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Abstract

Hamiltonian Monte Carlo (HMC) samples from
an unnormalized density by numerically integrat-
ing Hamiltonian dynamics. Girolami & Calder-
head (2011) extend HMC to Riemannian mani-
folds, but the resulting method faces integration
instability issues for practical usage. While pre-
vious works have tackled this challenge by using
more robust metric tensors than Fisher’s informa-
tion metric, our work focuses on designing numer-
ically stable Hamiltonian dynamics. To do so, we
start with the idea from Lu et al. (2017), which de-
signs momentum distributions to upper-bound the
particle speed. Then, we generalize this Lu et al.
(2017) method to Riemannian manifolds. In our
generalization, the upper bounds of velocity norm
become position-dependent, which intrinsically
limits step sizes used in high curvature regions
and, therefore, significantly reduces numerical er-
rors. We also derive a more tractable algorithm to
sample from relativistic momentum distributions
without relying on the mean-field assumption.

1. Introduction
Hamiltonian Monte Carlo (HMC) is a Markov chain Monte
Carlo (MCMC) method to sample from a target distribution
π known up to its unnormalized log-density L, i.e. π(q) ∝
exp (L(q)). MCMC works by iteratively proposing new
states based on current states to produce a chain of samples
converging asymptotically to the target. In HMC, new states
are proposed by integrating the Hamiltonian dynamics with
position q(τ) and momentum p(τ) at time τ defined as

dq/dτ = ∇pH and dp/dτ = −∇qH, (1)
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where H(q,p) = U(q) +K(q,p) is the Hamiltonian en-
ergy and U,K are the potential and kinetic energy, respec-
tively. To sample from a target with access to its unnormal-
ized log-density L, we construct a Hamiltonian system with
U(q) = −L(q) and define the kinetic energy K or equiva-
lently the momentum distribution. We then propose a sam-
ple q′ from a trajectory t̂ obtained from numerical integra-
tion starting from the current q and a random p. There are
various ways to define the kinetic energy, to integrate Hamil-
tonian dynamics numerically, and to draw samples from the
numerically integrated trajectory. The combinations of these
choices lead to different types of HMC algorithms in the
literature (Neal, 2011; Hoffman & Gelman, 2011; Girolami
& Calderhead, 2011; Betancourt, 2018). Due to its high effi-
ciency for high-dimensional, differentiable densities and its
availability in modern probabilistic programming languages
(Carpenter et al., 2017; Ge et al., 2018), HMC has been
applied to a range of domains including statistical physics
(Duane et al., 1987), neuroscience (Sengupta et al., 2016;
Linderman et al., 2016; Jha et al., 2022), bioinformatics
(Larranaga et al., 2006), social science (Peng et al., 2016)
and machine learning (Barber, 2012).

HMC’s sampling efficiency highly depends on the local geo-
metric structure of the target. Various HMC extensions have
proposed to utilize the underlying geometry through the
kinetic energy function by using a global pre-conditioning
matrix (Neal, 2011; Carpenter et al., 2017), or a position-
dependent conditioning matrix (Girolami & Calderhead,
2011; Betancourt, 2013), commonly referred as Riemannian
HMC (RHMC). For RHMC, numerical integration becomes
more difficult, leading to significantly more divergent tran-
sitions and hindering sampling efficiency. This is because
the position-dependent momentum distribution sometimes
produces large momentum realizations in regions with high
curvature. These large momentum variables often lead to in-
stability in numerical integration. A naive solution requires
using an unrealistically small step size that works across all
parameter space regions during generalized leapfrog inte-
gration: regions with large curvature determine the upper
bound for the acceptable step size.

Recently, Lu et al. (2017) proposed an effective way to sta-
bilize Hamiltonian simulation inspired by Einstein’s theory
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of special relativity, which states any particle cannot travel
faster than the speed of light. In Hamiltonian simulation,
the velocity, v := dq/dτ , is used to update the position
variable q together with a choice of step size (section 2.3).
The main idea is to design kinetic energy such that the norm
of velocity (i.e. speed) is upper-bounded, which is actually
similar to the idea of gradient clipping (i.e. constraining
gradients to a fixed-radius ball) in deep learning, The result-
ing method, relativistic Monte Carlo, consists of a kinetic
energy based on the relativity theory and upper-bounds the
speed of the particles in the Hamiltonian simulation (Lu
et al., 2017).

