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Abstract

While Deep Reinforcement Learning (DRL) has emerged as a promising approach
to many complex tasks, it remains challenging to train a single DRL agent that is
capable of undertaking multiple different continuous control tasks. In this paper,
we present a Knowledge Transfer based Multi-task Deep Reinforcement Learning
framework (KTM-DRL) for continuous control, which enables a single DRL agent
to achieve expert-level performance in multiple different tasks by learning from
task-specific teachers. In KTM-DRL, the multi-task agent first leverages an offline
knowledge transfer algorithm designed particularly for the actor-critic architecture
to quickly learn a control policy from the experience of task-specific teachers, and
then it employs an online learning algorithm to further improve itself by learning
from new online transition samples under the guidance of those teachers. We
perform a comprehensive empirical study with two commonly-used benchmarks in
the MuJoCo continuous control task suite. The experimental results well justify
the effectiveness of KTM-DRL and its knowledge transfer and online learning
algorithms, as well as its superiority over the state-of-the-art by a large margin.

1 Introduction

The recent breakthrough of Deep Learning (DL) enables Reinforcement Learning (RL) to deliver
much better performance in real and complex control tasks. Tremendous successes have been made
by Deep Reinforcement Learning (DRL) with Deep Q-Network (DQN) [12] on various discrete
control tasks (such as Atari games). Recently, DRL has also been extended to the continuous control
domain, which usually leverages an actor-critic based method (such as DDPG [10] and TD3 [4]) to
deal with a continuous action space.

Despite the impressive performance of DRL on individual tasks, it remains challenging to train a
single DRL agent to undertake multiple different tasks. Unlike single-task DRL, which learns a
control policy for an individual task, multi-task DRL requires an agent to learn a single control policy
that could perform well on multiple different tasks. Multi-task DRL is considered as an essential step
towards Artificial General Intelligence (AGI) [5]. A straightforward approach is to directly train a
DRL agent for multiple tasks one by one using a traditional single-task learning algorithm, which has
been shown to deliver poor performance and may even fail on some tasks [1, 24], due to differences
and possible interference among multiple tasks. Recent research efforts have been made to address
the challenges of multi-task DRL. An effective approach is to tackle this problem with knowledge
transfer, e.g., Actor-Mimic [14] and policy distillation [15]. These methods usually aimed at training
a single multi-task agent under the guidance of task-specific teachers. Through knowledge transfer,
one or more control policies can be consolidated into a single one, which can achieve the same level
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or sometimes even better performance on individual tasks. However, these methods were designed
based on DQN for discrete control tasks. They can not be directly applied to multi-task DRL for
continuous control, which usually has a quite different Deep Neural Network (DNN) architecture.

In this paper, we present a Knowledge Transfer based Multi-task Deep Reinforcement Learning
framework (KTM-DRL) for continuous control, which enables a single DRL agent to achieve expert-
level performance on multiple different tasks by learning from task-specific teachers. In KTM-DRL,
the multi-task agent leverages an offline knowledge transfer algorithm designed particularly for
the actor-critic architecture to quickly learn a control policy from the experience of task-specific
teachers. Then, under the guidance of these knowledgeable teachers, the agent further improves
itself by learning from new transition samples collected during online learning. In addition, KTM-
DRL leverages hierarchical experience replay for mitigating catastrophic forgetting during both
the offline transfer and online learning stages. For performance evaluation, we conduct extensive
experiments on two commonly-used MuJoCo benchmarks [19]. The experimental results show
that KTM-DRL exceeds the state of the art by a large margin, and its knowledge transfer, online
learning, and hierarchical experience replay algorithms turn out to be effective. Particularly, we
compare KTM-DRL with an “ideal” solution where the state of the art single-task DRL algorithm for
continuous control, TD3 [4], is used to train multiple (instead of one) single-task agents (with much
more DNN weights), each of which handles an individual task and is supposed to be the best in its
own task. The experimental results show that KTM-DRL can even beat the ideal solution on some
tasks and offer very close performance on the others.

