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Abstract

Sequence Labelling problems, such as Dia-
logue Act (DA) and Sentiment/Emotion (S/E)
identification, play a large part in Natural Lan-
guage Understanding tasks, like implementing
Conversational Agents. In the past few years,
the methods used for vector representation of
words and utterances, an essential component
of these problems, have been significantly im-
proved thanks to Large Language Models, like
BERT (Devlin et al., 2018), which is based on
the Transformer Architecture.

In this work we experiment on the Sequence
Labelling Problem by proposing our own ar-
chitecture for classification and relying on the
fine-tuning of a pre-trained large language
model, either RoBERTa (Liu et al., 2019) or
DeBERTa (He et al., 2020). We then com-
pare the performance of the two models for our
architecture. We also study the difference in
performance between a total fine-tuning and a
partial fine-tuning of the pre-trained models.

We conduct our analysis on the annoted spo-
ken language datasets from the SILICONE
benchmark (Chapuis et al., 2020). Our work
shows that the two models are quite similar
in test accuracy and seem to outperform the
models from (Colombo, 2021). We also show
that partially fine-tuning provides lesser per-
formances than totally fine-tuning. We con-
clude by discussing some other leads of explo-
ration to tackle the Intent classification prob-
lem, like hierarchical structures and contrasive
learning.

1 Introduction

In recent years, virtual assistants like Google
Home have become increasingly popular, provid-
ing users with a convenient and intuitive way to
interact with technology. These devices rely on
natural language processing (NLP) technologies to
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understand and respond to user requests, which of-
ten involve complex dialogues with multiple turns
and linguistic cues.

One crucial aspect of NLP technology for vir-
tual assistants is the identification and classifica-
tion of dialog acts, which are the fundamental
units of communication in a conversation. Di-
alog acts refer to the specific actions performed
by a speaker during a dialogue, such as asking
a question, giving an order, expressing an opin-
ion, or providing information. Accurate identifica-
tion of these dialog acts is essential for the virtual
assistant to understand the user’s intent and pro-
vide appropriate responses (Jalalzai* et al., 2020;
Colombo* et al., 2019; Colombo et al., 2021).

The importance of dialog act classification in
virtual assistants like Google Home is further
highlighted by the fact that these devices are be-
coming ubiquitous in daily life, assisting users
with a wide range of tasks, from setting reminders
and playing music to controlling smart home de-
vices and ordering groceries. Inaccurate classi-
fication of dialog acts can result in incorrect re-
sponses, leading to user frustration and potentially
damaging the reputation of the virtual assistant.

In this work, we address the problem of DA
and E/S classification using deep learning tech-
nics. From non-contextual embeddings (such as
Word2vec (Mikolov et al., 2013), Glove (Pen-
nington et al., 2014), FastText (Bojanowski et al.,
2017)) to contextual embeddings, generic vec-
tor representations of natural language has been
proven powerful in NLP tasks. Especially the
emergence of attention mechanisms (Bahdanau
et al., 2014) and the Transformer architecture
(Vaswani et al., 2017) has brought NLP to a large
language model (LLM) era. Many transformer-
based models, such as BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019) and DeBERTa (He
et al., 2020) are trained on large corpora of written
language, and provide the contextual vector repre-



sentations which capture the semantic information
in natural language.

In this work, we focus on showing the general-
ity of vector representations trained on written lan-
guage and their effectiveness in DA and E/S tasks.
More specifically, we employ the pre-trained
RoBERTa and DeBERTa and fine-tune them us-
ing SILICONE (Chapuis et al., 2020), which is
a collection of sequence labelling tasks, gathering
both DA and E/S annotated datasets. Five datasets
in SILICONE have been chosen for fine-tuning:
DyDA DA, MapTask, MELD e, MELD s and SEM. The
source code can be found on Github.1

2 Problem Framing

We start by formally defining the Sequence La-
belling Problem. There are three levels: dialogue
level, utterance level and word level. At the dia-
logue level, we have a set D of conversations com-
posed of utterances, i.e., D = (C1, C2, ..., C|D|)
with Y = (Y1, Y2, ..., Y|D|) being the correspond-
ing set of labels (e.g., DA or E/S). At the ut-
terance level, each conversation Ci is composed
of utterances u, i.e Ci = (u1, u2, ..., u|Ci|) with
Yi = (y1, y2, ..., y|Ci|) being the corresponding
sequence of labels: each ui is associated with a
unique label yi. At the word level, each utter-
ance ui can be seen as a sequence of words, i.e
ui = (ωi

1, ω
i
2, ..., ω

i
|ui|). Some concrete examples

can be found in Table 1.

Table 1: Examples of dialogues labelled with DA and
E/S taken respectively from DyDA and MELD.

