary observation is collected reflecting which
arm is preferred. However, classical dueling bandit algo-
rithms are not able to leverage the collaboration of multiple
users, which leaves significant untapped potential to further
improve the performance in these applications involving
preference feedback. In this work, we bring together the
merits of both approaches, and hence introduce the first
clustering of dueling bandit algorithms, enabling multi-user
collaboration in scenarios involving preference feedback.

We firstly proposed our Clustering Of Linear Dueling Ban-
dits (COLDB) algorithm (Sec. 3.1), which assumes that the
latent reward function of each user is a linear function of
the context vectors (i.e., the arm features). In addition, to
handle challenging real-world scenarios with complicated
non-linear reward functions, we extend our COLDB algo-
rithm to use a neural network to model the reward function,
hence introducing our Clustering Of Neural Dueling Ban-
dits (CONDB) algorithm (Sec. 3.2). Both algorithms adopt
a graph to represent the estimated clustering structure of all
users, and adaptively update the graph to iteratively refine
the estimate. After receiving a user in every round, our both
algorithms firstly assign the user to its estimated cluster,
and then leverage the data from all users in the estimated
cluster to learn a linear model (COLDB) or a neural network
(CONDB), which is then used to select a pair of arms for the
user to query for preference feedback. After that, we update
the reward function estimate for the user based on the newly
observed feedback, and then update the graph to remove
its connection with users who are estimated to belong to a
different cluster.

We conduct rigorous theoretical analysis for both our
COLDB and CONDB algorithms, and our theoretical results
demonstrate that the regret upper bounds of both algorithms
are sub-linear and that a larger degree of user collaboration
(i.e., when a larger number of users belong to the same
cluster on average) leads to theoretically guaranteed im-
provement (Sec. 4). In addition, we also perform both
synthetic and real-world experiments to demonstrate the
practical advantage of our algorithms and the benefit of user
collaboration in contextual MAB problems with preference
feedback (Sec. 5).

2. Problem Setting
This section formulates the problem of clustering of duel-
ing bandits. In the following, we use boldface lowercase

letters for vectors and boldface uppercase letters for ma-
trices. The number of elements in a set A is denoted as
|A|, while [m] refers to the index set {1, 2, . . . ,m}, and
∥x∥M =

√
x⊤Mx represents the matrix norm of vector x

with respect to the positive semi-definite (PSD) matrix M .

Clustering Structure. Consider a scenario with u users,
indexed by U = {1, 2, . . . , u}, where each user i ∈ U is
associated with a unknown reward function fi : Rd′ → R
which maps an arm x ∈ X ⊂ Rd′

to its corresponding re-
ward value fi(x). We assume that there exists an underlying,
yet unknown, clustering structure over the users reflecting
their behavior similarities. Specifically, the set of users U is
partitioned into m clusters C1, C2, . . . , Cm, where m ≪ u,
and the clusters are mutually disjoint: ∪j∈[m]Cj = U and
Cj ∩ Cj′ = ∅ for j ̸= j′. These clusters are referred to as
ground-truth clusters, and the set of clusters is denoted by
C = {C1, C2, . . . , Cm}. Let f j denote the common reward
function of all users in cluster j and let j(i) ∈ [m] be the
index of the cluster to which user i belongs. If two users
i and l belong to the same cluster, they have the same re-
ward function. That is, for any ℓ ∈ U , if ℓ ∈ Cj(i), then
fℓ = fi = f j(i). Meanwhile, users from different clusters
have distinct reward functions.

Modeling Preference Feedback. At each time step t ∈ [T ],
a user it ∈ U is served. The learning agent observes a
set of context vectors (i.e., arms) Xt ⊆ X ⊂ Rd′

, where
|Xt| = K ≤ C for all t. Each arm x ∈ Xt is a feature vector
in Rd′

with ∥x∥2 ≤ 1. The agent assigns the cluster Ct

to user it and recommends two arms xt,1,xt,2 ∈ Xt based
on the aggregated historical data from cluster Ct. After
receiving the recommended pair of arms, the user provides
a binary preference feedback yt ∈ {0, 1}, in which yt = 1
if xt,1 is preferred over xt,2 and yt = 0 otherwise. We
model the binary preference feedback following the widely
used Bradley-Terry-Luce (BTL) model (Hunter, 2004; Luce,
2005). Specifically, the BTL model assumes that for user it,
the probability that the first arm xt,1 is preferred over the
second arm xt,2 is given by

Pt(xt,1 ≻ xt,2) = µ(fit(xt,1)− fit(xt,2)),

where µ : R → [0, 1] is the logistic function: µ(z) = 1
1+e−z .

In other words, the binary feedback yt is sampled from the
Bernoulli distribution with the probability Pt(xt,1 ≻ xt,2).

We make the following assumption about the preference
model:

Assumption 2.1 (Standard Dueling Bandits Assumptions).
1. |µ(f(x))− µ(g(x))| ≤ Lµ|f(x)− g(x)|,∀x ∈ X , for
any functions f, g : Rd′ → R.
2. minx∈X ∇µ(f(x)) ≥ κµ > 0.

Assumption 2.1 is the standard assumption in the analysis
of linear bandits and dueling bandits (Li et al., 2017; Bengs
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et al., 2022), and when µ is the logistic function, Lµ = 1/4.
The regret incurred by the learning agent is defined as:

RT =

T∑
t=1

rt =

T∑
t=1

(2fit(x
∗
t )− fit(xt,1)− fit(xt,2)) ,

where x∗
t = argmaxx∈Xt fit(x) represents the optimal

arm at round t. This is a commonly adopted notion of regret
in the analysis of dueling bandits (Bengs et al., 2022; Saha
& Krishnamurthy, 2022).

2.1. Clustering of Linear Dueling Bandits

For the linear setting, we assume that each reward function
fi is linear in a fixed feature space ϕ(·), such that fi(x) =
θ⊤
i ϕ(x),∀x ∈ X . The feature mapping ϕ : Rd′ → Rd

is a fixed mapping with ∥ϕ(x)∥2 ≤ 1 for all x ∈ X . In
the special case of classical linear dueling bandits, we have
that ϕ(x) = x, i.e., ϕ(·) is the identity mapping. The use
of ϕ(x) enables us to potentially model non-linear reward
functions given an appropriate feature mapping.

In this case, the reward function of every user i is repre-
sented by its corresponding preference vector θi, and all
users in the same cluster share the same preference vector
while users from different clusters have distinct preference
vectors. Denote θj as the common preference vector of
users in cluster Cj , and let j(i) ∈ [m] be the index of the
cluster to which user i belongs. Therefore, for any ℓ ∈ U , if
ℓ ∈ Cj(i), then θℓ = θi = θj(i).

The following assumptions are made regarding the cluster-
ing structure, users, and items:
Assumption 2.2 (Cluster Separation). The preference vec-
tors of users from different clusters are at least separated by
a constant gap γ > 0, i.e.,∥∥∥θj − θj′

∥∥∥
2
≥ γ for all j ̸= j′ ∈ [m].

Assumption 2.3 (Uniform User Arrival). At each time step
t, the user it is selected uniformly at random from U , with
probability 1/u, independent of previous rounds.
Assumption 2.4 (Item regularity). At each time step t, the
feature vector ϕ(x) of each arm x ∈ Xt is drawn inde-
pendently from a fixed but unknown distribution ρ over
{ϕ(x) ∈ Rd : ∥ϕ(x)∥2 ≤ 1}, where Ex1,x2∼ρ[(ϕ(x1) −
ϕ(x2))(ϕ(x1)− ϕ(x2))

⊤] is full rank with minimal eigen-
value λx > 0. Additionally, at any time t, for any fixed unit
vector θ ∈ Rd, (θ⊤(ϕ(x1) − ϕ(x2)))

2 has sub-Gaussian
tail with variance upper bounded by σ2.

Remark 1. All these assumptions above follow the previous
works on clustering of bandits (Gentile et al., 2014; 2017;
Li & Zhang, 2018; Ban & He, 2021b; Liu et al., 2022; Wang
et al., 2024a;b). For Assumption 2.3, our results can easily
generalize to the case where the user arrival follows any
distribution with minimum arrival probability ≥ pmin.

2.2. Clustering of Neural Dueling Bandits

Here we allow the reward functions fi’s to be non-linear
functions. To estimate the unknown reward functions fi’s,
we use fully connected neural networks (NNs) with ReLU
activations, and denote the depth and width (of every layer)
of the NN by L ≥ 2 and mNN, respectively (Zhou et al.,
2020; Zhang et al., 2021). Let h(x; θ) represent the output
of an NN with parameters θ and input vector x, which is
defined as follows:

h(x;θ) = WLReLU (WL−1ReLU (· · ·ReLU (W1x))) ,

in which ReLU(x) = max{x, 0}, W1 ∈ RmNN×d, Wl ∈
RmNN×mNN for 2 ≤ l < L, WL ∈ R1×mNN . We denote
the parameters of NN by θ = (vec (W1) ; · · · vec (WL)),
where vec (A) converts an M × N matrix A into a MN -
dimensional vector. We use p to denote the total number of
NN parameters: p = dmNN +m2

NN(L− 1)+mNN, and use
g(x;θ) to denote the gradient of h(x;θ) with respect to θ.

The algorithmic design and analysis of neural bandit algo-
rithms make use of the theory of the neural tangent kernel
(NTK) (Jacot et al., 2018). We let all u users use the same
initial NN parameters θ0, and assume that the value of
the empircal NTK is bounded: 1

mNN
⟨g(x;θ0), g(x;θ0)⟩ ≤

1,∀x ∈ X . This is a commonly adopted assumption in
the analysis of neural bandits (Dai et al., 2023; Kassraie &
Krause, 2022). Let T j denote total number of rounds in
which the users in cluster j is served. We use Hj to denote
the NTK matrix (Zhou et al., 2020) for cluster j, which is
a (TjK) × (TjK)-dimensional matrix. Similarly, we de-
fine hj as the (TjK)× 1-dimensional vector containing the
reward function values of all TjK arm feature vectors for
cluster j. We provide the concrete definitions of Hj and
hj in App. C.1. We make the following assumptions which
are commonly adopted by previous works on neural bandits
(Zhou et al., 2020; Zhang et al., 2021), for which we provide
justifications in App. C.1.

Assumption 2.5. The reward functions for all users are
bounded: |fi(x)| ≤ 1,∀x ∈ X ,∀i ∈ U . There exists
λ0 > 0 s.t. Hj ⪰ λ0I, ∀j ∈ C. All arm feature vectors
satisfy ∥x∥2 = 1 and xj = xj+d/2, ∀x ∈ Xt,∀t ∈ [T ].

Denote by f j the common reward function of the users
in cluster Cj , and let j(i) ∈ [m] be the index of the
cluster to which user i belongs. Same as Sec. 2.1, here
all users in the same cluster share the same reawrd func-
tion. Therefore, for any ℓ ∈ U , if ℓ ∈ Cj(i), then
fℓ(x) = fi(x) = f j(i)(x),∀x ∈ X . The following lemma
shows that when the NN is wide enough (i.e., mNN is large),
the reward function of every cluster can be modeled by a
linear function.

Lemma 2.6 (Lemma B.3 of (Zhang et al., 2021)). As long
as the width mNN of the NN is large enough: mNN ≥
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poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)), then for all
clusters j ∈ [m], with probability of at least 1 − δ, there
exits a θj

f such that

f j(x) = ⟨g(x;θ0),θj
f − θ0⟩,

√
mNN

∥∥∥θj
f − θ0

∥∥∥
2
≤
√
2h⊤

j H
−1
j hj ≤ B,

for all x ∈ Xt, t ∈ [T ] with it ∈ Cj .

