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Abstract

Conducting efficient performance estimations of neural architectures is a major
challenge in neural architecture search (NAS). To reduce the architecture training
costs in NAS, one-shot estimators (OSEs) amortize the architecture training costs
by sharing the parameters of one “supernet” between all architectures. Recently,
zero-shot estimators (ZSEs) that involve no training are proposed to further reduce
the architecture evaluation cost. Despite the high efficiency of these estimators,
the quality of such estimations has not been thoroughly studied. In this paper, we
conduct an extensive and organized assessment of OSEs and ZSEs on five NAS
benchmarks: NAS-Bench-101/201/301, and NDS ResNet/ResNeXt-A. Specifically,
we employ a set of NAS-oriented criteria to study the behavior of OSEs and ZSEs,
and reveal their biases and variances. After analyzing how and why the OSE
estimations are unsatisfying, we explore how to mitigate the correlation gap of
OSEs from three perspectives. Through our analysis, we give out suggestions for
future application and development of efficient architecture performance estimators.
Furthermore, the analysis framework proposed in our work could be utilized in
future research to give a more comprehensive understanding of newly designed
architecture performance estimators. The code is available at https://github.
com/walkerning/aw_nas [24].

1 Introduction

Neural architecture search (NAS) can automatically discover architectures that outperform the hand-
crafted ones for various applications [48, 10, 11]. Early NAS methods [48, 30] suffer from an
extremely heavy computational burden, and can take tens of thousands of GPU hours to run. One
of the major reasons for the computational challenge of NAS is that evaluating each candidate
architecture is slow, which includes a full training and testing process. In the past years, studies [2,
27, 3, 5, 8, 45, 20, 1] have been focusing on developing more efficient performance estimators of
neural architectures.

One-shot Estimator (OSE) Traditional NAS methods [48, 30, 2] conduct a costly separate training
process to acquire the suitable parameters to evaluate each candidate architecture. To make NAS
computationally tractable, ENAS [27] proposes the parameter-sharing technique to accelerate the
architecture evaluation. Following this work, the parameter sharing technique is widely used for
architecture search in different search spaces [39, 16] or incorporated with different search strate-
gies [19, 16, 23, 40]. We refer to the parameter-sharing estimations as the “one-shot” estimations
since it requires the training cost of one supernet.

How well the one-shot estimations are correlated with the standalone architecture performances is
essential for the efficacy of NAS methods. Despite the widespread use of OSEs, studies [43] have
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revealed that the OSE estimations might fail to reflect the true ranking of architectures. However, their
experiments are conducted in a toy search space with only 32 architectures. In this work, we conduct
a more comprehensive study on OSEs in five search spaces with distinct properties, including three
topological search spaces (NAS-Bench-101 [41], NAS-Bench-201 [9], and NAS-Bench-301 [32]),
and two non-topological search spaces [29] (NDS ResNet, and NDS ResNeXt-A). We further analyze
how and why OSE estimations have bias and variance, and explore how to improve OSEs.

Zero-shot Estimator (ZSE) More recently, in order to further reduce the architecture evaluation
cost, several studies [20, 1, 15, 17, 26, 6] introduce “zero-shot” estimators that involve no training. In
this work, we study various ZSEs on several benchmarks and reveal their properties and weakness.

Knowledge Our work reveals pieces of knowledge on OSEs and ZSEs. First of all, some behaviors
of OSEs and ZSEs vary across search spaces (Appendix A.1.1, Sec. 4.2). Some of the common
knowledge for OSEs revealed by our work include 1) OSEs bias towards architectures with lower
complexity in the early training phase [18]. And this bias can be alleviated to various extents with
sufficient training in different spaces (Sec. 5.1). 2) OSEs have variance and can be mitigated to some
extent (Sec. 5.3, Sec. 6.1). 3) Reducing the sharing extent of OSEs can potentially improve their
ranking quality [47] (Sec. 6.3).