2 Related Work

Deep Reinforcement Learning for Continuous Control Research efforts have been made to
tackle individual continuous control tasks using DRL. A commonly-used approach is the actor-critic
based method. Lillicrap et al. [10] proposed Deep Deterministic Policy Gradient (DDPG) to learn
control policies in high-dimensional and continuous action spaces using the deterministic policy
gradient. Haarnoja et al. [6] presented Soft Actor-Critic (SAC) based on the maximum entropy RL
framework. In SAC, the actor network aims to maximize the expected reward while also maximizing
the entropy, which can guide the agent to succeed at the task while acting as randomly as possible
for exploration. Furthermore, Fujimoto et al. [4] presented an algorithm called Twin Delayed Deep
Deterministic policy gradient (TD3), which improves DDPG by employing the minimum value
between a pair of critic networks to limit the overestimation introduced by the function approximation
errors and using the delayed policy updates to reduce per-update error. Other DRL methods have also
been presented for continuous control [13, 16, 17, 20]. All the above works considered the single-task
DRL, while this paper targets at multi-task learning.

Multi-task Deep Reinforcement Learning Multi-task DRL has attracted research attention due
to its potential for realizing AGI. Parisotto et al. [14] presented Actor-Mimic, which leverages the
techniques from model compression to train a single multi-task network under the guidance of
task-specific teacher networks. Rusu et al. [15] proposed the policy distillation, which applies KL
divergence to distilling the policy of a DRL agent and trains a new single- or multi-task agent with
much smaller DNNs. Liu et al. [11] proposed to train a vanilla DQN but with a separate output
layer for each task, using all shared hidden layers to learn a common feature representation. Teh et
al. [18] proposed a shared policy to distill common behaviors from task-specific policies. However,
they only evaluated their method on tasks with discrete action space. Yin et al. [23] presented a
DRL method with a DNN consisting of task-specific convolutional layers and shared multi-task fully-
connected layers, which are used to extract unique features from each task and to learn generalized
reasoning, respectively. Zhang et al. [25] proposed a DRL algorithm that can learn to transfer
knowledge from previously-mastered navigation tasks to new problem instances through successor
representation learning. These DRL methods were designed particularly for discrete control based
on DQN (whose architecture is significantly different from actor-critic networks), which, however,
cannot be straightforwardly applied to tackling multi-task continuous control tasks here.

Multi-task DRL for Continuous Control Recent research works presented multi-task DRL meth-
ods particularly for continuous control. Arora et al. [1] extended the Advantage Actor-Critic (A2C)
algorithm by leveraging the policy distillation [15] for handling multi-task continuous control. Carlo
et al. [2] presented a special DNN to extract a common representation of tasks through a set of shared
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layers. Yang et al. [21] presented a multi-actor and single-critic DDPG-based architecture to learn
multi-tasks. However, without a proper guide from task-specific teachers, a single critic network
may fail to learn common knowledge for multiple actors in complex continuous control tasks. Yu
et al. [24] proposed a form of gradient surgery to avoid interference between tasks. Specifically, it
projects the gradient of a task onto the normal plane of the gradient of any other conflicting task, so
that the interfering gradient components are not applied. The experimental results presented later
show the superiority of our method to others.

3 Methodology

3.1 Problem Statement

In the typical single-task DRL setting, a DRL agent keeps interacting with an environment in discrete
decision epochs. We consider a Markov Decision Process (MDP), in which, at each epoch (i.e.,
decision step) t, the agent observes the current state st and selects an action at based on its control
policy π. After executing the action, the agent receives an immediate reward rt, and the environment
transits to a new state s′t (a.k.a., st+1). The agent’s goal is to learn a control policy π that maximizes
the expected return R =

∑T
i=t γ

i−tri after T epochs, where γ ∈ (0, 1] is the discount factor. In the
multi-task DRL setting, a single agent needs to work simultaneously with multiple environments/tasks
to learn the best control policy π with the objective of maximizing the total expected return from all
environments/tasks. As mentioned above, we target at continuous control where the action space is
continuous.

3.2 Overview of KTM-DRL
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Figure 1: Overview of KTM-DRL

We first give a brief overview of the proposed
KTM-DRL, which is illustrated in Figure 1.