We provide the detailed statement of Lemma 2.6 in Lemma
C.1 (App. C.2). For a user i belonging to cluster j(i), we let
θf,i = θ

j(i)
f , then we have that fi(x) = ⟨g(x;θ0),θf,i −

θ0⟩,∀x ∈ X . As a result of Lemma 2.6, for any ℓ ∈ U , if
ℓ ∈ Cj(i), we have that θf,ℓ = θf,i = θj(i),∀x ∈ X .

The assumption below formalizes the gap between different
clusters in a similar way to Assumption 2.2.
Assumption 2.7 (Cluster Separation). The reward functions
of users from different clusters are separated by a constant
gap γ′:∥∥∥f j(x)− f j′(x)

∥∥∥
2
≥ γ′ > 0 , ∀j, j′ ∈ [m] , j ̸= j′ ∀x ∈ X .

In neural bandits, we adopt (1/
√
mNN)g(x;θ0) as the fea-

ture mapping. Therefore, our item regularity assumption
(Assumption 2.4) is also applicable here after plugging in
ϕ(x) = (1/

√
mNN)g(x;θ0).

3. Algorithms
3.1. Clustering Of Linear Dueling Bandits (COLDB)

Our Clustering Of Linear Dueling Bandits (COLDB) algo-
rithm is described in Algorithm 1. Here we elucidate the
underlying principles and operational workflow of COLDB.
COLDB maintains a dynamic graph Gt = (U , Et) encom-
passing all users, whose connected components represent
the inferred user clusters in round t. Throughout the learning
process, COLDB adaptively removes edges to accurately
cluster the users based on their estimated reward function
parameters, thereby leveraging these clusters to enhance on-
line learning efficiency. The operation of COLDB proceeds
as follows:

Cluster Inference Ct for User it (Line 2-Line 5). Ini-
tially, COLDB constructs a complete undirected graph
G0 = (U , E0) over the user set (Line 2). As learning pro-
gresses, edges are selectively removed to ensure that only
users with similar preference profiles remain connected. At
each round t, when a user it comes to the system with a fea-
sible arm set Xt (Line 4), COLDB identifies the connected
component Ct containing it in the maintained graph Gt−1,
which serves as the current estimated cluster for this user
(Line 5).

Estimating Shared Statistics for Cluster Ct (Line 6-Line
7). Once the cluster Ct is identified, COLDB estimates a
common preference vector θt for all users within this cluster
by aggregating the historical feedback from all members of
Ct. Specifically, in Line 6, the common preference vector
is determined by minimizing the following loss function:

θt = argmin
θ

−
∑

s∈[t−1]

is∈Ct

(
ys logµ

(
θ⊤ [ϕ(xs,1)− ϕ(xs,2)]

)
+ (1− ys) logµ

(
θ⊤ [ϕ(xs,2)− ϕ(xs,1)]

) )
+

1

2
λ ∥θ∥22 ,

(1)

which corresponds to the Maximum Likelihood Estima-
tion (MLE) using the data from all users in the cluster Ct.
Additionally, in Line 7, COLDB computes the aggregated
information matrix for Ct, which is subsequently utilized
in selecting the second arm xt,2:

Vt−1 = V0+
∑

s∈[t−1]

is∈Ct

(ϕ(xs,1)−ϕ(xs,2))(ϕ(xs,1)−ϕ(xs,2))
⊤

(2)
Arm Recommendation Based on Cluster Statistics (Line
8-Line 9). Leveraging the estimated common preference
vector θt and the aggregated information matrix Vt−1,
COLDB proceeds to recommend two arms as follows:

• First Arm Selection (xt,1). In Line 8, COLDB selects
the first arm by greedily choosing the arm that maximizes
the estimated reward according to θt:

xt,1 = arg max
x∈Xt

θ
⊤
t ϕ(x). (3)

• Second Arm Selection (xt,2). Following the selection
of xt,1, in Line 9, COLDB selects the second arm by
maximizing an upper confidence bound (UCB):

xt,2 = arg max
x∈Xt

θ
⊤
t ϕ(x) +

βt

κµ
∥ϕ(x)− ϕ(xt,1)∥V −1

t−1
.

(4)

Intuitively, Eq.(4) encourages the selection of the arm
which both (a) has a large predicted reward value and
(b) is different from xt,1 and the arms selected in the
previous t − 1 rounds when the served user belongs to
the currently estimated cluster Ct. In other words, the
second arm xt,2 is chosen by balancing exploration and
exploitation.

Updating User Estimates and Interaction History (Line
10-Line 11). Upon recommending xt,1 and xt,2, the
user receives binary feedback yt = 1(xt,1 ≻ xt,2) from
user it, and then updates the interaction history Dt =
{is,xs,1,xs,2, ys}ts=1 (Line 10). Moreover, COLDB up-
dates the preference vector estimate for user it while keep-
ing the estimates for the other users unchanged (Line 11).
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Specifically, the preference vector estimate θ̂it,t is updated
via MLE using the historical data from user it:

θ̂it,t = argmin
θ

−
∑

s∈[t−1]
is=it

(
ys logµ

(
θ⊤[ϕ(xs,1)− ϕ(xs,2)]

)

+ (1− ys) logµ
(
θ⊤[ϕ(xs,2)− ϕ(xs,1)]

))
+

λ

2
∥θ∥22 .

(5)

Dynamic Graph Update (Line 12). Finally, based on
the updated preference estimate θ̂it,t for user it, COLDB
reassesses the similarity between it and the other users.
If the discrepancy between θ̂it,t and θ̂ℓ,t for any user ℓ
surpasses a predefined threshold (Line 12), the edge (it, ℓ)
is removed from the graph Gt−1, effectively separating them
into distinct clusters. The resultant graph Gt = (U , Et) is
then utilized in the subsequent rounds.

3.2. Clustering Of Neural Dueling Bandits (CONDB)

Our Clustering Of Neural Dueling Bandits (CONDB) algo-
rithm is illustrated in Algorithm 2 (App. A), which adopts
neural networks to model non-linear reward functions. Sim-
ilar to COLDB, our CONDB algorithm also maintains a
dynamic graph Gt = (U , Et) in which every connected
component denotes an inferred cluster, and adaptively re-
moves the edges between users who are estimated to belong
to different clusters.

Cluster Inference Ct for User it (Line 5). Similar to
COLDB (Algo. 1), when a new user it arrives, our CONDB
firstly identifies the connected component Ct in the main-
tained graph Gt−1 which contains the user it and then uses
it as the estimated cluster for it (Line 5).

Estimating Shared Statistics for Cluster Ct (Line 6). Af-
ter the cluster Ct is identified, our CONDB algorithm uses
the history of preference feedback observations from all
users in the cluster Ct to train a neural network (NN) to
minimize the following loss function (Line 6):

Lt(θ) = − 1

m

∑
s∈[t−1]

is∈Ct

(
ys logµ (h(xs,1;θ)− h(xs,2;θ))+

(1− ys) logµ (h(xs,2;θ)− h(xs,1;θ))
)
+

λ

2
∥θ − θ0∥22

(9)

to yield parameters θt. In addition, similar to COLDB
(Algorithm 1), our CONDB computes the aggregated infor-
mation matrix for the cluster Ct following Eq.(2) . Note that
here we replace ϕ(x) from Eq.(2) by the NTK feature repre-
sentation ϕ(x) = (1/

√
m)g(x;θ0), in which θ0 represents

the initial parameters of the NN (Sec. 2.2).

Arm Recommendation Based on Cluster Statistics (Line
8-Line 9). Next, our CONDB algorithm leverages the

trained NN with parameters θt and the aggregated infor-
mation matrix Vt−1 to select the pair of arms. The first arm
is selected by greedily maximizing the reward prediction of
the NN with parameters θt (Line 8):

xt,1 = arg max
x∈Xt

h(x;θt). (10)

The second arm is then selected optimistically (Line 9):

xt,2 = arg max
x∈Xt

h(x;θt) + νT ∥(ϕ(x)− ϕ(xt,1))∥V −1
t−1

,

(11)

in which νT ≜ βT+B
√

λ
κµ

+1, βT ≜ 1
κµ

√
d̃+ 2 log(u/δ)

and B is defined in Lemma 2.6. Here d̃ denotes the effective
dimenision which we will introduce in detail in Sec. 4.2.

Updating User Estimates and Interaction History (Line
10-Line 11). After recommending the pair of arms
xt,1 and xt,2, we collect the preference feedback yt =
1(xt,1 ≻ xt,2) and update interaction history: Dt =
{is,xs,1,xs,2, ys}ts=1 (Line 10). Next, we update the pa-
rameters of the NN used to predict the reward for user it by
minimizing the following loss function (Line 11):

Lit,t(θ) = − 1

mNN

∑
s∈[t−1]
is=it

(
ys logµ (h(xs,1;θ)− h(xs,2;θ))+

(1− ys) log µ (h(xs,2;θ)− h(xs,1;θ))
)
+

λ

2
∥θ − θ0∥22

(12)

to yield parameters θ̂it,t. The NN parameters for the other
users remain unchanged.

Dynamic Graph Update (Line 12). Finally, we use the
updated NN parameters θ̂it,t for user it to reassess the simi-
larity between user it and the other users. We remove the
edge between (it, ℓ) from the graph Gt−1 if the difference
between θ̂it,t and θ̂ℓ,t is large enough (Line 12). Intuitively,
if the estimated reward functions (represented by the re-
spective parameters of their NNs for reward prediction)
between two users are significantly different, we separate
these two users into different clusters. The updated graph
Gt = (U , Et) is then used in the following rounds.

4. Theoretical Analysis
In this section, we present the theoretical results regarding
the regret guarantees of our proposed algorithms and provide
a detailed discussion of these findings.

4.1. Clustering Of Linear Dueling Bandits (COLDB)

The following theorem provides an upper bound on the
expected regret achieved by the COLDB algorithm (Algo. 1)
under the linear setting.

Theorem 4.1. Suppose that Assumptions 2.1, 2.2, 2.3 and
2.4 are satisfied. Then the expected regret of the COLDB
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Algorithm 1 Clustering Of Linear Dueling Bandits (COLDB)

1: Input: f(Ti,t) =

√
λ/κµ+

√
2 log(u/δ)+d log(1+4Ti,tκµ/dλ)

κµ

√
2λ̃xTi,t

, regularization parameter λ > 0, confidence parameter

βt ≜
√
2 log(1/δ) + d log (1 + tL2κµ/(dλ)), κµ > 0.

2: Initialization: V0 = Vi,0 = λ
κµ

I , θ̂i,0 = 0, ∀i ∈ U , a complete Graph G0 = (U , E0) over U .
3: for t = 1, . . . , T do
4: Receive the index of the current user it ∈ U , and the current feasible arm set Xt;
5: Find the connected component Ct for user it in the current graph Gt−1 as the current cluster;
6: Estimate the common preference vector θt for the current cluster Ct:

θt = argmin
θ

−
∑

s∈[t−1]

is∈Ct

(
ys logµ

(
θ⊤ [ϕ(xs,1)− ϕ(xs,2)]

)
+(1− ys) logµ

(
θ⊤ [ϕ(xs,2)− ϕ(xs,1)]

) )
+

λ

2
∥θ∥22 ;

(6)

7: Calculate aggregated information matrix for cluster Ct: Vt−1 = V0 +
∑

s∈[t−1]

is∈Ct

(ϕ(xs,1) − ϕ(xs,2))(ϕ(xs,1) −

ϕ(xs,2))
⊤.

