Published as a conference paper at ICLR 2022

RESOLVING TRAINING BIASES VIA INFLUENCE-
BASED DATA RELABELING

Shuming Kong, Yanyan Shen, Linpeng Huang
Department of Computer Science and Engineering
Shanghai Jiao Tong University

{leinuol23, shenyy, lphuang}@sjtu.edu.cn

ABSTRACT

The performance of supervised learning methods easily suffers from the training
bias issue caused by train-test distribution mismatch or label noise. Influence func-
tion is a technique that estimates the impacts of a training sample on the model’s
predictions. Recent studies on data resampling have employed influence functions
to identify harmful training samples that will degrade model’s test performance.
They have shown that discarding or downweighting the identified harmful train-
ing samples is an effective way to resolve training biases. In this work, we move
one step forward and propose an influence-based relabeling framework named
RDIA for reusing harmful training samples toward better model performance. To
achieve this, we use influence functions to estimate how relabeling a training sam-
ple would affect model’s test performance and further develop a novel relabeling
function R. We theoretically prove that applying R to relabel harmful training
samples allows the model to achieve lower test loss than simply discarding them
for any classification tasks using cross-entropy loss. Extensive experiments on
ten real-world datasets demonstrate RDIA outperforms the state-of-the-art data
resampling methods and improves model’s robustness against label noise.

1 INTRODUCTION

Training data plays an inevitably important role in delivering the model’s final performance. It
has been well recognized that the training bias issue will compromise model performance to a large
extent (Arpit et al.L[2017). Specifically, there are two major scenarios where training biases show up.
The first and most common scenario is that training samples involve corrupted labels that could be
originated at possibly every step of the data lifecycle (Anderson & McGrew, 2017} |Dolatshah et al.,
2018 |Pei et al.| 2020; [Yu & Qinl [2020). The second scenario is that the training and test sets are
sampled from the respective distributions Piy.qin (2, y) and Piest(,y), but Pypqip is different from
Pyest (Guo et al., 20205 He & Garcial [2009; Zou et al.,2019). Both corrupted labels and distribution
mismatch will hurt the generalization ability of a trained model (Fang et al.,2020;Zhang et al., 2017}
Chen et al., |2021). We generally refer to training samples with corrupted labels or those inducing
distribution mismatch as harmful samples.

Data resampling is a widely used strategy to deal with harmful training samples. Existing resam-
pling approaches (Chawla et al., [2002; Mahmoody et al., 2016; Malach & Shalev-Shwartz, 2017
Ren et al., |2018) propose to assign different weights to training samples, which aim to mitigate the
negative impacts of harmful samples on model’s generalization ability. Among them, most resam-
pling approaches (Arazo et al., 2019; Han et al., 2018; |L1 et al., |2020; 'Wang et al., 2020a) rely on
training loss to identify harmful samples from the whole training set. They follow the insight that
the samples with higher training losses are very likely to have corrupted labels, and hence it is of-
ten beneficial to downweight them during the process of model training. However, such loss-based
resampling methods have two limitations. First, they are only able to deal with the training biases
caused by training samples with corrupted labels (aka noisy samples). Second, the small-loss trick
typically holds true for deep models but not for any predictive models (Zhang et al.| 2017). To
address the limitations, one recent work (Wang et al.| [2020b)) proposes a new resampling scheme
based on influence functions (Cook & Weisberg,|1980). The idea is to estimate the influence of each
training sample on model’s predictions over the test set. Any training samples that would cause an

Published as a conference paper at ICLR 2022

increase in the test loss are considered as harmful and will be downweighted afterwards. It is worth
mentioning that the influence functions have been proved to deal with two forms of training biases
effectively, and it is agnostic to a specific model or data type (Koh & Liang||[2017;|Koh et al.|[2019).

Inspired by the success of influence-based data resampling, in this paper, we would like to ask
the following question: what would happen if we relabel harmful training data based on influence
analysis results? Our motivations on performing data relabeling via influence analysis are twofold.
(i) Relabeling noisy samples is able to prevent the model from memorizing the corrupted labels. (ii)
Relabeling clean but biased samples is helpful to improve model’s robustness to harmful samples.
Despite the potential benefits of data relabeling, it is still challenging to develop an influence-based
relabeling approach that has a theoretical guarantee on the model’s performance improvement after
training with relabeled data.

To answer the question, we first follow (Koh et al.,2019) to measure the influence of each training
sample on model’s predictions and identify the harmful training samples which would cause an
increase in the test loss. Next, we investigate whether relabeling the identified harmful samples
rather than discarding them can improve the test performance. To achieve this, we start from binary
classification tasks where relabeling a training sample is to convert its binary label from y to 1 — y.
We theoretically prove that relabeling harmful training data via influence analysis can achieve lower
test loss than simply discarding them for binary classification. Furthermore, we design a novel
relabeling function R for multi-class classification tasks and prove that the advantage of relabeling
the identified harmful samples using R in reducing model’s test loss still holds. Following the
influence-based resampling approaches (Wang et al.| 2018} [Ting & Brochul 2018 Ren et al.| 2020
Wang et al.l [2020b), we only use the test loss for theoretical analysis and empirically calculate
influence function with a small but unbiased validation set by assuming the validation set is sampled
from the same distribution as the test set. In this way, using the validation loss to calculate the
influence function is an unbiased estimation of the true influence function. Otherwise, the problem
may lie in the category of transfer learning which is beyond the scope of this work.

To summarize, this work makes the following contributions. First, we propose to combine influence
functions with data relabeling for reducing training biases and we develop an end-to-end influence-
based relabeling framework named RDIA that reuses harmful training samples toward better model
performance. Second, we design a novel relabeling function R and theoretically prove that ap-
plying R over harmful training samples identified by influence functions is able to achieve lower
test loss for any classification tasks using cross-entropy loss function. Third, we conduct extensive
experiments on real datasets in different domains. The results demonstrate that (i) RDIA is effec-
tive in reusing harmful training samples towards higher model performance, surpassing the existing
influence-based resampling approaches, and (ii) RDIA improves model’s robustness to label noise,
outperforming the current resampling methods by large margins.

2 BACKGROUND

Let D = {(x;,y;) € X xY | 1 < i < N} be the training set which are sampled from
Pirain(z,y). Let 2z; = (x;,v;) where z; € R% and y; € RE. Let ¢(z,6) be a model’s predic-
tion for x, where § € RP? is the parameter set of the model. We denote the loss of sample z; by
1(z:,0) = L(y;, p(x;,0)) and use I;(0) to represent [(z;, §). We consider the standard empirical risk
minimization (ERM) as the optimization objective. Formally, the empirical risk over D is defined
as: L(D;0) = + Z@Z\; 1;(9). Since our relabeling function is dependent to the loss function, we
focus on the most effective and versatile loss, i.e., Cross Entropy loss for any classification tasks.

Influence functions. Influence functions, stemming from Robust Statistics (Huber, 2004), have
provided an efficient way to estimate how a small perturbation of a training sample would change
the model’s predictions (Koh & Liang, 2017; Koh et al. 2019; [Yu et al, 2020). Let 8 =

arg ming % Zle 1,,(0) be the optimal model parameters on convergence. When upweighting a
training sample z; on its loss term by an infinitesimal step ¢€;, we obtain the new optimal parameters

0., on convergence as : 0., = arg m@in % Efj:l 1,,(0;)+¢€;1;(0). Based on influence functions (Cook

& Weisberg, |1980; |Koh & Liang,|2017), we have the following closed-form expression to estimate

Published as a conference paper at ICLR 2022

the change in model parameters when upweighting z; by ¢;:

dé., - 5
Vo) 2 Gt lemo= —Hy 'Voli(0), M
where Hy £ L+ Zﬁ;l V21, () is the Hessian matrix and V31,,(0) is the second derivative of the loss
at training point z,, with respect to #. Using the chain rule, we can estimate the change of model’s
prediction at a test data 2§ sampled from the given test distribution Pyes; (Koh & Liang, 2017) :

e o dl;(0e, N R
D9 (2, zj) £ %‘6120: —Vglj(e)Hé 1V9l¢(9). 2)
At a fine-grained level, we can measure the influence of perturbing training sample z; from (z;, ;)
to (z;,y; + 0). Let z;5 = (x4, y; + ¢) and the new loss I;(2;s5,0) = L(y; + 0, p(x;,0)). According
to (Koh & Liang| 2017), the optimal parameters 6., s, after performing perturbation on z; is 0,5, =
arg mein + 22]:1 1,(0) + €:li(2i5,0) — €;1;(0). This allows us to estimate the change in model

parameters after the fine-grained data perturbation using influence functions as:
df.,s,
de, lei=0 = o(zis) — o (2:) 3)

= —H; ' (Voli(zis,0) — Voli(0)).

