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ABSTRACT

Pretrained transformers can do in-context learning (ICL), i.e. learn new tasks in
the forward pass from a few examples provided in context. But can the model do
ICL for completely new tasks or is this ability restricted to tasks similar to those
seen during pretraining? How does the diversity of tasks seen during pretraining
affect the model’s ability to do ICL? In the setting of ICL for ridge regression, we
show that, if pretrained on few tasks sampled from a latent distribution, the model
behaves like the Bayesian estimator with a prior equal to the discrete distribution
over the sampled tasks. But if pretrained on a sufficiently large number of tasks,
the model behaves like the Bayesian estimator with prior equal to the underlying
latent distribution over tasks. Our results suggest that, as the diversity of the pre-
training dataset increases, the model transitions from doing ICL on tasks similar
to ones seen during pretraining to learning the underlying task structure and doing
ICL on new tasks.

1 INTRODUCTION

Large pretrained transformers are capable of in-context learning (ICL), i.e. learning new tasks at in-
ference time from a few examples in-context without any gradient updates. However, the mechanism
by which models do ICL and the conditions under which it emerges are poorly understood. Recent
works have hypothesized that models do ICL through implicit Bayesian inference (Xie et al., 2021).
During pretraining, models learn a prior distribution over sequences of examples. At test time, they
perform inference over the posterior predictive distribution given a sequence of in-context examples
and the learned prior.

The prior, and thus the effectiveness of ICL, are heavily dependent on the pretraining data distribu-
tion. Previous works have identified properties of the pretraining dataset which are important for
ICL (Chan et al., 2022). Of particular importance is a diverse pretraining dataset. Typically, we
want to train models to perform well across a latent distribution of tasks, such as language modeling
over different sources or linear regression over a distribution of latent regression vectors. However,
during training, we only have a finite sample of latent tasks—document sources for language or
latent vectors for regression—and examples from those tasks—documents from each source for lan-
guage or data and target pairs from a latent vector for regression. Kirsch et al. (2022) find that as
the number of unique tasks seen during pretraining increases, the ability to learn new, unseen tasks
emerges and transformers act as general-purpose in-context learners.

However, this necessity of many diverse pretraining tasks raises a fundamental question: do models
indeed learn a general-purpose learning algorithm that can solve completely new tasks? Or does
better coverage of the task distribution make learning new tasks possible as they are more likely
to be similar to ones already learned? For linear regression, this distinction is akin to learning
an algorithm that generalizes equally well across the whole latent distribution in the first case and
learning a function that behaves like the output of linear regression for latent vectors near those in
the pretraining dataset in the second case.

In this work, we rigorously explore this question for noisy linear regression where previous work
has shown that transformers can be trained to do ridge regression by ICL (Garg et al., 2022; Akyürek
et al., 2022). We explicitly derive the optimal estimators that minimize mean squared error (MSE)
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under pretraining distributions with both a continuous gaussian distribution of tasks—the full latent
distribution—and a finite sample of tasks. By comparing the model’s outputs to these two estimators,
we can investigate if the model develops the ability to perform ICL on new tasks and not just tasks
similar to those in the pretraining dataset.

Contributions: In this work, we study transformers trained to solve noisy linear regression by
ICL when pretrained on datasets with increasing number of latent regression vectors. We show that:

• For a small number of pretraining tasks, the model indeed behaves like the optimal estimator
which minimizes MSE under the pretraining distribution with the corresponding number of
tasks. But as the number of pretraining tasks increases, the model’s behavior transitions to
that of the estimator which minimizes MSE under the continuous latent task distribution even
though the optimal estimator for discrete tasks has lower training loss. This suggests that, for
large numbers of pretraining tasks, the model can do ICL on new tasks.

• One possible cause for this transition is under-training: longer training times enable the model to
behave more like the optimal estimator for discrete tasks. Thus early stopping or regularization
might be key to training models to do ICL on new tasks.

• When trained on pretraining distributions with an intermediate number of tasks, models behave
more like the optimal estimators for discrete tasks when evaluated on latent vectors near ones in
the pretraining dataset. Conversely, they behave more like the optimal estimators for continuous
tasks when evaluated on latent vectors far from ones in the pretraining dataset.

2 RELATED WORK
Recent works have suggested two main hypotheses for understanding ICL. First, Xie et al. (2021)
propose that transformers do ICL through implicit Bayesian inference. They show that ICL emerges
in transformers trained autoregressively on sequences with latent concepts: models infer the latent
concept and predict the next token using posterior inference. Second, several works propose that
transformers do ICL using a mesa-optimizer, such as gradient descent, on in-context data; during
pretraining, models learn weights that enable them to implement this in the forward pass. Akyürek
et al. (2022) and von Oswald et al. (2022) present explicit constructions of weights for implementing
gradient descent for linear regression. In our work, we take the Bayesian view and extend Xie et al.
(2021) to the noisy linear regression setting. Instead of studying the mechanism by which ICL is
implemented, we focus on investigating when ICL generalizes to new tasks.