This paper extends Lu et al. (2017) to the theory of gen-
eral relativity by developing relativistic Monte Carlo on
Riemannian manifolds. The proposed method, general rela-
tivistic HMC (GR-HMC), stabilizes HMC on Riemannian
manifolds by upper-bounding particle velocity in a position-
dependent manner to reduce Hamiltonian integration er-
rors in high-curvature regions. For this, we propose a new
kinetic energy corresponding to a multivariate relativistic
momentum distribution with a position-dependent metric.
For efficient sampling, we develop a novel sampler for the
multivariate momentum distribution using the Box-Muller
transform and introduce computationally efficient imple-
mentations and approximations for GR-HMC.

2. Background
In standard HMC, the transition kernel K(Q, ·), where Q is
the current position state, consists of three steps

1. Sampling a momentum variable P according to the
kinetic energy of the Hamiltonian system;

2. Simulating a numerical trajectory following (1);

3. Sampling a new phase point (Q′, P ′) from the simu-
lated trajectory, and Q′ is the new state.

For step 1, the kinetic energy K(q,p) defines the momen-
tum distribution as pr(p) ∝ exp(−K(q,p)), where pr
denotes a probability measure. A common choice of the
momentum distribution is a multivariate Gaussian with a
zero-vector mean and a covariance matrix G, which corre-
sponds to kinetic energy KG(p) = 1

2p
⊤G−1p. A common

choice of G is some positive-definite matrix representing
the global geometry of the target distribution, e.g. the sample
covariance matrix. However, such a metric is not optimal
unless the target distribution is Gaussian. Next, we review
two important kinetic energy choices on which our method
is based.

2.1. Position-dependent momentum

In Riemannian HMC, Girolami & Calderhead (2011) ex-
tends HMC from Euclidean manifolds to Riemannian mani-
folds by introducing a position-dependent Gaussian momen-
tum with the following position-dependent kinetic energy

KG(q,p) =
1

2
p⊤G−1

q p+
1

2
log det(Gq) (2)

where q and p are position and momentum variables. This
corresponds to a multivariate Gaussian with a zero-vector
mean and a position-dependent covariance matrix Gq.

2.1.1. CHOICES OF POSITION-DEPENDENT METRICS

Fisher information metric Girolami & Calderhead
(2011) suggests using the Fisher information metric for Gq,
which, for general sampling problems, can be computed as
the Hessian matrix of the potential energy HU . However,
HU is not guaranteed to be positive-definite, often leading
to pathological behavior in sampling.

SoftAbs metric To solve this pathological behavior, Be-
tancourt (2013) proposes the SoftAbs metric that applies
a matrix transformation to the Hessian to produce a pos-
itive definite matrix ≀HU ≀. Here the SoftAbs map ≀ · ≀,
which ensures the transformed eigenvalues are positive, is
defined as ≀X≀ := [exp(αX)+exp(−αX)]·X·[exp(αX)−
exp(−αX)]−1, where exp is the exponential mappings of
matrices. Such transformation results in a “smooth” ver-
sion of Hessian at singular positions but is still close to the
original Hessian matrix. Efficient and stable computation
of SoftAbs via eigen-decomposition is used in practice (Be-
tancourt, 2013). In the rest of the paper, we assume G(·) is
SoftAbs.

2.2. Velocity-bounded momentum

Inspired by the wide use of gradient clipping in deep learn-
ing, Lu et al. (2017) propose the novel kinetic energy that
bounds the particle velocity in Hamiltonian simulation

K̃I(p) = mc2
√

p⊤p

m2c2
+ 1 (3)

where p is the momentum variable, m is the “rest mass” and
c the “speed of light”. Note that we use˜(tilde) to indicate
kinetic energy is velocity-bounded.

The momentum p and velocity v of a particle is connected
by its “relativistic mass” MI(p) as vI := (MI(p))

−1
p

where MI(p) = m
√

p⊤p
m2c2 + 1. The relativistic momen-

tum upper bounds the velocity vI by c. To see this, note

MI(p) = m
√

p⊤p
m2c2 + 1 > m

√
p⊤p
m2c2 + 0 = ∥p∥2/c.

