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ABSTRACT

We consider the problem of steering no-regret-learning agents to play desirable
equilibria via nonnegative payments. We first show that steering is impossible if
the total budget (across all iterations) is finite, both in normal- and extensive-form
games. However, we establish that vanishing average payments are compatible with
steering. In particular, when players’ full strategies are observed at each timestep,
we show that constant per-iteration payments permit steering. In the more challeng-
ing setting where only trajectories through the game tree are observable, we show
that steering is impossible with constant per-iteration payments in general extensive-
form games, but possible in normal-form games or if the maximum per-iteration
payment may grow with time. We supplement our theoretical positive results with
experiments highlighting the efficacy of steering in large games, and show how our
framework relates to optimal mechanism design and information design.

1 INTRODUCTION

Any student of game theory learns that games can have multiple equilibria of different quality—for
example, in terms of social welfare (Figure 1). How can a mediator—a benevolent third party—steer

players toward an optimal one? In this paper, we consider the problem of using a mediator who can dis-
pense nonnegative payments and offer advice to players so as to guide to a better collective outcome.

Importantly, our theory does not rest upon strong assumptions regarding agent obedience; instead,
we only assume that players have sublinear regret, a mild assumption on the rationality of the
players adopted in several prior studies (e.g., Nekipelov et al., 2015; Kolumbus & Nisan, 2022b; Ca-
mara et al., 2020). Variants of this problem have received tremendous interest in the literature
(e.g., Monderer & Tennenholtz, 2004; Anshelevich et al., 2008; Schulz & Moses, 2003; Agussurja
& Lau, 2009; Balcan, 2011; Balcan et al., 2013; 2014; Mguni et al., 2019; Li et al., 2020; Kempe
et al., 2020; Liu et al., 2022 and references therein), but prior work either operates in more restricted
classes of games or makes strong assumptions regarding player obedience. We study the steering
problem in its full generality for general (imperfect-information) extensive-form games under an
entire hierarchy of equilibrium concepts, and we establish a number of positive algorithmic results
and complementing information-theoretic impossibilities.

Summary of Our Results Our formulation enables the mediator to 1) reward players with non-
negative payments and 2) offer advice. Of course, with no constraints on the payments, the problem
becomes trivial: the mediator could enforce any arbitrary outcome by paying players to play that out-
come. On the other extreme, we show that if the total realized payments are constrained to be bounded,
the decentralized steering problem is information-theoretically impossible (Proposition 3.2). There-
fore, we compromise by allowing the total realized payments to be unbounded, but insist that the aver-
age payment per round is vanishing. Further, to justify 2) above, we show that without advice, steering
to mixed-Nash equilibria is impossible already in normal-form games (Appendix D), although advice
is not necessary for pure-Nash equilibria (Sections 4 and 5). Offering recommendations is in line
with much of prior work (Appendix A), and is especially natural for correlated equilibrium concepts.

The goal of the mediator is to reach an equilibrium, either explicitly provided or provided as a principal
utility function. We first assume that the mediator is provided an equilibrium. We distinguish between
realized payments and potential payments. Realized payments are the payments actually dispensed

1



Under review as a conference paper at ICLR 2024

C

2

0,3 0,0

1

3,0 2

0,0 4,4

H S

H S

H S

Strategy of Player 1

St
ra

te
gy

of
Pl

ay
er

2

Without payments
AA

BB

CC

DD

AA
BB

CC

DD

Strategy of Player 1

St
ra

te
gy

of
Pl

ay
er

2

With vanishing payments
AA

BB

CC

DD

AA
BB

CC

DD

Iteration
0.0

0.5

1.0

1.5

2.0

Realized per-iteration payment

2.4

2.7

3.0

3.3

3.6

3.9

So
ci

al
W

el
fa

re

Figure 1: Left: An extensive-form version of a stag hunt. Chance plays uniformly at random at
the root note, and the dotted line connecting the two nodes of Player 2 indicates an infoset: Player
2 cannot distinguish the two nodes. Introducing vanishing realized payments alters the gradient
landscape, steering players to the optimal equilibrium (star) instead of the suboptimal one (opposite
corner). The capital letters show the players’ initial strategies. Lighter color indicates higher welfare
and the star shows the highest-welfare equilibrium. Further details are in Appendix C.

to the players. Potential payments are payments that players would have received, had they played
different strategies.