Closely related to our work, Kirsch et al. (2022) study the behavior of transformers trained in a
classification setting with pretraining datasets that contain different numbers of unique tasks. They
show that these models can act as general purpose in-context learners if they have sufficiently large
embedding sizes and are trained on pretraining datasets with a large number of different tasks. We
study similar scaling behavior with the number of tasks but in the setting of noisy linear regression.
This allows us to explicitly derive optimal estimators that explain the behavior of the transformers
trained on pretraining datasets with both small and large numbers of tasks.

3 PROBLEM SETUP

We consider the problem of training transformers autoregressively to in-context learn linear func-
tions, similar to Garg et al. (2022); Akyürek et al. (2022); Li et al. (2023); von Oswald et al. (2022).
Each input to the transformer is a sequence (x1, y1, . . . ,xK , yK) where yi = wTxi + ϵi and ϵi is
observation noise. Given the context Sk = (x1, y1, . . . ,xk−1, yk−1,xk) at each k ∈ {1, 2, . . . ,K},
we train the transformer to predict ŷk that minimizes the mean square error (MSE):

LDw(fθ) = E
x1,...,xK∼N (0,I),w∼Dw

ϵ1,...,ϵK∼N (0,τ2)

K∑
k=1

(fθ(Sk)− yk)
2 (1)

The goal is to train the transformer to minimize LDlatent
w , where Dlatent

w is the latent task distribution.
However we only have access to a finite collection of w’s sampled i.i.d. from Dlatent

w . We further as-
sume a uniform distribution over the finite samples, which we denote as Dpretrain

w = U({wα}Mα=1).
Thus the training objective is to minimize LDpretrain

w .
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Statistical Estimators The estimator that minimizes the kth term in LDw is the posterior mean of
yk conditioning on the context: ŷk = E [yk|Sk] = ŵTxk, where ŵ ≡

∫
dµ(w)w

∏k
i=1 p(yi|xi,w)∫

dµ(w)
∏k

i=1 p(yi|xi,w)
. For

simplicity, we assume Dlatent
w = N (0, σ2I). In this setup, the optimal estimator over the latent tasks

reduces to the ridge regression estimator (Hoerl and Kennard, 2000) (see also A.1):

ŵRIDGE =

(
XTX+

τ2

σ2
I

)−1

XTy (2)

where X = (xT
1 , . . . ,x

T
k ) ∈ Rk×d and y = (y1, . . . , yk).

Alternatively, if we constrain Dw to be a uniform distribution over a finite set of w’s as is in the case
of Dpretrain

w = U({wα}Mα=1), the optimal estimator is the Discrete Minimum Mean Square Error
(MMSE) estimator:

ŵMMSE =

∑M
α=1 wα exp

(
− 1

2τ2

∑k
i=1(yi −wT

αxi)
2
)

∑M
α=1 exp

(
− 1

2τ2

∑k
i=1(yi −wT

αxi)2
) (3)

The key observation here is that the optimal estimators that minimize LDpretrain
w and LDlatent

w are
different. Akyürek et al. (2022) showed that, if each pretraining sequence is constructed from a new
task w ∼ N (0, σ2I) and the transformer is pretrained on a large number of sequences, the trans-
former’s predictions are similar to the ridge regression estimator ŵRIDGE. This opens the question
of what happens if we constrain the number of tasks in the pretraining distribution. Specifically, as
we increase the number of w’s in Dpretrain

w , which Bayesian estimator will the model behave like?

4 EXPERIMENTS

4.1 TRANSITION FROM DISCRETE MMSE TO RIDGE WITH MORE PRETRAINING TASKS

We train a GPT2-style (Radford et al., 2019) transformer to minimize LDpretrain
w with various num-

bers of pretraining tasks ranging from 2 to 215. By comparing the transformer’s LDpretrain
w and

LDlatent
w to the corresponding quantities for Discrete MMSE and ridge regression, we investigate

how similar the transformer is to these estimators at each number of pretraining tasks.

In Fig. 1, we see that for a small number of pretraining tasks, the transformer’s LDpretrain
w tightly

matches that of Discrete MMSE, implying that the transformer is closely following the optimal esti-
mator under LDpretrain

w . LDlatent
w is also quite similar between the transformer and Discrete MMSE,

suggesting that the transformer follows a similar strategy for tasks from both pretraining and latent
task distribution. At 28 (200k step training runs) or 210 (800k step training runs) tasks, the trans-
former starts to deviate from Discrete MMSE in terms of LDpretrain

w . When the number of pretraining
tasks reaches 213, we see that the transformer tightly matches ridge regression in terms of LDlatent

w ,
implying that its behavior is very similar to the optimal estimator under Dlatent

w .