Further, the influence of perturbing z; by z;5 on model’s prediction at test sample z{ is the following:

¢ dil; oéisi
nos (i, 2§) = 7]36_’)|ei:O @
= —Vglj(é)Hé_l(Vgli(Zw, é) — Vgll(é))

It is important to notice that Eq. (4) holds for arbitrary é when ¢; is approaching 0. This provides the
feasibility of measuring how relabeling a training samples could influence the model’s predictions.

Influence-based resampling approaches. Previous researches (Koh & Liang, 2017 Wang et al.,
2020b) have shown that influence functions have strong ability to identify harmful samples from
the whole training set, which is agnostic to the specific model or data structure. Inspired by this,
many influence-based resampling approaches (Ting & Brochul 2018; Wang et al.l 2018} 2020b)
proposed to discard or downweight the identified harmful samples to reduce the test loss. However,
different from previous works which focus on estimating the influence of each training sample on the
test performance using Eq. (I)-(2), we perform the fine-grained perturbation on a training sample’s
label and evaluate its influence using Eq. (3)-(). Further, our work tries to build an end-to-end
influence-based relabeling framework to reuse the harmful samples with a theoretical guarantee on
the final model performance for any classification tasks. To be specific, we demonstrate that harmful
training instances after being relabeled properly do make contributions to improve the final model
performance, which provides a novel viewpoint on handling biased training data.

3 METHODOLOGY

Assume we have Q = {(z§,y5) € X x V[1 < j < M} sampled from the test distribution Py
and our objective is to minimize the test risk L(Q; 6) = 57 Z;‘il [5(0). Due to the harmful training

samples in D, the optimal 6 which minimizes the empirical risk over training set D may not be
the best risk minimizer over). To solve this issue, we propose a novel data relabeling framework
named RDIA which aims to identify and reuse harmful training instances towards better model
performance. We design a relabeling function R that allows the model to achieve lower test risk
after being trained with the relabeled harmful instances for any classification tasks. In what follows,
we first give an overview of the RDIA framework. Then we describe the details of the major steps
in RDIA and provide theoretical analysis on how the relabeled harmful samples are useful to further
reduce the test risk. The algorithm of RDIA could be found in Appendix

3.1 OVERVIEW OF RDIA

Figure[I|provides an overview of RDIA, which consists of four major steps: Model training, Harm-
ful samples identification, Relabeling harmful samples via influence analysis and Model retraining.

Published as a conference paper at ICLR 2022

Validation set o _
Training set D Training set D

Relabeling
function ~ D_

Buurel)
Buiurenay
18poN

uonouny

=]
=2
c
@
=]
Q
@

L Step 1 | Step 11 L Step 11T | Step IV |
! | I i |

Figure 1: The overview of RDIA. We devise relabeling function R to change the labels of the
identified harmful training samples in D_.

Step I: Model training is to train a model based on the training set D until convergence and get the
model parameters 6.

Step II: Harmful samples identification is to compute the influence of perturbing the loss term of
each training sample z; € D on test risk using Eq. (2) and then use it to identify the harmful training
samples from D. We denote the set of identified harmful training samples as D_ and the set of
remaining training instances as Dy . The details of this step are provided in Section 3.2}

Step III: Relabeling harmful samples via influence analysis is to apply the relabeling function to
modify the label of each identified harmful training sample in D_ and obtain the set of relabeled
harmful training samples denoted as D’ . We introduce our relabeling function R and theoretically

prove that updating the model’s parameters with new training set D=D"U D can achieve lower
test risk over) than simply discarding or downweighting D_ in Section[3.3]

Step IV: Model retraining is to retrain the model using D till convergence to get the final optimal
parameters 0. .

3.2 HARMFUL SAMPLES IDENTIFICATION

In the second step, we compute D_ C D which contains harmful training samples from the original
training set D. Intuitively, a training sample is harmful to the model performance if removing it from
the training set would reduce the test risk over (). Based on influence functions, we can measure one
sample’s influence on test risk without prohibitive leave-one-out training. According to Eq. (I)-(2),
if we add a small perturbation ¢; on the loss term of z; to change its weight, the change of test loss
at a test sample 2§ € @ can be estimated as follows:

125, 0c,) — U(=5,0) ~ €& x Po(zi,25),)

where @y (-, -) is computed by Eq. . We then estimate the influence of perturbing z; on the whole
test risk as follows:

M
(Q,0.,) — Q. 0) = e x > Po(zi, 25). (©6)
J=1
Henceforth, we denote by ®y(z;) = Z;\il ®g(zi, 25) the influence of perturbing the loss term of

z; on the test risk over). It is worth mentioning that given ¢; € [f%, 0), Eq. (EI) computes the
influence of downweighting or discarding the training sample z;. We denote D_— = {z; € D |
®y(z;) > 0} as harmful training samples. Similar to (Wang et al., |2020b)), we assume that each
training sample influences the test risk independently. We derive the Lemma [T

Lemma 1. Discarding or downweighting the training samples in D_ = {z; € D | ®g(z;) > 0}
from D could lead to a model with lower test risk over Q:

LQ.0) -~ LQ.O) =5 3 () <0, ™

z;€D_

where 0. denotes the optimal model parameters obtained by updating the model’s parameters with
discarding or downweighting samples in D _.

Published as a conference paper at ICLR 2022

Lemma [I] explains why influence-based resampling approaches have strong ability to resolve train-
ing biases and the proof of Lemmal[I]is provided in Appendix [B] In practice, to further tolerate the
estimation error in @y (z;) which may result in the wrong identification of harmful training samples,
we select D_ = {z; € D | ®y(z;) > a} where the hyperparameter o controls the proportion of
harmful samples to be relabeled eventually. We conduct the experiment to show the effects of o and
the validation set in Section[5.3

3.3 RELABELING HARMFUL SAMPLES VIA INFLUENCE ANALYSIS

In the third step, we propose a relabeling function R and ensure the test risk would be reduced after
training with the relabeled harmful samples D’ . To achieve this, we start from a special case (i.e.,
binary classification) and then extend to any classification tasks.

Relabeling harmful instances on binary classification. We start with binary classification where
the relabeling function R is straightforward. Since the label set Y is {0, 1}, we have R(z) =1 —y
for any z = (x,y) € D. Recall that ¢(x;, §) denotes the model output for z; and the training loss
of z; = (x;,y;) € Dis: [;(0) = —y; log(w(x;,0)) — (1 — y;) log(1l — p(z4,0))

To compute the influence of relabeling a training sample z; in D, we first consider the case that
y; = 1 and R(z;) = 0. The loss [;(6) at z; is changed from — log(¢(z;,0)) to —log(1 — ¢(z;,0)).
Letting z;r = (l’i, 1-— yi) and ’UJ(ZZ', 9) = Vgli(ZiR, 9) — Veli(e), we have:

—Veli(O)

w(zi,0) = —Vglog(l — p(z:,0)) + Vo log(p(zi, 0)) = 1—p(x:,0)

)
According to Eq. (2)),@) and (8), the influence of relabeling z; on model’s prediction at test sample

z; is:

Veli(é) . *4)9(31':2;')
B 1—90(%9)) L= (@i, 0)
Similarly, when the label y; ip z;1s 0 and R(z;) = 1, we can derive the influence of relabeling z; at
2§ as mer(2i, 25) = 7_(1;?;29?’)
to Eq. @, we could extend the influence of relabeling z; at zf to the whole test risk over () as:

(C)]

nor(2i, 25) = —Vol; (0)H; 'w(z:,0) = —Velj(é)Hgl(

. Let ée,- R, denote the optimal parameters after relabeling z;. Similar

M
UQ,0c,r,) — UQ,0) ~ € x > _mor(zi, 25). (10)
j=1
According to Eq. @), the influence of relabeling training samples 1p g (z;, zj) is related to the influ-
ence of perturbing the loss term of training samples, i.e., g (z;, z]c) In this way, the change of test
risk by relabeling z; (Eq. (I0)) and that by perturbing z; (Eq. (6)) are interrelated. Then we derive
the Theorem [I] and the proof can be found in Appendix

Theorem 1. In binary classification, let o be the infimum of 1105;(;’%) and 1;(0;@5)@) and D_ =

{z; € D | ®y(z;) > 0}. Relabeling the samples in D_ can achieve lower test risk than discarding
or downweighting them from D, because the following inequality holds.

L(Q,6er) = L(Q.0) = =3 Y Pa(z) <0. (11

z;€D_

Theorem [1| shows that relabeling the samples in D_ could achieve lower test risk than simply dis-
carding or downweighting D _ from the training set for binary classification tasks. We then provide
some intuitions on the benefits of relabeling harmful training samples. In the context of binary clas-
sification, if a training sample z in D_ is noisy, our relabeling method corrects the label noise and
improve training data quality; otherwise, z is very likely to be biased due to its negative impact on
the test risk, and relabeling it might improve model’s robustness.