We build our DRL agent based on an off-policy
actor-critic algorithm called TD3 [4]. The pro-
posed method can be easily modified to be com-
bined with any other off-policy actor-critic al-
gorithm. The actions are real-valued at ∈ RM ,
where M is the dimension of action at. TD3
consists of three parameterized DNNs (which
are referred to as the DNN triple in the follow-
ing): an actor network π(s|θπ) that determinis-
tically maps a state st to an action at, and a pair
of critic networks (Q1(s,a|θQ1), Q2(s,a|θQ2))
that estimate the expected return R (i.e., Q-
value) while performing action at in state st.
Similar to DQN [12], TD3 uses an experience
replay buffer D to store the collected transi-
tion samples (st,at, rt, s

′
t). Suppose that we

are given a set of K task-specific expert-level
teacher agents {T1, ..., Tk, ..., TK} (which will
be simply called teachers in the following),
where teacher Tk has an actor network πk(·)
and a pair of critic networks (Qk1(·), Qk2(·)), which are trained with TD3 until convergence on their
corresponding tasks {M1, , ...,Mk, ...,MK}, respectively. We aim to transfer the knowledge of
both actor and critic networks of those teachers to a single multi-task agent S such that it can achieve
close or even better performance on these tasks.

KTM-DRL consists of two learning stages: the offline knowledge transfer stage and the online
learning stage. During the offline knowledge transfer stage, the multi-task agent learns from the
experience of task-specific teachers in an offline manner, which is described in detail in Section 3.3.
Afterward, during the online learning stage, under the guidance of teachers again, the multi-task
agent learns from online transition samples collected by interacting with the environments to further
improve its control policy, which is described in detail in Section 3.4.
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In addition, to mitigate catastrophic forgetting, in both stages, instead of using a single plain expe-
rience replay buffer to store transition samples from all tasks, we create a hierarchical buffer with
K separate sub-buffers to store transition samples, each of which corresponds to one task. At each
epoch, KTM-DRL samples a mini-batch of N transition samples from each sub-buffer mentioned
above and then trains the multi-task agent with every mini-batch. Hence, the agent is trained with K
(instead of only one) mini-batches at each epoch. This method helps prevent the multi-task agent
from being over-trained on a particular task and forgetting its knowledge on the others. Our ablation
study has validated its effectiveness, which is shown in Section 4.1. In KTM-DRL, we use two
hierarchical experience replay buffers (Dk and D′k) for each taskMk to store transition samples in
the offline transfer and online learning stages, respectively.

3.3 Offline Knowledge Transfer

In most of off-policy DRL algorithms, such as DQN [12], DDPG [10], and TD3 [4], transition
samples are first stored into an experience replay buffer D, from which mini-batches are sampled for
training. Those transition samples are used to train our agent to mimic the teachers’ behaviors in an
offline and supervised manner without interactions with the environment.

We follow the structure of TD3 with two critic networks to reduce the overestimation bias and
improve the stability of the DRL agent. During the offline transfer stage, we jointly optimize the two
critic networks of the multi-task agent S with the following Q-value regression loss function:

L
(
θQ1 ,θQ2

)
=

1

N

N∑
i=1

(
‖Qk1(si,ai)−Q1(ŝi, âi)‖

2

2 + ‖Q
k
2(si,ai)−Q2(ŝi, âi)‖

2

2

)
, (1)

where a mini-batch of N state-action pairs (si,ai) are sampled from the offline experience reply
buffer Dk of teacher Tk. With Eq. (1), KTM-DRL could quickly mimic the outputs of the two teacher
critic networks on each task. Note that the dimensions of the state and action spaces vary from task to
task, and thus they cannot be directly fed to the DNN triple of S . Instead of designing a separate DNN
triple for each task like those in related works [1, 2, 15, 21], we choose to pad the state and action
with appended zeros such that they have fixed lengths. In this way, our agent requires much fewer
DNN parameters and training overhead; moreover, it can handle the case with different numbers of
tasks. We denote the padded state and action as ŝi and âi, respectively. The actor network of the
multi-task agent S is then trained with the gradients computed by:

∇θπG(θπ) =
1

N

N∑
i=1

∇aQ
k
1(s,a)|s=si,a=fk(π(ŝi))

· ∇θππ(s)|s=ŝi
. (2)

To transfer knowledge from teacher Tk to student S, the first critic network Qk1 of Tk is used to
calculate the gradient and update the weights θπ. The critic network of teacher Tk is able to make
a precise Q-value estimation for state-action pair (si,ai). Therefore, with Eq. (2), it can provide
proper guidance for updating the weights of the actor network π of agent S . Since the dimension of
action varies with tasks, the action predicted by actor network π may contain redundant values for
Qk1 . Therefore, we apply a slice function fk(·) to taking only the first |ai| values from the predicted
action π(ŝi).