Lu et al. (2017) proposes to sample a uni-variate of relativis-
tic momentum distribution via rejection sampling. However,
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it is hard to sample multivariate relativistic moment vari-
ables directly using (adaptive) rejection sampling. Lu et al.
(2017) proposed a heuristic: an easy-to-sample, dimension-
wise version of (3) that bounds the absolute value of each
dimension of the velocity

K̃⊕
I (p) = mc2

∑
i

√
p2i

m2c2
+ 1. (4)

Here, the superscript ⊕ is for dimension-wise indepen-
dence. This kinetic energy no longer follows the theory
of relativity—it bounds each element of the velocity vari-
able instead of its magnitude. However, this momentum
distribution is easy to sample using (adaptive) rejection sam-
pling because the variable in each dimension can be sampled
independently. Empirically, Lu et al. (2017) only experi-
ments with this dimension-wise momentum distribution on
distributions they studied. We relax this dimension-wise
independence assumption and propose a general sampling
procedure for multivariate relativistic momentum distribu-
tions in section 5.1.

We refer to HMC based on (3) as special relativistic HMC
(SR-HMC) due to its connections to the theory of special
relativity and call those using (4) dimension-wise SR-HMC.

2.3. Generalized leapfrog integration

Hamiltonian systems involving position-dependent momen-
tum are non-separable due to the interaction between mo-
mentum and position variables. Consider RHMC for a con-
crete example of such non-separable Hamiltonian systems:

∂H

∂pi
= {G−1

q p}i (5)

∂H

∂qi
= −∂L

qi
+

1

2
tr{G−1

q

∂Gq

∂qi
} − 1

2
p⊤G−1

q

∂Gq

∂qi
G−1

q p

One has to use the generalized leapfrog integrator to simu-
late the Hamiltonian dynamics to ensure the integration is
reversible; thus, the overall HMC entails detailed balance.
The update equations for generalized leapfrog are as follows

p(τ +
ε

2
) = p(τ)− ε

2
∇qH{q(τ),p(τ +

ε

2
)} (6)

q(τ + ε) = q(τ) +
ε

2
[∇pH{q(τ),p(τ +

ε

2
)} (7)

+∇pH{q(τ + ε),p(τ +
ε

2
)}]

p(τ + ε) = p(τ +
ε

2
)− ε

2
∇qH{q(τ + ε),p(τ +

ε

2
)}

where ε is the step size of choice.

Note that (6) is not a direct update rule as p(τ + ε) appears
at both sides of the equation. Therefore, it is usually solved
by fixed-point iterations, which can be costly or unstable,
depending on the proper choice of the number of iterations.

HMC
position-independent
velocity-unbounded

(Duane et al., 1987; Neal, 2011)

Riemannian HMC
position-dependent
velocity-unbounded

(Girolami & Calderhead, 2011)

Relativistic HMC
position-independent

velocity-bounded
(Lu et al., 2017)

General Relativistic HMC
position-dependent
velocity-bounded

(Ours)

Figure 1: How the proposed method, general relativistic
HMC (GR-HMC), extends related works, Riemannian HMC
(RHMC) and Relativistic HMC (SR-HMC).

3. Related Work
The most related works are Girolami & Calderhead (2011),
which introduced a position-dependent momentum based on
Riemannian manifolds, and Lu et al. (2017) that introduces
a velocity-bounded momentum based on special relativity.
These works are briefly reviewed in section 2. Figure 1 com-
pares standard HMC, these related works and our method.

It’s well understood that RHMC suffers from high compu-
tational costs. A set of approximations has been proposed
to improve the scalability of RHMC by reducing the cost
of computing the inversion or derivative of the Hessian ma-
trix, which has a cubic complexity (Patterson & Teh, 2013;
Betancourt, 2013; Li et al., 2015) overall. RHMC also
suffers from numerical instability when using the popular
Fisher information metric proposed by Girolami & Calder-
head (2011). Betancourt & Stein (2011); Betancourt (2013)
examines the pathology of the Fisher information metric
and proposes alternative numerically more stable metrics.
Recently, Whalley et al. (2022) studies using randomized in-
tegration time (Bou-Rabee & Sanz-Serna, 2017) to improve
RHMC’s numerical stability. It shares some similarities with
our method but still suffers from numerical issues rooted
in the extreme velocity values when exploring regions with
high curvature of the target distribution. The main develop-
ment in this paper is orthogonal to such works that control
the total integration time (Hoffman & Gelman, 2011; Bou-
Rabee & Sanz-Serna, 2017; Whalley et al., 2022). Thus, our
method could be combined with these previous methods for
optimal performance.