8: Choose the first arm xt,1 = argmaxx∈Xt
θ
⊤
t ϕ(x);

9: Choose the second arm xt,2 = argmaxx∈Xt
θ
⊤
t (ϕ(x)− ϕ(xt,1)) +

βt

κµ
∥ϕ(x)− ϕ(xt,1)∥V −1

t−1
;

10: Observe the preference feedback: yt = 1(xt,1 ≻ xt,2), and update history: Dt = {is,xs,1,xs,2, ys}s=1,...,t;
11: Update the estimation for the current served user it:

θ̂it,t = argmin
θ

−
∑

s∈[t−1]
is=it

(
ys logµ

(
θ⊤ [ϕ(xs,1)− ϕ(xs,2)]

)
+(1−ys) logµ

(
θ⊤ [ϕ(xs,2)− ϕ(xs,1)]

) )
+
λ

2
∥θ∥22 ,

(7)
keep the estimations of other users unchanged;

12: Delete the edge (it, ℓ) ∈ Et−1 if ∥∥∥θ̂it,t − θ̂ℓ,t

∥∥∥
2
> f(Tit,t) + f(Tℓ,t) (8)

13: end for

algorithm (Algo. 1) for T rounds satisfies

R(T ) = O
(
u
( d

κ2
µλ̃xγ2

+
1

λ̃2
x

)
log T +

1

κµ
d
√
mT

)
(13)

= O
( 1

κµ
d
√
mT

)
, (14)

where λ̃x ≜
∫ λx

0
(1 − e−

(λx−x)2

2σ2 )Cdx is the problem in-
stance dependent constant (Wang et al., 2024a;b).

The proof of this theorem can be found in Appendix B. The
regret bound in Eq.(13) consists of two terms. The first term
accounts for the number of rounds required to accumulate
sufficient information to correctly cluster all users with high
probability, and it scales only logarithmically with the num-
ber of time steps T . The second term captures the regret
after successfully clustering the users, which depends on the
number of clusters m, rather than the potentially huge total
number of users u. Notably, the regret upper bound is not

only sub-linear in T , but also becomes tighter when there is
a smaller number of clusters m, i.e., when a larger number
of users belong to the same cluster on average. This pro-
vides a formal justification for the advantage of cross-user
collaboration in our problem setting where only preference
feedback is available.

Based on prior techniques (Wang et al., 2024a; Liu et al.,
2022) and the single-user dueling bandit lower bound (Saha,
2021), we can get a lower bound of O(

√
dmT ) for the linear

setting. Our Algo.1 achieves an upper bound of O(d
√
mT ),

which is tight up to a
√
d factor—a common gap in linear

bandits (e.g., LinUCB). Thus, our upper bound is tight and
optimal in m for the linear case.

In the special case where there is only one user (m = 1), the
regret bound simplifies to O(d

√
T/κµ), which aligns with

the classical results in the single-user linear dueling bandit
literature (Saha, 2021; Bengs et al., 2022; Li et al., 2024).
Compared to the previous works on clustering of bandits
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with linear reward functions (Gentile et al., 2014; Wang
et al., 2024a; Li et al., 2019), our regret upper bound has an
extra dependency on 1/κµ. Since κµ < 0.25 for the logistic
function, this dependency makes our regret upper bound
larger and hence captures the more challenging nature of the
preference feedback compared to the numerical feedback in
classical clustering of linear bandits.

4.2. Clustering Of Neural Dueling Bandits (CONDB)

Let H′ =
∑T

t=1

∑
(i,j)∈C2

K
zij(t)z

i
j(t)

⊤ 1
mNN

, in which
zij(t) = g(xt,i;θ0) − g(xt,j ;θ0) and C2

K denotes all pair-
wise combinations of K arms. Then, the effective dimension
d̃ is defined as follows (Verma et al., 2024):

d̃ = log det
(κµ

λ
H′ + I

)
. (15)

The definition of d̃ considers the contexts from all users and
in all T rounds. The theorem below gives an upper bound
on the expected regret of our CONDB algorithm (Algo. 2).
Theorem 4.2. Suppose that Assumptions 2.1,
2.4, 2.5 and 2.7 are satisfied (let ϕ(x) =
(1/

√
mNN)g(x;θ0) in Assumption 2.4). As long as

mNN ≥ poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)),
then the expected regret of the CONDB algorithm (Algo. 2)
for T rounds satisfies

RT = O

(
u
( d̃

κ2
µλ̃xγ2

+
1

λ̃2
x

)
log T+

(√d̃

κµ
+B

√
λ

κµ

)√
d̃mT

)
(16)

= O
((√d̃

κµ
+B

√
λ

κµ

)√
d̃mT

)
. (17)

The proof of this theorem can be found in Appendix C. The
first term in the regret bound in Eq. 16 has the same form
as the first term in the regret bound of COLDB in Eq.(13),
except that the input dimension d for COLDB (Eq.(13)) is
replaced by the effective dimension d̃ for CONDB (Eq.(16)).
As discussed in Verma et al. (2024), d̃ is usually larger than
the effective dimension in classical neural bandits (Zhou
et al., 2020; Zhang et al., 2021). This dependency, together
with the extra dependency on 1/κµ, reflects the added diffi-
culty from the preference feedback compared to the more
informative numerical feedback in classical neural bandits.

Similar to COLDB (Theorem 4.1), the first term in the re-
gret upper bound of CONDB (Theorem 4.2) results from
the number of rounds needed to collect enough observations
to correctly identify the clustering structure. The second
term corresponds to the regret of all users after the correct
clustering structure is identified, which depends on the num-
ber of clusters m instead of the number of users u. Theorem

4.2 also shows that the regret upper bound of CONDB is
sub-linear in T , and becomes improved as the number of
users belonging to the same cluster is increased on average
(i.e., when the number of clusters m is smaller). Moreover,
in the special case where the number of clusters is m = 1,
the regret upper bound in Eq.(17) becomes the same as that
of the standard neural dueling bandits (Verma et al., 2024).

5. Experimental Results
We use both synthetic and real-world experiments to evalu-
ate the performance of our COLDB and CONDB algorithms.
For both algorithms, we compare them with their corre-
sponding single-user variant as the baseline. Specifically,
for COLDB, we compare it with the baseline of LDB IND,
which refers to Linear Dueling Bandit (Independent) (Bengs
et al., 2022), meaning running independent classic linear
dueling bandit algorithms for each user separately; simi-
larly, for CONDB, we compare it with NDB IND, which
stands for Neural Dueling Bandit (Independent) (Verma
et al., 2024).

COLDB. Our experimental settings mostly follow the
designs from the works on clustering of bandits (Wang et al.,
2024a; Li et al., 2019). In our synthetic experiment for
COLDB, we design a setting with linear reward functions:
fi(x) = θ⊤

i x. We choose u = 200 users, K = 20 arms and
a feature dimension of d = 20, and construct two settings
with m = 2 and m = 5 groundtruth clusters, respectively.
In the experiment with the MovieLens dataset (Harper &
Konstan, 2015), we follow the experimental setting from
Wang et al. (2024a), a setting with 200 users. Same as
the synthetic experiment, we choose the number of arms
in every round to be K = 20 and let the input feature
dimension be d = 20. We construct a setting with m = 5
clusters. We repeat each experiment for three independent
trials and report the mean ± standard error.

Fig. 1 plots the cumulative regret of our COLDB and the
baseline of LDB IND. The results show that our COLDB al-
gorithm significantly outperforms the baseline of LDB IND
in both the synthetic and real-world experiments. Moreover,
Fig. 1 (a) demonstrates that when m = 2 (i.e., when a larger
number of users belong to the same cluster on average), the
performance of our COLDB is improved, which is consisent
with our theoretical results (Sec. 4.1).

CONDB. We also construct both a synthetic and real-
world experiment to evaluate our CONDB algorithm. Most
of the experimental settings are the same as those of the
COLDB algorithm described above. The major difference
is that instead of using linear reward functions, here we
adopt a non-linear reward function, i.e., a square function:
fi(x) = (θ⊤

i x)
2. The results in this setting are plotted
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(a) Synthetic (b) MovieLens

Figure 1. Experimental results for our COLDB algorithm with a
linear reward function.
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Figure 2. Experimental results for our CONDB algorithm with a
non-linear (square) reward function.

in Fig. 2. Our CONDB algorithm achieves significantly
smaller cumulative regrets than the baseline algorithm of
NDB IND in both the synthetic and real-world experiments.
Moreover, Fig. 2 (a) shows that the performance of our
CONDB is improved when a larger number of users are
in the same cluster on average, i.e., when m = 2. These
results demonstrate the potential of our CONDB algorithm
to excel in problems with complicated non-linear reward
functions.

6. Related Work
Our work is closely related to: online clustering of bandits
(CB), dueling bandits, and neural bandits.

6.1. Clustering of Bandits

The concept of clustering bandits (CB) was first introduced
in (Gentile et al., 2014), where a graph-based approach
was proposed for solving the problem. In subsequent work,
(Li et al., 2016) explored the incorporation of collaborative
effects among items to aid in the clustering of users. Further
extending this idea, (Li & Zhang, 2018) tackled the CB
problem in the context of cascading bandits, where feedback
is provided through random prefixes. Another direction of
this research, presented in (Li et al., 2019), investigates the
scenario where users have varying arrival frequencies. In
(Liu et al., 2022; Yang et al., 2024), federated settings for CB
are proposed, which addresses both privacy concerns and the
communication overhead in distributed environments. More

recently, papers by (Wang et al., 2024a; Dai et al., 2024a)
and (Wang et al., 2024b; Dai et al., 2022) examine the
design of robust CB algorithms in the presence of model mis-
specifications and adversarial data corruptions, respectively.

All these works in CB assume the agent recommends a sin-
gle arm per round, with a real-valued reward reflecting user
satisfaction. However, this does not apply to scenarios such
as large language models seeking user preference feedback
to improve the model, where users provide binary feedback
comparing two responses. To the best of our knowledge,
this paper is the first to consider dueling binary feedback in
the CB problem.

6.2. Dueling Bandits and Neural Bandits

Dueling bandits has been receiving growing attention over
the years since its introduction (Yue & Joachims, 2009;
2011; Yue et al., 2012) due to the prevelance of preference
or relative feedback in real-world applications. Many earlier
works on dueling bandits have focused on MAB problems
with a finte number of arms (Zoghi et al., 2014b; Ailon
et al., 2014; Zoghi et al., 2014a; Komiyama et al., 2015;
Gajane et al., 2015; Saha & Gopalan, 2018; 2019a;b; Saha
& Ghoshal, 2022; Zhu et al., 2023). More recently, con-
textual dueing bandits, which model the reward function
using a parametric function of the features of the arms, have
attracted considerable attention (Saha, 2021; Saha & Krish-
namurthy, 2022; Bengs et al., 2022; Di et al., 2023; Li et al.,
2024; Verma et al., 2024).

To apply MABs to complicated real-world applications with
non-linear reward functions, neural bandits have been pro-
posed which use a neural network to model the reward
function (Zhou et al., 2020; Zhang et al., 2021). Recently,
we have witnessed a significant growing interest in further
improving the theoretical and empirical performance of neu-
ral bandits and applying it to solve real-world problems
(Xu et al., 2020; Kassraie & Krause, 2022; Gu et al., 2021;
Nabati et al., 2021; Lisicki et al., 2021; Ban et al., 2022; Ban
& He, 2021a; Jia et al., 2021; Nguyen-Tang et al., 2022; Zhu
et al., 2021; Kassraie et al., 2022; Salgia et al., 2022; Dai
et al., 2022; Hwang et al., 2023; Qi et al., 2023; 2024). In
particular, the work of Ban et al. (2024) has adopted a neural
network as a meta-learner for adapting to users in different
clusters within the framework of clustering of bandits, and
the work of Verma et al. (2024) has combined neural bandits
with dueling bandits.

7. Conclusion
In this work, we introduce the first clustering of dueling
bandit algorithms for both linear and non-linear latent re-
ward functions, which enhance the performance of MAB
with preference feedback via cross-user collaboraiton. Our
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algorithms estimates the clustering structure online based
on the estimated reward function parameters, and employs
the data from all users within the same cluster to select the
pair of arms to query for preference feedback. We derive
upper bounds on the cumulative regret of our algorithms,
which show that our algorithms enjoy theoretically guaran-
teed improvement when a larger number of users belong
to the same cluster on average. We also use synthetic and
real-world experiments to validate our theoretical findings.
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A. Clustering Of Neural Dueling Bandits (CONDB) Algorithm
Here we provide the complete statement of our CONDB algorithm.