As for ZSEs, we reveal that 1) Current ZSEs cannot benefit from one-shot training. The ranking
qualities of ZSEs utilizing high-order information (i.e., gradients) even degrade a lot after one-shot
training (Sec. 4.2). 2) Parameter-level ZSEs adapted from pruning literature are not suitable for
ranking architectures, and their ranking qualities cannot surpass those of parameter size (#Param) or
#FLOPs (Sec. 4.2). 3) Existing ZSEs have improper biases, some overestimate linear architectures
without skip connections, and some overestimate architectures with smaller kernel sizes and receptive
fields (Sec. 5.2). 4) The relative effectiveness of ZSEs varies between search spaces, relu_logdet [21]
is the best on the three topological search spaces, and synflow [33] is better on the two non-topological
search spaces (Sec. 4.2). 5) Most ZSEs are not sensitive to the input data distribution: They get
similar architecture rankings when using random noises as the input (Appendix B.1).

Suggestions Based on our experiments and analyses, we give out suggestions for future OSE
applications. For example: 1) Longer training makes one-shot estimations better (Sec. 4.1); 2) Using
one-shot loss instead of accuracy significantly improves the ranking qualities in the DARTS space [16]
(Sec. 4.1); 3) One should use enough validation data for OSEs, instead of merely several batches
as in ZSEs (Sec. 4.1); 4) Using temporal ensemble helps reduce the ranking instability, and brings
non-negative improvements on the ranking quality in different search spaces (Sec. 6.1); 5) In search
space with isomorphic architectures, augmenting the sampling strategy to improve the sampling
fairness is essential to avoid overestimating simple architectures (Sec. 6.2); 6) Affine operation should
not be used in batch normalization (BN) during supernet training (Sec. 6.3).

As for ZSEs, we point out several open research problems: 1) Is there a general ZSE suitable for
different types of search spaces? 2) Do we need to make ZSEs utilize the input data information
better, and how can we do that? 3) Can we develop ZSEs that distinguish top architectures better?
We also list out some technical suggestions for improving ZSEs: 1) Future ZSEs should conduct
architecture-level analysis instead of using parameter-level analysis (Sec. 4.2). 2) According to some
prominent bias of existing ZSEs, we can add some structural knowledge into ZSE voting ensembles,
e.g., receptive field analysis seems promising for improving jacob_cov or relu_logdet (Sec. 5.2). 3)
In future developments of ZSEs, researchers should add two simple comparison baselines, #Params,
and #FLOPs, as they are actually very competitive baseline ZSEs (Sec. 4.2).

Our work provides strong baselines and diagnosis tools for future research of architecture perfor-
mance estimators, and we suggest future research to utilize these baselines and tools for a more
comprehensive understanding of newly designed performance estimators.

Analysis Framework Our analysis framework of efficient architecture performance estimators
is organized as follows. We first introduce the evaluation criteria for estimator quality in Sec. 3.
And Sec. 4 presents the quality evaluation of multiple OSEs and ZSEs. Then, we conduct an
organized analysis on how and why the OSE and ZSE estimations have biases and variances in Sec. 5.
Specifically, their complexity-level, operation-level, and architecture-level biases are demonstrated
and analyzed. And the stability of OSE accuracy and ranking along the training process are analyzed.
And in Sec. 6, based on our analysis framework, we present several case studies on improving OSEs
from three perspectives: i.e. reducing the variance, bias, and parameter sharing extent.

2



2 Related Work

2.1 Efficient Performance Estimators of Neural Architectures

One-shot Estimators The vanilla NAS method [48] trains each architecture for 50 epochs to
acquire its suitable parameters, which makes the NAS process prohibitively costly. As a remedy,
ENAS [27] proposes to amortize the separate training costs by sharing parameters among architectures.
Specifically, ENAS constructs an over-parametrized supernet such that all architectures can be
evaluated using its parameter subsets. Throughout the search process, the shared supernet parameters
are updated on the training set, and an RNN controller is updated alternatively on the validation set.

There are two types of parameter-sharing methods: 1) One-shot NAS methods [3, 13] that first train
a supernet and then conduct architecture search without further supernet tuning. 2) Non-one-shot
methods [27, 16, 40] that conduct supernet training and architecture search (i.e. controller update)
jointly. And this work focuses on evaluating the estimations of the “one-shot” supernet, since it is the
cleaner case without the complexity of varying controller settings and possible controller-supernet
co-adaption. In each supernet training step, S architectures are randomly sampled to process a batch
of training data. Here S denotes the number of Monte-Carlo architecture samples. Then, the gradients
of these architectures are averaged to update the supernet.