In addition, several previous works have studied non-
Gaussian momentum distributions (Zhang et al., 2016; Lu
et al., 2017; Livingstone et al., 2017). Usually, Gaussian
momentum variables are preferred due to their simplicity
and generally good performance. Betancourt (2018) also
described some theoretical benefits of Gaussian momenta
for high-dimensional targets.
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4. General Relativistic Hamiltonian Dynamics
Motivated by the numerical stability of SR-HMC, we extend
the idea of bounding velocity to improve the numerical
stability of HMC on Riemannian manifolds. Our method,
general relativistic Hamiltonian Monte Carlo (GR-HMC),
shares a deep connection with the theory of general relativity.
That is, it “slows down” particles in a position-dependent
fashion: particles will be slowed down more in regions
with higher curvature. This is equivalent to using a smaller
integration step size for high curvature regions of the target
distribution in a physics-motivated manner.

GR-HMC relates the geometry (space) to the Hamiltonian
dynamics (time) by the following kinetic energy

K̃G(q,p) = mc2

√
p⊤G−1

q p

m2c2
+ 1 +

1

2
log det(Gq) (8)

where q and p are the position and momentum variables,
Gq is a position-dependent metric and m, c are the rest
mass and the speed of light as in (3).

We now show that (8) upper bounds norm of particle velocity

vG := ∇qH = (MG(q,Aqp))
−1

G−1
q p (9)

where MG(q,p) = m

√
p⊤G−1

q p
m2c2 + 1 is the “general rela-

tivistic mass” with metric G. For any q, we have

MG(q,Aqp) = m

√
p⊤p

m2c2
+ 1 > m

√
p⊤p

m2c2
+ 0 =

∥p∥2
c

,

where A⊤
qAq = G−1

q . The velocity norm is, therefore

upper upper-bounded as ∥vG∥2 <
∥Aqp∥2

∥p∥2
c. For a local

geometry that corresponds to an identity matrix, the bound
reduces to c. However, for a local geometry at some q
that leads to a smaller ∥Aqp∥2, the velocity norm will be
reduced furthermore, which are regions with high curvature
in general.

Sampling from a simulated Hamiltonian trajectory We
have established the general relativistic Hamiltonian system
by defining its kinetic energy, from which we can simulate
numerical trajectories given the step size and the number of
steps. To derive a complete HMC transition kernel, we still
need to decide how to sample a phase point from simulated
Hamiltonian trajectories. This work considers two options
for sampling phrase points from a Hamiltonian trajectory.
The first is to select the endpoint of a Hamiltonian trajec-
tory and then apply a standard Metropolis-Hastings (MH)
correction to decide whether to accept or reject it. The MH
acceptance ratio defined as a = min(1, exp(∆H)) where
∆H = H(q)−H(q′) is the difference in Hamiltonian en-
ergy of the current position q and the candidate position q′.

A non-negative ∆H would lead to an acceptance of 1, which
is desirable. The second is to perform multinomial sampling
from the entire set of phase points on a Hamiltonian trajec-
tory. It computes the energy differences of the initial point
and all T points (q1,qT ) to construct an energy difference
vector ∆H = [H(q) − H(q1), . . . ,H(q) − H(qT )] and
sample from a multinomial distribution defined by that vec-
tor ∆H to pick the next state from the trajectory (Betancourt,
2018).

Physical interpretation Another interpretation of the
slow-down effect of particle velocity in GR-HMC is “rel-
ativistic step size”. Comparing the velocity of GR-HMC
in (9) and that of RHMC in (5), the velocity of GR-HMC
is scaled by M−1

G (q,Aqp). When used in the generalized
leapfrog step (7), one can interpret it as changing the step
size ε used by RHMC to “relativistic step size”. Effectively,
the larger the general relativistic mass is, the smaller the
step size is. Table 3 in appendix A summarises the physical
quantities discussed so far for all four HMC methods.

4.1. Illustration of relativistic Hamiltonian systems

We now give two illustrations to help understand the inter-
action between position and momentum variables. Figure 2
shows the general relativistic mass as a field for unit mo-
mentum variables at three selected different directions on
a 2-dimensional Neal’s funnel; we present only three direc-
tions due to space limit and provide plots with eight evenly
spaced directions in figure 6 and figure 7 of appendix B.
The relativistic field is a joint result from the interaction
of the momentum as a vector and the local geometry as a
matrix (not only its curvature, which is a scalar): the field
is different for different momentum directions. Each of
the three figures in each column has a different direction at
θ = 1

4π,
0
4π,

−1
4 π that is not in parallel with nor orthogonal

to the x-axis, and the fields are asymmetric along the x-axis
even though the potential U is symmetric along the x-axis.
Also, note how different the values are from the constant
relativistic mass for SR-HMC (indicated by red arrows on
the color bar): the slow-down effect is stronger for regions
needing smaller time steps to achieve stable numerical inte-
gration.

