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Abstract: We study how robots can autonomously learn skills that require a com-
bination of navigation and grasping. While reinforcement learning in principle
provides for automated robotic skill learning, in practice reinforcement learning
in the real world is challenging and often requires extensive instrumentation and
supervision. Our aim is to devise a robotic reinforcement learning system for
learning navigation and manipulation together, in an autonomous way without hu-
man intervention, enabling continual learning under realistic assumptions. Our
proposed system, ReLMM, can learn continuously on a real-world platform with-
out any environment instrumentation, without human intervention, and without
access to privileged information, such as maps, objects positions, or a global view
of the environment. Our method employs a modularized policy with components
for manipulation and navigation, where manipulation policy uncertainty drives
exploration for the navigation controller, and the manipulation module provides
rewards for navigation. We evaluate our method on a room cleanup task, where
the robot must navigate to and pick up items scattered on the floor. After a grasp
curriculum training phase, ReLMM can learn navigation and grasping together
fully automatically in around 40 hours of autonomous real-world training.
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1 Introduction

Figure 1: ReLMM enables learn-
ing mobile manipulation skills au-
tonomously in the real world, us-
ing only on-board sensing.

Learning-based approaches have the potential to bring robots
into open-world environments with end-to-end vision-based
policies that can perform tasks without external instrumenta-
tion, AR-tagging, or expensive sensors. Such learning systems
can be particularly beneficial for mobile manipulators, which
perform tasks while navigating through open-world environ-
ments that are not practical to instrument or map out in ad-
vance. Unfortunately, in practice, most real-world reinforce-
ment learning (RL) systems require careful environment in-
strumentation and human supervision or demonstrations dur-
ing the training process to ensure that the robot performs ef-
fective exploration and resets between trials, making them dif-
ficult to apply to the kinds of open-world domains where we might want mobile manipulators to
operate. Such systems might require specially installed infrastructure that provides explicit re-
sets [1, 2, 3, 4], or the presence of a person providing resets and monitoring the learning pro-
cess [5, 6], and cannot simply be dropped into a natural environment and continue learning.

To address this issue and make it possible for mobile manipulators to learn with RL directly in the
real world, we propose a system for learning mobile manipulation skills without instrumentation,
demonstrations, or manually-provided reset mechanisms. We aim to produce a system that enables
a robot to learn autonomously in settings such as homes and offices, such that anyone could simply
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Figure 2: Method overview. ReLMM partitions the mobile manipulator into a navigation policy
and grasping policy. Both policies are rewarded when an object is grasped. We use an ensemble
of action-conditioned grasp success prediction functions estimate the success of a potential grasp
better and use the uncertainty as an exploration bonus. If grasp success is likely, a grasp action is
sampled from the grasp predictors and executed. If the grasp is successful during training, the robot
executes a pseudo-reset by placing the collected object back down in a random location.

place the robot down, start the learning process, and return to a trained robot. This goal dictates
several constraints that shape our method: (1) the robot must learn entirely from its own sensors,
both to select actions and to compute rewards; (2) the entire learning process must be efficient
enough for real-world training; (3) the robot must be able to continually gathering data at scale
without human effort. A system that meets these requirements would not only be able to learn skills
in open-world settings, but could also continue to improve throughout its lifetime: when learning
can be performed practically without instrumentation, there is no reason to stop the learning process
at deployment time, and the robot keep getting better and better at its given task perpetually. Our aim
is not to propose the best possible system for solving any particular task. Rather, we aim to show
how to create a real-world reinforcement learning system that enables learning mobile manipulation
skills entirely from real-world interaction, with minimal human intervention.