3.4 Online Learning

The offline knowledge transfer helps the multi-task agent quickly learn a fairly good control policy
from the teachers. However, without interacting with the actual environments, the multi-task agent
cannot gain sufficient new knowledge and thus may lead to over-fitting. Hence, we propose an
online learning algorithm that enables the agent to further improve its control policy with newly
collected online transition samples. During the online learning stage, instead of learning from task-
specific teachers, the agent updates its critic networks with TD-errors, which is similar to the training
procedure of TD3 [4]. The target value yi for training the critic networks is given as:

yi = ri + γ minj=1,2 Q
′
j

(
ŝ′i, g

k (π′(ŝ′i)) + ε
)
,

ε ∼ clip
(
N (0, σ2),−c, c

)
,

(3)

where π′(·) and Q′j(·) (j = 1, 2) are the target networks of the actor and critic networks, respectively,
which is used for stabilizing the training process [10, 12], γ is the reward discount factor, and ε is the
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clipped exploration noise, which is sampled from the normal distribution N (0, σ2) and clipped by a
threshold c. Unlike DQN [12] and DDPG [10], to avoid the bias introduced by the policy update,
TD3 [4] leverages two (instead of one) critic networks Q1 and Q2 for making a better estimation
for the Q-value. Note that to concentrate on the action values particularly for task k, we apply a
mask function gk(·) to filtering out redundant values by setting them to 0 for the output of the actor
network, which is especially helpful when the tasks have different action dimensions. Thereafter, the
two critic networks are trained by the following loss function:

L
(
θQ1 ,θQ2

)
=

1

N

N∑
i=1

‖yi −Q1(ŝi, âi)‖22 + ‖yi −Q2(ŝi, âi)‖22. (4)

Unlike TD3, the actor network of the agent is then trained under the guidance of both its critic
network and teachers:

∇θπG(θπ) =
α

N

N∑
i=1

∇aQ
k
1(s,a)|s=si,a=fk(π(ŝi))

· ∇θππ(s)|s=ŝi

+
β

N

N∑
i=1

∇aQ1(s,a)|s=ŝi,a=gk(π(ŝi))
· ∇θππ(s)|s=ŝi

,

(5)

where the first term is the same as that used in the offline transfer stage, which we leverage for
continuing the knowledge transfer from the teachers. We add the second term to compute the

Algorithm 1: KTM-DRL
Input: The number of offline transfer and online learning epochs Toff and Ton, the policy update

frequency d, a set of K tasks, a set of K teachers and each teacher Tk with its DNN triple
(πk, Qk1 , Q

k
2), a multi-task agent S with its DNN triple (π,Q1, Q2) and their weights

(θπ,θQ1 ,θQ2), and the corresponding target networks (π′, Q′1, Q
′
2) with weights

(θπ
′
,θQ

′
1 ,θQ

′
2);

1 Randomly initialize the weights (θπ,θQ1 ,θQ2) of the DNN triple of S;
/**Offline Knowledge Transfer**/

2 while decision epoch t < Toff do
3 foreach task k do
4 Sample N transition samples (si,ai, ri, s′i) from offline experience replay buffer Dk;
5 Update critic networks Q1 and Q2 with the loss function given by Eq. (1);
6 Update actor network π with the gradient calculated by Eq. (2);
7 end
8 end
9 Synchronize the weights of the target networks θπ

′
:= θπ , θQ

′
1 := θQ1 , θQ

′
2 := θQ2 ;