Correlation of One-shot Estimators There exist some studies that carry out correlation evaluation
for one-shot estimators. Zhang et al. [45] compare the correlation of OSEs and their proposed
hyper-network-based estimator. However, their work is not aiming for a large-scale evaluation of
OSEs and ZSEs, thus they only evaluate the OSE correlations on one search space, and do not conduct
further analysis. Yu et al. [43] conduct parameter sharing NAS in a toy RNN search space with only
32 architectures in total, and discover that the parameter sharing rankings do not correlate with the
true rankings of architectures. Zela et al. [44] also report that the correlation of parameter-sharing
estimations is not satisfying with a Spearman correlation coefficient between -0.25 and 0.3 on a larger
search space with around 15k architectures. Pourchot et al. [28] evaluate the Spearman’s ranking
correlation of OSEs on NAS-Bench-101. Yu et al. [42] provide an analysis on how the heuristics
and hyperparameters influence the supernet training on three benchmarks (i.e. NAS-Bench-101,
NAS-Bench-201, and DARTS-NDS). But they only use the variants of Kendall’s Tau as the evaluation
criteria, and do not further explore the biases and failing reasons of OSEs. Zhang et al. [47] point
out the instability and poor ranking correlation of OSEs, and claim that the high extent of parameter
sharing causes the unsatisfying performance. However, they only conduct experiments on a small
search space with about 200 architectures.

In this paper, we conduct a more comprehensive study of OSE behaviors across five search spaces,
and further investigate how and why the OSE estimations are not satisfying. We also propose and
compare several techniques to mitigate the OSE correlation gap.

Zero-shot Estimators More recently, in order to further reduce the architecture evaluation cost,
several researches [20, 1] propose “zero-shot” estimators that conduct no training and use random
initialized models to estimate architecture performances. Based on the observation that good ar-
chitectures have distinct local jacobian on different images, Mellor et al. [20] propose an indicator
based on input jacobian correlation. Lopes et al. [17] improve the above indicator by calculating
the jacobian correlation with respect to the class. Abdelfattah et al. [1] adapt several ZSEs from the
pruning literature, and claim that these adapted ZSEs can perform well on NAS-Bench-201. Lin et
al. [15] define the expected Gaussian complexity to measure the network expressivity, and efficiently
discover architectures with state-of-the-art accuracy on ImagetNet. With a small training overhead,
Ru et al. [31] propose to evaluate an architecture’s performance by its training speed. Concurrent to
our work, White et al. [38] also evaluate various performance estimators on multiple benchmarks.

2.2 NAS Benchmarks

NAS benchmarks are proposed to enable researchers to verify the effectiveness of NAS methods
efficiently. NAS-Bench-101 (NB101) [41] provides the performances of the 423k valid architectures
in a cell-based search space. OSE cannot be easily applied for the whole NB101 search space due
to its specific channel number rule. To reuse NB101 for benchmarking OSE, NAS-Bench-1shot1
(NB1shot) [44] picks out three sub-spaces of NB101, and a supernet can be easily constructed for
these sub-spaces. In this work, we use the largest sub-space in NB1shot: NB1shot-3, and use the name
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“NB101” to refer to it. Another benchmark, NAS-Bench-201 (NB201) [9], provides the performances
of all the 15625 architectures in a single-cell search space. Previous tabular benchmarks exhaustively
train all architectures in a search space much smaller than commonly-used ones (e.g. DARTS [16]
with size over 1018). Recently, NAS-Bench-301 (NB301) [32] is proposed as a benchmark in the
DARTS space. It adopts a surrogate-based methodology that predicts architecture performances with
the performances of about 60k anchor architectures.

Besides these benchmarks on cell-based topological search spaces, we also experiment with two non-
topological benchmarking search spaces [29], NDS ResNet, and NDS ResNeXt-A. The architectural
decisions in these search spaces are the non-topological hyper-parameters of pre-defined blocks,
including kernel size, width, depth, convolution group number, and so on. The properties of these
benchmarking search spaces are summarized in Appendix Tab. A1.