Algorithm 2 Clustering Of Neural Dueling Bandits (CONDB)

1: Input: f(Ti,t) ≜
βT+B

√
λ
κµ

+1
√

2λ̃xTi,t

, regularization parameter λ > 0, confidence parameter βT ≜ 1
κµ

√
d̃+ 2 log(u/δ).

ϕ(x) = 1√
mNN

g(x;θ0) where θ0 denotes the NN parameters at initialization.

2: Initialization: V0 = Vi,0 = λ
κµ

I , θ̂i,0 = 0, ∀i ∈ U , a complete Graph G0 = (U , E0) over U .
3: for t = 1, . . . , T do
4: Receive the index of the current user it ∈ U , and the current feasible arm set Xt;
5: Find the connected component Ct for user it in the current graph Gt−1 as the current cluster;
6: Train the neural network using {(xs,1,xs,2, ys)}s∈[t−1],is∈Ct

by minimizing the following loss function:

θt = argmin
θ

− 1

m

∑
s∈[t−1]

is∈Ct

(ys logµ (h(xs,1;θ)− h(xs,2;θ)) + (1− ys) logµ (h(xs,2;θ)− h(xs,1;θ)))+

λ

2
∥θ − θ0∥22 ;

(18)

7: Calculate the aggregated information matrix for cluster Ct: Vt−1 = V0 +
∑

s∈[t−1]

is∈Ct

(ϕ(xs,1)− ϕ(xs,2))(ϕ(xs,1)−

ϕ(xs,2))
⊤.

8: Choose the first arm xt,1 = argmaxx∈Xt
h(x;θt);

9: Choose the second arm xt,2 = argmaxx∈Xt
h(x;θt) +

(
βT +B

√
λ
κµ

+ 1
)
∥(ϕ(x)− ϕ(xt,1))∥V −1

t−1
;

10: Observe the preference feedback: yt = 1(xt,1 ≻ xt,2), and update history: Dt = {is,xs,1,xs,2, ys}s=1,...,t;
11: Train the neural network using all data for user it: {(xs,1,xs,2, ys)}s∈[t],is=it by minimizing the following loss

function:

θ̂it,t = argmin
θ

− 1

mNN

∑
s∈[t−1]
is=it

(ys logµ (h(xs,1;θ)− h(xs,2;θ)) + (1− ys) logµ (h(xs,2;θ)− h(xs,1;θ)))+

λ

2
∥θ − θ0∥22 ;

(19)

keep the estimations of other users unchanged;
12: Delete the edge (it, ℓ) ∈ Et−1 if

√
mNN

∥∥∥θ̂it,t − θ̂ℓ,t

∥∥∥
2
> f(Tit,t) + f(Tℓ,t) (20)

13: end for

B. Proof of Theorem 4.1
First, we prove the following lemma.
Lemma B.1. With probability at least 1− δ for some δ ∈ (0, 1), at any t ∈ [T ]:∥∥∥θ̂i,t − θj(i)

∥∥∥
2
≤
√

λκµ +
√
2 log(u/δ) + d log(1 + Ti,tκµ/dλ)

κµ

√
λmin(Vi,t−1)

,∀i ∈ U , (21)

where Vi,t−1 = λ
κµ

I+
∑

s∈[t−1]
is=i

(ϕ(xs,1)−ϕ(xs,2))(ϕ(xs,1)−ϕ(xs,2))
⊤, and Ti,t denotes the number of rounds of seeing

user i in the first t rounds.

12
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Proof. First, we prove the following result.

For a fixed user i, with probability at least 1− δ for some δ ∈ (0, 1), at any t ∈ [T ]:

∥∥∥θ̂i,t − θj(i)
∥∥∥
Vi,t−1

≤
√
λκµ +

√
2 log(1/δ) + d log(1 + 4Ti,tκµ/dλ)

κµ
, (22)

Recall that fi(x) = θ⊤
i ϕ(x). In iteration s, define ϕ̃s = ϕ(xs,1)− ϕ(xs,2). And we define f̃i,s = fi(xs,1)− fi(xs,2) =

θ⊤
i ϕ̃s.

For any θf ′ ∈ Rd, define

Gi,t(θf ′) =
∑

s∈[t−1]:
is=i

(
µ(θ⊤

f ′ ϕ̃s)− µ(θ⊤
i ϕ̃s)

)
ϕ̃s + λθf ′ .

For λ′ ∈ (0, 1), setting θf̄ = λ′θf ′
1
+ (1− λ′)θf ′

2
. and using the mean-value theorem, we get:

Gi,t(θf ′
1
)−Gi,t(θf ′

2
) =

 ∑
s∈[t−1]:

is=i

∇µ(θ⊤
f̄ ϕ̃s)ϕ̃sϕ̃

⊤
s + λI

 (θf ′
1
− θf ′

2
) (θi is constant)

(23)

Define Mi,t−1 =
[∑

s∈[t−1]:
is=i

∇µ(θ⊤
f̄
ϕ̃s)ϕ̃sϕ̃

⊤
s + λI

]
, and recall that Vi,t−1 =

∑
s∈[t−1]:

is=i
ϕ̃sϕ̃

⊤
s + λ

κµ
I. Then we have that

Mi,t−1 ⪰ κµVi,t−1 and that V −1
i,t−1 ⪰ κµM

−1
i,t−1, where we use the notation M ⪰ V to denote that M − V is a positive

semi-definite matrix. Then we have

∥∥∥Gi,t(θ̂i,t)− λθi

∥∥∥2
V −1

i,t−1

=
∥∥∥Gi,t(θi)−Gt(θ̂i,t)

∥∥∥2
V −1

i,t−1

=
∥∥∥Mi,t−1(θi − θ̂i,t)

∥∥∥2
V −1

i,t−1

(Gi,t(θi) = λθi by definition)

= (θi − θ̂i,t)
⊤Mi,t−1V

−1
i,t−1Mi,t−1(θi − θ̂i,t)

≥ (θi − θ̂i,t)
⊤Mi,t−1κµM

−1
i,t−1Mi,t−1(θi − θ̂i,t)

= κµ(θi − θ̂i,t)
⊤Mi,t−1(θi − θ̂i,t)

≥ κµ(θi − θ̂i,t)
⊤κµVi,t−1(θi − θ̂i,t)

= κ2
µ(θi − θ̂i,t)

⊤Vi,t−1(θi − θ̂i,t)

= κ2
µ

∥∥∥θi − θ̂i,t

∥∥∥2
Vi,t−1

(
as ||x||2A = x⊤Ax

)
The first inequality is because V −1

i,t−1 ⪰ κµM
−1
i,t−1, and the second inequality follows from Mi,t−1 ⪰ κµVi,t−1.

Note that κµ

λ I ⪰ Vi,t−1, which allows us to show that

∥λθi∥V −1
i,t−1

= λ
√

θ⊤
i V

−1
i,t−1θi ≤ λ

√
θ⊤
i

κµ

λ
θi ≤

√
λκµ ∥θi∥2 ≤

√
λκµ. (24)

Using the two equations above, we have that∥∥∥θi − θ̂i,t

∥∥∥
Vi,t−1

≤ 1

κµ

∥∥∥Gi,t(θ̂i,t)− λθi

∥∥∥
V −1

i,t−1

≤ 1

κµ

∥∥∥Gi,t(θ̂i,t)
∥∥∥
V −1

i,t−1

+
1

κµ
∥λθi∥V −1

i,t−1

≤ 1

κµ

∥∥∥Gi,t(θ̂i,t)
∥∥∥
V −1

i,t−1

+

√
λ

κµ

(25)

13
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Then, let f i
t,s = θ̂⊤

i,tϕ̃s, we have:

1

κ2
µ

∥∥∥Gi,t(θ̂i,t)
∥∥∥2
V −1

i,t−1

=
1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:
is=i

(µ(θ̂⊤
i,tϕ̃s)− µ(θ⊤

i ϕ̃s))ϕ̃s + λθ̂i,t

∥∥∥∥∥∥∥
2

V −1
i,t−1

(
by definition of Gi,t(θ̂i,t)

)

=
1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:
is=i

(µ(f i
t,s)− µ(f̃i,s))ϕ̃s + λθ̂i,t

∥∥∥∥∥∥∥
2

V −1
i,t−1

(
see definitions of f i

t,s and f̃i,s

)

=
1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:
is=i

(µ(f i
t,s)− (ys − ϵs))ϕ̃s + λθ̂i,t

∥∥∥∥∥∥∥
2

V −1
i,t−1

(
as ys = µ(f̃i,s) + ϵsif is = i

)

=
1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:
is=i

(
µ(f i

t,s)− ys
)
ϕ̃s +

∑
s∈[t−1]:

is=i

ϵsϕ̃s + λθ̂i,t

∥∥∥∥∥∥∥
2

V −1
i,t−1

≤ 1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:
is=i

ϵsϕ̃s

∥∥∥∥∥∥∥
2

V −1
i,t−1

.

The last step holds due to the following reasoning. Recall that θ̂i,t is computed using MLE by solving the following
equation:

θ̂it,t = argmin
θ

[
−
∑

s∈[t−1]
is=it

(
ys logµ

(
θ⊤[ϕ(xs,1)−ϕ(xs,2)]

)
+(1−ys) logµ

(
θ⊤[ϕ(xs,2)−ϕ(xs,1)]

))
+
λ

2
∥θ∥22

]
. (26)

Setting its gradient to 0, the following is satisfied:∑
s∈[t−1]:

is=i

(
µ
(
θ̂⊤
i,tϕ̃s

)
− ys

)
ϕ̃s + λθ̂i,t = 0, (27)

which is used in the last step.

Now we have

1

κ2
µ

∥∥∥Gi,t(θ̂i,t)
∥∥∥2
V −1

i,t−1

≤ 1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:
is=i

ϵsϕ̃s

∥∥∥∥∥∥∥
2

V −1
i,t−1

. (28)

Denote V ≜ λ
κµ

I. Note that the sequence of observation noises {ϵs} is 1-sub-Gaussian.

Next, we can apply Theorem 1 from (Abbasi-Yadkori et al., 2011), to obtain∥∥∥∥∥∥∥
∑

s∈[t−1]:
is=i

ϵsϕ̃s

∥∥∥∥∥∥∥
2

V −1
i,t−1

≤ 2 log

(
det(Vi,t−1)

1/2

δ det(V )1/2

)
, (29)

which holds with probability of at least 1− δ.

Next, based on our assumption that
∥∥∥ϕ̃s

∥∥∥
2
≤ 2, according to Lemma 10 from (Abbasi-Yadkori et al., 2011), we have that

det(Vi,t−1) ≤ (λ/κµ + 4Ti,t/d)
d
, (30)

14
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where Ti,t denotes the number of rounds of serving user i in the first t rounds. Therefore,√
detVi,t−1

det(V )
≤

√
(λ/κµ + 4Ti,t/d)

d

(λ/κµ)d
= (1 + 4Ti,tκµ/(dλ))

d
2 (31)

This gives us ∥∥∥∥∥∥∥
∑

s∈[t−1]:
is=i

ϵsϕ̃s

∥∥∥∥∥∥∥
2

V −1
i,t−1

≤ 2 log

(
det(Vi,t−1)

1/2

δ det(V )1/2

)
≤ 2 log(1/δ) + d log (1 + 4Ti,tκµ/(dλ)) (32)

Then, with the above reasoning, we have that with probability at least 1− δ for some δ ∈ (0, 1), at any t ∈ [T ]:∥∥∥θ̂i,t − θj(i)
∥∥∥
Vi,t−1

≤
√
λκµ +

√
2 log(1/δ) + d log(1 + 4Ti,tκµ/dλ)

κµ
, (33)

Taking a union bound over u users, we have that with probability at least 1− δ for some δ ∈ (0, 1), at any t ∈ [T ]:∥∥∥θ̂i,t − θj(i)
∥∥∥
Vi,t−1

≤
√
λκµ +

√
2 log(u/δ) + d log(1 + 4Ti,tκµ/dλ)

κµ
,∀i ∈ U . (34)

Then we have that with probability at least 1− δ for all t ∈ [T ] and all i ∈ U

∥∥∥θ̂i,t − θj(i)
∥∥∥ ≤

∥∥∥θ̂i,t − θj(i)
∥∥∥
Vi,t−1√

λmin(Vi,t−1)

≤
√
λκµ +

√
2 log(u/δ) + d log(1 + 4Ti,tκµ/dλ)

κµ

√
λmin(Vi,t−1)

. (35)

Then, we prove the following lemma, which gives a sufficient time T0 for the COLDB algorithm to cluster all the users
correctly with high probability.