We first consider the full-feedback (Section 5) setting where players’ payments may depend on
players’ full strategies. We present steering algorithms that establish under different computational
assumptions the first main result.
Theorem (Informal; precise versions in Theorem 5.2). For both normal-form and extensive-form

games, the decentralized steering problem can be solved under full feedback.

Intuitively, the mediator sends payments in such a way as to 1) reward the player a small amount
for playing the equilibrium, and 2) compensate the player for deviations of other players. Next,
we consider the more challenging bandit setting, wherein only game trajectories are observed. In
extensive-form games, this condition significantly restricts the structure of the payment functions,
and in particular rules out the full-feedback algorithm above. We show that the decentralized steering
problem under bandit feedback is information-theoretically impossible in the general case with
bounded potential payments.
Theorem (Informal; precise version in Theorem 5.4). For extensive-form games, the decentralized

steering problem is impossible under bandit feedback with bounded potential payments.

To circumvent this lower bound, we next allow the potential payments to depend on the time horizon,
while still insisting that they vanish in the limit.
Theorem (Informal; precise version in Theorem 5.6). For extensive-form games, if the payments may

depend on the time horizon, the decentralized steering problem can be solved under bandit feedback.

The proof of this theorem is more involved than the previous two. In particular, one might hope
that the desired equilibrium can be made (strictly) dominant by adding appropriate payments as in
k-implementation (Monderer & Tennenholtz, 2004). In extensive-form games, this is not the case:
there are games where making the welfare-optimal equilibrium dominant would require payments in
equilibrium, thereby inevitably leading to non-vanishing realized payments. Nevertheless, we show
that steering is possible despite even without dominance. This leads to the intriguing behavior where
some players may actually move farther from obedience before they move closer (compare Figure 1).
As such, we significantly depart from the approach of Monderer & Tennenholtz (2004); we elaborate
on this comparison and further related work in Appendix A.

Both previous positive results require computing an equilibrium upfront, which is both computa-
tionally expensive and not adaptive to players’ actions. We next analyze an online setting, where
the mediator employs an online regret minimization algorithm to compute an optimal equilibrium
while guiding the players toward it. As expected, algorithms for the online steering problem attain
slightly worse rates compared to algorithms for the offline problem. The rates we obtain for the
various versions of the steering problem all decay polynomially with the number of rounds, and we
highlight the time dependence in Table 1. We complement our theoretical analysis by implementing
and testing our steering algorithms in several benchmark games in Section 7.
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Table 1: Summary of our positive algorithmic results. We hide game-dependent constants and
logarithmic factors, and assume that regret minimizers incur a (typical) average regret of T�1/2.

Steering to Fixed Equilibrium Online Steering

Normal Form or Full Feedback T�1/4 (Theorem 5.2) T�1/6 (Theorem 6.5)

Extensive Form and Bandit Feedback T�1/8 (Theorem 5.6) Open problem

2 PRELIMINARIES

In this section, we introduce some basic background on extensive-form games.
Definition 2.1. An extensive-form game � with n players has the following components:

1. a set of players, identified with the set of integers JnK := {1, . . . , n}. We will use �i, for i 2 JnK,
to denote all players except i;

2. a directed tree H of histories or nodes, whose root is denoted ?. The edges of H are labeled with
actions. The set of actions legal at h is denoted Ah. Leaf nodes of H are called terminal, and the
set of such leaves is denoted by Z;

3. a partition H \Z = HC tH1 t · · ·tHn, where Hi is the set of nodes at which i takes an action,
and C denotes the chance player;

4. for each player i 2 JnK, a partition Ii of i’s decision nodes Hi into information sets. Every node
in a given information set I must have the same set of legal actions, denoted by AI ;

5. for each player i, a utility function ui : Z ! [0, 1] which we assume to be bounded; and
6. for each chance node h 2 HC, a fixed probability distribution c(· |h) over Ah.