3 Evaluation Criteria

This section introduces the major evaluation criteria used in our analysis framework, while the
analysis criteria and methods of ranking bias and variance will be introduced in Sec. 5. We denote
the total number of architectures as M , the true (ground-truth, GT) performances and approximated
estimated scores of architectures {ai}i=1,··· ,M as {yi}i=1,··· ,M and {si}i=1,··· ,M , respectively, and
the ranking of the true and estimated score yi, si as ri, ni ∈ {1, · · · ,M}, respectively (ri = 1
indicates that ai is the best architecture). The correlation criteria used in our framework are

• Pearson coefficient of linear correlation (LC): corr(y, s)/
√

corr(y, y)corr(s, s).
• Kendall’s Tau ranking correlation (KD τ ): The relative difference of concordant pairs and

discordant pairs
∑
i<j sgn(yi − yj)sgn(si − sj)/

(
M
2

)
.

• Spearman’s ranking correlation (SpearmanR): The pearson correlation coefficient between
the ranking variables corr(r, n)/

√
corr(r, r)corr(n, n).

Since the ability of differentiating between good architectures matters more than differentiating
between bad ones, criteria that emphasize more on the relative order of architectures with good
performances are desired. Denoting AK = {ai|ni < KM} as the set of architectures whose
estimated scores s are among the top K portion of the search space, we use two set of criteira [25]:

• Precision@K (P@topK) ∈ (0, 1] = #{i|ri<KM ∧ ni<KM}
KM : The proportion of true top-K

proportion architectures in the top-K architectures according to the scores.
• BestRanking@K (BR@K) ∈ (0, 1] = argminαi∈AK

ri/M : The best normalized ranking
among the top K proportion of architectures according to the scores (Lower is better).

Corresponding to P@topK, we also compare P@bottomK = #{i|ri>(1−K)M ∧ ni>(1−K)M}
KM to

reveal how the worst architectures are distinguished. And corresponding to BR@K, we inspect
WorstRanking@K (WR@K) = argmaxαi∈AK

ri/M to reveal how the supernet is likely to regard a
bad architecture to be good (Lower is better). Note that the rankings and architecture numbers are all
relative numbers normalized by the total architecture number M .

4 Evaluating Efficient Performance Estimators

4.1 Evaluation of One-shot Estimators

Trend of Different Criteria We inspect how these proposed criteria evolve during the training
process. Unless otherwise noted, MC sample S=1 is used in the experiments. And all training and
evaluation settings are summarized in Appendix D. Fig. 1 and Appendix Fig. A24 show the criteria
trend on topological and non-topological search spaces, respectively. We can see that the convergence
speeds of criteria are different, and on all search spaces except NB101, all criteria show a rising trend
as the training goes on, indicating that OSE gives better rankings with sufficient training.

Another fact is that on all search spaces except NB101, OSEs are better at distinguishing bad
architectures (higher P@bottom5%) than distinguishing good ones (lower P@top5%). This
indicates that, although identifying the exactly optimal architecture might be difficult for OSEs, using
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Figure 1: Top /Bottom: Criteria of using OS accuracy / OS loss as the estimations (right Y-axis: OS
loss value). “Oneshot average” means the average oneshot score (accuracy or loss).

them to filter bad architectures or warm-up sample-based NAS can be very effective. The results of
more criteria are shown in Appendix Fig. A1.

In the NB301 (DARTS) space, OS loss gives significantly better estimations than OS accuracy.
For example, at epoch 1000, the KD τ of OS acc and loss are 0.381 and 0.512, respectively, while
their P@top5% are 13.8% and 31.0%. This is because the loss value considers the network’s output
distribution rather than a single label prediction, it has a less concentrated distribution and is more
informative in ranking architectures. Fig. 2 shows that the OS accuracy distribution is indeed more
concentrated than the OS loss on NB301.

29% 47% 66% 85%0.00
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0.15

0.20

Oneshot Accuracy

0.453 1.011 1.569 2.1280.00
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NAS-Bench-201
NAS-Bench-301
Oneshot Acc/Loss@Top 5%
Oneshot Acc/Loss@Top 20%

Figure 2: The distribution of OS accuracy and loss.