Relabeling harmful instances on any classification tasks. We now introduce a relabeling function
‘R that can be used for any classification tasks. For a classification problem with K class labels
(K > 2), we represent each label y as a K-dimensional one-hot vector. The CE loss at z; is:
1;(0) = — Zle Yi.r log(wk(z;,0)). Intuitively, the proposed relabeling function R should satisfy
the following principles:

Published as a conference paper at ICLR 2022

« Consistency: R should produce a K-dimensional label vector: R(z;,v;) = v, € [0,1]%.

* Effectiveness: applying R over harmful training samples D_ should guarantee the resul-
tant test risk is no larger than the one achieved by simply discarding them.

For the consistency principle, we require the new label y; to be K -dimensional where ¥, describes

the likelihood that z; takes the k-th class label, k& € [1, K]. Here we do not require Zszl Yl to be
one, because we focus on leveraging the identified harmful training samples towards better model
performance instead of finding their truth labels.

Consider a training sample z; = (x;, y;) belonging to the m-th class (m € [1, K]), i.e., yjm = 1.
Let R(z;,y;) = vy}, we propose the following relabeling function R that fulfills the above two

principles:
0 itk=m
fo=19" 12

Yisk {log% YT —¢m, otherwise ’ (12)

where o(z;,0) = (1, ,@K) is the probability distribution over K classes produced by the

model with parameters 0, i.e., ¢; € [0,1] and Ef; p; = 1. Tt is easy to check that our proposed
relabeling function R in Eq. (I2) satisfies the first principle. Interestingly, we can verify that for
K =2, we have R(z;) = 1 — y;. We further prove the effectiveness of R using the Lemma 2}

Lemma 2. When applying the relabeling function R in Eq. over a training sample z; € D with
a class label m, the CE loss 1;(0) at z; is changed from —log(@m (24, 0)) to —log(1 — o (z:,0)).

It is interesting to verify the change in loss /;(f) acts as an extension of the binary classification.
Similar to Theorem 1, we can drive the following theorem using Eq. (9)-(10).

Theorem 2. In multi-class classification, let v, (x;,0) denote the probability that z; is classified
as its truth class label by the model with the optimal parameters 6 on D, and o be the infimum of
%. Relabeling the samples in D_ = {z; € D | ®y(z;) > 0} with R leads to a test risk
lower than the one achieved by discarding or downweighting D_. Formally, we have:

L(Q.0er) = L(Q.00) ~ =3 > ®o(z:) <0. (13)

z;€D_

Theorem |2| shows that using our proposed relabeling R can further reduce the test risk than simply
discarding or downweighting D_ from the training set for any classification tasks. The detailed
proofs of Lemma [2]and Theorem [2]are provided in Appendix [B]

4 DISCUSSIONS

In this section, we provide numerical analysis on the superior performance of RDIA against other
influence-based resampling approaches (Wang et al., 2018} [2020b). Then we discuss the extension
of RDIA in exploiting training loss information.

Numerical analysis. Consider a training point z; € D_ belonging to class m, where D_ is specified
in Section According to Eq. , if we use R to assign z; with a new label y; = R(z;) instead
of discarding or downweighting z;, the difference in the test risk over () can be computed as:

A A 1 m iae
9(z:) = 1i(Q,0¢,=;) — 1:(Q, 0e,) = N %‘DG(%) (14)

z; € D_ means the ®y(z;) in Eq. is positive, and hence we have g(z;) < 0. If the model’s

prediction for z; with the optimal parameters 6 is correct, ., (x;, 8) is the largest component in the

vector ¢(x;,0). We consider z; as a more harmful sample because it has negative influence on the
test loss yet the model has learnt some features from z; that connects x; to class m. In practice, z;
is very likely to be a noisy or biased training sample. Interestingly, from Eq. (14)), we can see that

a small increase in ¢,, (z;,) will lead to a rapid increase in g(z;). This indicates relabeling such
more harmful training samples leads to significant performance gain.

Extension of RDIA. In practice, due to the complexity of calculating the influence functions, iden-
tifying harmful samples via influence analysis could incur high computational cost, especially when

Published as a conference paper at ICLR 2022

training complex models like deep neural networks. To address the problems, we further extend
RDIA by using training loss to identify harmful samples for deep models, and we dub this extension
as RDIA-LS. We empirically show that RDIA-LS is effective and efficient to handle training data
with corrupted labels for deep learning, which spotlights the great scalability of our approach. The
details of RDIA-LS are provided in Appendix [F

5 EXPERIMENTS

In this section, we conduct experiments to evaluate the effectiveness and robustness of our RDIA.
We also perform the ablation study to show how hyperparameter o and the size of validation set
affect the performance of RDIA. The visualization of identified harmful samples and comparison
with other loss-based approaches are provided in Appendix [D]and Appendix [G|

5.1 EXPERIMENTAL SETTINGS

Datasets. To verify the effectiveness of RDIA, we perform extensive experiments on ten public

data sets from different domains, including NLP, CV, CTR, etc. Since all the datasets are clean, we

build a noise transition matrix P = {P;; } k x k to verify the robustness of our proposed approaches

for combating noisy labels, where K denotes the class number and P;; denotes the probability of a

clean label ¢ being flipped to a noisy label j. In our experiment, we use the noise ratio 7 to determine

the rate of how many labels are manually corrupted and each clean label has the same probability of
T

being flipped to other classes, i.e., P;; = . More details about the statistics of the datasets and

Tr-Va-Te divisions are provided in Appendix [C|

Comparison methods. We compared our proposed relabeling method RDIA with the following
baselines, all of which are agnostic of specific model or data structure. (1) ERM: it means training
a model with all the training data with the cross-entropy loss. (2) Random: it is a basic relabel-
ing method that randomly selects and changes the label of training samples. (3) OptLR (Ting &
Brochul 2018): it is a weighted sampling method which assigns each training sample with a weight
proportional to its impact on the change in model’s parameters . Specifically, the weight of z; is
max{a, min{1, \pg(z;)}}. We set @ and A to be 1/ max{1g(z;)} and 1/ max{®y(z;)}, respec-
tively. (4) Dropout (Wang et al., 2018)): it is an unweighted subsampling method which simply
discards D_ from the training set, i.e., removing all training data with negative influence on the test
loss. (5) UIDS (Wang et al., 2020b): it it is an unweighted subsampling method which uses Lin-
ear sampling method or Sigmoid sampling method to resample the training data based on influence
functions ®y(z;). It is the best-performing method among all the existing influence-based methods.

We implemented all the comparison methods by using their published source codes in Pytorch and
ran all the experiments on a server with 2 Intel Xeon 1.7GHz CPUs, 128 GB of RAM and a single
NVIDIA 2080 Ti GPU. All the baselines are tuned with clean validation data for best model perfor-
mance. To measure the performance of all the approaches, we followed (Wang et al., 2020b) and
used the test loss as the metric since we aim to optimize the test loss via influence analysis.

Implementation details. For each of the ten datasets, we adopted logistic regression (convex op-
timization) as the binary classifier (for MNIST and CIFAR10, we randomly choose two classes to
perform binary classification). As for multi-class classification, we implemented two deep models
(non-convex optimization), LeNet (2 convolutional layers and 1 fully connected layers) and a CNN
with 6 convolutional layers followed by 2 fully connected layers used in (Wang et al., 2019) on
MNIST and CIFAR10. The hyperparameter « is also tuned in [0, 0.001, 0.002, ...,0.01] with the
clean validation set for best performance. More detailed settings are provided in Appendix

5.2 EXPERIMENTAL RESULTS

Effectiveness of RDIA. To verify the effectiveness of RDIA , we conduct experiments on 10 clean
datasets with three different models. The experiments are repeated 5 times and the averaged test loss
with standard deviation results are reported in Table [I|and Table 2] We have the following important
observations.

First, our proposed RDIA yields the lowest test loss over 9 out of 10 datasets using logistic re-
gression. It outperforms ERM on all the datasets, which indicates the effectiveness of relabeling

Published as a conference paper at ICLR 2022

Table 1: Performance comparison results with logistic regression on binary classification task. Av-
erage test loss (+std) over 5 repetitions are reported.