At a node h 2 H , the sequence �i(h) of an agent i is the set of all information sets encountered by
agent i, and the actions played at such information sets, along the ? ! h path, excluding at h itself.
An agent has perfect recall if �i(h) = �i(h0) for all h, h0 in the same infoset. Unless otherwise stated
(Section 6), we assume that all players have perfect recall. We will use ⌃i := {�i(z) : z 2 Z} to
denote the set of all sequences of player i that correspond to terminal nodes.

A pure strategy of player i is a choice of one action in AI for each information set I 2 Ii. The
sequence form of a pure strategy is the vector xi 2 {0, 1}⌃i given by xi[�] = 1 if and only if
i plays every action on the path from the root to sequence � 2 ⌃i. We will use the shorthand
xi[z] = xi[�i(z)]. A mixed strategy is a distribution over pure strategies, and the sequence form of a
mixed strategy is the corresponding convex combination xi 2 [0, 1]⌃i . We will use Xi to denote the
polytope of sequence-form mixed strategies of player i.

A profile of mixed strategies x = (x1, . . . ,xn) 2 X := X1 ⇥ · · ·⇥Xn, induces a distribution over
terminal nodes. We will use z ⇠ x to denote sampling from such a distribution. The expected utility
of agent i under such a distribution is given by ui(x) := Ez⇠x ui(z). Critically, the sequence form
has the property that each agent’s expected utility is a linear function of its own sequence-form mixed
strategy. For a profile x 2 X and set N ✓ JnK, we will use the notation x̂N 2 RZ to denote the
vector x̂N [z] =

Q
j2N xj [z], and we will write x̂ := x̂JnK. A Nash equilibrium is a strategy profile

x such that, for any i 2 JnK and any x0
i 2 Xi, ui(x) � ui(x0

i,x�i).

3 THE STEERING PROBLEM

In this section, we introduce what we call the steering problem. Informally, the steering problem asks
whether a mediator can always steer players to any given equilibrium of an extensive-form game.
Definition 3.1 (Steering Problem for Pure-Strategy Nash Equilibrium). Let � be an extensive-form
game with payoffs bounded in [0, 1]. Let d be an arbitrary pure-strategy Nash equilibrium of �. The
mediator knows the game �, as well as a function R(T ) = o(T ), which may be game-dependent,
that bounds the regret of all players. At each round t 2 JT K, the mediator picks payment functions

for each player, p(t)i : X1 ⇥ · · ·⇥Xn ! [0, P ], where p(t)i is linear in xi and continuous in x�i, and
P defines the largest allowable per-iteration payment. Then, players pick strategies x(t)

i 2 Xi. Each
player i then gets utility v(t)i (xi) := ui(xi,x

(t)
�i) + p(t)i (xi,x

(t)
�i). The mediator has two desiderata.
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(S1) (Payments) The time-averaged realized payments to the players, defined as
maxi2JnK

1
T

PT
t=1 p

(t)
i (x(t)), converges to 0 as T ! 1.

(S2) (Equilibrium) Players’ actions are indistinguishable from the Nash equilibrium d. That is,
the directness gap, defined as 1

T

PT
t=1 Ez⇠x(t)(1� d̂[z]), converges to 0 as T ! 1.

The assumption imposed on the payment functions in Definition 3.1 ensures the existence of Nash
equilibria in the payment-augmented game (e.g., Glicksberg, 1952). Throughout this paper, we will
refer to players as direct if they are playing actions prescribed by the target equilibrium strategy d.
Critically, (S2) does not require that the strategies themselves converge to the direct strategies, i.e.,
x(t)
i ! di, in iterates or in averages. They may differ on nodes off the equilibrium path. Instead,

the requirement defined by (S2) is equivalent to the reach probability of every node not reached in

the equilibrium d converging to 0, so that, on path, the players play the equilibrium. Similarly, (S1)
refers to the realized payments p(t)i (x(t)), not the maximum offered payment maxx2X p(t)i (x).

For now, we will assume that a pure Nash equilibrium has been computed, and therefore our only
task is to steer the agents toward it. In Section 6 we show how our steering algorithms can be directly
applied to other equilibrium concepts such as mixed or correlated equilibria, and communication

equilibria, and to the case where the equilibrium has not been precomputed.