Effect of the Validation Data Size We inspect OSEs’ ranking quality when using different numbers
of validation data batches to evaluate the OS scores, and find that on both NB201/NB301, using more
data improves the estimation quality. Specifically, we compute the average OS accuracies over N
validation batches, where each batch contains 128 examples. And the effect of the batch number N on
the ranking quality is shown in Fig. 3 and Appendix Fig. A3. Fig. 3 shows that on NB301, criteria get
better when the batch number increases from 1 to 10 at epoch 1000. Interestingly, when the training
is not sufficient (epoch 200), the criteria decrease with more data batches (especially those of the OS
acc). To explain this, Fig. 3(upper right) shows the intra-“level” KD histogram, where architectures
with the same OS accuracy using one validation batch are said to be in the same level. We can see that
when the supernet is under-trained, it is not good at distinguishing between intra-level architectures
(negative intra-level KDs). Therefore, using more validation data might bring negative impacts, while
giving tie scores can avoid making wrong comparisons between similar architectures.

4.2 Evaluation of Zero-shot Estimators

Our work evaluates six parameter-level ZSEs and two architecture-level ZSEs. The six parameter-
level ZSEs are grad_norm, plain [22], snip [14], grasp [36], fisher [34, 35], and synflow [33]. These
ZSEs are named after sensitivity indicators initially designed for fine-grained network pruning
that measure the approximate loss change when certain parameters or activations are pruned. A
recent work [1] proposes to sum up parameter-wise sensitivities of all parameters to evaluate an
architecture. And architecture-level ZSEs measure the architecture’s discriminability by inference
differences between different input images: jacob_cov [20] uses the input jacobian correlation, and
relu_logdet [21] uses activation differences.
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Figure 3: Criteria vary on NB301 as the batch number (X-axis) changes. Right: The histogram of
intra-level KDs using 10-batch OS acc, the “levels” are partitioned according to 1-batch OS acc.
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in 1-batch evaluation with format “#acc levels with #arch>1 / #total”.
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Figure 4: KD between GT, FLOPs/Params, OSEs (1k epoch) and ZSEs.
Left: NB201; Right: NB301.

The full evaluation results
of ZSEs are shown in
Appendix B and C, and
Fig. 4 shows some of
the results on NB201 and
NB301. We can see that the
ranking correlations of
ZSEs except relu_logdet
are even worse than the
GT-Param correlation.
Also, the relative effec-
tiveness of ZSEs varies
between search spaces.
For example, on NB301,
plain performs better
than other ZSEs except
relu_logdet, while on NB201, plain performs worst among all ZSEs. And jacob_cov and synflow
give relatively good estimations with KD of 0.61 / 0.57, but they do not perform well on NB301
(KDs are 0.23 / 0.2). Also, as shown in Appendix Tab. A12, the best-performing ZSE on topological
search spaces, relu_logdet, does not perform well on non-topological NDS ResNet and ResNeXt-A.

The vote ZSE [1] conducts a majority vote between various metrics to compare each pair of architec-
tures. We choose three best-performing ZSEs as the voting experts, and find that this simple form
of voting does not bring improvements over the best constituent ZSE. Better ways of ensembling
different ZSEs need to be developed.

It is a natural idea to apply ZSEs on trained networks. Thus we explore whether ZSEs can benefit
from one-shot training. According to Appendix Tab. A11, current ZSEs cannot benefit from one-shot
training. The ranking qualities of ZSEs except relu_logdet even degrade a lot after one-shot training.
A possible explanation is that these ZSEs utilize the gradient information, and the gradient magnitudes
in a trained supernet are too small and obscure for architecture ranking.

5 How & Why the Estimations Are Not Satisfying

5.1 Bias of One-shot Estimators

Complexity-level Bias To identify which architectures are under- or overestimated, we investigate
the relationship of the true-estimated Ranking Difference (RD) ri − ni; i = 1, · · · ,M and the
architecture complexity (i.e. Params, FLOPs). RD serves as an indicator of overestimation for arch i:
A positive RD indicates that this architecture is overestimated. Otherwise, it is underestimated.
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Sub-architectures have different amounts of calculation and might converge with a different speed.
Thus, we conduct the complexity-level bias analysis. In Fig. 5, we divide the architectures into five

Figure 5: Complexity-level bias. Left/right Y-axis: KD
τ / Average RD within the complexity group. X-axis:
Complexity groups (the group with the smallest FLOPs
is at the leftmost).

complexity groups according to the amount
of calculation (FLOPs), and show the KD
and average RD in each group. In the early
training stages (the 1st row), the average
RD shows a decreasing trend, which means
that the larger the model, the easier it is to
be underestimated. This is because larger
models converge at a slower speed. As the
training goes on (the 2nd and 3rd rows),
the absolute average RD decreases, indicat-
ing that the issue of underestimating larger
models gets alleviated. And on both spaces,
the decreasing intra-group KD τ indicates
that it is harder for OSEs to compare larger
models than comparing smaller ones.