Our contribution is a system for autonomously training a mobile manipulation robot that satisfies the
above constraints, which we call Reinforcement Learning for Mobile Manipulation (ReLMM). We
apply ReLMM to the task of collecting items scattered across a room. Our system learns directly
from on-board ego-centric camera observations and uses proprioceptive grasp sensing to assign
itself rewards. To ensure the learning process is sample efficient and to facilitate exploration, we
split the robot’s controller into separate navigation and grasping neural network policy modules that
choose when to act based on their predicted value and are continuously trained together for the
same objective: successfully grasping objects in the environment. Separating the policies enables
the use of uncertainty-based exploration for the grasping module, which uses an ensemble of Q-
functions to explore grasp actions efficiently. Lastly, to reduce the need for humans to provide
interventions in the form of resets, we develop an autonomous resetting behavior where the robot
re-arranges the environment as it learns, so as to continually create new arrangements of objects for
the agent continually “practice.” Together, these components plus a brief grasping curriculum enable
a system that can operate in real-world environments, learning how to navigate and grasp from its
own collected experience, and mastering room cleanup tasks with about 40-60 hours of autonomous
interaction. Videos are available at https://sites.google.com/view/relmm

2 Related Work

Robotic mobile manipulation tasks pose a number of unique challenges [7]. Many prior methods
have addressed these challenges by requiring human effort for instrumentation and state estima-
tion [8, 9, 10, 11], hand-coded controllers [12], or demonstrations [10, 13, 14]. Several methods also
require external instrumentation such as top-down camera views, oracle knowledge of object pose,
or precomputed navigation maps [15, 16, 17]. textcolorMobile manipulation has also seen bene-
fits from combining learning and planning for more efficient exploration in simulation [18, 19, 20],
which allow for safe and effective behavior in the real world if object or goal locations are provided.
While these choices are pragmatic, they do not address the problem of learning continually in unin-
strumented real-world settings and require a simulated world to train in. In contrast, our proposed
system is aimed at enabling reinforcement learning directly on the real hardware that is maximally
autonomous, and does not require external instrumentation.

Hierarchical reinforcement learning has been shown to learn interactive navigation and object re-
arrangement tasks in simulation operating from first-person view [21, 22], but require millions of
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timesteps to train and have not been demonstrated in the real world. Our system uses a similar hier-
archical structure to these, but targets accessible real world learning by leveraging policy uncertainty
estimates and curriculum learning for realistic sample efficiency.

While RL-based methods allow agents to improve via interaction, enabling robots that can learn
outside of instrumented laboratory settings is difficult. Such settings lack episodic structure and
well-shaped reward functions [23, 24, 25, 26, 27] that are important for success [28, 29]. Large-scale
uninterrupted deployment and training in the real world has been studied in several prior works [30,
31, 32, 33, 34, 35, 36]. While many of these works train robots in the real world without human
interventions, they focus on navigation without manipulation. Large-scale real-world learning has
also been successful for robotic grasping in laboratory settings. By letting robots learn from their
own experience, prior approaches have shown that robots can learn to grasp from images [37, 38,
39, 40] or point clouds [41, 42]. These methods show real world learning can lead to robust robotic
behavior, but they do not tackle challenging mobile manipulation tasks.

Gupta et al. show an approach to training a grasping policy on a mobile manipulator, but unlike
our work, do not attempt to learn to navigate [43]. Wang et al. train a mobile manipulator with RL
in simulation, but require known object pose, dense rewards, and episodic resets to a single initial
state [16]. In contrast, our approach learns entirely from a sparse reward and onbaord sensors. Past
approaches to learning without episodic resets have focused on stationary manipulation or simu-
lation [44, 45, 2]. In this work we explicitly focus on how mobile manipulation robots can learn
without external sources of resets or state estimation in the real world and lay out a set of design
decisions that makes this process a practical one for acquiring robot skills.

3 Preliminaries

In this work, we use reinforcement learning (RL) as a general purpose algorithm for learning robotic
behaviors. Reinforcement learning has the advantage of being able to operate on autonomously
collected data, and enables the robot to improve through trial and error. To this end, the mobile
manipulation task is formulated as a partially observed Markov decision processes (POMDP) with
an observation space O of first person RGB images, state space S, action space A, reward function
r(st, at), transition dynamics P(st+1|st, at), observation probability P(ot|st), a discount factor γ,
and an initial state distribution ρ(s0). The goal of reinforcement learning is to learn a control policy
π(at|ot) that can determine which actions to take in each observation such that the expected sum of
rewards is maximized. This objective can be written as J(π) = Eat∼π(ot),st,ot∼P [

∑
t γ

tr(st, at)] ,
as for a standard RL problem.