The mediator does not know anything about how the players pick their strategies, except that they
will have regret bounded by a function that vanishes in the limit and is known to the mediator.
This condition is a commonly adopted behavioral assumption (Nekipelov et al., 2015; Kolumbus
& Nisan, 2022b; Camara et al., 2020). The regret of Player i 2 JnK in this context is defined as

RegTXi
:=

1

P + 1

"
max
x⇤

i 2Xi

TX

t=1

v(t)i (x⇤
i )�

TX

t=1

v(t)i (x(t)
i )

#
.

That is, regret takes into account the payment functions offered to that player.1 The assumption of
bounded regret is realistic even in extensive-form games, as various regret minimizing algorithms
exist. Two notable examples are the counterfactual regret minimization (CFR) framework (Zinkevich
et al., 2007), which yields full-feedback regret minimizers, and IXOMD (Kozuno et al., 2021), which
yields bandit-feedback regret minimizers.

How large payments are needed to achieve (S1) and (S2)? If the mediator could provide totally
unconstrained payments, it could enforce any arbitrary outcome. On the other hand if the total
payments are restricted to be bounded, the steering problem is information-theoretically impossible:

Proposition 3.2. There exists a game and some function R(T ) = O(
p
T ) such that, for all B � 0,

the steering problem is impossible if we add the constraint
P1

t=1

Pn
i=1 p

(t)
i (x(t))  B.

(Proofs are in Appendix E unless otherwise stated.) Hence, a weaker requirement on the size of the
payments is needed. Between these extremes, one may allow the total payment to be unbounded, but
insist that the average payment per round must vanish in the limit.

4 STEERING IN NORMAL-FORM GAMES

We start with the example of normal-form games. A normal-form game, in our language, is simply
an extensive-form game in which every player has one information set, and the set of histories
correspond precisely to the set of pure profiles, i.e., for every pure profile x, we have x̂[z] = 1 for
exactly one terminal node z. This setting is, much more simple than the general extensive-form
setting which we will consider in the next section. In normal-form games, the strategy sets Xi are
simplices, Xi = �(Ai), where Ai is the action set of player i at its only decision point. In this
setting, we are able to turn to a special case of a result of Monderer & Tennenholtz (2004):
Theorem 4.1 (Costless implementation of pure Nash equilibria, special case of k-implementation,
Monderer & Tennenholtz, 2004). Let d be a pure Nash equilibrium in a normal-form game. Then

there exist functions p⇤i : X1⇥ · · ·⇥Xn ! [0, 1], with p⇤i (d) = 0, such that in the game with utilities

vi := ui + p⇤i , the profile d is weakly dominant: vi(di,x�i) � vi(xi,x�i) for every profile x.

1The division by 1/(P + 1) is for normalization, since v(t)i s has range [0, P + 1].
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Indeed, it is easy to check that the payment function

p⇤i (x) := (d>
i xi)

⇣
1�

Y

j 6=i

d>
j xj

⌘
,

which on pure profiles x returns 1 if and only if xi = di and xj 6= dj for some j 6= i, satisfies these
properties. Such a payment function is almost enough for steering: the only problem is that d is only
weakly dominant, so no-regret players may play other strategies than d. This is easily fixed by adding
a small reward ↵ ⌧ 1 for playing di. That is, we set

pi(x) := ↵d>
i xi + p⇤i (x) = (d>

i xi)
⇣
↵+ 1�

Y

j 6=i

d>
j xj

⌘
. (1)

On a high level, the structure of the payment function guarantees that the average strategy of any
no-regret learner i 2 JnK should be approaching the direct strategy di by making di the strictly
dominant strategy of player i. At the same time, it is possible to ensure that the average payment
will also be vanishing by appropriately selecting parameter ↵. With appropriate choice of ↵, this is
enough to solve the steering problem for normal-form games:
Theorem 4.2 (Normal-form steering). Let pi(x) be defined as in (1), set ↵ =

p
", where " :=

4nR(T )/T , and let T be large enough that ↵  1. Then players will be steered toward equilibrium,

with both payments and directness gap bounded by 2
p
".