Lemma B.2. With the carefully designed edge deletion rule, after

T0 ≜ 16u log(
u

δ
) + 4umax{ 128d

κ2
µλ̃xγ2

log(
u

δ
),
16

λ̃2
x

log(
8ud

λ̃2
xδ

)}

= O

(
u

(
d

κ2
µλ̃xγ2

+
1

λ̃2
x

)
log

1

δ

)
rounds, with probability at least 1− 3δ for some δ ∈ (0, 1

3 ), COLDB can cluster all the users correctly.

Proof. Then, with the item regularity assumption stated in Assumption 2.4, Lemma J.1 in (Wang et al., 2024a), together
with Lemma 7 in (Li & Zhang, 2018), and applying a union bound, with probability at least 1− δ, for all i ∈ U , at any t
such that Ti,t ≥ 16

λ̃2
x

log( 8ud
λ̃2
xδ
), we have:

λmin(Vi,t) ≥ 2λ̃xTi,t . (36)

Then, together with Lemma B.1, we have: if Ti,t ≥ 16
λ̃2
x

log( 8ud
λ̃2
xδ
), then with probability ≥ 1− 2δ, we have:

∥∥∥θ̂i,t − θj(i)
∥∥∥ ≤

√
λκµ +

√
2 log(u/δ) + d log(1 + 4Ti,tκµ/dλ)

κµ

√
λmin(Vi,t−1)

15
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≤
√
λκµ +

√
2 log(u/δ) + d log(1 + 4Ti,tκµ/dλ)

κµ

√
2λ̃xTi,t

.

Now, let √
λκµ +

√
2 log(u/δ) + d log(1 + 4Ti,tκµ/dλ)

κµ

√
2λ̃xTi,t

<
γ

4
, (37)

Let λκµ ≤ 2 log(u/δ) + d log(1 + 4Ti,tκµ/dλ), which typically holds (κµ is typically very small), we can get

2 log(u/δ) + d log(1 + 4Ti,tκµ/dλ)

2κ2
µλ̃xTi,t

<
γ2

64
, (38)

and a sufficient condition for it to hold is

2 log(u/δ)

2κ2
µλ̃xTi,t

<
γ2

128
(39)

and
d log(1 + 4Ti,tκµ/dλ)

2κ2
µλ̃xTi,t

<
γ2

128
. (40)

Solving Eq.(39), we can get

Ti,t ≥
128 log(u/δ)

κ2
µλ̃xγ2

. (41)

Following Lemma 9 in (Li & Zhang, 2018), we can get the following sufficient condition for Eq.(40):

Ti,t ≥
128d

κ2
µλ̃xγ2

log(
512

λκµλ̃xγ2
) . (42)

Let u/δ ≥ 512/λκµλ̃xγ
2, which is typically held. Then, combining all together, we have that if

Ti,t ≥ max{ 128d

κ2
µλ̃xγ2

log(
u

δ
),
16

λ̃2
x

log(
8ud

λ̃2
xδ

)},∀i ∈ U , (43)

then with probability at least 1− 2δ, we have∥∥∥θ̂i,t − θj(i)
∥∥∥ < γ/4,∀i ∈ U . (44)

By Lemma 8 in (Li & Zhang, 2018), and Assumption 2.3 of user arrival uniformness, we have that for all

T0 ≜ 16u log(
u

δ
) + 4umax{ 128d

κ2
µλ̃xγ2

log(
u

δ
),
16

λ̃2
x

log(
8ud

λ̃2
xδ

)}

= O

(
u

(
d

κ2
µλ̃xγ2

+
1

λ̃2
x

)
log

1

δ

)
,

the condition in Eq.(43) is satisfied with probability at least 1− δ.

Therefore we have that for all t ≥ T0, with probability ≥ 1− 3δ:∥∥∥θ̂i,t − θj(i)
∥∥∥
2
<

γ

4
,∀i ∈ U . (45)

Finally, we only need to show that with
∥∥∥θ̂i,t − θj(i)

∥∥∥
2
< γ

4 ,∀i ∈ U , the algorithm can cluster all the users correctly. First,

when the edge (i, l) is deleted, user i and user j must belong to different ground-truth clusters, i.e., ∥θi − θl∥2 > 0. This is
because by the deletion rule of the algorithm, the concentration bound, and triangle inequality

∥θi − θl∥2 =
∥∥∥θj(i) − θj(l)

∥∥∥
2

16
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≥
∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
−
∥∥∥θj(l) − θ̂l,t

∥∥∥
2
−
∥∥∥θj(i) − θ̂i,t

∥∥∥
2

≥
∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
− f(Ti,t)− f(Tl,t) > 0 . (46)

Second, we can show that if ∥θi − θl∥ > γ, meaning that user i and user l are not in the same ground-truth cluster, COLDB
will delete the edge (i, l) after T0. This is because∥∥∥θ̂i,t − θ̂l,t

∥∥∥ ≥ ∥θi − θl∥ −
∥∥∥θ̂i,t − θj(i)

∥∥∥
2
−
∥∥∥θ̂l,t − θj(l)

∥∥∥
2

> γ − γ

4
− γ

4

=
γ

2
> f(Ti,t) + f(Tl,t) , (47)

which will trigger the edge deletion rule to delete edge (i, l). Combining all the reasoning above, we can finish the proof.

Then, we prove the following lemmas for the cluster-based statistics.

Lemma B.3. With probability at least 1− 4δ for some δ ∈ (0, 1/4), at any t ≥ T0:

∥∥θt − θit
∥∥
Vt−1

≤
√
λκµ +

√
2 log(u/δ) + d log(1 + 4Tκµ/dλ)

κµ
. (48)

Proof. First, by Lemma B.2, we have that with probability at least 1 − 3δ, all the users are clustered correctly, i.e.,
Ct = Cj(it),∀t ≥ T0. Recall that fi(x) = θ⊤

i ϕ(x). In iteration s, define ϕ̃s = ϕ(xs,1) − ϕ(xs,2). And we define
f̃i,s = fi(xs,1)− fi(xs,2) = θ⊤

i ϕ̃s.

For any θf ′ ∈ Rd, define

Gt(θf ′) =
∑

s∈[t−1]:

is∈Ct

(
µ(θ⊤

f ′ ϕ̃s)− µ(θ⊤
it ϕ̃s)

)
ϕ̃s + λθf ′ .

For λ′ ∈ (0, 1), setting θf̄ = λ′θf ′
1
+ (1− λ′)θf ′

2
. and using the mean-value theorem, we get:

Gt(θf ′
1
)−Gt(θf ′

2
) =

 ∑
s∈[t−1]:

is∈Ct

∇µ(θ⊤
f̄ ϕ̃s)ϕ̃sϕ̃

⊤
s + λI

 (θf ′
1
− θf ′

2
)

(49)

Define Mt−1 =

[∑
s∈[t−1]:

is∈Ct

∇µ(θ⊤
f̄
ϕ̃s)ϕ̃sϕ̃

⊤
s + λI

]
, and recall that Vt−1 =

∑
s∈[t−1]:

is∈Ct

ϕ̃sϕ̃
⊤
s + λ

κµ
I. Then we have that

Mt−1 ⪰ κµVt−1 and that V −1
t−1 ⪰ κµM

−1
t−1. Then we have

∥∥Gt(θt)− λθit
∥∥2
V −1

t−1

=
∥∥Gt(θit)−Gt(θt)

∥∥2
V −1

t−1

=
∥∥Mt−1(θit − θt)

∥∥2
V −1

t−1

(Gt(θit) = λθit by definition)

= (θit − θt)
⊤Mt−1V

−1
t−1Mt−1(θit − θt)

≥ (θit − θt)
⊤Mt−1κµM

−1
t−1Mt−1(θit − θt)

= κµ(θit − θt)
⊤Mt−1(θit − θt)

≥ κµ(θit − θt)
⊤κµVt−1(θit − θt)

= κ2
µ(θit − θt)

⊤Vt−1(θit − θt)

= κ2
µ

∥∥θit − θt

∥∥2
Vt−1

(
as ||x||2A = x⊤Ax

)
The first inequality is because V −1

t−1 ⪰ κµM
−1
t−1, and the second inequality follows from Mt−1 ⪰ κµVt−1.
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Note that κµ

λ I ⪰ Vt−1, which allows us to show that

∥λθit∥V −1
t−1

= λ
√
θ⊤
it
V −1
t−1θit ≤ λ

√
θ⊤
it

κµ

λ
θit ≤

√
λκµ ∥θit∥2 ≤

√
λκµ. (50)

Using the two equations above, we have that∥∥θit − θt

∥∥
Vt−1

≤ 1

κµ

∥∥Gt(θt)− λθit
∥∥
V −1

t−1

≤ 1

κµ

∥∥Gt(θt)
∥∥
V −1

t−1

+
1

κµ
∥λθit∥V −1

t−1

≤ 1

κµ

∥∥Gt(θt)
∥∥
V −1

t−1

+

√
λ

κµ

(51)

Then, let f t,s = θ
⊤
t ϕ̃s, we have:

1

κ2
µ

∥∥Gt(θt)
∥∥2
V −1

t−1

≤ 1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:

is∈Ct

(µ(θ
⊤
t ϕ̃s)− µ(θ⊤

it ϕ̃s))ϕ̃s + λθt

∥∥∥∥∥∥∥
2

V −1
t−1

(
by definition of Gt(θt)

)

=
1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:

is∈Ct

(µ(f t,s)− µ(f̃it,s))ϕ̃s + λθt

∥∥∥∥∥∥∥
2

V −1
t−1

(
see definitions of f t,s and f̃i,s

)

=
1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:

is∈Ct

(µ(f t,s)− (ys − ϵs))ϕ̃s + λθt

∥∥∥∥∥∥∥
2

V −1
t−1(

ys = µ(f̃it,s) + ϵsif is = it, andis = it,∀is ∈ Ct,∀t ≥ T0

)

=
1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:

is∈Ct

(
µ(f t,s)− ys

)
ϕ̃s +

∑
s∈[t−1]:

is∈Ct

ϵsϕ̃s + λθt

∥∥∥∥∥∥∥
2

V −1
t−1

≤ 1

κ2
µ

∥∥∥∥∥∥∥
∑

s∈[t−1]:

is∈Ct

ϵsϕ̃s

∥∥∥∥∥∥∥
2

V −1
t−1

.

The last step holds due to the following reasoning. Recall that θt is computed using MLE by solving the following equation:

θt = argmin
θ

−
∑

s∈[t−1]

is∈Ct

(
ys logµ

(
θ⊤ [ϕ(xs,1)− ϕ(xs,2)]

)
+ (1− ys) logµ

(
θ⊤ [ϕ(xs,2)− ϕ(xs,1)]

))
+
1

2
λ ∥θ∥22 . (52)

Setting its gradient to 0, the following is satisfied:∑
s∈[t−1]:

is∈Ct

(
µ
(
θ
⊤
t ϕ̃s

)
− ys

)
ϕ̃s + λθt = 0, (53)

which is used in the last step.