4 ReLMM: RL For Mobile Manipulation

Algorithm 1 TrainGrasp(G1, ..., GM , Dg , N , st)

1: for t = 0, . . . , N steps do
2: Get grasp observation õ.
3: Sample ag ∼ πg(·|õ). // see Equation 2
4: Perform grasp ag , receiving rg = 0 or 1.
5: Store (õ, ag, rg) in Dg .
6: Update G1, ..., GM on Dg
7: if st =True, Drop object if held.
8: elseif rg = 1 and st =False, return rg
9: return 0

We develop the ReLMM system to enable train-
ing mobile manipulation robots with RL. While
we specifically apply it to a room cleaning task,
in principle ReLMM could be used to learn
other mobile manipulation tasks as well. Each
component of ReLMM is chosen in order to
maximise the autonomy of learning while re-
taining the sample efficiency needed to train in
the real world. The specific task that we study
in our experiments involves training a robot to
quickly navigate around in a room with ob-
stacles, physically pick up many objects, and
place them in a basket mounted on the robot, as
shown in Figure 1 and 3.

Our system provides for efficient autonomous learning by decomposing the policy into grasping and
navigation policies, using an ensemble of grasping models to explore based on uncertainty, automat-
ically rearranging the environment after successful grasps, and using a curriculum to bootstrap and
stabilize the concurrent training of both policies. Our final system can learn room cleaning skills in
a number of different room configurations in ∼ 40 hours directly in the real world.

3



4.1 Grasping Policy Training

As noted previously, we decomposed the control problem into grasping and navigation. This gives
the manipulation policy two objectives: given an image observation, accurately model the robots
chance of success should it attempt a grasp and, if so, select an appropriate action to maximize suc-
cess. We obtain the former by training an ensemble of grasping policies and using their uncertainty
to efficiently explore grasping. For choosing how to grasp, the policy must learn with sufficiently
low sample complexity so as to make real-world training feasible. To reduce the complexity of the
exploration problem we formulate grasping as a discrete single-step top-down action. The grasp
policy πg(ag|og) is parameterized with the action ag discretized in the x-y plane, and the observa-
tion og corresponding to a RGB image from the robot’s camera. Such single-step action selection
formulations are amenable to more efficient training than more complex multi-step tasks [46, 47].

Framed in this way, the grasping task corresponds to a contextual multi-armed bandit problem.
Specifically, we train grasping policies that, given an image, predict the likelihood of grasp success
for each action.We use a soft-max over the action values to sample actions in proportion to their
exponentiated probability of success. To create the ensemble, we train M = 6 independent grasp
policies, G1 . . . GM that are each by minimizing the cross-entropy loss on the same dataset:

Lig = E(og,ag,rg)∼Dg
[−rg logGi(og, ag)− (1− rg) log(1−Gi(og, ag))]. (1)

Here, rg is 1 when the robot successfully grasps an object, which is determined by presenting the
gripper to the onboard camera. The grasping exploration policy is formed by constructing a Boltz-
mann distribution from optimistic estimates of grasp success, where the mean estimate from the
ensemble, E[Gi(og, ag)], is modified by adding a multiple of the ensemble variance σ(Gi(og, ag)),
which we expect to be larger for actions where success is more uncertain:

G̃(og, ag) = αE[Gi(og, ag)] + βσ(Gi(og, ag)), (2)

with πg(ag|og) ∝ exp(G̃(og, ag)). The expectation and standard deviation are taken over the en-
semble, and α, β ≥ 0 are hyperparameters. Other equivalent multi-step off-policy or contextual
bandit algorithms can be used to train the grasping policy. However, we show in Section 6 that they
are not as sample efficient for the mobile manipulation task in this work. Algorithm 1 describes the
grasp training process in further detail.