Op-level Bias We inspect the changes of
GT and OS accuracy when one operation
is mutated to another (edit distance=1). On
NB301, we examine 23476 mutation pairs
and find that the OSE estimations overes-

timate the effects brought by dilation (Dil) convolutions (Convs): All mutation types from other
operations to DilConvs witness a higher OS increase ratio than the GT one. And the skip_connect
operation is underestimated: All mutation pairs from skip_connect cause the OS increase ratio to be
higher than the GT one. For example, when mutating one skip_connect operation to dil_conv_5x5,
only 39.0% out of 2336 pairs get GT increases, while 94.9% get OS increases. This phenomenon is
more remarkable when we only consider mutation pairs within the largest complexity group (grouped
by Param): Only 15.3% of 569 pairs get GT increases, while 92.3% get OS increases. On NB201,
based on a similar inspection of the mutation pairs, we find that OSE estimations slightly overestimate
avgpool3x3 and underestimate conv3x3. Generally speaking, the op-level bias on NB201 is not as
large as that on NB301. See Appendix A.2.2 for the figures and more results.

5.2 Bias of Zero-shot Estimators
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Figure 6: The best architectures ranked by several ZSEs on NB201 and NB301.

Arch-level Bias By inspecting the best and worst architectures indicated by ZSEs, we find that
existing ZSEs have improper biases. Fig. 6 shows that synflow has an excessive preference for large
architectures. snip, grad_norm and fisher give similar rankings of architectures (see Fig. 4), and
show improper preferences for architectures with gradient explosion: On NB201, they show a clear
preference for architectures without skip connections, which are far from optimal. This is because
gradient magnitudes in these architectures get exploded, and the absolute parameter-wise sensitivity
is high. In a word, the parameter-level ZSEs adapted from the fine-grained pruning literature are not
very suitable for ranking architectures, since they are designed to reflect the relative parameter-wise
sensitivity. And due to their sensitivity to scales and gradient explosion, a simple form of adding up
the parameter-wise sensitivity provides improperly biased estimations for architecture performances.
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In contrast, architecture-level ZSEs (jacob_cov, relu_logdet) are more reasonable attempts that mea-
sure the architectures’ discriminability by inference differences between input images. Nevertheless,
as shown in Fig. 6 and Appendix B.2, these two ZSEs prefer architectures with smaller receptive fields
(prefer smaller kernel sizes or shallow architectures). Consequently, although these two ZSEs have
relatively good ranking correlations on topological search spaces, they have difficulties in picking out
top architectures (Poor P@topKs, see Appendix Tab. A9).

5.3 Variance of One-shot Estimators

Accuracy Forgetting Due to the parameter sharing and the random sample training scheme, the
training of subsequent architectures overwrites the weights of previous ones, thus degrades their
OS accuracy. This “multi-model forgetting” phenomenon [4, 46] accounts for the variance of OS
accuracies. Appendix Fig. A14 verifies the existence of the forgetting phenomenon. For each
architecture in one epoch, we define its forgetting value (FV) as acc2 − acc1, where acc1 refers to
its valid accuracy right after its training, and acc2 refers to its accuracy after all the architectures
in this epoch have been trained. Appendix Fig. A14 shows that the forgetting phenomenon exists
in the early training stages, where the FVs are negative. As training progresses, the variance of
the FVs decreases, which is natural due to the learning rate decay. Also, the mean FV becomes
positive, indicating that training other architectures can have positive transferring effects on previous
architectures instead of negative ones (i.e. forgetting). This observation can be explained by the
increasing trend of inter-architecture gradient similarity in Appendix Fig. A15.
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Figure 7: Ranking stability of OSEs.