Now we have ∥∥θit − θt

∥∥
Vt−1

≤ 1

κµ

∥∥∥∥∥∥∥
∑

s∈[t−1]:

is∈Ct

ϵsϕ̃s

∥∥∥∥∥∥∥
V −1

t−1

+

√
λ

κµ
. (54)

18



Online Clustering of Dueling Bandits

Denote V ≜ λ
κµ

I. Note that the sequence of observation noises {ϵs} is 1-sub-Gaussian.

Next, we can apply Theorem 1 from (Abbasi-Yadkori et al., 2011), to obtain∥∥∥∥∥∥∥
∑

s∈[t−1]:

is∈Ct

ϵsϕ̃s

∥∥∥∥∥∥∥
2

V −1
t−1

≤ 2 log

(
det(Vt−1)

1/2

δ det(V )1/2

)
, (55)

which holds with probability of at least 1− δ.

Next, based on our assumption that
∥∥∥ϕ̃s

∥∥∥
2
≤ 2, according to Lemma 10 from (Abbasi-Yadkori et al., 2011), we have that

det(Vt−1) ≤ (λ/κµ + 4T/d)
d
. (56)

Therefore, √
detVt−1

det(V )
≤

√
(λ/κµ + 4T/d)

d

(λ/κµ)d
= (1 + 4Tκµ/(dλ))

d
2 (57)

This gives us ∥∥∥∥∥∥∥
∑

s∈[t−1]:

is∈Ct

ϵsϕ̃s

∥∥∥∥∥∥∥
2

V −1
t−1

≤ 2 log

(
det(Vt−1)

1/2

δ det(V )1/2

)
≤ 2 log(1/δ) + d log (1 + 4Tκµ/(dλ)) (58)

Combining all together, we have with probability at least 1− 4δ for some δ ∈ (0, 1/4), at any t ≥ T0:

∥∥θt − θit
∥∥
Vt−1

≤
√
λκµ +

√
2 log(u/δ) + d log(1 + 4Tκµ/dλ)

κµ
. (59)

Then, we prove the following lemma with the help of Lemma B.3.

Lemma B.4. For any iteration t ≥ T0, for all x,x′ ∈ Xt, with probability of at least 1− 4δ, we have

| (fit(x)− fit(x
′))− θ

⊤
t (ϕ(x)− ϕ(x′)) | ≤ βT

κµ
∥ϕ(x)− ϕ(x′)∥V −1

t−1
,

where βT =
√
λκµ +

√
2 log(u/δ) + d log(1 + 4Tκµ/dλ).

Proof.

| (fit(x)− fit(x
′))− θ

⊤
t (ϕ(x)− ϕ(x′)) | = |θ⊤

it [(ϕ(x)− ϕ(x′)]− θ
⊤
t [ϕ(x)− ϕ(x′)] |

= |
(
θit − θt

)⊤
[ϕ(x)− ϕ(x′)] |

≤
∥∥θit − θt

∥∥
Vt−1

∥ϕ(x)− ϕ(x′)∥V −1
t−1

≤ βT

κµ
∥ϕ(x)− ϕ(x′)∥V −1

t−1
,

(60)

in which the last inequality follows from Lemma B.3.

We also prove the following lemma to upper bound the summation of squared norms which will be used in proving the final
regret bound.
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Lemma B.5. With probability at least 1− 4δ, we have

T∑
t=T0

I{it ∈ Cj} ∥ϕ(xt,1)− ϕ(xt,2)∥2V −1
t−1

≤ 2d log (1 + 4Tκµ/(dλ)) ,∀j ∈ [m] ,

where I denotes the indicator function.

Proof. We denote ϕ̃t = ϕ(xt,1) − ϕ(xt,2). Recall that we have assumed that ∥ϕ(xt,1)− ϕ(xt,2)∥2 ≤ 2. It is easy to

verify that Vt−1 ⪰ λ
κµ

I and hence V −1
t−1 ⪯ κµ

λ I . Therefore, we have that
∥∥∥ϕ̃t

∥∥∥2
V −1

t−1

≤ κµ

λ

∥∥∥ϕ̃t

∥∥∥2
2
≤ 4κµ

λ . We choose λ

such that 4κµ

λ ≤ 1, which ensures that
∥∥∥ϕ̃t

∥∥∥2
V −1

t−1

≤ 1. Our proof here mostly follows from Lemma 11 of (Abbasi-Yadkori

et al., 2011) and Lemma J.2 of (Wang et al., 2024a). To begin with, note that x ≤ 2 log(1 + x) for x ∈ [0, 1]. Denote
Vt,j =

∑
s∈[t−1]:
is∈Cj

ϕ̃sϕ̃
⊤
s + λ

κµ
I. Then we have that

T∑
t=T0

I{it ∈ Cj}
∥∥∥ϕ̃t

∥∥∥2
V −1

t−1

≤
T∑

t=T0

2 log

(
1 + I{it ∈ Cj}

∥∥∥ϕ̃t

∥∥∥2
V −1

t−1

)
= 2 (log detVT,j − log detV )

= 2 log
detVT,j

detV

≤ 2 log
(
(1 + 4Tκµ/(dλ))

d
)

= 2d log (1 + 4Tκµ/(dλ)) .

(61)

The second inequality follows the same reasoning as equation (57). This completes the proof.

Now we are ready to prove Theorem 4.1. First, we have

RT =

T∑
t=1

rt ≤ T0 +

T∑
t=T0

rt , (62)

where we use that the reward at each round is bounded by 1.

Then, we only need to upper bound the regret after T0. By Lemma B.2, we know that with probability at least 1− 4δ, the
algorithm can cluster all the users correctly, Ct = Cj(it), and the statements of all the above lemmas hold. We have that for
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any t ≥ T0:

rt = fit(x
∗
t )− fit(xt,1) + fit(x

∗
t )− fit(xt,2)

(a)

≤ θ
⊤
t (ϕ(x∗

t )− ϕ(xt,1)) +
βT

κµ
∥ϕ(x∗

t )− ϕ(xt,1)∥V −1
t−1

+ θ
⊤
t (ϕ(x∗

t )− ϕ(xt,2)) +
βT

κµ
∥ϕ(x∗

t )− ϕ(xt,2)∥V −1
t−1

= θ
⊤
t (ϕ(x∗

t )− ϕ(xt,1)) +
βT

κµ
∥ϕ(x∗

t )− ϕ(xt,1)∥V −1
t−1

+

θ
⊤
t (ϕ(x∗

t )− ϕ(xt,1)) + θ
⊤
t (ϕ(xt,1)− ϕ(xt,2)) +

βT

κµ
∥ϕ(x∗

t )− ϕ(xt,1) + ϕ(xt,1)− ϕ(xt,2)∥V −1
t−1

(b)

≤ 2θ
⊤
t (ϕ(x∗)− ϕ(xt,1)) + 2

βT

κµ
∥ϕ(x∗)− ϕ(xt,1)∥V −1

t−1
+

θ
⊤
t (ϕ(xt,1)− ϕ(xt,2)) +

βT

κµ
∥ϕ(xt,1)− ϕ(xt,2)∥V −1

t−1

(c)

≤ 2θ
⊤
t (ϕ(xt,2)− ϕ(xt,1)) + 2

βT

κµ
∥ϕ(xt,2)− ϕ(xt,1)∥V −1

t−1
+

θ
⊤
t (ϕ(xt,1)− ϕ(xt,2)) +

βT

κµ
∥ϕ(xt,1)− ϕ(xt,2)∥V −1

t−1

≤ θ
⊤
t (ϕ(xt,2)− ϕ(xt,1)) + 3

βT

κµ
∥ϕ(xt,2)− ϕ(xt,1)∥V −1

t−1

(d)

≤ 3
βT

κµ
∥ϕ(xt,1)− ϕ(xt,2)∥V −1

t−1

(63)

Step (a) follows from Lemma B.4. Step (b) makes use of the triangle inequality. Step (c) follows from the way in which we
choose the second arm xt,2: xt,2 = argmaxx∈Xt

θ
⊤
t (ϕ(x)− ϕ(xt,1)) +

βT

κµ
∥ϕ(x)− ϕ(xt,1)∥V −1

t−1
. Step (d) results from

the way in which we select the first arm: xt,1 = argmaxx∈Xt θ
⊤
t ϕ(x).

Then we have
T∑

t=T0

rt ≤ 3
βT

κµ

T∑
t=T0

∥ϕ(xt,1)− ϕ(xt,2)∥V −1
t−1

= 3
βT

κµ

T∑
t=T0

∑
j∈[m]

I{it ∈ Cj} ∥ϕ(xt,1)− ϕ(xt,2)∥V −1
t−1

≤ 3
βT

κµ

√√√√ T∑
t=T0

∑
j∈[m]

I{it ∈ Cj}
T∑

t=T0

∑
j∈[m]

I{it ∈ Cj} ∥ϕ(xt,1)− ϕ(xt,2)∥2V −1
t−1

≤ 3
βT

κµ

√
T ·m · 2d log (1 + 4Tκµ/(dλ)) , (64)

where in the second inequality we use the Cauchy-Swarchz inequality, and in the last step we use
∑T

t=T0

∑
j∈[m] I{it ∈

Cj} ≤ T and Lemma B.5.

Therefore, finally, we have with probability at least 1− 4δ

RT ≤ T0 + 3
βT

κµ

√
T ·m · 2d log (1 + 4Tκµ/(dλ))

≤ O(u(
d

κ2
µλ̃xγ2

+
1

λ̃2
x

) log T +
1

κµ
d
√
mT )

= O(
1

κµ
d
√
mT ) , (65)
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C. Proof of Theorem 4.2
C.1. Auxiliary Definitions and Explanations

Denifition of the NTK matrix Hj for cluster j. Recall that we use Tj to denote the total number of iterations in
which the users in cluster j are served. For cluster j, let {x(i)}

TjK
i=1 be a set of all Tj ×K possible arm feature vectors:

{xt,a}1≤t≤Tj ,1≤a≤K , where i = K(t−1)+a. Firstly, we define ht = [f j(x(i))]
⊤
i=1,...,TjK

, i.e., ht is the TjK-dimensional
vector containing the reward function values of the arms corresponding to cluster j. Next, define

H̃(1)
p,q = Σ(1)

p,q = ⟨x(p), x(q)⟩,A(l)
p,q =

(
Σ

(l)
p,q Σ

(l)
p,q

Σ
(l)
p,q Σ

(l)
q,q

)
,

Σ(l+1)
p,q = 2E

(u,v)∼N (0,A
(l)
p,q)

[max{u, 0}max{v, 0}],

H̃(l+1)
p,q = 2H̃(l)

p,qE(u,v)∼N (0,A
(l)
p,q)

[1(u ≥ 0)1(v ≥ 0)] +Σ(l+1)
p,q .

With these definitions, the NTK matrix for cluster j is then defined as Hj = (H̃(L) +Σ(L))/2.

The Initial Parameters θ0. Next, we discuss how the initial parameters θ0 are obtained. We adopt the same initialization

method from Zhang et al. (2021); Zhou et al. (2020). Specifically, for each l = 1, . . . , L− 1, let Wl =

(
W 0
0 W

)
in

which every entry of W is independently and randomly sampled from N (0, 4/mNN), and choose WL = (w⊤,−w⊤) in
which every entry of w is independently and randomly sampled from N (0, 2/mNN).