5 STEERING IN EXTENSIVE-FORM GAMES

The extensive-form setting is significantly more involved than the normal-form setting, and it will
be the focus for the remainder of our paper, for two reasons. First, in extensive form, the strategy
spaces of the players are no longer simplices. Therefore, if we wanted to write a payment function
pi with the property that pi(x) = ↵ {x = d}+ {xi = di; 9j xj 6= dj} for pure x (which is what
was needed by Theorem 4.2), such a function would not be linear (or even convex) in player i’s
strategy xi 2 Xi (which is a sequence-form strategy, not a distribution over pure strategies). As such,
even the meaning of extensive-form regret minimization becomes suspect in this setting. Second, in
extensive form, a desirable property would be that the mediator give payments conditioned only on
what actually happens in gameplay, not on the players’ full strategies—in particular, if a particular
information set is not reached during play, the mediator should not know what action the player would

have selected at that information set. We will call this the bandit setting, and distinguish it from the
full-feedback setting, where the mediator observes the players’ full strategies.2 This distinction is
meaningless in the normal-form setting: since terminal nodes in normal form correspond to (pure)
profiles, observing gameplay is equivalent to observing strategies. (We will discuss this point in more
detail when we introduce the bandit setting in Section 5.2.)

We now present two different algorithms for the steering problem, one in the full-feedback setting,
and one in the bandit setting.

5.1 STEERING WITH FULL FEEDBACK

In this section, we introduce a steering algorithm for extensive-form games under full feedback.
Algorithm 5.1 (FULLFEEDBACKSTEER). At every round, set the payment function pi(xi,x�i) as

↵d>
i xi

| {z }
directness bonus

+ [ui(xi,d�i)� ui(xi,x�i)]

| {z }
sandboxing payments

� min
x0

i2Xi

[ui(x
0
i,d�i)� ui(x

0
i,x�i)],

| {z }
payment to ensure nonnegativity

(2)

where ↵  1/|Z| is a hyperparameter that we will select appropriately.

By construction, pi satisfies the conditions of the steering problem (Definition 3.1): it is linear in
xi, continuous in x�i, nonnegative, and bounded by an absolute constant (namely, 3). The payment
function defined above has three terms:

2To be clear, the settings are differentiated by what the mediator observes, not what the players observe. That
is, it is valid to consider the full-feedback steering setting with players running bandit regret minimizers, or the
bandit steering setting with players running full-feedback regret minimizing algorithms.
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1. The first term is a reward for directness: a player gets a reward proportional to ↵ if it plays di.
2. The second term compensates the player for the indirectness of other players. That is, the second

term ensures that players’ rewards are as if the other players had acted directly.
3. The final term simply ensures that the overall expression is nonnegative.

We claim that this protocol solves the basic version of the steering problem. Formally:
Theorem 5.2. Set ↵ =

p
", where " := 4nR(T )/T , and let T be large enough that ↵  1/|Z|. Then,

FULLFEEDBACKSTEER results in average realized payments and directness gap at most 3|Z|
p
".

5.2 STEERING IN THE BANDIT SETTING

In FULLFEEDBACKSTEER, payments depend on full strategies x, not the realized game trajectories.
In particular, the mediator in Theorem 5.2 observes what the players would have played even at
infosets that other players avoid. To allow for an algorithm that works without knowledge of full
strategies, p(t)i must be structured so that it could be induced by a payment function that only gives
payments for terminal nodes reached during play. To this end, we now formalize bandit steering.
Definition 5.3 (Bandit steering problem). Let � be an extensive-form game in which rewards are
bounded in [0, 1] for all players. Let d be an arbitrary pure-strategy Nash equilibrium of �. The
mediator knows � and a regret bound R(T ) = o(T ). At each t 2 JT K, the mediator selects a payment
function q(t)i : Z ! [0, P ]. The players select strategies x(t)

i . A terminal node z(t) ⇠ x(t) is sampled,
and all agents observe the terminal node that was reached, z(t). The players get payments q(t)i (z(t)),
so that their expected payment is p(t)i (x) := Ez⇠x q(t)i (z). The desiderata are as in Definition 3.1.

The bandit steering problem is more difficult than the non-bandit steering problem in two ways. First,
as discussed above, the mediator does not observe the strategies x, only a terminal node z(t) ⇠ x.
Second, the form of the payment function q(t)i : Z ! [0, P ] is restricted: this is already sufficient
to rule out FULLFEEDBACKSTEER. Indeed, pi as defined in (2) cannot be written in the form
Ez⇠x qi(z): pi(xi,x�i) is nonlinear in x�i due to the nonnegativity-ensuring payments, whereas
every function of the form Ez⇠x qi(z) will be linear in each player’s strategy.