Ranking Stability We
demonstrate the ranking
stability in Fig. 7, since
it plays an important role
that influences the NAS
process more directly
than the accuracy stability.
The criteria in this figure
(i.e. relative KD, relative
P@top/bottomK) are
calculated with two sets of
adjacent OS estimations,
while the estimations of
the latter checkpoint are
taken as the GT one. We
can see that the ranking
stability increases with
sufficient training and
the OS rankings of bad
architectures are relatively
stable (relP@bottomK).
On NB301, even with
rather sufficient training
(1k epoch) where the mean OS accuracy already saturates (Fig. 1), the ranking stability of top
architectures is still not high (relP@top 0.5%∼0.46). This is reasonable since that the accuracy
differences between architectures in the DARTS space are smaller. And as expected, averaging the
OS accuracy of multiple supernets stabilizes OSE estimations. Also, the temporal weight ensemble
of multiple checkpoints can stabilize the estimations (Sec. 6.1).

6 How to Improve One-shot Estimations

Since different architectures require different values for supernet parameters, as the side effect of
acceleration, parameter sharing serves as the intrinsic reason for the OSE correlation gap. Appendix
Fig. A15 shows the gradient similarity distribution between architecture pairs on NB201. We can see
that the inter-architecture gradient similarities vary in a large range, and one common phenomenon on
NB201 and NB301 is that the mean similarity between architecture pairs is lower in the middle-stage
layers and the architectures’ gradients in the very first and last layers are more similar. Another

8



slightly counterintuitive fact is that the gradient directions become more similar as the training goes
on, especially on NB201. This can explain the positive transferring effect in the latter training stages.

Due to parameter sharing, the random sample training scheme of OSE causes estimation variances.
On the other hand, improper sampling distribution causes estimation biases. There are two types
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Figure 8: Effect of ensemble techniques on OSEs. Top:
NB201; Bottom: NB301.

of reasons for the bias: 1) Some archi-
tectures (e.g. with larger complexity)
might need higher sampling probabil-
ity to match their relative performance
in standalone training. 2) Architectures
are sampled from an unfair distribution,
i.e., some architectures have undesirable
higher equivalent probabilities.

Echoing the above analysis, this sec-
tion conducts case studies to improve
the OSE estimations from 3 perspec-
tives, i.e. reducing the variance, bias,
and parameter sharing extent. Sec. 6.1
experiments with 2 techniques that can
reduce the OS estimation variance.And
in Sec. 6.2, we demonstrate that using
de-isomorphic sampling in space with
isomorphic architectures (NB201) helps
improve the sampling fairness, thus re-
duce the estimation bias.

6.1 Variance Reduction

Temporal Variance Reduction Sec. 5.3 shows that averaging OS scores of several supernets stabi-
lizes the estimations. However, this technique is not practical due to its linearly enlarged consumption,
as training k supernets takes k-times more computation. As a remedy, Guo et al. [12] propose to
only train one supernet, and stabilize OS estimations by temporally averaging weights of supernet
checkpoints. Besides the variance reduction effect shown in Fig. 7, Fig. 8 shows whether ensembling
techniques can bring other ranking quality improvements. We can see that temporally ensembling 3
or 5 checkpoints brings improvements on NB201 but brings no bias improvements on NB301.

Sampling Variance Reduction We compare the results of using different MC sample numbers S
in supernet training. We also adapt Fair-NAS [7] sampling strategy to NB201 and NB301. Using
multiple MC architecture samples has different influences in different spaces: It is beneficial for the
estimation quality on NB301, while the estimation quality on NB201 decreases slightly as the MC
sample number increases. See Appendix A.3.2 for more detailed results.

6.2 Sampling Fairness Improvement

Besides the complexity-level and op-level biases shown in Sec. 5.1, OSEs also have some evident
architecture-level biases. The NB201 search space contains many isomorphic architectures with
different representations, and there are 6466 unique structures (out of 15625) after de-isomorphism.
We find that even after sufficient training, the supernet still overestimates some simple architectures
significantly. Fig. 9(left) shows the top-2 ranked architectures by the average of 3 supernet’s OS scores
at epoch 1000. With vanilla sampling (Iso), OS estimations bias towards simple architectures (a single
Conv) with many isomorphic counterparts (Iso group size=31). We find that this is because isomorphic
architectures have identical gradients w.r.t. shared parameters, so that the shared parameters tend to
be optimized towards the gradient directions of architectures with many isomorphic counterparts.