/**Online Learning**/
10 while decision epoch t < Ton do
11 foreach task k do
12 Select an action with exploration noise ε ∼ N (0, σ2): at := π(st) + ε;
13 Execute action at, receive reward rt, and observe new state s′t;
14 Store transition sample (st,at, rt, s

′
t) into online experience replay buffer D′k;

15 Sample N transition samples (si,ai, ri, s′i) from online experience replay buffer D′k;
16 Calculate the target value by Eq. (3);
17 Update critic networks Q1 and Q2 with the loss function given by Eq. (4);
18 if t mod d = 0 then
19 Update actor network π with the gradient calculated by Eq. (5);
20 Update the weights of target networks θπ

′
:= τθπ + (1− τ)θπ′

,
θQ

′
1 := τθQ1 + (1− τ)θQ′

1 , θQ
′
2 := τθQ2 + (1− τ)θQ′

2 ;
21 end
22 end
23 end
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gradients from its critic network for improving its control policy, just like that in a regular actor-critic
algorithm. The two parameters α and β are used to express the relative importance of the two parts.

We summarize KTM-DRL in Algorithm 1. In our implementation, the key hyper-parameters were set
as follows: α = β = 1, the exploration noise is N (0, 0.1), the clip threshold c = 0.5, and the policy
update frequency d = 2. The size of each replay buffer |Dk| and |D′k| and a mini-batch is set to 106

and 256, respectively. Reward discount factor γ is set to 0.99, target network update rate τ is set to
0.005, and the learning rate for both actor and critic networks is set to 3× 10−4. In KTM-DRL, every
DNN consists of only 2 hidden layers with 400 ReLU activated neurons each. While we believe a
fine-grained tuning of settings for each teacher (e.g., adjusting the number of layers, the number of
neurons, and hyper-parameters) may lead to better performance on its task, we just followed up the
standard settings of TD3 [4] for all teachers in our experiments.

4 Performance Evaluation

To evaluate the proposed KTM-DRL, we conducted extensive experiments with the continuous
control tasks in the MuJoCo suite [19]. We employed two typical benchmarks (which will be called
Benchmarks A and B in the following): 1) Benchmark A: it is called the HalfCheetah task group [7],
which includes 8 similar tasks; 2) Benchmark B: it consists of 6 considerably different tasks.

For a comprehensive evaluation, we compared KTM-DRL with an “ideal” solution, the extension of
the state of the art single-task DRL methods, as well as the state of the art multi-task DRL algorithms
proposed in recent papers. Specifically, as mentioned above, the ideal solution leverages TD3 to train
K (instead of one) single-task agents (each corresponds to an individual task), which can serve as an
upper bound. We extended TD3 [4] (TD3-MT) and SAC [6] (SAC-MT) to train a single-task DRL
agent for multiple tasks one by one. Note that for fair comparisons, we applied the above hierarchical

Method KTM-DRL Ideal TD3-MT SAC-MT SharedNet G-Surgery A2C-MT
(ours) [4] [6] [2] [24] [1]

HCSmallTorso 10348 8743 7898 7805 4140 7189 2276
HCBigTorso 10364 9067 9075 7944 1463 7737 1428
HCSmallLeg 10594 9575 9065 8026 4885 7564 1525
HCBigLeg 10402 10683 7982 7933 1990 7275 N/A
HCSmallFoot 8836 9633 7718 7284 3752 7197 1480
HCBigFoot 9239 8902 6496 7340 4661 6826 2188
HCSmallThigh 10470 10769 8053 7844 4906 7240 1874
HCBigThigh 9787 9524 8867 7579 3547 7501 N/A

Table 1: The max average rewards on Benchmark A
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Figure 2: The learning curves on Benchmark A
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Method KTM-DRL Ideal TD3-MT SAC-MT SharedNet G-Surgery
(ours) [4] [6] [2] [24]

Ant 5836 5839 324 -31 885 399
Hopper 3565 3588 2464 2249 1006 544
Walker2d 4863 4797 3957 2672 2970 733
HalfCheetah 10921 10969 4826 908 4404 2310
InvPendulum 1000 1000 1000 1000 1000 12
InvDbPendulum 9347 9351 9358 5358 9341 4332