We remark that, despite the above algorithm containing a sampling step, the payment function is
defined deterministically: the payment is defined as the expected value p(t)i (x) := Ez⇠x q(t)i (z).
Thus, the theorem statements in this section will also be deterministic.

In the normal-form setting, the payments pi defined by (1) already satisfy the condi-
tion of bandit steering. In particular, let z be the terminal node we have pi(x) =
Ez⇠x [↵ {z = z⇤}+ {xi = di; 9j xj 6= dj}]. Therefore, in the normal-form setting, Theorem 4.2
applies to both full-feedback steering and bandit steering, and we have no need to distinguish between
the two. However, in extensive form, as discussed above, the two settings are quite different.

5.2.1 LOWER BOUND ON REQUIRED PAYMENTS

Unlike in the full-feedback or normal-form settings, in the bandit setting, steering is impossible in the
general case in the sense that per-iteration payments bounded by any constant do not suffice.
Theorem 5.4. For every P > 0, there exists an extensive-form game � with O(P ) players, O(P 2)

nodes, and rewards bounded in [0, 1] such that, with payments q(t)i : Z ! [0, P ], it is impossible to

steer players to the welfare-maximizing Nash equilibrium, even when R(T ) = 0.

For intuition, consider the extensive-form game in Figure 2, which can be seen as a three-player
version of Stag Hunt. Players who play Hare (H) get a value of 1/2 (up to constants); in addition, if
all three players play Stag (S), they all get expected value 1. The welfare-maximizing equilibrium is
“everyone plays Stag”, but “everyone plays Hare” is also an equilibrium. In addition, if all players are
playing Hare, the only way for the mediator to convince a player to play Stag without accidentally
also paying players in the Stag equilibrium is to pay players at one of the three boxed nodes. But
those three nodes are only reached with probability 1/n as often as the three nodes on the left, so the
mediator would have to give a bonus of more than n/2. The full proof essentially works by deriving
an algorithm that the players could use to exploit this dilemma to achieve either large payments or
bad convergence rate, generalizing the example to n > 3, and taking n = ⇥(P ).
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Figure 2: The counterexample for Theorem 5.4, for n = 3. Chance always plays uniformly at
random. Infosets are linked by dotted lines (all nodes belonging to the same player are in the same
infoset).

5.2.2 BANDIT STEERING WITH LARGE OFF-PATH PAYMENTS

To circumvent the lower bound in Theorem 5.4, in this subsection, we allow the payment bound
P � 1 to depend on both the time limit T and the game. Consider the following algorithm.
Algorithm 5.5 (BANDITSTEER). Let ↵, P be hyperparameters. Then, for all rounds t = 1, . . . , T ,
sample z ⇠ x(t) and pay players as follows. If all players have been direct (i.e., if d̂[z] = 1), pay all
players ↵. If at least one player has not been direct, pay P to all players who have been direct. That
is, set q(t)i (z(t)) = ↵d̂[z] + Pdi[z](1� d̂[z]).

Theorem 5.6. Set the hyperparameters ↵ = 4|Z|1/2"1/4 and P = 2|Z|1/2"�1/4, where " :=
R(T )/T , and let T be large enough that ↵  1. Then, running BANDITSTEER for T rounds results

in average realized payments bounded by 8|Z|1/2"1/4, and directness gap by 2"1/2.

The proof of this result is more involved than those for previous results. One may hope that—as
in FULLFEEDBACKSTEER—the desired equilibrium can be made dominant by adding payments.
But this is impossible: in the smaller “stag hunt” game in Figure 1, for Player 2, Stag cannot be a
weakly-dominant strategy unless a payment is given at the boxed node, which would be problematic
because such payments would also appear in equilibrium, in violation of (S1). In fact, a sort of
“chicken-and-egg” problem arises: (S2) requires that all players converge to equilibrium. But for this
to happen, other players’ strategies must first converge to equilibrium so that i’s incentives are as they
would be in equilibrium. The main challenge in the proof of Theorem 5.6 is therefore to carefully set
the hyperparameters to achieve convergence despite these apparent problems.