Utterances DA
Can you study with the radio on? question

No, I listen to background music. inform

What is the difference? question

The radio has too many comerials. inform

That’s true, but then you have to buy a record player. inform

Utterances E/S
You had no right to tell me you ever had feelings for me. anger

What? surprise

I was doing great with Julie before I found out about you. anger

2.1 Related Work

Many approaches have been proposed to tackle
the DA and E/S classification problem. Early
work relies on the independent classification of
each utterance using various techniques, such as
Hidden Markov Models and SVM (Stolcke et al.,
2000), (Surendran and Levow, 2006). More re-
cently, deep learning approaches (Kalchbrenner

1Our repository on Github

and Blunsom, 2013) have been widely applied
to capture contextual dependencies between input
sentences. (Li et al., 2018) proposes a dual at-
tention mechanism to capture information about
both DAs and topics. Another refinement is to
consider the inter-tag dependencies (Kumar et al.,
2018). By making use of the perfect alignment be-
tween the utterance sequence and DA sequence, a
guided attention mechanism is used to force the
decoder to focus more on some specific utterances
(Colombo et al., 2020).

The hierarchical structure has been considered
to tackle the multiple levels of DA and E/S
tasks (Kumar et al., 2018), (Garcia et al., 2019),
(Colombo, 2021). Various pieces of information
have been proven useful to improve the accuracy
of sequence labelling tasks, such as the fillers in
spoken language (Dinkar et al., 2020) and the in-
formation in other modalities (e.g. video and au-
dio) (Garcia et al., 2019). Some other works fo-
cus on the code-swithed phenomenon by propos-
ing the DA classification models in multi-language
settings (Chapuis et al., 2021).

2.2 Our proposals

This work mainly focuses on making use of
generic representations of natural language pro-
vided by pre-trained LLM, to tackle the sequence
labelling problem.

We propose to use the vector representation of
each utterance to perform an independent classifi-
cation (without considering the intra-utterance de-
pendencies), as shown in Fig. 1. Following the
idea in BERT (Devlin et al., 2018), we extract the
vector representation of the first special token in
the utterance, as the representation of the whole
utterance.

Figure 1: Independent classification

https://github.com/yunhao-tech/NLP_ENSAE_2023


2.3 The SILICONE datasets and tasks
As described in (Chapuis et al., 2020), SILI-
CONE2 gathers nine labelling tasks datasets (Li
et al., 2017; Leech and Weisser, 2003; Busso et al.,
2008; Passonneau and Sachar., 2014; Thompson
et al., 1993; Poria et al., 2018; Shriberg et al.,
2004; Mckeown et al., 2013), including five DA
datasets and four S/E datasets. We have selected
five datasets of various sizes for our tuning tasks,
although we favoured in our choices some of the
smaller-sized datasets for the sake of shorter com-
putation times and saving ressources. Among the
chosen DA datasets, DyDA DA is the third biggest
set of SILICONE (102k utterances in total), and
MapTask, a small set of 27k utterances. Then,
among the S/E datasets, SEM is the smallest SILI-
CONE dataset with 5,6k utterances, while MELD e

and MELD s share the same 13k utterances.
The two MELD datasets are representative of the

diversity of tasks found in SILICONE: for a given
utterance, MELD s identifies the sentiment among
three labels ”negative”, ”neutral”, or ”positive”
while MELD e assigns an emotion among seven la-
bels (”anger”, ”disgust”, ”fear”, ”joy”, ”neutral”,
”sadness” and ”surprise”).

One can notice that the label repartition can
be quite imbalanced in the datasets (see Table
2). It can be explained by the construction of the
datasets, since they are a collection of consecutive
lines (utterances) of natural speech and dialog.

Table 2: Label repartition in some of the selected SIL-
ICONE datasets

SEM - Training set Negative Neutral Positive
844 2291 1129

MELD s - Training set Negative Neutral Positive
2945 4710 2334

DyDA DA - Training set Commissive Directive Inform Question
8081 14242 39873 24974

3 Experiments and Analysis

As the implementation of our first proposal, we
have fine-tuned the pre-trained “RoBERTa-base”
3 and pre-trained “DeBERTa-base” 4, on NVIDIA
RTX A2000 with 12GB RAM. On top of the pre-
trained model, we added three linear layers, each
with 768 neurons (the last layer serves as clas-
sification layer). Other hyper-parameters can be
found in Table 3, which use the fine-tuning setting

2SILICONE on HuggingFace
3Roberta Model on HuggingFace
4Deberta Model on HuggingFace

in (He et al., 2020). Figures 6, 7, 8 and 9 in the Ap-
pendix show respectively the evolution of valida-
tion accuracy and loss in DeBERTa and RoBERTa.
Generally speaking, after a few (2-4) epochs, the
validation accuracy reaches a peak. This could be
explained by the small amount of fine-tuning data,
compared to the huge pre-training corpus.