Dataset ERM Random OptLR Dropout UIDS RDIA

Breast-cancer 0.0914 0.2619 £0.0102 0.0934 +0.0015 0.0731 £0.0014 0.0786 £ 0.0006 0.0649 + 0.0001
Diabetes 0.5170 0.5461 £0.0006 0.5232+0.0012 0.5083 £0.0008 0.5068 +0.0004 0.4920 + 0.0002
News20 0.5157 0.5247 £0.0028 0.5253 +0.0021 0.5072 £0.0019 0.5075 £0.0012 0.5007 £ 0.0015
Adult 0.3383 0.3381 £0.0001 0.3547 +0.0001 0.3383 +0.0001 0.3383 £0.0001 0.3383 +0.0001
Real-sim 0.2606 0.2638 £0.0025 0.2884 +0.0151 0.2605 +£0.0024 0.2607 +£0.0031 0.2575 + 0.0021
Criteo1% 04911 0.4919+0.0011 0.4914 £0.0007 0.4995+0.0025 0.4895+0.0012 0.4894 + 0.0010
Covtype 0.6936 0.6906 +0.0029 0.6907 £0.0026 0.6843 £0.0023 0.6784 £0.0032 0.6776 + 0.0024
Avazu 0.3449 0.3449+0.0002 0.3450+£0.0002 0.3576 £0.0001 0.3447 £0.0001 0.3447 + 0.0001
MNIST 0.0245 0.2543 £0.0005 0.0239 £0.0004 0.0221 £0.0002 0.0238 £0.0003 0.0207 + 0.0001
CIFARI10 0.5952 0.6174 +0.0025 0.6163 +0.0021 0.5946 £0.0017 0.5845 +0.0015 0.5806 + 0.0012

Table 2: Performance comparison results with deep models on multi-classification task. Average
test loss (+std) over 5 repetitions are reported.

Dataset ERM Random OptLR Dropout UIDS RDIA

MNIST(LeNet) 0.0283 0.0407 £0.0025 0.0756 +£0.0102 0.0256 £0.0002 0.0261 £ 0.0002 0.0251 + 0.0005
MNIST(CNN) 0.0322 0.0385+0.0003 0.0576 +0.0042 0.0289 +£0.0002 0.0302 +0.0011 0.0281 + 0.0006
CIFAR10(LeNet) 1.1641 1.6247 £0.0223 1.8341 +0.0421 1.1721 £0.0019 1.1534 £ 0.0017 1.2631 £0.0015
CIFAR10(CNN) 0.7744 0.8303 £0.0162 1.2303+0.0329 0.7859 £0.0016 ~ 0.7910+0.0013 0.6052 + 0.0029

training samples via influence functions to resolve training biases. Furthermore, RDIA outperforms
the state-of-the-art resampling method UIDS on all the datasets except Avazu, which indicates the
effectiveness of reusing harmful training samples via relabeling towards higher model performance.

Second, when training deep models, RDIA achieves the best test loss on MNIST+LeNet,
MNIST+CNN, and CIFAR10+CNN, where it outperforms UIDS by a large margin. We observe
LeNet performs much worse than CNN on CIFARI10 using the original training set (i.e., the re-
sults of ERM) due to its simple architecture. Note that the poor classification results for clean and
unbiased training data would interfere the identification of true harmful training samples. Hence,
RDIA performs similarly to Random which introduces random noises into the training set and the
performance suffers. But we want to emphasize that when training a more suitable model (e.g.,
CNN) on CIFAR10, RDIA is more effective to improve model’s performance.

Third, Random performs worse than ERM on all the cases except on Adult. This indicates that
randomly relabeling harmful training samples may easily inject noisy data that hurt model’s perfor-
mance significantly. In contrast, our proposed relabeling function is effective to assign appropriate
labels to harmful training samples that benefit the test loss.

12 085 50
—o— ERM 45| " ERM
1.0 0.80| o Random 4ol |2 Random
~ s 0|~ us
o8 / 075 | 27 ot -) 35| —— Dropour
2 % 2 2 2 — RDIA
j — Ry E 0.70| — RDIA / 5 j 3.0 RDIA
% 0.6 ” oy % 'Y
i - 7 — 3 %
& 7 Zo06s A 3 z f 5
041 / 0.60 20
g . 15
02 i | 055 ~ 10
0.50, 0.2
0.0 0.1 02 03 04 05 06 07 08 00 01 02 03 04 05 06 07 08 0.0 01 02 03 04 05 06 0.7 08 00 0.1 02 03 04 05 06 07 08
Noise ratio Noise ratio Noise ratio Noise ratio
(a) Breast-cancer (b) News20 (c) Real-sim (d) CIFAR10 (CNN)

Figure 2: Test loss results with different noise ratios. Shaded regions indicate standard deviation.

Robustness to label noises. In order to investigate the robustness of RDIA to noise labels, we
set the noise ratio 7 from 0 to 0.8 to manually corrupt the labels in the four datasets from dif-
ferent domains, while the results on the other datasets have similar trends. Figure [2| reports the
average test loss of all the influence-based approaches on four noisy datasets with different noise
ratios. First, thanks to the high accuracy of estimating the influence functions on logistic regression,
all influence-based approaches consistently outperform ERM, which indicates the effectiveness of
using influence functions to identify noisy samples. Figure[2(a)| 2(b)|and show that RDIA per-
forms significantly better than the other influence-based approaches. As the noise ratio becomes
larger, the test loss of all the other approaches increases while the test loss reported by RDIA is
generally unchanged. This verifies the robustness of RDIAto high noise ratios. We surprisingly find
that RDIA at 0.8 noise ratio achieves lower test loss than ERM at zero noise ratio. The reason might
be that RDIA could leverage all the training samples and fix noisy labels properly to boost the per-

Published as a conference paper at ICLR 2022

Table 3: Effect of hyperparameter o on RDIA (11684 training samples in total).

Noise ratio 0 0.2 0.5 0.8
ERM Relabeling number 0 0 0 0
Test loss 0.0245 0.2567 0.6942 1.5975
o = 0.0l Relabeling number 6 1439 3626 6140
’ Test loss 0.0235 0.0443 0.0903 0.1009
o = 0.002 Relabeling number 71 1721 4139 6545
’ Test loss 0.0207 0.0315 0.0519 0.0465
o = 0.0002 Relabeling number 530 1804 4193 6589
’ Test loss 0.0903 0.0392 0.0410 0.0405

Table 4: Effect of the number of validation samples used in RDIA (11684 training samples in total).
Number of validation samples 100 200 500 1000

ERM Validation loss 0.5337 0.5309 0.5233 0.5275
Test loss 0.5219

UIDS Validation loss 0.2388 0.2269 0.2417 0.2331
Test loss 0.4928 0.3873 0.2783 0.2409

RDIA Validation loss 0.0679 0.0583 0.0494 0.0514
Test loss 0.3430 0.2080 0.1396 0.0847

formance. Second, Figure[2(d)|shows that when combating noisy labels for deep models, RDIA still
suffers from the noisy labels like other baselines because the estimation of influence functions with
deep models is not accurate enough to filter out all noisy labels. However, RDIA could still relabel
the most negative samples to reduce the test loss.

5.3 ABLATION STUDY

Finally, we investigate the effect of different values of hyperparameters « and size of validation set
on the performance of RDIA using MNIST with logistic regression.

Hyparameter o. As discussed in Section [3.3] by varying c, we can derive the percentage of rela-
beled training data against the complete training set in RDIA. Table [3| provides the results of how
many samples are relabeled and how test loss is changed with different values of o under different
noise ratios. First, when noise ratio equals to 0, there are few biased samples in the training set. In
this case, simply relabeling all the identified harmful samples will hurt the performance while using
relatively larger v could report lower test loss. Second, when noise ratio is 0.8, RDIA achieves
better performance with smaller «. This is reasonable since most of training samples involve label
noises and increasing « facilitates the relabeling of noisy samples.

Size of the validation set. As discussed in Section [3.3] we use the validation set instead of the test
set to estimate the influence of each training sample. Table] shows the results of how the number
of validation samples affects the model performance. We conduct the experiments under 40% noise
rates and find the optimal hyperparameter « € [0.0002, 0.01] to get the best results of RDIA.

We have the following observations. 1) Using only 100 validation samples with RDIA achieves 35%
lower test loss than ERM. 2) As the number of validation samples increases, RDIA significantly
outperforms ERM, achieving up to 90% relative lower in test loss. The reason is that, as the number
of validation sets increases, the validation set can gradually reflect the true distribution of test data.
In this way, the estimated influence functions are accurate enough to filter out most harmful training
samples for the test set. 3) RDIA consistently outperforms UIDS with different sizes of validation
set, which empirically shows the effectiveness of our relabeling function R.

6 CONCLUSION

In this paper, we propose to perform data relabeling based on influence functions to resolve the train-
ing bias issue. We develop a novel relabeling framework named RDIA, which reuses the information
of harmful training samples identified by influence analysis towards higher model performance. We
theoretically prove that RDIA can further reduce the test loss than simply discarding harmful train-
ing samples on any classification tasks using the cross-entropy loss function. Extensive experiments
on real datasets verify the effectiveness of RDIA in enhancing model’s robustness and final perfor-
mance, compared with various resampling and relabeling techniques.