We compare the results of sampling w. or w.o. isomorphic architectures in Fig. 9(right). We can see
that using the de-isomorphism (deiso) sampling strategy helps pick out top architectures and
brings significant improvements on BR@0.5% and P@5% (1.9% to 0.23%, 21.3% to 46.7%).
We also experiment with a post-de-isomorphism (post-deiso) technique, in which the estimations
of architectures in an isomorphic group are averaged during testing, while no changes are made
during training. We can see that “post-deiso” brings slight improvements on BR@Ks and P@topKs

9



Iso sampling
Rank 1: 83.55/92.55, 1

Rank 2: 83.51/91.96, 31

0
3

nor_conv_3x3

1nor_conv_1x1 2

skip_connect

avg_pool_3x3 nor_conv_1x1

0 1nor_conv_3x3

3

skip_connect

2
avg_pool_3x3

0

1nor_conv_3x3

2skip_connect
3

nor_conv_3x3

avg_pool_3x3 skip_connect

0
3

skip_connect

1
nor_conv_3x3

nor_conv_1x1

2
nor_conv_3x3 avg_pool_3x3

Rank 1: 78.28/93.43, 1

Rank 2: 78.28/93.67, 1

Deiso sampling
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supernet is trained with Iso / Deiso sampling strategy, the legend’s format is “OS acc (%)/GT acc
(%), Iso group size”. Right: Criteria comparison along the training process.

compared with “no post-deiso”, which might owe to the decreased estimation variances. Actually, the
deiso sampling strategy is to find a de-isomorphic representation space and conduct uniform sampling
in it, and our study provides another evidence for the statement made by [37] that representations can
be critical for NAS methods. More detailed results and discussions are in Appendix A.3.3.

6.3 Sharing Extent Reduction

Operation Pruning We remove one or two operations in the search space (SS) and conduct supernet
training on the resulting sub-SS. After training the supernet, we compare the OS estimations on the
sub-SS provided by the supernet trained on full SS and the sub-SS. The detailed results and analyses
can be found in Appendix A.3.4. And the conclusion is: Sharing extent reduction by removing
operations can bring improvements to the average OS scores of the remaining architectures in the
sub-SS, especially in the early training stages. However, whether the improved absolute OS scores
can bring ranking quality improvements is questionable, and the results vary across SSes.

One-shot Pruning We conduct SS pruning on NB201 by selecting the top 10%, 25%, 50% architec-
tures ranked by the OS scores of supernet (epoch 600), and continue to finetune the supernet to 1000
epoch with these architectures. The good news is that on NB201, OS pruning brings improvements
on both the average OS score and ranking quality in the sub-SS: 2.2%/1.3%/0.1% average OS score
increases and 0.189/0.046/0.086 KD increases when the sub-SS contains 10%/25%/50% architec-
tures, respectively. The results reveal the potential of dynamic SS pruning for improving the OSE
quality, especially for good architectures. However, this per-architecture hard pruning scheme is
not practical since it needs an exhaustive test of the full search space. To explore practical dynamic
SS pruning methods, we conduct a case study on per-architecture soft pruning with a jointly-trained
controller, where the controller gives higher sampling probability to the architectures with higher OS
scores. The results and analyses are shown in Appendix A.3.4.

Remove the Affine Operation in BN We compare using or not using BN affine operations, and give
out the comparison results in Appendix A.3.4. And the suggestion is that one should not use BN
affine operations in the search process.

7 Conclusion

We present an analysis framework of efficient architecture performance estimators in NAS, containing
carefully developed criteria and organized analyses. Within the framework, we conduct an in-depth
analysis of OSEs and ZSEs on five benchmarking search spaces with distinct properties. Our work
reveals the properties, weaknesses (variance and bias) of current architecture performance estimators.
For OSEs, we further conclude three directions for their improvements and experiment with several
mitigations accordingly. Our work gives out suggestions for future NAS applications and points out
research directions to further improve current OSEs and ZSEs. Besides the take-away knowledge,
our work also provides strong baselines for future research of efficient performance estimators, and
the analysis framework could be utilized to diagnose new performance estimators.
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