4.2 Navigation Policy Training

For navigation, the policy must be able to control the mobile base to approach objects in a way that
the current grasping policy can succeed. The navigation policy πn(an|o) outputs the action an that
controls the forward and turn velocities of the mobile robot base.

At every time step, the agent has to decide whether to perform a grasp or not by balancing the
opportunity of receiving reward, the chance to collect novel data for the grasping policies, and the
cost of wasting a timestep if there is no object within reach. This balancing act is done by reusing
the same uncertainty measure described in Equation 2 when choosing whether to attempt a grasp.
The probability of whether to attempt a grasp is

P[grasp|o] = max
ag

G̃(o, ag). (3)

Under this design, the navigation policy πn(an|o) continues to experience observations and output
navigation actions, and at every step the choice of whether to perform a grasp or not is made by
sampling from grasp success probability of the current grasp model P[grasp|o] defined in Eqn 3.
When the model decides attempting a grasp is worth the risk, the robot executes a grasp and evalu-
ates the outcome to provide the navigation agent a reward. From the perspective of the navigation
policy, the choice of whether to grasp or not is a part of the inherent dynamics of the environment.
We compare two possible rewards rn for the the navigation policy. The first option is directly opti-
mizing for the task by rewarding the navigation when a grasp is successful (i.e. where the current
grasp ensemble has high performance): rn(o) = rg(o) − 1. The second option is to reward the
navigation for reaching states that the current grasp ensemble will choose to grasp at, which is a
function of its mean and uncertainty: rn(o) = (P[grasp|o]− 1) that we use to relabel states without
successful grasps during SAC policy update. As this reward function only depends on the grasp
ensemble and not on actual grasp success, this reward is computed at every policy update step and
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in Figure 5 we show how it can improve sample efficiency. The RL objective for navigation is
maxπn Eπn(an|ot)

[∑∞
k=0 γ

krn(ot+k) ] We train the navigation policy for this objective using soft
actor critic (SAC) [48, 49].

4.3 Training with Autonomous Pseudo-Resets

Algorithm 2 ReLMM (with Stationary Curriculum)

1: Hyperparameters: M , Nst, Ngrasp, relabel
2: Init: function estimators πn, G1, . . . , GM .
3: Replay buffers Dn = {}, Dg = {}
4: TrainGrasp(G1, .., GM , Dg , Nst, True)
5: for t = 0, . . . , T steps do
6: Get navigation observation ot
7: Sample an ∼ πn(·|ot) and perform an
8: if uniform() ≤ P[grasp|ot] then
9: rg=TrainGrasp(G1,.., GM ,Dg ,Ngrasp,False)

10: else rg = 0

11: if relabel then
12: Navigation reward rn = P[grasp|ot]− 1
13: else rn = rg − 1

14: Get next navigation observation ot+1

15: Store (ot, an, rn, ot+1) in Dn.
16: Update πn with Dn using SAC.
17: Pseudo-reset
18: end for

While the training schemes described above
allow ReLMM to learn efficiently, both the
contextual bandit grasping formulation and
the navigation training setup requires an
episodic training setup, where the environ-
ment is reset between trials, for example by
replacing the objects into the world at ran-
dom positions. To enable the robot to learn
mobile manipulation skills without manually
provided resets, we construct an automated
pseudo-reset system that allows our method
to learn autonomously without human inter-
vention. After a successful grasp, the envi-
ronment would ideally be reset by relocating
the object to a new, randomly selected loca-
tion. In stationary bin grasping setups, this
can be automated simply by dropping the ob-
ject back into the bin. However, for a mo-
bile manipulator, dropping the object back to
where it was grasped would promote policies
that fail to search for new objects, and sim-
ply remain in the same location. To force the
policies to learn to grasp in varied situations, we perform an automated random pseudo-reset, by
commanding random navigation actions while the robot is holding the object, placing down the ob-
ject in this new location, and then navigating randomly away. This ensures the robot will not always
be near an object during training and must instead learn to seek objects out. We outline the overall
algorithm used for training in Algorithm 2.