Justifications for Assumption 2.5. The last assumption in Assumption 2.5, together with the way we initialize θ0 as
discussed above, ensures that the initial output of the NN is 0: h(x; θ0) = 0,∀x ∈ X . The assumption of xj = xj+d/2

from Assumption 2.5 is a mild assumption which is commonly adopted by previous works on neural bandits (Zhou et al.,
2020; Zhang et al., 2021). To ensure that this assumption holds, for any arm x, we can always firstly normalize it such that
||x|| = 1, and then construct a new context x′ = (x⊤, x⊤)⊤/

√
2 to satisfy this assumption (Zhou et al., 2020).

C.2. Proof

To begin with, we first list the specific conditions we need for the width mNN of the NN:

mNN ≥ CT 4K4L6 log(T 2K2L/δ)/λ4
0,

mNN(logm)−3 ≥ Cκ−3
µ T 8L21λ−5,

mNN(logmNN)
−3 ≥ Cκ−3

µ T 14L21λ−11L6
µ,

mNN(logmNN)
−3 ≥ CT 14L18λ−8,

(66)

for some absolute constant C > 0. To ease exposition, we express these conditions above as mNN ≥
poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)).

In our proof here, we use the gradient of the NN at θ0 to derive the feature mapping for the arms, i.e., we let ϕ(x) =

g(x;θ0)/
√
mNN. We use θ̂i,t to denote the paramters of the NN after training in iteration t (see Algorithm 2).

We use the following lemma to show that for every cluster j ∈ C, its reward function f j can be expressed as a linear function
with respect to the initial gradient g(x;θ0).

Lemma C.1 (Lemma B.3 of (Zhang et al., 2021)). As long as the width m of the NN is large enough:

mNN ≥ C0T
4K4L6 log(T 2K2L/δ)/λ4

0,

then for all clusters j ∈ [m], with probability of at least 1− δ, there exits a θj
f such that

f j(x) = ⟨g(x;θ0),θj
f − θ0⟩,

√
mNN

∥∥∥θj
f − θ0

∥∥∥
2
≤
√
2h⊤

j H
−1
j hj ≤ B.

for all x ∈ Xt, t ∈ [T ] with it ∈ Cj .
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Lemma C.1 is the formal statement of Lemma 2.6 from Sec. 2.2. Note that the constant B is applicable to all m clusters.

The following lemma converts our assumption about cluster separation (Assumption 2.7) into the difference between the
linearized parameters for different clusters.

Lemma C.2. If users i and l belong to different clusters, then we have that

√
mNN ∥θf,i − θf,l∥ ≥ γ′.

Proof. To begin with, Lemma C.1 tells us that

|fi(x)− fl(x)| = |⟨g(x;θ0),θf,i − θf,l⟩| ≤ ∥g(x;θ0)∥ ∥θf,i − θf,l∥ . (67)

This leads to

∥θf,i − θf,l∥ ≥ |fi(x)− fl(x)|
∥g(x;θ0)∥

≥ γ′
√
mNN

, (68)

in which we have made use of Assumption 2.7 and our assumption that 1
mNN

⟨g(x;θ0), g(x;θ0)⟩ ≤ 1 in the last inequality.
This completes the proof.

The following lemma shows that for every user, the output of the NN trained using its own local data can be approximated
by a linear function.

Lemma C.3. Let ε′mNN,t ≜ C2m
−1/6
NN

√
logmNNL

3
(
t
λ

)4/3
where C2 > 0 is an absolute constant. Then

|⟨g(x;θ0), θ̂i,t − θ0⟩ − h(x; θ̂i,t)| ≤ ε′mNN,t, ∀t ∈ [T ],x,x′ ∈ Xt.

Proof. This lemma can be proved following a similar line of proof as Lemma 1 from Verma et al. (2024). Here the t in
ε′mNN,t can in fact be replaced by Ti,t ≤ t, however, we have simply used its upper bound t for simplicity.

Lemma C.4. Let βT ≜ 1
κµ

√
d̃+ 2 log(u/δ). Assuming that the conditions on mNN from Equation (66) are satisfied. With

probability of at least 1− δ, we have that

√
mNN

∥∥∥θf,i − θ̂i,t

∥∥∥
2
≤

βT +B
√

λ
κµ

+ 1√
λmin(Vi,t−1)

, ∀t ∈ [T ].

where Vi,t−1 = λ
κµ

I +
∑

s∈[t−1]
is=i

(ϕ(xs,1) − ϕ(xs,2))(ϕ(xs,1) − ϕ(xs,2))
⊤, ϕ(x) = 1√

mNN
g(x;θ0), and Ti,t denotes the

number of rounds of seeing user i in the first t rounds.

Proof. In iteration t, for any user i ∈ U , the user leverages its current history of observations {(xs,1,xs,2, ys)}s∈[t−1],is=i

to train the NN by minimizing the loss function (equation (19)), to obtain the NN parameters θ̂i,t. Note that the NN
has been trained when the most recent observation in {(xs,1,xs,2, ys)}s∈[t−1],is=i was collected, i.e., the last time when
user i was encountered. Of note, according to Lemma C.1, the latent reward function of user i can be expressed as
fi(x) = ⟨g(x;θ0),θf,i − θ0⟩. Therefore, from the perspective of each individual user i, the user is faced with a neural
dueling bandit problem instance. As a result, we can modifying the proof of Lemma 6 from Verma et al. (2024) to show that
with probability of at least 1− δ,

√
mNN

∥∥∥θf,i − θ̂i,t

∥∥∥
Vi,t−1

≤ βT +B

√
λ

κµ
+ 1, ∀t ∈ [T ], i ∈ U .

Here in our definition of βT ≜ 1
κµ

√
d̃+ 2 log(u/δ), we have replaced the error probability δ (from Verma et al. (2024)) by

δ/u to account for the use of an extra union bound over all u users.
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This allows us to show that

√
mNN

∥∥∥θf,i − θ̂i,t

∥∥∥
2
≤

√
mNN

∥∥∥θf,i − θ̂i,t

∥∥∥
Vi,t−1√

λmin(Vi,t−1)

≤
βT +B

√
λ
κµ

+ 1√
λmin(Vi,t−1)

(69)

This completes the proof.

Lemma C.5. With the carefully designed edge deletion rule in Algorithm 2, after

T0 ≜ 16u log(
u

δ
) + 4umax

32
(
d̃+ 2 log(u/δ)

)
λ̃xγ2κ2

µ

,
16

λ̃2
x

log(
24udm2(L− 1)

λ̃2
xδ

)


= O

(
u

(
d̃

κ2
µλ̃xγ2

+
1

λ̃2
x

)
log(

1

δ
)

)
,

rounds, with probability at least 1− 3δ for some δ ∈ (0, 1
3 ), CONDB can cluster all the users correctly.

Proof. Recall that we use p = dmNN +m2
NN(L− 1) +mNN to denote the total number of parameters of the NN. Similar to

the proof of Lemma B.2, with the item regularity assumption stated in Assumption 2.4, Lemma J.1 in (Wang et al., 2024a),
together with Lemma 7 in (Li & Zhang, 2018) (note that when using these technical results, we use g(x;θ)/

√
mNN as the

feature vector to replace the original feature vector of x), and applying a union bound, with probability at least 1− δ, for all
i ∈ U , at any t such that Ti,t ≥ 16

λ̃2
x

log( 8up
λ̃2
xδ
), we have:

λmin(Vi,t) ≥ 2λ̃xTi,t . (70)

Note that compared with the proof of B.2, in the lower bound on Ti,t here, we have replaced the dimension d by p. This has led
to a logarithmic dependence on the width mNN of the NN. To simplify the exposition, using the fact that p ≥ 3dm2

NN(L− 1),

we replace this condition on Ti,t by a slightly stricter condition: Ti,t ≥ 16
λ̃2
x

log(
8u×3dm2

NN(L−1)

λ̃2
xδ

) = 16
λ̃2
x

log(
24udm2

NN(L−1)

λ̃2
xδ

).

Then, together with Lemma C.4, we have: if Ti,t ≥ 16
λ̃2
x

log(
8u×3dm2

NN(L−1)

λ̃2
xδ

), then with probability ≥ 1− 2δ, we have:

√
mNN

∥∥∥θ̂i,t − θj(i)
∥∥∥ ≤

βT +B
√

λ
κµ

+ 1√
λmin(Vi,t−1)

≤
βT +B

√
λ
κµ

+ 1√
2λ̃xTi,t

.

Now, let
βT +B

√
λ
κµ

+ 1√
2λ̃xTi,t

<
γ

4
, (71)

Note that in Algorithm 2, we have defined the funciton f as

f(Ti,t) ≜
βT +B

√
λ
κµ

+ 1√
2λ̃xTi,t

(72)

This immediately leads to
√
mNN

∥∥∥θ̂i,t − θj(i)
∥∥∥ ≤ f(Ti,t) <

γ

4
. (73)
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For simplicity, now let B
√

λ
κµ

+ 1 ≤ βT which is typically satisfied. This allows us to show that

Ti,t >
32β2

T

λ̃xγ2
=

32

(
1
κµ

√
d̃+ 2 log(u/δ)

)2

λ̃xγ2
=

32
(
d̃+ 2 log(u/δ)

)
λ̃xγ2κ2

µ

. (74)

Combining both conditions on Ti,t together, we have that

Ti,t ≥ max

32
(
d̃+ 2 log(u/δ)

)
λ̃xγ2κ2

µ

,
16

λ̃2
x

log(
24udm2

NN(L− 1)

λ̃2
xδ

)

 (75)

By Lemma 8 in (Li & Zhang, 2018) and Assumption 2.3 of user arrival uniformness, we have that for all

T0 ≜ 16u log(
u

δ
) + 4umax

32
(
d̃+ 2 log(u/δ)

)
λ̃xγ2κ2

µ

,
16

λ̃2
x

log(
24udm2

NN(L− 1)

λ̃2
xδ

)


= O

(
u

(
d̃

κ2
µλ̃xγ2

+
1

λ̃2
x

)
log(

1

δ
)

)
,

the condition in Eq.(74) is satisfied with probability at least 1− δ.

Therefore we have that for all t ≥ T0, with probability ≥ 1− 3δ:

√
mNN

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
<

γ

4
,∀i ∈ U . (76)

Finally, we show that as long as the condition
√
mNN

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
< γ

4 ,∀i ∈ U , our algorithm can cluster all the users
correctly.

First, we show that when the edge (i, l) is deleted, user i and user j must belong to different ground-truth clusters, i.e.,
∥θf,i − θf,l∥2 > 0. This is because by the deletion rule of the algorithm, the concentration bound, and triangle inequality

√
mNN ∥θf,i − θf,l∥2 =

√
mNN

∥∥∥θj(i) − θj(l)
∥∥∥
2

≥
√
mNN

∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
−

√
mNN

∥∥∥θj(l) − θ̂l,t

∥∥∥
2
−

√
mNN

∥∥∥θj(i) − θ̂i,t

∥∥∥
2

≥
√
mNN

∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
− f(Ti,t)− f(Tl,t) > 0 . (77)

Second, we can show that if |fi(x)− fl(x)| ≥ γ′,∀x ∈ X , meaning that user i and user l are not in the same ground-truth
cluster, CONDB will delete the edge (i, l) after T0. Note that when user i and user l are not in the same ground-truth cluster,
Lemma C.2 tells us that

√
mNN ∥θf,i − θf,l∥ ≥ γ′. Then we have that

√
mNN

∥∥∥θ̂i,t − θ̂l,t

∥∥∥ ≥
√
mNN ∥θf,i − θf,l∥ −

√
mNN

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
−

√
mNN

∥∥∥θ̂l,t − θj(l)
∥∥∥
2

> γ − γ

4
− γ

4

=
γ

2
> f(Ti,t) + f(Tl,t) , (78)

which will trigger the edge deletion rule to delete edge (i, l). This completes the proof.