Figure 3 shows the evolution of four key quantities, relativis-
tic mass, norm of velocity, change of Hamiltonian energy
and MH acceptance ratio, over the simulation of a set of
Hamiltonian trajectories starting from the same position and
momentum variables. While RHMC can explore the space
better than HMC and SR-HMC, it suffers from frequent
numeric errors that lead to smaller acceptance ratios. GR-
HMC solves this issue by local speed upper bounds induced
by its kinetic energy.
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Figure 2: Contour plots of fields of general relativis-
tic mass (left) and fields of local velocity upper bounds
(right), both overlaid with the potential energy on 2D
Neal’s funnel. From top to bottom we have momentum
p = r[cos(θ) sin(θ)] with r = 1, θ = 1

4π,
0
4π,

−1
4 π and

m = 0.5, c = 2.0. Red arrows on the color bars indicate the
values of the corresponding relativistic mass of SR-HMC,
which is position-independent and 0.707 in all directions.

5. The Complete GR-HMC Algorithm
This section introduces the algorithmic details of a practical
and computationally efficient implementation of GR-HMC.
The use of our kinetic energy (8) introduces two technical
challenges. First, obtaining exact samples of momentum
variables in multivariate settings is difficult. While rejection
sampling can be used, the efficiency quickly degrades with
increased dimensionality. Second, numerical integration of
the Hamiltonian dynamics requires accurate and efficient
computation of ∂H

∂q and ∂H
∂p . We address the first challenge

by combining the Box Muller transform and uni-variate
rejection sampling (section 5.1). The second challenge is
solved by deriving compact forms of the two terms with
cache-able intermediate computation (section 5.3). Finally,
section 5.4 presents GR-HMC with diagonal Hessian ap-
proximations that are needed for high-dimensional prob-
lems.

5.1. Momentum sampling via Box Muller transform

Sampling from prG(q,p) ∝ − exp
(
K̃G(q,p)

)
for any

q can be done by first sampling p from prI(p) ∝
− exp

(
K̃I(p)

)
, the multivariate relativistic momentum in

(3), and then applying an affine transformation as Aqp,

where A⊤
qAq = G−1

q
1. However, sampling from prI(p)

in high dimensions is computationally challenging. While
it is possible to use (adaptive) rejection sampling with a
convex-hull as the proposal distribution, its statistical effi-
ciency decreases quickly with the dimension of p increases
because the rejection rate increases exponentially fast. We
now show how to overcome this issue using the Box Muller
transform.

We start with the description in a 2-dimensional case and
then introduce the general form. Consider p = [p1, p2] ∈
R2 sampled from prI(p) and transforming p to the polar
coordinates as r = ∥p∥2 and θ = arctan(p1

p2
). The cu-

mulative density function of momentum F (p1, p2) is equal
to

F (r, θ) =

∫ ∫
exp

(
−K̃I(r)

)
rdrdθ = F (r)F (θ),

which implies that r is distributed as follow

r ∼ pr(r) ∝ exp
(
−K̃I(r)

)
r (10)

(noting the extra term r in the end) and θ ∼ U(0, 2π). This
means we can sample p by first sampling a uni-variate
r using rejection sampling and the θ uniformly, and then
transforming r, θ back to the original coordinates. This 2-
dimensional case above can be generalized to d-dimensional
using the spherical coordinate transformation:

p1 = r cos(θ1)

p2 = r sin(θ1) cos(θ2)

...
pd−1 = r sin(θ1) . . . cos(θd−1)

pd = r sin(θ1) . . . sin(θd−1)
(11)

where θ1, . . . , θd−2 ∼ U(0, π) and θd−1 ∼ U(0, 2π).

The steps above enable sampling prI(p) using only a sin-
gle uni-variate rejection sampling for r and independent
uniform sampling for θ. Combining these steps with a lin-
ear transformation, we have algorithm 1 for sampling from
multivariate relativistic momentum distribution pr(p).

5.2. Validity of GR-HMC

The correctness of the overall GR-HMC algorithm closely
follows Girolami & Calderhead (2011). We only provide an
brief informal justification of validity here. To start, let us
recall the Gibbs view of HMC stated at the start of section 2,
the overall correctness of our algorithm can be proved if
each step is shown to be correct. Our paper only modifies
Step 1 while using established, provable techniques for Step
2 (generalized leapfrog integration) and Step 3 (Metropolis
or multinomial sampling). For Step 1, the only requirement
for momentum distribution is symmetry, which is satisfied
by the definition of (8).