4.4 Training Curricula

The separate grasping and navigation policies lend themselves naturally to curricular training, where
the grasping policy, which needs to have some successes to provide rewards to the navigation policy,
can be prioritized at the beginning of the learning process. We propose two types of curricula, which
both break the potential “chicken-and-egg" training problem of providing poor reward signals for
navigation from an untrained grasping model.

Stationary curriculum. The simplest curriculum is to place a single object in front of the robot and
run Algorithm 1 with st = True for Nst = 2000 steps. After each successful grasp, the robot places
the object down randomly. If the object is knocked into an area the robot can not reach (because
the base is stationary), which happens about 5% of the time, a human observer must push the object
back into the graspable area. This curriculum is very time efficient, but does require occasional
human intervention.

Autonomous curriculum. For fully autonomous learning, we develop a training curriculum that
favors collecting grasping data early on by performing a high number of grasps at the beginning
of training, according to hyperparameters Nstart, Nstop, and Nmax. The robot attempts Ngrasp =
Nstart grasps after every navigation step. If the robot succeeds at grasping an object it will practice
with this object until Ngrasp = Nstop unsuccessful grasps. This initial automatic grasping curricula
ends when a total of Nmax grasps are complete. More details on the grasping curriculum algorithm
are in Appendix ??.
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Figure 3: Top Left: Learning curves for training the real robot showing the number of objects grasping in the
last 15 min of operation, which is ∼ 250 actions. This metric are divided by the rooms’ surface areas to make
them comparable. Top mid-left: The simulated environment, which we run with and without obstacles. Right
& Bottom: Snapshots from the evaluation tasks without obstacles in a 4m2 room (top-mid-right, no obst,
bottom-left, diverse), with obstacles obst in a 9m2 room (top-right), and with obstacles and rugs obst+rugs in
a 10m2 room (bottom-right). Videos are available at https://sites.google.com/view/relmm/home

5 Robotic Mobile Manipulator: System Overview

Our choice of robotic system reflects the need for a robust robotic platform that can operate au-
tonomously for long periods of time, and is unlikely to cause damage to itself and its surroundings.
Ensuring safety during autonomous operation is itself a significant research challenge, which is
outside of the scope of this work. Therefore, we utilize a small-scale low-cost mobile manipulation
platform based on the LocoBot design [43, 50], shown in Figure 2 (left), which consists of an iClebo
Kobuki mobile base and a WidowX200 5-DoF arm. The robot sensors include an Intel RealSense
D435 camera at the top of the robot, as well as bump sensors on the base. We use an onboard Intel
NUC to command the robot, and connect wirelessly to a server for data processing and training.
Random exploration is generally safe with the LoCoBot as it is small, light, and will automatically
stop the arm’s motors if they encounter resistance. We also use the depth camera output to automat-
ically avoid collisions, as described in ??. The robot learns in a real-world office space, with varied
lighting conditions, distractors, and surface textures. Our experiments utilize small objects that the
robot can feasibly pick up, which consist of socks and toys – a sampling of objects one may want a
robot to pick up off the floor.

To control the robot, we separately command the iClebo mobile base and the WidowX200 robotic
arm with the corresponding navigation and a grasping policies. The navigation policy stops the robot
during a grasp. For grasping, we use a directed end-effector control space. Assuming the floor is
flat, the vertical position for grasping is always chosen to be just above the floor, and the learning
algorithm chooses a point in X − Y space in front of the robot to perform a grasp at. This chosen
position then dictates where to move the gripper using inverse kinematics. Details on the learned
network architectures are in Appendix ??.