Then, we prove the following lemmas for the cluster-based statistics.
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Lemma C.6. Assuming that the conditions on m from Equation (66) are satisfied. With probability at least 1− 4δ for some
δ ∈ (0, 1/4), at any t ≥ T0:

√
mNN

∥∥θf,it − θt

∥∥
Vt−1

≤ βT +B

√
λ

κµ
+ 1, ∀t ∈ [T ].

Proof. To begin with, note that by Lemma C.5, we have that with probability of at least 1 − 3δ, all users are clustered
correctly, i.e., Ct = Cj(it),∀t ≥ T0. Note that according to our Algorithm 2, in iteration t, we select the pair of arms using
all the data collected by all users in cluster Ct. That is, θt represents the NN parameters trained using the data from all
users in the cluster Ct (i.e., {(xs,1,xs,2, ys)}s∈[t−1],is∈Ct

), and Vt also contains the data from all users in this cluster Ct.
Therefore, in iteration t, we are effectively following a neural dueling bandit algorithm using {(xs,1,xs,2, ys)}s∈[t−1],is∈Ct

as the current observation history. This allows us to leverage the proof of Lemma 6 from Verma et al. (2024) to complete the
proof.

Lemma C.7. Let ε′mNN,t ≜ C2m
−1/6
NN

√
logmNNL

3
(
t
λ

)4/3
where C2 > 0 is an absolute constant. Then

|⟨g(x;θ0)− g(x′;θ0),θt − θ0⟩ − (h(x;θt)− h(x′;θt))| ≤ 2ε′mNN,t, ∀t ∈ [T ],x,x′ ∈ Xt.

Proof. This lemma can be proved following a similar line of proof as Lemma 1 from Verma et al. (2024).

Lemma C.8. Let δ ∈ (0, 1), ε′mNN,t
.
= C2m

−1/6
NN

√
logmNNL

3
(
t
λ

)4/3
for some absolute constant C2 > 0. As long as

mNN ≥ poly(T, L,K, u, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)), then with probability of at least 1− δ, at any t ≥ T0,

| [fit(x)− fit(x
′)]−

[
h(x;θt)− h(x′;θt)

]
| ≤ νTσt−1(x,x

′) + 2ε′mNN,t,

for all x,x′ ∈ Xt, t ∈ [T ].

Proof. Denote ϕ(x) = 1√
mNN

g(x;θ0). Recall that Lemma C.1 tells us that fit(x) = ⟨g(x;θ0),θf,it−θ0⟩ = ⟨ϕ(x),θf,it−
θ0⟩ for all x ∈ Xt, t ∈ [T ]. To begin with, for all x,x′ ∈ Xt, t ∈ [T ] we have that

|fit(x)− fit(x
′)− ⟨g(x;θ0)− g(x′;θ0),θt − θ0⟩|

= |⟨g(x;θ0)− g(x′;θ0),θf,it − θ0⟩ − ⟨g(x;θ0)− g(x′;θ0),θt − θ0⟩|
= |⟨g(x;θ0)− g(x′;θ0),θf,it − θt⟩⟩|
= |⟨ϕ(x)− ϕ(x′),

√
mNN

(
θf,it − θt

)
⟩|

≤ ∥(ϕ(x)− ϕ(x′))∥V −1
t−1

√
mNN

∥∥θf,it − θt

∥∥
Vt−1

≤ ∥(ϕ(x)− ϕ(x′))∥V −1
t−1

(
βT +B

√
λ

κµ
+ 1

)
,

(79)

in which we have used Lemma C.6 in the last inequality. Now making use of the equation above and Lemma C.7, we have
that

|fit(x)− fit(x
′)− (h(x;θt)− h(x′;θt))|
= |fit(x)− fit(x

′)− ⟨g(x;θ0)− g(x′;θ0),θt − θ0⟩
+ ⟨g(x;θ0)− g(x′;θ0),θt − θ0⟩ − (h(x;θt)− h(x′;θt))|

≤ |fit(x)− fit(x
′)− ⟨g(x;θ0)− g(x′;θ0),θt − θ0⟩|

+ |⟨g(x;θ0)− g(x′;θ0),θt − θ0⟩ − (h(x;θt)− h(x′;θt))|

≤
∥∥∥∥ 1
√
mNN

(ϕ(x)− ϕ(x′))

∥∥∥∥
V −1

t−1

(
βT +B

√
λ

κµ
+ 1

)
+ 2ε′mNN,t.

(80)

This completes the proof.
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We also prove the following lemma to upper bound the summation of squared norms which will be used in proving the final
regret bound.

Lemma C.9. With probability at least 1− 4δ, we have

T∑
t=T0

I{it ∈ Cj} ∥ϕ(xt,1)− ϕ(xt,2)∥2V −1
t−1

≤ 16d̃ ,∀j ∈ [m] ,

where I denotes the indicator function.

Proof. We denote ϕ̃t = ϕ(xt,1) − ϕ(xt,2). Note that we have defined ϕ(x) = 1√
mNN

g(x;θ0). Here we assume that
∥ϕ(xt,1)− ϕ(xt,2)∥2 = 1√

mNN
∥g(xt,1;θ0)− g(xt,2;θ0)∥2 ≤ 2. Replacing 2 by an absolute constant c0 would only

change the final regret bound by a constant factor, so we omit it for simplicity.

It is easy to verify that Vt−1 ⪰ λ
κµ

I and hence V −1
t−1 ⪯ κµ

λ I . Therefore, we have that
∥∥∥ϕ̃t

∥∥∥2
V −1

t−1

≤ κµ

λ

∥∥∥ϕ̃t

∥∥∥2
2
≤ 4κµ

λ .

We choose λ such that 4κµ

λ ≤ 1, which ensures that
∥∥∥ϕ̃t

∥∥∥2
V −1

t−1

≤ 1. Our proof here mostly follows from Lemma 11 of

(Abbasi-Yadkori et al., 2011) and Lemma J.2 of (Wang et al., 2024a). To begin with, note that x ≤ 2 log(1+x) for x ∈ [0, 1].
Denote Vt,j =

∑
s∈[t−1]:
is∈Cj

ϕ̃sϕ̃
⊤
s + λ

κµ
I. Then we have that

T∑
t=T0

I{it ∈ Cj}
∥∥∥ϕ̃t

∥∥∥2
V −1

t−1

≤
T∑

t=T0

2 log

(
1 + I{it ∈ Cj}

∥∥∥ϕ̃t

∥∥∥2
V −1

t−1

)
≤ 16 log det

(κµ

λ
H′ + I

)
≜ 16d̃.

(81)

The second inequality follows from the proof in Section A.3 from Verma et al. (2024). This completes the proof.

Now we are ready to prove Theorem 4.2. To begin with, we have that RT =
∑T

t=1 rt ≤ T0 +
∑T

t=T0
rt.

Then, we only need to upper-bound the regret after T0. By Lemma C.5, we know that with probability at least 1− 4δ, the
algorithm can cluster all the users correctly, Ct = Cj(it), and the statements of all the above lemmas hold. We have that for
any t ≥ T0:
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To simplify exposion here, we denote β′
T ≜ βT +B

√
λ/κµ + 1.

rt = fit(x
∗
t )− fit(xt,1) + fit(x

∗
t )− fit(xt,2)

(a)

≤ ⟨g(x∗
t ;θ0)− g(xt,1;θ0),θt − θ0⟩+ β′

T ∥ϕ(x∗
t )− ϕ(xt,1)∥V −1

t−1
+

⟨g(x∗
t ;θ0)− g(xt,2;θ0),θt − θ0⟩+ β′

T ∥ϕ(x∗
t )− ϕ(xt,2)∥V −1

t−1

= ⟨g(x∗
t ;θ0)− g(xt,1;θ0),θt − θ0⟩+ β′

T ∥ϕ(x∗
t )− ϕ(xt,1)∥V −1

t−1
+

⟨g(x∗
t ;θ0)− g(xt,1;θ0),θt − θ0⟩+ ⟨g(xt,1;θ0)− g(xt,2;θ0),θt − θ0⟩+

β′
T ∥ϕ(x∗

t )− ϕ(xt,1) + ϕ(xt,1)− ϕ(xt,2)∥V −1
t−1

(b)

≤ 2⟨g(x∗
t ;θ0)− g(xt,1;θ0),θt − θ0⟩+ 2β′

T ∥ϕ(x∗
t )− ϕ(xt,1)∥V −1

t−1
+

⟨g(xt,1;θ0)− g(xt,2;θ0),θt − θ0⟩+ β′
T ∥ϕ(xt,1)− ϕ(xt,2)∥V −1

t−1

(c)

≤ 2h(x∗
t ;θt)− 2h(xt,1;θt) + 4ε′mNN,t + 2β′

T ∥ϕ(x∗
t )− ϕ(xt,1)∥V −1

t−1
+

h(xt,1;θt)− h(xt,2;θt) + 2ε′mNN,t + β′
T ∥ϕ(xt,1)− ϕ(xt,2)∥V −1

t−1

(d)

≤ 2h(xt,2;θt)− 2h(xt,1;θt) + 2β′
T ∥ϕ(xt,2)− ϕ(xt,1)∥V −1

t−1
+

h(xt,1;θt)− h(xt,2;θt) + 6ε′mNN,t + β′
T ∥ϕ(xt,1)− ϕ(xt,2)∥V −1

t−1

= h(xt,2;θt)− h(xt,1;θt) + 3β′
T ∥ϕ(xt,1)− ϕ(xt,2)∥V −1

t−1
+ 6ε′mNN,t

(e)

≤ 3β′
T ∥ϕ(xt,1)− ϕ(xt,2)∥V −1

t−1
+ 6ε′mNN,t

(82)

Step (a) follows from Equation 79, step (b) results from the triangle inequality, step (c) has made use of Lemma
C.7. Step (d) follows from the way in which we choose the second arm xt,2: xt,2 = argmaxx∈Xt

h(x;θt) +(
βT +B

√
λ
κµ

+ 1
)
∥(ϕ(x)− ϕ(xt,1))∥V −1

t−1
. Step (e) results from the way in which we select the first arm: xt,1 =

argmaxx∈Xt
h(x;θt).

Then we have
T∑

t=T0

rt ≤ 3β′
T

T∑
t=T0

∥ϕ(xt,1)− ϕ(xt,2)∥V −1
t−1

+ 6Tε′mNN,T

= 3β′
T

T∑
t=T0

∑
j∈[m]

I{it ∈ Cj} ∥ϕ(xt,1)− ϕ(xt,2)∥V −1
t−1

+ 6Tε′mNN,T

≤ 3β′
T

√√√√ T∑
t=T0

∑
j∈[m]

I{it ∈ Cj}
T∑

t=T0

∑
j∈[m]

I{it ∈ Cj} ∥ϕ(xt,1)− ϕ(xt,2)∥2V −1
t−1

+ 6Tε′mNN,T

≤ 3β′
T

√
T ·m · 16d̃+ 6Tε′mNN,T (83)

≤ 12β′
T

√
T ·m · d̃+ 6Tε′mNN,T , (84)

where in the second inequality we use the Cauchy-Swarchz inequality, and in the last step we use
∑T

t=T0

∑
j∈[m] I{it ∈

Cj} ≤ T and Lemma C.9. It can be easily verified that as long as the conditions on m specified in Equation (66) are satisfied
(i.e., as long as the NN is wide enough), we have that 6Tε′mNN,T

≤ 1.

Recall that β′
T ≜ βT +B

√
λ/κµ + 1 and βT ≜ 1

κµ

√
d̃+ 2 log(u/δ). Therefore, finally, we have with probability at least

1− 4δ

RT ≤ T0 + 12(βT +B
√

λ/κµ + 1)
√

T ·m · d̃+ 1
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≤ O

(
u(

d̃

κ2
µλ̃xγ2

+
1

λ̃2
x

) log T +

(√
d̃

κµ
+B

√
λ

κµ

)√
d̃mT

)

= O

((√
d̃

κµ
+B

√
λ

κµ

)√
d̃mT

)
. (85)
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