1Note that the log-determinant term in (8) accounts for the
change in normalization term of the corresponding momentum
distribution due to an affine transformation with Aq.

5



Practical Hamiltonian Monte Carlo on Riemannian Manifolds via Relativity Theory

2.25 2.00 1.75 1.50 1.25 1.00 0.75

0.25

0.00

0.25

0.50
HMC

q0

qT

2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8
0.5

0.0

0.5

SR-HMC
q0

qT

1.50 1.25 1.00 0.75 0.50 0.25 0.00

0

1

2
RHMC

q0

qT

2.5 2.0 1.5 1.0 0.5

1.0

0.5

0.0

0.5

GR-HMC
q0

qT

(a) simulated trajectory

0 10 20 30 40
step index

0.6

0.8

1.0

re
la

tiv
ist

ic 
m

as
s

HMC
SR-HMC

RHMC
GR-HMC

(b) relativistic mass

0 10 20 30 40
step index

0

2

4

6

ve
lo

cit
y 

no
rm

HMC
SR-HMC

RHMC
GR-HMC

(c) velocity norm / speed

0 10 20 30 40
step index

3

2

1

0

∆
H HMC

SR-HMC
RHMC
GR-HMC

(d) ∆H

0 10 20 30 40
step index

0.00

0.25

0.50

0.75

1.00

M
H 

ac
ce

pt
an

ce
 ra

tio

HMC
SR-HMC

RHMC
GR-HMC

(e) MH acceptance ratio

Figure 3: Evolution of relativistic mass, norm of velocity, change of Hamiltonian energy and MH acceptance ratio (figure 3b–
figure 3e) through Hamiltonian simulation (figure 3a). Compared with SR-HMC, GR-HMC has a larger velocity norm that
helps exploration. Compared with RHMC, GR-HMC has small numerical errors, leading to higher acceptance rates.

Algorithm 1 Momentum sampling via Box Muller transform

Require: mass m, speed c, dimension d, current position q
Ensure: p ∈ Rd ∼ prG(q,p)

1: sample r as in (10) using adaptive rejection sampling
2: for i = 1, . . . , d do
3: sample θi from U(0, π) if i < d− 1 else U(0, 2π)
4: compute pi according to the transformation in (11)
5: end for
6: pI ← [p1, . . . , pd]
7: p← A⊤

q pI where A⊤
qAq = G−1

q

Return p

5.3. Efficient derivative computation during integration

To obtain computationally efficient analytical expressions
for the derivative terms we need, we first derive them from
the SoftAbs metric and apply the results from Betancourt
(2013) to obtain cache-able forms.

We start by noticing that ∂K
∂qi

can be written as

∂K

∂qi
= M−1

G (q,p)
1

2
p⊤ G−1

q

∂Gq

∂qi
G−1

q︸ ︷︷ ︸
cacheable

p+
1

2
tr{G−1

q

∂Gq

∂qi
}︸ ︷︷ ︸

cacheable

.

(12)
Importantly, Betancourt (2013) has established cache-able
computation in the fixed-point iteration in (6) for the same
position variable, noted by the two terms in (12) with under
braces. Note that we have the same computation as for
Riemannian HMC with SoftAbs metric while the first term is
inversely scaled by the general relativistic mass MG(q,p).

Next, we apply the chain rule of multivariate calculus to

obtain the derivative for the position variable update

∂H

∂pi
= ⟨M−1

G (q,Aqp)Aqp, {Aq}:,i⟩, (13)

where {·}:,i is a notation of taking i-th column of a ma-
trix. This computation is straightforward and enjoys a com-
pact form of ∇pH = M−1

G (q,Aqp)A
⊤
qAqp or simply

∇pH = M−1
G (q,Aqp)G

−1
q p. Similarly, the form is sim-

ilar to that of Riemannian HMC with SoftAbs metric with
the only difference being an inverse scale of MG (q,Aqp).

5.4. Diagonal approximations

For HMC using the SoftAbs metric, the computation of the
Hessian dominates the overall computational cost and scales
cubically with the problem dimension. Therefore, to use
GR-HMC in high-dimensional problems, it is more practical
to use the SoftAbs metric with a Hessian approximation for
which only the diagonal entries of the Hessian are computed;
we do not use other approximations such as inner or outer
products of the gradient as they are found to be inefficient
or unstable in previous work (Betancourt, 2013).