6 Experimental Results

Our experiments aim to evaluate our autonomous reinforcement learning system in a number of
real-world environments, as well as to provide ablation experiments and analysis in simulation. In
particular, we aim to study the following questions: (1) Can ReLMM learn autonomously in the real
world? (2) How does the control hierarchy affect learning performance? (3) How does ReLMM
compare to other policy designs and prior methods? Our goal is to study real-world reinforcement
learning, rather than necessarily provide the best possible solution to the room clearing task, and
hence we design our system to be general, with only the reward determining the task. Experiment
details For all real-world experiments, the entire training procedure is performed in the real world
on the LoCoBot platform, with about 25 to 50 hours of training depending on the environment.
The training is autonomous, with the exception of the stationary curriculum (if used), and battery
changes every∼ 5 hours, during which time we may replace objects that become stuck near corners,
or walls.
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As our task is non-episodic, the policies are evaluated at the end of training. This is done by scat-
tering the objects, executing the policy (without pseudo-resets) for 15 minutes, and counting the
number of objects collected in that time. We use four real environments in our evaluation (no obsta-
cles, with obstacles, with diverse objects, and with obstacles and rugs and a simulated environments,
as shown in Figure 3. Each room has a different size and number of objects, so we report the percent
of objects collected in each 15 minute block of training, as shown in Figure 3. In simulation, we
plot the evaluation performance using 250 timesteps instead of 15 minutes.

We compare our approach to several prior methods and baselines. The baselines include: Rand all,
a policy that selects navigation and manipulation actions randomly, as a lower baseline; Rand nav, a
method similar to Gupta et al. [43] that collects grasping data in the same way as our method, but has
a random navigation controller. These baselines disentangle the benefits we get from learning both
the grasping and the navigation. We also include a hand-coded controller (Scripted) specifically
engineered for this task that locates objects by thresholding the image pixels and grasps at their
centroids, which provides a strong hand-designed baseline. For more detail on the implementation
of these baselines, see Appendix 6.

Env no obst obst diverse obst+rugs
ReLMM-StatCurr 88± 2 93± 2 63± 8 78± 6
ReLMM-AutoCurr 77± 8 – 75± 4 –

Scripted 75± 4 88± 6 56± 3 65± 9
Rand nav [43] 52± 12 38± 10 22± 9 20± 7

Rand all 12± 6 2± 2 2± 3 5± 4

Table 1: Percentage of objects that the robot collects dur-
ing eval in each environment (shown in Figure ??) (higher is
better). Each method is trained once per env, and evaluated 3
times. The numbers are mean and stddev of the 3 evaluations.
ReLMM outperforms the baselines by learning both grasping
and navigation jointly, without requiring environment instru-
mentation. Due to ReLMM-AutoCurr’s slower learning, we
only evaluate it in no obst with diverse. In ?? we provide the
training time in each env.

Real Robot Evaluation Our real-world
experiments evaluate how well ReLMM
can learn a mobile grasping policy au-
tonomously in a variety of rooms. We
conducted separate experiments for each
of the rooms shown in Figure 3, which
differ in terms of size, furniture, layout,
and objects. ReLMM can train using both
the stationary and autonomous grasping
curricula, with the autonomous curricu-
lum requiring less human effort, at the cost
of increased training time. The result are
summarized in Table 1 with the training
time given in ??. Examples of the learned
behaviors are also shown in ??, and are il-
lustrated in more detail in the supplemen-
tary video.

Figure 4: Different checkpoints of ReLMM
in the obst+rugs room. Performance improves
steadily with more training, and indeed is still in-
creasing even at our final checkpoint, suggesting
that lifelong training enables continual improve-
ment for ReLMM.

To provide context for these results, we compare
ReLMM to the previously described baselines. The
Rand all and Rand nav [43] baselines perform
poorly, since neither method learns a directed nav-
igation behavior, making it difficult to effectively
navigate the room to collect objects, though Rand
nav [43] is effective at picking up the objects if it
stumbles upon them. This illustrates the importance
of an intelligent navigational strategy in these set-
tings. The Scripted baseline, which was specifi-
cally engineered for this task, performs reasonably
in most settings, but still falls short of the pol-
icy learned by ReLMM in all of the environments,
and crucially cannot improve from these results au-
tonomously. This is particularly important in the di-
verse and obst+rugs environments where it is diffi-
cult to find a pixel threshold that works for all objects and all backgrounds, ReLMM can automat-
ically learn how to identify objects to grasp via interaction. In Figure 4, we plot the evaluation
performance of our ReLMM-StatCurr agent learning in obst+rugs for a few checkpoints, showing
that our method is improving from its experience and is still improving after 50 hours of training.
This is important in open-world settings, where our approach would enable mobile manipulators to
improve perpetually over the lifetime of their deployment.