Effect of training time A hypothesis for why the transformers transition from Discrete MMSE to
ridge regression as we increase the number of pretraining tasks is that optimization takes longer. To
test this, we increase training time from 200k steps to 800k steps. Training longer indeed allows the
transformer to match Discrete MMSE in terms of LDpretrain

w up to 29 tasks and to perform closer to
Discrete MMSE at 210 and 211 tasks (Fig. 1). However, it remains an open question whether training
for longer would enable the transformer to match Discrete MMSE in terms of LDpretrain

w for 210 or
more tasks. Alternatively, as the number of pretraining tasks increases, model capacity limits may
prevent the transformer from learning the optimal estimator that minimizes LDpretrain

w .

4.2 THE TRANSITION FROM DISCRETE MMSE TO RIDGE ALONG INTERPOLATING PATHS

We study the transition from Discrete MMSE to ridge regression more closely by looking at how
the transformer performs relative to the two Bayesian estimators along paths interpolating between
pairs of pretraining tasks. To do so, we sample pairs of pretraining w’s and compute the MSE over
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::

Figure 1: Effect of number of pretraining tasks and pretraining time. MSE over Dpretrain
w

(left) and Dlatent
w (right). With increasing number of pretraining tasks, the transformer transitions

from behaving like Discrete MMSE, the estimator that minimizes LDpretrain
w , to behaving like ridge

regression, the estimator that minimizes LDlatent
w . At intermediate number of tasks, training for

longer enables the model to remain closer to Discrete MMSE.

sequences generated using interpolations of the w’s. We interpolate both the angle and the norm:
wα = (αwi + (1 − α)wj)

α∥wi∥2+(1−α)∥wj∥2

∥αwi+(1−α)wj∥2
. As shown in Fig. 2, for 27 pretraining tasks, the

Figure 2: Model error along interpolations between pretraining tasks. At 27 pretraining tasks,
the transformer behaves very similar to the Discrete MMSE estimator for all interpolated ws (left).
At 210 tasks the transformer behaves more like Discrete MMSE for w’s near ones in the pretraining
dataset (α = 0 and α = 1). Conversely, it behaves more like the Ridge estimator for w’s inter-
polating between ones in the pretraining dataset. At 213 tasks the transformer has transitioned to
behaving like ridge regression for all w’s (right).

transformer closely matches Discrete MMSE along the interpolating paths. The match between
transformer and Discrete MMSE is particularly good when α is close to 0 or 1, which is where the
tasks are from Dpretrain

w . We note that the discrepancy in performance between the two models,
although small, does vary as a function of context size: at smaller k the transformer outperforms
Discrete MMSE along interpolating paths, but at k = 15, we observe the opposite.

As the number of tasks grows to 210, we reach a phase in which the transformer is doing neither
Discrete MMSE or ridge regression exactly. Qualitatively, it appears that the transformer is more
similar to Discrete MMSE at larger context sizes (k = 8, 15) for α close to 0 or 1 and is more similar
to ridge regression for all α at k = 2. At 213 tasks, the transformer has transitioned to behaving like
ridge regression throughout the interpolating path.

5 CONCLUSION

In the setting of noisy linear regression, we observe that transformers can perform ICL on new tasks
once the pretraining task distribution is sufficiently diverse. As the number of tasks increases, the
model transitions from Discrete MMSE, the optimal estimator under the pretraining task distribu-
tion, to ridge regression, the optimal estimator under the latent task distribution. We also present an
initial hypothesis for why this transition happens, leaving further investigation to future work.
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A APPENDIX

A.1 DERIVATION OF THE RIDGE REGRESSION ESTIMATOR

We modify Eq. 1 to define the pretraining loss,

LDpretrain
w (Mθ) =

K∑
k=1

ESk
Ew,yk

[
(ŷk − yk)

2|Sk

]
(4)

where the expectation over w is now with the pretraining task distribution Dpretrain
w . The op-

timal estimator that minimizes Eq. 4 is the conditional expectation ŷk = Ew,yk [yk|Sk] =

Ew∼Dpretrain
w

[
wTxk|Sk

]
≡ ŵTxk, where ŵ =

∫
w

∏k
i=1 p(yi|xi,w)p(w)dµ(w)∫ ∏k

i=1 p(yi|xi,wdµ(w)
. If Dpretrain

w =

N (0, σ2I), we recover the ridge regression estimator,

ŵRIDGE =

∫
w exp

[
− 1

τ2 (Xw − y)T (Xw − y)− 1
σ2w

Tw
]
dw∫

exp
[
− 1

τ2 (Xw − y)T (Xw − y)− 1
σ2wTw

]
dw

=

∫
w exp

[
− 1

τ2

(
w − (XTX+ τ2

σ2 I)
−1Xy

)T
(XTX+ τ2

σ2 I)
(
w − (XTX+ τ2

σ2 I)
−1Xy

)]
dw

∫
exp

[
− 1

τ2

(
w − (XTX+ τ2

σ2 I)
−1Xy

)T
(XTX+ τ2

σ2 I)
(
w − (XTX+ τ2

σ2 I)
−1Xy

)]
dw

=

(
XTX+

τ2

σ2
I

)−1

XTy
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