To make the Hessian computation work on medium or high
dimensional targets, we use the diagonal approximations Ĥ
following (Betancourt, 2013) as

Ĥ = diagm(h),

where h = diag(H), diag takes in a matrix and returns its
diagonal entries as a vector, and diagm takes in a vector
and returns a matrix with the vector as the diagonal. The
SoftAbs on Ĥ can be computed as

≀Ĥ≀ = diagm (h⊙ coth(αh)) ,

6
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where ⊙ is the element-wise product and coth is also ap-
plied element-wisely. This reduces the time complexity
from O(d3) to O(d2) where d is the dimension of the target.

Implementation-wise, we use a hybrid of forward-mode and
reverse-mode automatic differentiation (AD). To compute
the Hessian diagonal efficiently, we use the diaghessian
function from Zygote.jl2. To compute the higher-order
derivatives over Hessian required in (12), we use forward-
mode AD over the diaghessian function via the stan-
dard jacobian function from ForwardDiff.jl.

6. Experiments
We implement all samplers studied in this paper using
AdvancedHMC.jl (Xu et al., 2020).3 Derivative imple-
mentation in (5.3) is tested by finite differentiation. Geweke
tests (Geweke, 2004; Grosse & Duvenaud, 2014) are used to
validate the correctness of samplers (detailed in appendix C).
Appendix D lists default hyper-parameters used across ex-
periments.

6.1. Stability and efficiency of Hamiltonian simulation

We first study the stability and efficiency of the Hamiltonian
dynamics used in HMC, RHMC, SR-HMC and GR-HMC.
In particular, we will show that relativistic momentum sta-
bilizes numerical integration, reducing computation waste
and improving acceptance rates. The use of Riemannian
manifolds leads to longer travel distances, improving space
exploration, which GR-HMC enjoys. For this study, we
use the 2-dimensional Neal’s funnel (Neal, 2011): we vary
the step sizes used by the (generalized) leapfrog integra-
tion for Hamiltonian simulation and compare the stability
and efficiency (definitions detailed below) across methods.
To reduce the variance in comparisons, we ensure that the
initial phase points are the same for all methods in each
seeded simulation: we sample the initial position from a
2-dimensional standard normal distribution and the initial
momentum as a unit Gaussian momentum. We simulate the
trajectory for L = 200 leapfrog steps for all methods and
repeat the simulation for 500 times.

Stability: fewer divergent simulations In our experi-
ments, divergences in a Hamiltonian simulation are defined
as situations where numerical errors occur or when the total
energy differences exceed 10, 000 in the simulation. These
divergences represent a waste of computation in HMC, as
the entire simulated trajectory would be discarded. Table 1
shows the percentages of divergent simulation for all meth-

2https://fluxml.ai/Zygote.jl/v0.6/utils/
#Zygote.diaghessian

3Available at https://github.com/TuringLang/
AdvancedHMC.jl

METHOD \ϵ 0.05 0.06 0.07 0.08 0.09 0.10

HMC 1.8% 2.2% 3.4% 3.6% 5.4% 5.4%
SR-HMC 0.0% 0.0% 0.0% 0.0% 0.2% 0.0%

RHMC 2.0% 6.4% 13.2% 21.8% 35.4% 44.6%
GR-HMC 0.0% 0.0% 0.0% 0.0% 0.0% 1.8%

Table 1: Percentage of simulations with divergent integra-
tion (numeric errors or total energy differences > 10, 000)

ods at five different step sizes.4 GR-HMC is numerically
more stable than RHMC due to the local upper bounds of
the particle velocity, which are induced by the general rel-
ativistic momentum. We also confirm the finding from Lu
et al. (2017) that global speed upper bounds in SR-HMC
improve stability than HMC.

Efficiency: less correlation and more acceptance The
correlation between adjacent states and the acceptance rates
determines the efficiency of HMC’s Hamiltonian simulation.
Longer trajectory lengths can make samples less correlated,
and reducing Hamiltonian energy errors increases accep-
tance rates. To quantitatively measure them, we use four
metrics computed from a simulated trajectory.

• The total travel distance measures how long in the
position space the particle travels during Hamiltonian
simulation. A large total travel distance is the prerequi-
site for efficient space exploration and less correlation.