6 OTHER EQUILIBRIUM NOTIONS AND ONLINE STEERING

So far, Theorems 5.2 and 5.6 refer only to pure-strategy Nash equilibria of a game. We now show
how to apply these algorithms to other equilibrium notions such as mixed-strategy or correlated
equilibrium. The key insight is that many types of equilibrium can be viewed as pure-strategy
equilibria in an augmented game. For example, an extensive-form correlated equilibrium of a game
� can be viewed as a pure-strategy equilibrium of an augmented game �0 in which the mediator
samples actions (“recommendations”) and the acting player observes those recommendations. Then,
in �0, the goal is to guide players toward the pure strategy profile of following recommendations.

We now formalize these ideas. For this section, let � refer to a mediator-augmented game (Zhang &
Sandholm, 2022), which has n+ 1 players i 2 JnK [ {0}, where player 0 is the mediator. We will
assume the revelation principle, which allows us to fix a target pure strategy profile d that we want to
make the equilibrium profile for the non-mediator players. We will write �µ to refer to the n-player
game in which the mediator is fixed to playing the strategy µ.

7
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Definition 6.1. An equilibrium in the mediator-augmented game � is a strategy µ 2 X0 for the
mediator such that d is a Nash equilibrium of �µ. An equilibrium µ is optimal if, among all equilibria,
it maximizes the mediator’s objective u0(µ,d).

By varying the construction of the augmented game �, the family of solution concepts for extensive-
form games captured by this framework includes, but is not limited to, normal-form coarse corre-
lated equilibrium (Aumann, 1974; Moulin & Vial, 1978); extensive-form correlated equilibrium
(EFCE)3 (von Stengel & Forges, 2008); communication equilibrium (Forges, 1986); mechanism
design; and information design/Bayesian persuasion (Kamenica & Gentzkow, 2011).

Unlike the offline setting (where the target equilibrium is given to us), in the online setting we
can choose the target equilibrium. In particular, we would like to steer players toward an optimal

equilibrium µ, without knowing that equilibrium beforehand. To that end, we add a new criterion:

(S3) (Optimality) The mediator’s reward should converge to the reward of the optimal equilibrium.
That is, the optimality gap u⇤

0 � 1
T

PT
t=1 u0(µ(t),x(t)), where u⇤

0 is the mediator utility in
an optimal equilibrium, converges to 0 as T ! 1.

In Appendix D, we discuss why it is in some sense necessary to allow the mediator to give recom-
mendations, not just payments, if the target equilibrium is not pure.

Since equilibria in mediator-augmented games are just strategies µ under which d is a Nash equi-
librium, we may use the following algorithm to steer players toward an optimal equilibrium of �:

Algorithm 6.2 (COMPUTETHENSTEER). Compute an optimal equilibrium µ. With µ held fixed,
run any steering algorithm in �µ.

As observed earlier, the main weakness of COMPUTETHENSTEER is that it must compute an
equilibrium offline. To sidestep this, in this section we will introduce algorithms that compute the
equilibrium in an online manner, while steering players toward it. Our algorithms will make use of a
Lagrangian dual formulation analyzed by Zhang et al. (2023).
Proposition 6.3 (Zhang et al. (2023)). There exists a (game-dependent) constant �⇤ � 0 such that,

for every � � �⇤
, the solutions µ to

max
µ2X0

min
x2X

u0(µ,d)� �
nX

i=1

[ui(µ,xi,d�i)� ui(µ,di,d�i)], (3)

are exactly the optimal equilibria of the mediator-augmented game.

Algorithm 6.4 (ONLINESTEER). The mediator runs a regret minimization algorithm R0 over its
own strategy space X0, which we assume has regret at most R0(T ) after T rounds. On each round,
the mediator does the following:

• Get a strategy µ(t) from R0. Play µ(t), and set p(t)i as defined in (2) in �µ(t)

.
• Pass utility µ 7! 1

�u0(µ,d) �
Pn

i=1

h
ui(µ,x

(t)
i ,d�i)� ui(µ,di,d�i)

i
to R0, where

� � 1 is a hyperparameter.