Table 2: The max average rewards on Benchmark B
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Figure 3: The learning curves on Benchmark B

experience replay and the mask function in Eq. (3) to TD3-MT and SAC-MT. Otherwise, these two
methods turned out to fail on some of the tasks. The other baselines include a recent shared network
based algorithm (SharedNet) [2], another recent method based on gradient surgery (G-Surgery) [24],
and a multi-task DRL algorithm based on Advantage Actor-Critic (A2C) [1](A2C-MT). Note that
G-Surgery is claimed to be compatible with any actor-critic based DRL algorithm. In the original
paper [24], the authors implemented it based on SAC [6]. Considering TD3 generally outperforms
SAC on the MuJoCo continuous control tasks, for fair comparisons, we implemented G-Surgery based
on TD3. Due to no public code available, we implemented Distral [18] and multi-task DDPG [21],
and they always achieve negative rewards on most of the tasks on Benchmark B. Thus we omitted
their results.

We trained each method for 1 million decision epochs and then evaluated it for 10 trials to report the
max average rewards per episode. In KTM-DRL, we trained the multi-task agent for 500K epochs
in both the offline transfer and online learning stages. We had 2 independent runs for all methods.
Note that due to the lightweight design of our framework, the training complexity of KTM-DRL is
almost the same as directly extending TD3 to multiple tasks (i.e., TD3-MT), which is much less than
other methods. More specifically, it takes about 12 hours for KTM-DRL to finish the 1M end-to-end
training with NVIDIA Tesla P100 GPU on Benchmark A, comparing to about 5.5 hours, 11.5 hours,
25 hours, and 31 hours for ideal (single task), TD3-MT, SAC-MT, and G-Surgery, respectively.
The results on the two benchmarks are shown in Table 1 and Table 2, respectively. Moreover, the
corresponding learning curves are shown in Figure 2 and Figure 3, in which the x-axis represents
the total number of training epochs (steps) and the y-axis shows the achieved rewards. The shaded
region the standard deviation of the average rewards over different runs. Based on these results, we
can make the following observations:

1) Even though KTM-DRL has much fewer DNN weights than the ideal solution, it can even beat
the ideal solution on some tasks while offering very close performance on the others. For example,
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on Benchmark A, KTM-DRL leads to 18% and 14% improvements over the ideal solution on tasks
HalfCheetahSmallTorso and HalfCheetahBigTorso, respectively. On average (over all the tasks),
KTM-DRL beats the ideal solution by 2%, which validates its effectiveness. It is worth to mention
that related works [3, 14, 15] also made similar observations that a single multi-task agent may
surpass their task-specific teachers. One motivating argument [3] is that the distillation encourages
the agent to explore more states than teachers and thus could potentially lead to a better performance.

2) KTM-DRL consistently outperforms all the other baselines on almost all tasks of both two
benchmarks. On average, KTM-DRL achieves 42%, 110%, 130%, and 180% improvements over
TD3-MT, SAC-MT, SharedNet, and G-Surgery, respectively. It is interesting to see that SharedNet
and G-Surgery perform poorly on several tasks of Benchmark B. This demonstrates their weakness on
considerably diverse tasks. In this case, it may be hard to directly learn a high-quality representation
from scratch for knowledge sharing, which, however, determines whether SharedNet or G-Surgery
can obtain high scores. Moreover, as expected, these results show that a straightforward extension of
a single-task DRL agent (such as TD3-MT and SAC-MT) does not offer a satisfying performance
(even with the help of the hierarchical experience replay).

3) From the learning curves shown in Figure 2 and Figure 3, we can observe that the multi-task agent
of KTM-DRL quickly (after around 50K epochs) learns how to do well on different tasks during the
offline knowledge transfer stage. Then, the multi-agent is further improved during the online learning
stage. This observation well illustrates the necessity and effectiveness of both the offline knowledge
transfer and the online learning.

4.1 Ablation Study

We performed a comprehensive ablation study for the three key components of KTM-DRL, including
the offline knowledge transfer (Section 3.3), the online learning (Section 3.4), and the hierarchical
experience replay, on Benchmark B, to further understand their effectiveness and contributions.
Similar to above, for fair comparisons, we trained each method for 1 million epochs and then
evaluated it for 10 trials. For a better representation, we used the ratio of the max averaged rewards
given by a method to that of the ideal solution as the performance metric, which we call performance
ratio in the following.