Table 3: Hyper-parameters in fine-tuning

Hyper-parameter Value
Dropout in classification layer 0.15

Optimizer Adam
Learning rate 2e-5

Adam ϵ 1e-6
Gradient Clipping 1.0

Maximum fine-tuning epochs 10
Patience 2

Batch size 32 (64 for Dyda da)

Information on several datasets from SILI-
CONE and test accuracy on them is shown in Ta-
ble 4. RoBERTa and DeBERTa have both 120 mil-
lion trainable parameters. The execution time per
epoch is the same and is reasonably proportional
to the dataset size. There is no obvious differ-
ence between these two models in terms of test
accuracy. We also notice that on several datasets
such as DyDA DA, MELD e and MELD s, RoBERTa
and DeBERTa achieve better performance than
(Colombo, 2021).

Table 4: For each tasks: Number of samples, Execution
time per epoch and Test accuracy (fine-tuning whole
model)

Task #Samples Exec. time DeBERTa RoBERTa
DyDA DA 87170 2h26mins - 82.7
MapTask 20905 35mins 63.6 64.0
MELD e 9989 17mins 63.7 63.0
MELD s 9989 17mins 70.5 70.0
SEM 4264 7mins 62.7 63.2

We then compared total fine-tuning and partial
fine-tuning. The latter means that the backbone
model is frozen and only the added linear layers
are trained. Fig. 2 shows the result which is ex-
pected: there is an obvious drop of performance if
we just update the parameters in added linear lay-
ers.

As a final illustration of the importance of fine-
tuning and an assessement of our architecture’s
performance, we take a look in Fig. 3 at the con-
fusion matrix obtained on the SEM test set with
RoBERTa. On this dataset, the accuracy from Ta-
ble 4 was 63.2%. The confusion matrix shows that

https://huggingface.co/datasets/silicone
https://huggingface.co/docs/transformers/model_doc/roberta#transformers.RobertaModel
https://huggingface.co/docs/transformers/model_doc/deberta#transformers.DebertaModel


Figure 2: Total and partial fine-tuning on RoBERTa

for the Negative label, 56% of the instances are
matched with a correct prediction, for the Neutral
label 64%, and for the Positive label 63% of the
predictions are correct. The fact that the predic-
tions for the Negative label are weaker than for the
other two can be explained by the lower proportion
of this label over the training set, as we showed in
Table 2. However, these predictions are signifi-
cantly improved by the total fine-tuning: the ini-
tial RoBERTa (without being fine-tuned) predicts
mostly a Negative label regardless of the true label
(see Figure 10).

Figure 3: Confusion matrix of the fine-tuned RoBERTa
on the SEM test set

4 Discussions

In this work, we have illustrated one use of Large
Language Models in the Sequence Labelling prob-
lem with a quite simple approach. To do so, we
added linear layers on top of pre-trained models,
RoBERTa and DeBERTa, and then fine-tuned the
weights accordingly to each of the datasets we se-

lected from the SILICONE benchmark. We have
observed that the two models are both quite sat-
isfying and similar in performance when we con-
sider the accuracy on the test sets, and seem to out-
perform one of our reference papers, (Colombo,
2021). The experiment we made by comparing to-
tal and partial fine-tuning demonstrated that fully
tuning the model and not only the additional lay-
ers allows a higher classification accuracy. Also,
observing the confusion matrices reminded us that
the balance in the training samples has a part to
play in the quality of the predictions, in addition
to tuning. This work was also an opportunity to
appreciate the diversity of tasks (Dialogue Act and
Sentiment/Emotion labelling) that can be achieved
thanks to the variety of available training sets from
SILICONE and the flexible vector representation
of the Transformer architecture.

However, we only proposed a simple architec-
ture that performs an independent classification,
which means that the model doesn’t consider the
hierarchy between utterances. To obtain a more
complete model, as shown in Fig. 4 and Fig. 5,
we suggest that the structure LSTM (Hochreiter
and Schmidhuber, 1997) or Transformer (Vaswani
et al., 2017) could be applied on top of the utter-
ance representation, in order to capture the intra-
utterance dependencies in one dialogue.

Figure 4: Hierarchical structure with LSTM

Another idea we have explored comes from the
fact that each of the five datasets we selected from
SILICONE contains a different number of classes,
which forces us to fine-tune one model for one
dataset. Ideally, we would like to use one model
for all downstream tasks. The idea of contrasive
learning in CLIP (Radford et al., 2021) has been
borrowed here: the utterances and the correspond-
ing labels are both encoded to vectors in the same
latent space. The correct utterance-label pairs are



Figure 5: Hierarchical structure with Transformer

expected to have a higher cosine similarity simi-
larity. In this way, the classification layer is not
needed anymore. However, the test performance
of this method is not satisfactory: the accuracy is
just slightly higher than random choice. The test
code can be found in our Github repository. We
guess that the poor performance may be due to
the difference of utterance length (more than 20
tokens) and label length (3-4 tokens). Thus, the
utterance vector and label vector are probably not
aligned in latent space, which makes the cosine
similarity no sense. How to solve this alignment
problem could be a research direction for future
works.