Published as a conference paper at ICLR 2022

Reproducibility: We clarify the assumptions in Section [2| and provide the complete proofs of
Lemmas, Theorems in Appendix [B| The statistics of datasets, the data processing, and the de-
tails of the experimental settings are described in Appendix [C] Our code could be found in the
https://github.com/Viperccc/RDIAL

ACKNOWLEDGMENT

This work is supported by Shanghai Municipal Science and Technology Major Project
(2021SHZDZX0102), the Tencent Wechat Rhino-Bird Focused Research Program, and SJTU
Global Strategic Partnership Fund (2021 SJTU-HKUST). Yanyan Shen is the corresponding author
of this paper.

REFERENCES

Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for machine
learning in linear time. The Journal of Machine Learning Research, 18(1):4148—4187, 2017.

Blake Anderson and David A. McGrew. Machine learning for encrypted malware traffic classifica-
tion: Accounting for noisy labels and non-stationarity. In SIGKDD, pp. 1723-1732, 2017.

Eric Arazo, Diego Ortego, Paul Albert, Noel E. O’Connor, and Kevin McGuinness. Unsupervised
label noise modeling and loss correction. In ICML, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 312-321, 2019.

Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxin-
der S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron C. Courville, Yoshua Bengio, and Simon
Lacoste-Julien. A closer look at memorization in deep networks. In ICML, volume 70, pp. 233—
242, 2017.

Steffen Bickel, Michael Briickner, and Tobias Scheffer. Discriminative learning under covariate
shift. Journal of Machine Learning Research, 10(9), 2009.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321-357, 2002.

Can Chen, Shuhao Zheng, Xi Chen, Erqun Dong, Xue Liu, Hao Liu, and Dejing Dou. Generalized
dataweighting via class-level gradient manipulation. In A. Beygelzimer, Y. Dauphin, P. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021.

R Dennis Cook and Sanford Weisberg. Characterizations of an empirical influence function for
detecting influential cases in regression. Technometrics, 22(4):495-508, 1980.

Mohamad Dolatshah, Mathew Teoh, Jiannan Wang, and Jian Pei. Cleaning crowdsourced labels
using oracles for statistical classification. Proc. VLDB Endow., 12(4):376-389, 2018.

Tongtong Fang, Nan Lu, Gang Niu, and Masashi Sugiyama. Rethinking importance weighting for
deep learning under distribution shift. In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurlPS 2020, December
6-12, 2020, virtual, 2020.

Jacob Goldberger and Ehud Ben-Reuven. Training deep neural-networks using a noise adaptation
layer. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings, 2017.

Lan-Zhe Guo, Zhi Zhou, and Yu-Feng Li. RECORD: resource constrained semi-supervised learning
under distribution shift. In SIGKDD, pp. 1636-1644, 2020.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi

Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In
NeurIPS, pp. 8527-8537, 2018.

10

https://github.com/Viperccc/RDIA

Published as a conference paper at ICLR 2022

Bo Han, Gang Niu, Xingrui Yu, Quanming Yao, Miao Xu, Ivor W. Tsang, and Masashi Sugiyama.
SIGUA: forgetting may make learning with noisy labels more robust. In ICML, volume 119, pp.
40064016, 2020.

Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Transactions on knowledge
and data engineering, 21(9):1263-1284, 2009.

Peter J Huber. Robust statistics, volume 523. John Wiley & Sons, 2004.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning data-
driven curriculum for very deep neural networks on corrupted labels. In ICML, volume 80, pp.
2309-2318, 2018.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
ICML, volume 70, pp. 1885-1894, 2017.

Pang Wei W Koh, Kai-Siang Ang, Hubert Teo, and Percy S Liang. On the accuracy of influence
functions for measuring group effects. In NeurIPS, pp. 5254-5264. 2019.

Kuang-Huei Lee, Xiaodong He, Lei Zhang, and Linjun Yang. Cleannet: Transfer learning for
scalable image classifier training with label noise. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5447-5456, 2018.

Junnan Li, Richard Socher, and Steven C. H. Hoi. Dividemix: Learning with noisy labels as semi-
supervised learning. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

Ahmad Mahmoody, Charalampos E. Tsourakakis, and Eli Upfal. Scalable betweenness centrality
maximization via sampling. In SIGKDD, pp. 1765-1773, 2016.

Eran Malach and Shai Shalev-Shwartz. Decoupling “when to update” from “how to update”. In
NeurIPS, pp. 960-970, 2017.

James Martens. Deep learning via hessian-free optimization. In /CML, volume 27, pp. 735-742,
2010.

Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making
deep neural networks robust to label noise: A loss correction approach. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,
pp. 2233-2241. IEEE Computer Society, 2017.

Shichao Pei, Lu Yu, Guoxian Yu, and Xiangliang Zhang. REA: robust cross-lingual entity alignment
between knowledge graphs. In SIGKDD, pp. 2175-2184, 2020.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
robust deep learning. In /CML, volume 80 of Proceedings of Machine Learning Research, pp.
4331-4340. PMLR, 2018.

Zhongzheng Ren, Raymond A. Yeh, and Alexander G. Schwing. Not all unlabeled data are equal:
Learning to weight data in semi-supervised learning. In Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational
studies for causal effects. Biometrika, 70(1):41-55, 1983.

Daniel Ting and Eric Brochu. Optimal subsampling with influence functions. In NeurIPS, pp.
3650-3659, 2018.

Tianyang Wang, Jun Huan, and Bo Li. Data dropout: Optimizing training data for convolutional
neural networks. In 2018 IEEE 30th International Conference on Tools with Artificial Intelligence
(ICTAI), pp. 39-46. IEEE, 2018.

Wenjie Wang, Fuli Feng, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. Denoising implicit feed-
back for recommendation. arXiv preprint arXiv:2006.04153, 2020a.

11

Published as a conference paper at ICLR 2022

Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey. Symmetric cross en-
tropy for robust learning with noisy labels. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 322-330, 2019.

Zifeng Wang, Hong Zhu, Zhenhua Dong, Xiuqiang He, and Shao-Lun Huang. Less is better: Un-
weighted data subsampling via influence function. In AAAI pp. 6340-6347, 2020b.

Hongxin Wei, Lei Feng, Xiangyu Chen, and Bo An. Combating noisy labels by agreement: A joint
training method with co-regularization. In CVPR, pp. 13723-13732, 2020.

Jiangxing Yu, Hong Zhu, Chih-Yao Chang, Xinhua Feng, Bo-Wen Yuan, Xiugiang He, and Zhenhua
Dong. Influence function for unbiased recommendation. In SIGIR, pp. 1929-1932, 2020.

Wenhui Yu and Zheng Qin. Sampler design for implicit feedback data by noisy-label robust learning.
In SIGIR, pp. 861-870, 2020.

Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor W. Tsang, and Masashi Sugiyama. How does
disagreement help generalization against label corruption? In ICML, volume 97 of Proceedings
of Machine Learning Research, pp. 71647173, 2019.

Xiyu Yu, Tongliang Liu, Mingming Gong, Kayhan Batmanghelich, and Dacheng Tao. An efficient
and provable approach for mixture proportion estimation using linear independence assumption.
In CVPR, pp. 44804489, 2018.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In 5th International Conference on Learning
Representations, ICLR, 2017.

Xuezhou Zhang, Xiaojin Zhu, and Stephen Wright. Training set debugging using trusted items. In
Thirty-second AAAI conference on artificial intelligence, 2018.

Hao Zou, Kun Kuang, Boqi Chen, Peixuan Chen, and Peng Cui. Focused context balancing for
robust offline policy evaluation. In SIGKDD, pp. 696-704, 2019.

12

—
w

Published as a conference paper at ICLR 2022

Appendix

In this appendix, we first provide the algorithm of RDIA (Appendix [A) and the complete proofs
of the Lemmas and Theorems (Appendix [B) in the main text. Then we give the details of the
experimental settings (Appendix [C)), the extensive analysis of our approach (Appendix [D), and the
visualization of identified harmful samples (Appendix [E). We then describe RDIA-LS, an extension
of RDIA, to spotlight the scalability of our approach RDIA (Appendix [F) and provide empirical
results to show that RDIA-LS is effective and efficient to handle training data with corrupted labels
for deep learning (Appendix [G). Finally, we provide additional discussions about the existing data
relabeling approaches (Appendix [H

A RDIA ALGORITHM

Algorithm 1: RDIA

Input: Training model 6, biased training set D = {(x;,y;)}¥;, learning rate 3, sample
selection ratio « such that 0 < « < 1, small and unbaised set Q) = {(zj, y?) fﬁl

Train the model § with D until convergence to get 0;
Initialize D_, D, = ()
forie[l,...,N]do
Calculate the influence of the training sample z; = (z;, y;) on @ using Eq. (@):
if ®9(z;) > o then
Relabel the identified harmful training samples with 2] < R(z;);
D_«+ D_uU{z}
else if ®y(z;) < 0 then
‘ D+ — D+ @] {Zz}
end

end
Obtain the new training set D < D_ U D
Retrain the model with D till convergence to get the final model parameters Oer

B PROOFS FOR LEMMAS AND THEOREMS

B.1 PROOF OF LEMMA 1

Assume the perturbation €; on z; is infinitesimal and the influence of each training sample on the
test risk is independent.