Simulation Analysis To study questions (2) and (3), we perform a detailed ablation analysis in
simulation. As discussed in ??, we find that a discretized grasping policy learns with 1

3 the samples
compared to a continuous one. In Figure 5, we show the performance of various ablations of our
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Figure 5: Performance in the simulated environment without obstacles. Each plot is the mean and stddev
over 3 random seeds. Left: Ablation of different number of grasp "pretraining" samples for the stationary
curriculum (Nst) and navigation reward relabeling (described in subsection 4.2) in simulation. Increased pre-
training of the grasping policy improves overall mobile manipulation performance. Center: Analysis to find
the best parameters for the autonomous curriculum. With the proper settings (Nstart|Nstop|Nmax) the au-
tonomous curriculum can be almost as efficient as the stationary, without requiring as much manual effort.
Right: Ablation of ReLMM, all use the stationary curriculum and no relabeling except for Ours (AutoCurr).
We find that the uncertainty bonus and joint training are critical components of our system.

system in the simulated environment with the stationary curriculum. First, we ablate the policy
decomposition by training a single policy with reinforcement learning using grasp success as the
reward. The joint action space poses a much larger exploration problem, and the policy is unable to
make headway on the task in a reasonable number of samples. This indicates that the hierarchical
decomposition used by ReLMM significantly improves training performance. Next we see that
freezing the grasp policy after the stationary phase (Pretrain Online) and only training the navigation
is much worse than training both together. This illustrates the interplay between the two policies, as
the navigation is dependent on the grasping for obtaining rewards. As shown in the plot, training the
grasp policy without the uncertainty bonus (i.e. β = 0) leads to significantly poorer performance for
ReLMM, as it is less incentivized to explore. Finally, we see that the autonomous curriculum with
reward relabeling can get similar final performance as the stationary curriculum with less human
intervention at the cost of longer training time.

Lastly, we examine how to get the best performance in terms of sample efficiency by performing an
ablation on the choices of curriculum to minimize the samples needed. This is especially important
as ReLMM trains two policies concurrently, which can often be unstable. As can be seen in Figure 5
(left) a strong final navigation and grasping policy can be learned with just 500 stationary grasps
while applying relabeling to the navigation rewards. Next, we expand on the curriculum results on
the real robot in order to tune the autonomous curriculum to be nearly as sample efficient as the
stationary curriculum. In Figure 5 (middle) we can see that the best final performance is achieved
by increasing the frequency of grasps early on in training and adding a bonus using the grasp model
uncertainty.

7 Discussion and Future Work

We presented ReLMM, a system for autonomously learning mobile manipulation skills in the real
world, without instrumentation, and with minimal human intervention. Our real-world experiments,
conducted in four separate rooms, show that ReLMM can train continuously for several days (40-60
hours) with only occasional interventions, and that the resulting policies are effective at cleaning
up the room. Furthermore, our experiments show that ReLMM continues to improve with more
training, suggesting that it provides an effective approach for lifelong learning for robotic systems
deployed in open-world settings. Our simulated ablation studies further provide support for the de-
sign decisions in ReLMM, indicating that the hierarchical decomposition of navigation and grasping
greatly improves learning performance, autonomous practicing with a suitable exploration bonus
enhances learning speed, and our automated curriculum can provide effective performance when
learning from scratch. Even when using the manually-provided curriculum, the grasp pretraining
phase does not need to be long: only 1000 attempted grasps were needed to get reasonable room-
cleaning performance, although more pretraining can improve performance further. Extending this
system to more complex manipulation tasks would be an exciting direction for future work. We
hope that this system for practical RL on mobile manipulators will make mobile manipulation more
accessible to outside lab spaces and to users who need maximally autonomous learning algorithms.
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