References
Henry Thompson, Anne Anderson, Ellen Bard,

Gwyneth Doherty-Sneddon, Alison Newlands, and
Cathy Sotillo. 1993. The hcrc map task corpus: nat-
ural dialogue for speech recognition.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Andreas Stolcke, Klaus Ries, Noah Coccaro, Eliza-
beth Shriberg, Rebecca Bates, Daniel Jurafsky, Paul
Taylor, Rachel Martin, Carol Van Ess-Dykema, and
Marie Meteer. 2000. Dialogue act modeling for au-
tomatic tagging and recognition of conversational
speech. Computational linguistics, 26(3):339–373.

Geoffrey Leech and Martin Weisser. 2003. Generic
speech act annotation for task-oriented dialogues.

Elizabeth Shriberg, Raj Dhillon, Sonali Bhagat, Jeremy
Ang, and Hannah Carvey. 2004. The ICSI meeting
recorder dialog act (MRDA) corpus. In Proceedings
of the 5th SIGdial Workshop on Discourse and Di-
alogue at HLT-NAACL 2004, pages 97–100, Cam-
bridge, Massachusetts, USA. Association for Com-
putational Linguistics.

Dinoj Surendran and Gina-Anne Levow. 2006. Dialog
act tagging with support vector machines and hidden
markov models. In Interspeech. Citeseer.

Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe
Kazemzadeh, Emily Mower Provost, Samuel Kim,
Jeannette Chang, Sungbok Lee, and Shrikanth
Narayanan. 2008. Iemocap: Interactive emotional
dyadic motion capture database. Language Re-
sources and Evaluation, 42:335–359.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
convolutional neural networks for discourse compo-
sitionality. arXiv preprint arXiv:1306.3584.

Gary Mckeown, Michel Valstar, Roddy Cowie, Maja
Pantic, and M. Schroder. 2013. The semaine
database: Annotated multimodal records of emo-
tionally colored conversations between a person and
a limited agent. Affective Computing, IEEE Trans-
actions on, 3:5–17.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

R. Passonneau and E. Sachar. 2014. Loqui human-
human dialogue corpus (transcriptions and annota-
tions).

https://doi.org/10.3115/1075671.1075677
https://doi.org/10.3115/1075671.1075677
https://www.aclweb.org/anthology/W04-2319
https://www.aclweb.org/anthology/W04-2319
https://doi.org/10.1007/s10579-008-9076-6
https://doi.org/10.1007/s10579-008-9076-6
https://doi.org/10.1109/T-AFFC.2011.20
https://doi.org/10.1109/T-AFFC.2011.20
https://doi.org/10.1109/T-AFFC.2011.20
https://doi.org/10.1109/T-AFFC.2011.20


Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information process-
ing systems, 30.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017. Dailydialog: A manually
labelled multi-turn dialogue dataset.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the associa-
tion for computational linguistics, 5:135–146.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Harshit Kumar, Arvind Agarwal, Riddhiman Dasgupta,
and Sachindra Joshi. 2018. Dialogue act sequence
labeling using hierarchical encoder with crf. In Pro-
ceedings of the aaai conference on artificial intelli-
gence, volume 32.

Ruizhe Li, Chenghua Lin, Matthew Collinson, Xiao Li,
and Guanyi Chen. 2018. A dual-attention hierarchi-
cal recurrent neural network for dialogue act classi-
fication. arXiv preprint arXiv:1810.09154.

Soujanya Poria, Devamanyu Hazarika, Navonil Ma-
jumder, Gautam Naik, Erik Cambria, and Rada Mi-
halcea. 2018. Meld: A multimodal multi-party
dataset for emotion recognition in conversations.

Pierre Colombo*, Wojciech Witon*, Ashutosh Modi,
James Kennedy, and Mubbasir Kapadia. 2019.
Affect-driven dialog generation. NAACL 2019.

Alexandre Garcia, Pierre Colombo, Slim Essid, Flo-
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A Figures

Figure 6: DeBERTa: Evolution of validation accuracy
on different tasks

Figure 7: DeBERTa: Evolution of validation loss on
different tasks

Figure 8: RoBERTa: Evolution of validation accuracy
on different tasks

Figure 9: RoBERTa: Evolution of validation loss on
different tasks

Figure 10: Confusion matrix of the initial RoBERTa
(no fine-tuning) on the SEM test set