Lemma 1. Discarding or downweighting the training samples in D_ = {z; € D | ®g(z;) > 0}
from D could lead to a model with lower test risk over Q:

(@60~ L@ =~ 3 =) <0,
zi€D_

where 0. denotes the optimal model parameters obtained by updating the model’s parameters with
discarding or downweighting samples in D_.

Proof. Recall that 0, = arg ngn + Zf:]:l 1,(0;) + €:1;(0). In this way, downweighting the training

sample z; in D_ means setting ¢; € [—+7, 0) (Noticed that €; = — 3- means discarding training sam-

ple z;). For convenience of analysis, we set all €; equal to — % and have ®y(z;) = Z;\il Doz, zj)
According to Eq. (6)), we can estimate how the test risk is changed by discarding or downweighting

13

Published as a conference paper at ICLR 2022

z; € D_ as follows:

X
)
Q2
X
Nge
i
KX

&

z;€D_

B.2 PROOF OF THEOREM 1

- I(’z’é)e) and 1;25%,)@) and D_ =
{z; € D | ®y(z;) > 0}. Relabeling the samples in D_ can achleve lower test risk than discarding
or downweighting them from D, because the following inequality holds.

Theorem 1. In binary classification, let o be the infimum o,

. N o
L(Q.0er) = L(Q.0) = = D ®o(2i) <0,
zi€D_
Proof. Based on Eq. (9), we have:
. 1- So(xile)’ ify; =0
ner(zi, 25) _) —o(xi,0)
@9(21‘, ch) 730(:“7 é) if yi = 1

(i, 0

)’
It is worth mentioning that 0,,z, = arg mm ~ Z 11n(0) + €ili(zir, 0) — €1;(60). In this way,
relabeling the training sample z; in D_ means setting €¢; = %

Similar to the proof of Lemma 1, according to Eq. (€) and Eq. (I0), we have:
L(Q7 éCR) - L(Q7 éi) :L(Q7 éER) - L(Q? é) + L(Q7 é) - L(Q7 éﬁ)

= Z Zl(zﬁéqRi) - l(z;vé) - (l(z;véﬁl) - l(zfvé))

2, €D_ j=1
1 M
< >« ZNT]GR %i, 25) +—Z<I>e (2i,25))
z;€D_ j=1 j=1
Z7z c
S Doy VP00 2)
z,€D_ j= 1 %

S—% Z CI)Q z
z;,€D_

B.3 PROOF OF LEMMA 2

Lemma 2. When applying the relabeling function R in Eq. (I2) over a training sample z; € D with
a class label m, the CE loss 1;(0) at z; is changed from —log(¢m (x;,0)) to —log(1 — v, (x4, 0)).

Proof. Recall that the model’s prediction at z; is ¢(x;,0) = (@1, 2, ..., i) and our relabeling
function is:

,_ fo, if k=
Yik = log,,, K=YT—om, otherwise

14

Published as a conference paper at ICLR 2022

Here we assume the training example z; belongs to class m which means that y;,,, = 1 and the other
components in the one-hot vector y; are 0. The prime CE loss is — log (., (x5, 6)). If we use our
relabeling function to change the label of z;, the loss at z; will be:

I(z,0) = — Z log,, “V/1— ¢m xlog(ek)

k#m
72 log(Kx/llfcpm)

log (k)

x log(pg)

_ Z log(1 — m)
K-1
k#m
—log(1l — ¢m)
In this way, if we use relabeling function R to change the label of example z;, the loss function will
be changed from — log(w,, (z;,0)) to —log(1 — pu, (x4, 0)). O

B.4 PROOF OF THEOREM 2

Theorem 2. In multi-class classification, let p,(x;, é) denote the probability that z; is classified

as its truth class label by the model with the optimal parameters 0 on D, and o be the infimum of
%. Relabeling the samples in D_ = {z; € D | ®g(z;) > 0} with R leads to a test risk
lower than the one achieved by discarding or downweighting D_. Formally, we have:

L(@Q0r) = L(Q.00) ~ =3 D~ ®o(=) <0.

z,€D_

Proof. According to Lemma[2] Eq. (8)and Eq. (I0), we can estimate the change of test loss at a test
sample 25 € () caused by relabeling as follows:

li(z;v é‘iRi) - li(zjc'v é) ~ € X 77973(21'7 ZJC)

1 1
=——— % zi7zc~
N1—p,(z:,0) (=1:%)

Further, we can derive the following:

L(Q,0r) — L(Q,0.) =L(Q,0r) — L(Q,0) + L(Q,0) — L(Q, b.)
= Z Zl(z;7é€iRi) - l(zié) - (l(z;véﬁl) - l(zjc'7é))

zi€D_ j=1
M 1
S 3 O et gy et)
zi€D_ j=1
M
1 -1 .
=5 (e +)P (21, 25)
z,€D_ j=1 1 750’51(‘7713
a
S_N,; Dy(2) <0

C EXPERIMENTAL SETTINGS

C.1 THE STATISTICS OF THE DATASETS
Table 5] shows the statistics of the datasets. We perform extensive experiments on public datasets

from different domains to verify the effectiveness and robustness of our approach RDIA. All the
datasets could be found in https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/.

15

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Published as a conference paper at ICLR 2022

Table 5: The statistics of the datasets.

Dataset #samples #features #classes #domain
Breast-cancer 683 10 2 Medical
Diabetes 768 8 2 Medical
News20 19,954 1,355,192 2 Text
Adult 32,561 123 2 Society
Real-sim 72,309 20,958 2 Physics
Covtype 581,012 54 2 Life
Criteo1% 456,674 1,000,000 2 CTR
Avazu 14,596,137 1,000,000 2 CTR
MNIST 70,000 784 2/10 Image
CIFAR10 60,000 3,072 2/10 Image

C.2 TR-VA-TE DIVISIONS

We follow the Tr-Va-Te (Training/Validation/Test set divisions) setting in [Wang et al.| (2020b) to
measure the generalization ability of our approach RDIA. Specifically, the influence of each training
instance is estimated with the validation set using the validation loss and the model’s performance
is tested by an additional out-of-sample test set which ensures we do not utilize any information of
the test data.

When training logistic regression, we randomly pick up 30% samples from the training set as the
validation set. For different influence-based approaches, the training/validation/test sets are kept the
same for fair comparison. Both MNIST and CIFAR10 are 10-classes image classification datasets
while logistic regression can only handle binary classification. On MNIST, we select the number 1
and 7 as positive and negative classes, respectively; On CIFAR10, we perform binary classification
on cat and dog. For each image, we convert all the pixels into a flattened feature vector where each
pixel is scaled by 1/255.

When training deep models, due to the high time complexity of estimating influence functions, we
randomly exclude 100 samples (1%) from the test sets of MNIST and CIFARI1O0 as the respective
validation sets, and the remaining data is used for testing.

C.3 IMPLEMENTATION DETAILS

We used the Newton-CG algorithm Martens| (2010) to calculate the influence functions for the lo-
gistic regression model and applied Stochastic estimation/Agarwal et al.|(2017) for two deep models
with 1000 clean data in the validation set. For logistic regression model, we select the regularization
term C = 0.1 for fair comparison. We adopt the Adam optimizer with the learning rate of 0.001
to train the LeNet on MNIST. After calculating the influence functions and relabeling the identi-
fied harmful training samples using R, we reduce the learning rate to 10~° and update the models
until convergence. For CIFAR10, we use the SGD optimizer with the learning rate of 0.01 and
the momentum of 0.9 to train the CNN. Then we change the learning rate to 0.001 and update the
models based on the relabeled training set. Here we use different optimizers to train the models.
This indicates RDIA is independent of the update strategy used for model training. The batch size
is set to 64 in all the experiments and the hyperparameter « is tuned with the validation set for best
performance.

D EXTENSIVE ANALYSIS OF RDIA

D.1 COMPLEXITY ANALYSIS

According to [Koh & Liang| (2017), the time complexity of calculating influence function for one
training sample(i.e., Eq. [2) is O(NP), where N and P stand for the sizes of training set and
model’s parameter set, respectively. Note that the time complexity of relabeling one sample is
O(N). Considering the complexity of calculating influence functions, the time cost of relabeling
harmful samples is negligible which means our RDIA is as fast as any influence-based approaches.