Method KTM-DRL w/o w/o Online Online w/o
(ours) Offline Online w/o Teacher Only Teacher HER

Ant 0.9745 0.9767 0.9035 0.9630 0.9784 0.2215
Hopper 1.0437 0.8977 0.9761 0.9715 0.9836 0.9406
Walker2d 1.0112 0.9493 0.9035 0.9872 0.7694 0.8961
HalfCheetah 1.0080 0.9187 0.9784 0.9752 0.9832 0.8274
InvPendulum 1.0 1.0 0.9542 1.0 1.0 1.0
InvDbPendulum 0.9996 0.9991 0.9974 1.0016 0.9992 0.9997

Table 3: The performance ratio given by different methods in the ablation study

1) To validate the contribution of the proposed offline knowledge transfer algorithm, we trained a
multi-task agent without the offline transfer. The solution is labeled as "w/o Offline". We can see
from these results that the offline knowledge transfer leads to 5% gain in terms of performance ratio
on average.

2) To verify the effectiveness of our online learning algorithm, we considered three different online
learning schemes: a) Training the multi-task agent without the online learning, which is labeled as
"w/o Online". b) Training the agent with the online learning but without the help of teachers, which
is labeled as "Online w/o Teachers". In this case, we modified Eq. (5) to remove the term related to
teachers. c) Training the agent with the online learning but with only the guidance of teachers, which
is label as "Online only Teacher". In this case, we modified Eq. (5) to only keep the term related to
teachers. As shown in Table 3, KTM-DRL is superior to these three schemes on almost all the tasks;
and they result in 5%, 2%, and 5% losses respectively in terms of performance ratio on average.

3) In addition, we investigated the effectiveness of the hierarchical experience replay (HER). We
compared KTM-DRL with another commonly-used training method [15], which keeps training
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an agent with transition samples from one task for a whole episode and then switches to another.
We labeled this method as "w/o HER" in Table 3. We can observe from the results that KTM-
DRL performs consistently better than KTM-DRL w/o HER on all the tasks, and on average, the
hierarchical experience replay leads to 23% improvement in terms of the performance ratio.

5 Conclusions

In this paper, we presented KTM-DRL, which enables a single multi-task agent to leverage the
offline knowledge transfer, the online learning, and the hierarchical experience replay for achieving
expert-level performance in multiple different continuous control tasks. For performance evaluation,
we conducted a comprehensive empirical study on two commonly-used MuJoCo benchmarks. The
extensive experimental results show that 1) KTM-DRL beats the ideal solution with much more
DNN weights on some tasks while offering very close performance on the others; 2) KTM-DRL
outperforms the state of the art by a large margin; and 3) the offline knowledge transfer algorithm,
the online learning algorithm, and the hierarchical experience replay are indeed effective. Note that
we assume all the given teachers have expert-level performance, or KTM-DRL may fail to find a
good multi-task control policy. As far as we know, it remains an open question whether we can learn
policies from imperfect or sub-optimal teachers. This challenging problem is beyond the scope of our
discussion, and we leave it for future work.
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Broader Impact

This work presents a multi-task learning framework for training a single (instead of multiple) DRL
agent to undertake multiple different tasks. Even though there is still a long way to go, we believe this
work may lead us one step closer to Artificial General Intelligence (AGI). The proposed algorithm
may be used in a large variety of domains (such as transportation, medical care, home services, and
manufacturing) to train a machine or robot to master many skills and handle different tasks. This
work and the corresponding applications may reduce workload and improve the quality of life for
human beings with much less computing and energy resources (which could potentially benefit the
environment too). In addition, our task/method does not leverage biases in the data. However, at the
same time, this kind of technology may have some negative consequences because when a machine or
robot is able to gain more skills or capabilities than a human, then we may have to face losses of jobs.
What is more, by using our framework, a machine could potentially learn unexpected skills from
malicious teachers, and this increases the risk of technology being used incorrectly and hazardously.
Therefore, we should pay careful attention to multi-task learning for machines and robots.
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