Theorem 6.5. Set the hyperparameters ↵ = "2/3|Z|�1/3
and � = |Z|2/3"�1/3, where " :=

(R0(T )+4nR(T ))/T is the average regret bound summed across players, and let T be large enough

that ↵  1/|Z|. Then running ONLINESTEER results in average realized payments, directness gap,

and optimality gap all bounded by 7�⇤|Z|4/3"1/3.

The argument now works with the zero-sum formulation (3), and leverages the fact that the agents’
average strategies are approaching the set of Nash equilibria since they have vanishing regrets. Thus,
each player’s average strategy should be approaching the direct strategy, which in turn implies that
the average utility of the mediator is converging to the optimal value, analogously to Theorem 5.2.

ONLINESTEER has a further guarantee that FULLFEEDBACKSTEER does not, owing to the fact that
it learns an equilibrium online: it works even when the players’ sets of deviations, Xi, is not known
upfront. In particular, the following generalization of Theorem 6.5 follows from an identical proof.

3This requires the mediator to have imperfect recall.
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1Figure 3: Sample experimental results. The blue line in each figure is the social welfare (left y-axis)
of the players with steering enabled. The green dashed line is the social welfare without steering.
The yellow line gives the payment (right y-axis) paid to each player. The flat black line denotes the
welfare of the optimal equilibrium. The panels show the game, the equilibrium concept (in this figure,
always EFCE). In all cases, the first ten iterations are a “burn-in” period during which no payments
are issued; steering only begins after that.

Corollary 6.6. Suppose that each player i, unbeknownst to the mediator, is choosing from a subset

Yi ✓ Xi of strategies that includes the direct strategy di. Then, running Theorem 6.5 with the same

hyperparameters yields the same convergence guarantees, except that the mediator’s utility converges

to its optimal utility against the true deviators, that is, a solution to (3) with each Xi replaced by Yi.

At this point, it is very reasonable to ask whether it is possible to perform online steering with bandit

feedback. In normal-form games, as with offline setting, there is minimal difference between the
bandit and the full-feedback setting. This intuition carries over to the bandit setting: ONLINESTEER
can be adapted into an online bandit steering algorithm for normal-form games, with essentially the
same convergence guarantee. We defer the formal statement of the algorithm and proof to Appendix F.

The algorithm, however, fails to extend to the extensive-form online bandit setting, for the same
reasons that the offline full-feedback algorithm fails to extend to the online setting.

7 EXPERIMENTAL RESULTS

We ran experiments with our BANDITSTEER algorithm (Algorithm 5.5) on various notions of
equilibrium in extensive-form games, using the COMPUTETHENSTEER framework suggested by
Algorithm 6.2. Since the hyperparameter settings suggested by Algorithm 5.5 are very extreme, in
practice we fix a constant P and set ↵ dynamically based on the currently-observed gap to directness.
We used CFR+ (Tammelin, 2014) as the regret minimizer for each player, and precomputed a welfare-
optimal equilibrium with the LP algorithm of Zhang & Sandholm (2022). In most instances tested, a
small constant P (say, P  8) is enough to steer CFR+ regret minimizers to the exact equilibrium
in a finite number of iterations. Two plots exhibiting this behavior are shown in Figure 3. More
experiments, as well as descriptions of the game instances tested, can be found in Appendix G.

8 CONCLUSIONS AND FUTURE RESEARCH

We established that it is possible to steer no-regret learners to optimal equilibria using vanishing
rewards, even under bandit feedback. There are many interesting avenues for future research.
First, is there a natural bandit online algorithm that combines the desirable properties of both
ONLINESTEER and BANDITSTEER? Also, it is important to understand the best rates attainable
for the different settings of the steering problem. Furthermore, is there a steering algorithm for which
the mediator needs to know even less information about the game upfront? For example, could a
mediator without knowledge of the players’ utilities still steer toward optimal equilibria? Finally,
our main behavioral assumption throughout this paper is that players incur vanishing average regret.
Yet, stronger guarantees are possible when specific no-regret learning dynamics are in place; e.g.,
see (Vlatakis-Gkaragkounis et al., 2020; Giannou et al., 2021a;b) for recent characterizations in the
presence of strict equilibria. Concretely, it would be interesting to understand the class of learning
dynamics under which the steering problem can be solved with a finite cumulative budget.
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