16

Published as a conference paper at ICLR 2022

Test ! Most harmful training samples Most harmful training samples

0.6224 0.5491 0.4852

71917

0.3006 0.2969 0.2914

141) 1

0.4562 0.3781 0.3743

o) Ky

0.1033 0.0791 0.0623

1

0.1528 0.1215 0.1134

n
B Bes
2l

0.0795 0.0790 0.0788

=N -

cat L \ " w cat
b 1
0.0483 0.0441 0.0425 : 0.5728 0.5545 0.5539
e : FHE e .
A @ , = G .
(a) No label flipped (b) 50% label flipped

Figure 3: Identified harmful examples from MNIST and CIFAR10. For each test example, three
harmful training samples with the highest influence estimates (above the images) are provided.

D.2 RELATIONSHIP WITH PROPENSITY SCORE

Propensity score (Rosenbaum & Rubin, (1983} [Bickel et al., [2009) is a well-studied technique to
solve the distribution mismatch (also called covariate shift) problem where training and testing sets
are sampled from two different distributions Py, (2, y) and Preg:(, y), respectively. Its basic idea
is to assign the propensity score to each training sample to make the test risk unbiased. Unlike the
influence function calculated by measuring the change of test loss, propensity score is calculated
directly by estimating the probability of each training sample belonging to the test distribution. If
we could estimate the training and test distribution accurately, we could also use the propensity score
to replace the influence function for identifying whether the training sample is harmful. We leave it
for the future work.

E VISUALIZATION OF IDENTIFIED HARMFUL SAMPLES

We provide examples of harmful samples identified by influence functions to illustrate the effective-
ness of influence analysis. We apply the logistic regression on MNIST (class 1 and 7) and CIFAR10
(class cat and dog). The influence functions are estimated by Newton-CG algorithm (Martens},[2010).
We provide the three most harmful images which have the highest influence scores and share the
same label with the test sample.

Figure |3(a)| shows three identified harmful training images for each test image when there are no
flipped labels in the training set. We can see that the identified harmful training samples are visually
different from the original pictures, which disturbs the model’s prediction on the test image. That is,
the presence of clean but harmful training images would damage the model’s performance.

Figure [3(b)] shows the identified harmful training images when 50% labels of training data have
been flipped. It is easy to see that the harmful images have corrupted labels, which confirms the
effectiveness of applying influence analysis to locate noisy samples.

F RDIA-LS: A LOoSS-BASED RELABELING APPROACH

F.1 LIMITATIONS OF RDIA
In the main paper, we have discussed a novel data relabeling framework RDIA via influence analysis.

Based on the advantages of influence functions, RDIA is able to handle different types of training
biases and is agnostic to a specific model or data type. However, the time complexity of estimating

17

e’ N R W N =

- e
22 SR

Published as a conference paper at ICLR 2022

Algorithm 2: RDIA-LS

Input: Deep neural network 6, learning rate 3, trainig set D, training epoch 7', iteration /N, sample
selection ratio p, underweight hyperparameter y such that 0 < v < 1.

fort € [1,...,7] do
Shuffle training set D;
forn € [1,...,N] do ~
Fetch n-th mini-batch D from D;
Identify harmful samples using training loss: //Step 1
Dy < argming, pj>, 5 L(D,0):
D_«+ D\ Dy,
Relabel the identified harmful training samples: //Step 11
D« R(D-);
Obtain the loss as: Lr = yL(D’,0) + (1 —v)L(D+,0)
Update the model: 6 + 6 — SV Lz (D, 6); //Step III
end
end

the influence of one training sample is O (/N P), where N and P stand for the sizes of training set and
model’s parameter set, respectively. This is relatively high for deep models which have thousands of
parameters. Moreover, according to (Koh & Liang, 2017)), the approximate estimation of influence
functions on deep models may not be accurate and hence the second step of RDIA suffers from false
positives and false negatives. When harmful samples account for the majority of the training set,
e.g., high noise rates, it is difficult to filter most of harmful samples using the estimated influence.

F.2 RDIA-LS

To address the aforementioned limitations, we aim to extend RDIA to solve the specific problem.
Here we focus on combating noisy labels with deep models since label noise is usually a primary
root cause of training bias. We notice that training loss has been used to filter out training samples
with corrupted labels in many previous works (Arpit et al.;[2017; [Han et al.l 2018}, [Wei et al., 2020;
Yu et al.;[2019). It is worth mentioning that the noisy training samples identified by training loss are
not equivalent to the harmful ones identified by influence functions because the latter are evaluated to
have negative influence on the test performance. Nevertheless, since the selected high-loss training
samples are very likely to involve corrupted labels, applying our relabeling function over them has
the potential of correcting corrupted labels and benefiting the test performance. Besides, using
training loss to identify harmful samples is more efficient as it avoids the estimation of influence
functions. Hence, we propose to use training loss to identify noisy samples and develop a loss-
based data relabeling approach named RDIA-LS, which can be viewed as an extension of RDIA for
combating corrupted labels with deep models.

RDIA-LS consists of three steps: noisy samples identification, noisy samples relabeling and model
updating. It shares the same last two steps with RDIA. The only difference between RDIA-LS and
RDIA is that RDIA-LS uses training loss to identify noisy samples in each training epoch so that it
does not need to train the model until convergence first. Specifically, given a mini-batch of training
instances D C D, RDIA-LS feeds forward all the samples in D and then sorts them in an ascending
order of their training losses. Following the prior works (He & Garcial, [2009), we regard the large-
loss instances as noisy and the small-loss instances as clean. We use the rate of p to select the
possibly clean training instances in D, i.e., Dy = argminp.|p|>,|p| L(D, 0). The remaining high-
loss training instances are treated as noisy samples, i.e., D_ = D\ D. We follow (Han et al., 2020)
to determine the value of the selection ratio p. After we have D_, we use our relabeling function R
to relabel the samples in D_ and then update the model with D, U D’ . In our implementation, we
simply modify the loss of the identified noisy samples based on Lemma 2] without performing actual
relabeling. We use the hyperparameter v € [0, 1] to control the model tendency of learning from the
clean instances and the relabeled noisy instances. The detailed procedure of RDIA-LS is provided
in Algorithm

18

Published as a conference paper at ICLR 2022

Table 6: Average test accuracy (+std) on MNIST over the last 10 epochs.

Noise ratio (7) 0.2 0.4 0.6 0.8
ERM 79.46 +£0.42 59.12+0.37 41.40+0.05 23.43+0.30
S-model 9746 £0.15 83.52+0.14 60.88+0.32 41.63+1.42
F-correction | 98.02+0.11 87.05+0.05 74.15+£1.09 63.83+1.76
Self-teaching | 94.49+£0.13 9249+0.14 86.26+0.27 75.95+1.03
Co-teaching | 97.89+£0.12 94.05+0.07 90.72+0.03 78.54+0.21
SIGUA 97.94 +0.03 96.57+0.02 93.84+0.07 83.75%0.15
RDIA-LS 98.12+0.02 97.57 £0.05 9532+0.06 87.85+0.21

Table 7: Average test accuracy (+std) on CIFAR10 over the last 10 epochs.

Noise ratio (7) 0.2 04 0.6 0.8
ERM 71.84+£1.07 55.62+0.31 3556+£022 16.90+0.62
S-model 76.83 £0.72 65.37+0.39 43.79+0.15 17.41+0.08
F-correction | 80.91£0.16 71.68+0.65 57.51+£0.24 19.63+0.78
Self-teaching | 78.92+0.21 7091+£0.26 62.76+0.05 20.32+0.13
Co-teaching | 79.43+0.11 72.88+0.08 66.23+0.32 22.47+0.15
SIGUA 81.58+£0.36 7443+£0.11 6628+0.14 2426+0.23
RDIA-LS 82.94+0.19 77.26+0.14 67.52+0.21 25.35+0.17

We conduct the additional experiments in Appendix|G|to empirically show that RDIA-LS is effective
and efficient to handle training data with corrupted labels for deep learning, which spotlights the
great scalability of our approach RDIA.

G PERFORMANCE EVALUATION OF RDIA-LS

We now conduct the experiments to evaluate the effectiveness and efficiency of RDIA-LS using
DNNs on MNIST, CIFAR10, CIFAR100 and Clothing]lM. The first three datasets are clean and
corrupted artificially. ClothinglM is a widely used real-world dataset with noisy labels (Patrini
et al.l[2017).

G.1 IMPLEMENTATION DETAILS

We apply the same network structures used in the main paper and use LeNet (2 convolutional layers
and 1 fully connected layer) for MNIST, a CNN with 6 convolutional layers followed by 2 fully
connected layers used in (Wang et al., |2019) for CIFAR10 and CIFAR100, and a 18-layer ResNet
for Clothing1M. We follow the settings in (Han et al., 2018)) for all the comparison methods. Specif-
ically, for MNIST, CIFAR10 and CIFAR100, we use the Adam optimizer with the momentum of
0.9, initial learning rate of 0.001, and the batch size of 128. We run 200 epochs (T=200) in total
and linearly decay the learning rate till zero from 80 to 200 epochs. As for ClothingI M, we use the
Adam optimizer with the momentum 0.9 and set the batch size to be 64. We run 15 epochs in total
and set learning rate to 8 x 1074, 5 x 10~% and 5 x 10~° for average five epochs.

We set the ratio of small-loss instances as p = 1 — min{TLk « 7,7} which is changed dynamically
with the current training epoch ¢ and T}, = 5 for ClothingIM and 7}, = 10 for the other datasets.
In this way, we can determine D_ and D in each training epoch. If the noise ratio 7 is not known
in advance, we could use the method (Yu et al.,|2018) to estimate 7. The hyperparameter -y is tuned
in {0.05,0.10,0.15, - - - ,0.95} with the validation set for best performance. If there is no validation
set, we could use training loss to select a clean subset from the training set as the validation set.
Following loss-based approach (Han et al., [2020; 2018} Jiang et al.,|2018)), we use the test accuracy
as the metric, i.e., (#correct predictions) / (#test instances).

19

Published as a conference paper at ICLR 2022

Table 8: Average test accuracy (+std) on CIFAR100 over the last 10 epochs.

Noise ratio (1) 0.2 0.4 0.6 0.8
ERM 35.14+044 20.58+0.23 12.87+042 441+0.14
S-model 4571 £0.15 3494+129 19.82+£0.67 2.61+1.18
F-correction | 47.51+0.24 3791147 2275+1.87 2.10+£2.23
Self-teaching | 47.37+£0.30 40.55+0.04 30.62+0.24 13.49+0.37
Co-teaching | 47.15+0.16 41.41+£0.62 30.78+0.11 15.15+0.46
SIGUA 48.52+£0.21 4293+0.15 30.73+x041 14.31+0.02
RDIA-LS 50.24 £0.15 44.20+0.11 32.67 £0.17 20.21 = 0.04

Table 9: Average test accuracy (+std) results on Clothing1M.
Methods ERM F-correction Co-teaching SIGUA RDIA-LS
Accuracy(%) | 64.54+1.05 69.13£0.25 6836+0.35 69.35+041 69.64+0.14

G.2 COMPARISON METHODS

We compare our proposed RDIA-LS with the following baselines. S-model (Goldberger & Ben-
Reuven, 2017)) and F-correction (Patrini et al.,[2017) are the existing data relabeling approach which
aims to estimate the noisy transition matrix to correct the noisy labels. The last three approaches
are the state-of-the-art loss-based resampling approaches. (1) ERM: it trains one network with
all the training data using cross-entropy loss. (2) S-model (Goldberger & Ben-Reuven| 2017): it
uses an additional softmax layer to model the noise transition matrix to correct the model (3) F-
correction (Patrini et al., 2017): it corrects the prediction by the noise transition matrix estimated
by the other network. (4) Self-teaching (Jiang et al.l |2018)): it trains one network with only the
selected small-loss instances D_ . (5) Co-teaching (Han et al.,2018): it trains two networks simul-
taneously and improves self-teaching by updating the parameters of each network with the small-loss
instances D selected by the peer network. (6) SIGUA (Han et al.,[2020): it trains one network with
the selected small-loss instances D, and high-loss instances D_ via gradient descent and gradient
ascent, respectively.

G.3 EXPERIMENTAL RESULTS

Comparison with the Baselines.

RDIA-LS is proposed to combat noisy labels for deep learning. In order to evaluate how RDIA-
LS improves the robustness of deep models, we perform experiments on MNIST+LeNet, CI-
FAR10+CNN and CIFAR100+CNN with different noise ratios and the real-world noisy dataset
ClothingIM+Resnet18. The average results of test accuracy are reported in Table[6] Table[7] Table[§]
and Table[9]. We have the following observations. (1) RDIA-LS achieves the highest test accuracy
in all the cases. When noise ratio is 0.2, the improvement of RDIA-LS is relatively small. This is
reasonable as the performance gain of RDIA-LS obtained from utilizing noisy data is restricted due
to the low noise ratio. When the noise ratio exceeds 0.4, RDIA-LS significantly outperforms the ex-
isting loss-based approaches, achieving up to 5% relative improvement in test accuracy. It indicates
that RDIA-LS can still effectively reuse harmful training instances to improve model’s robustness
under high noise ratios. (2) RDIA-LS consistently performs better than S-model, F-correction, and
SIGUA, which implies that using R to relabel noisy training samples identified by training loss is
more effective than modeling the noise transition matrix or performing gradient ascent with iden-
tified noisy training instances. (3) RDIA-LS outperforms all the baselines on the real-world noisy
dataset Clothing1M, which demonstrates the effectiveness of applying RDIA-LS in practice.

Comparison with RDIA.

Table [T0] reports the running time of harmful/noisy samples identification in RDIA and RDIA-LS.
We exclude the results of LS on logistic regression since training loss can only be used to filter out
noisy samples for training deep models. From the table, we can see that using influence function to
identify harmful samples for logistic regression is efficient. However, when training deep models
with millions of parameters, using training loss to filter out noisy samples is much more efficient.

20

Published as a conference paper at ICLR 2022

Table 10: Time cost of identifying harmful samples.
Dataset Model RDIA RDIA-LS
Diabetes LR 0.03 sec -
News20 LR 1.8 sec -
Criteol% LR 7.1 sec -

Avazu LR 4.2 min -
MNIST LeNet 475 hour 0.1 sec
CIFAR10 CNN 779 hour 0.6 sec

RDIA-LS is an extension of RDIA to combat noisy samples with deep models. The aforementioned
experimental results show that RDIA-LS is effective and efficient to handle training data with cor-
rupted labels for deep learning. However, it is worth noticing that RDIA-LS relies on the small-loss
trick that the samples which have the larger training loss may contain the corrupted labels. In this
way, RDIA-LS is only suitable for the deep models against the corrupted labels and could fail in the
situation where the small-loss trick does not hold while RDIA has no such constraint.

H ADDITIONAL DISCUSSION ON DATA RELABELING

Existing relabeling approaches (Goldberger & Ben-Reuven|, 2017} Jiang et al.l 2018} [Lee et al.,
2018]) are proposed to combat noisy labels with DNNs. They focus on estimating the noise transition
matrix to convert the corrupted labels to clean labels. However, current relabeling methods suffer
from two limitations. First, they aim to find the true labels of the training samples, which means they
can only deal with label noise. Second, they employ some additional structures to correct the labels,
which are dependent of the specific model structures. For example, Goldberger et al. (Goldberger
& Ben-Reuven, [2017) added an additional softmax layer to present the noise transition matrix and
CleanNet (Lee et al.,|2018]) used the auto-encoder to update the corrupted labels. In contrast, we aim
to develop a relabeling function based on influence analysis to change the labels of harmful samples
towards better model performance. We do not require output labels to be one-hot vector since our
objective is not to find the truth labels of training samples. Besides, we extend our approach to
RDIA-LS to effectively combat noisy samples for training DNNs, which outperforms the existing
data relabeling approaches (Goldberger & Ben-Reuven| 2017; Jiang et al., 2018).

DUTI (Zhang et al [2018) is an effective data relabeling approach which could debug and correct
the wrong labels in the training set. It uses a bi-level optimization scheme to recommend the most
influential training samples for cleaning and suggest the possibly cleaned labels. The proposed
relabeling function in DUTI is different from our approach. Specifically, the relabeling function
in DUTI is trained by a bi-level optimization using the gradient of the validation loss while our
proposed relabeling function has nothing to do with gradient, validation loss.

21

	Introduction
	Background
	Methodology
	Overview of RDIA
	Harmful samples identification
	Relabeling harmful samples via influence analysis

	Discussions
	Experiments
	Experimental Settings
	Experimental results
	Ablation study

	Conclusion
	RDIA algorithm
	Proofs for Lemmas and Theorems
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Lemma 2
	Proof of Theorem 2

	Experimental Settings
	The Statistics of the Datasets
	Tr-Va-Te Divisions
	Implementation Details

	Extensive analysis of RDIA
	Complexity analysis
	Relationship with propensity score

	Visualization of identified harmful samples
	RDIA-LS: A Loss-Based Relabeling Approach
	Limitations of RDIA
	RDIA-LS

	Performance Evaluation of RDIA-LS
	Implementation Details
	Comparison Methods
	Experimental Results

	Additional Discussion on Data Relabeling