• The final energy difference, ∆H , measures the differ-
ence of Hamiltonian energy between the initial and the
final state, clamped by 0, i.e. min(0,∆H). It is used
in the MH criterion to accept or reject a proposal with
probability α = min(1, exp(∆H)); a larger (negative)
energy difference indicates a high acceptance rate (a
non-negative difference means 100% acceptance).

• The energy difference per state in ∆H is the difference
of Hamiltonian energy between the initial one and all
states. The average energy difference is an indication
of the average quality of states used by multinomial
trajectory sampling (section 4); better quality means
closer to the perfect simulation.

Figure 4 shows the three metrics at 6 different increasing
step sizes and the energy difference per state for ε = 0.1.
First, we can see that both RMC and GR-HMC have longer
total travel distances than HMC and SR-HMC, indicating
the effectiveness of Riemannian manifolds at challenging
targets like Neal’s funnel. Next, GR-HMC consistently
has longer total travel distances than RHMC for all step

4Table 5 in appendix E.1 also provides the percentages calcu-
lated at intermediate lengths L = 50, 100 for inspection.
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Figure 4: Efficiency metrics for HMC’s numerical integration. Figure 4a, total travel distance (larger the better), tells
how much space the trajectory explores; the dashed line is the product of the total travel distance and the percentage of
non-divergent simulations. Figure 4b, final energy difference (larger the better), indicates the chance of the final point in
a trajectory is accepted according to a Metropolis trajectory sampler and figure 4c, average energy difference (larger the
better), indicates the average quality of proposed state from multinomial sampling. The error bars are plotted using 0.1
standard deviation for better presentation. Figure 4d, energy difference per state, is a zoom-in view of figure 4c at ε = 0.1.

sizes, likely because it can travel faster in regions with low
curvature. The gaps become even larger when we consider
the acceptance rates, shown by the dashed line, which is the
product of the total travel distance and the percentage of non-
divergent simulations; we do not plot that for GR-HMC as it
has almost 100% acceptance (table 1). Due to the noticeable
gap between using and not using Riemannian manifolds, we
focus only on RHMC and GR-HMC in the next three plots.
Third, GR-HMC consistently has smaller final (absolute)
energy differences than RHMC for all step sizes. The gaps
are large for most step sizes, with only ε = 0.1 having
only overlap for the confidence interval (error bars). This
suggests that GR-HMC would work better than RHMC with
MH trajectory sampling. Finally, the average (absolute)
energy differences are smaller for GR-HMC compared with
RHMC. With the energy difference per state zoomed in for
ε = 0.1, we can see while most of the values are around 0
for GR-HMC, the values for RHMC can spread up to −20.
These together suggest that GR-HMC would work better
than RHMC with multinomial trajectory sampling.

6.2. Sampling efficiency of HMC

After studying low-level efficiency metrics in trajectory sim-
ulation, we now focus on the overall sampling efficiency.
We measure sampling efficiency using effective sample size
(ESS) (averaged over all dimensions).

6.2.1. EFFECTS OF HYPERPARAMETERS

We first study how the two key hyperparameters, m and
c, affect the ESS using Neal’s funnel in 10D. We vary
m = 0.1, 0.2, 0.5, 1.0, 2.0, c = 0.5, 1.0, 2.0, 3.0, 4.0 for
ε = 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 0.2, 0.25, 0.3,
with each configuration simulating 20 chains of 2,000 sam-
ples. For each step size, we make a contour plot for SR-
HMC and GR-HMC, with the two axes representing differ-
ent values of m and c. We annotate the color bar with the
corresponding ESS of RHMC with the same step size. Fig-

ure 5 shows these contour plots for a selected range of step
sizes that no sampler has very low acceptance rates.5 Focus-
ing on the first row with MH sampling, as it can be seen, GR-
HMC generally achieves much better ESS than SR-HMC
and could have better efficiency with proper choices of m
and c (majority of the regions) than RHMC (red arrows).
Note that some color bars of SR-HMC are not annotated by
red arrows because the ESS for all values of m and c we
experiment are lower than that of RHMC.

6.2.2. WHICH TRAJECTORY SAMPLING METHOD
BENEFITS MORE: MH OR MULTINOMIAL?

This section compares two trajectory sampling methods,
MH and multinomial. Multinomial sampling is commonly
used in practice because it is more robust against numerical
errors in simulation. It can accept intermediate, high-quality
points and rarely “rejects” a trajectory (while rejection is
equivalent to sampling the initial point). Figure 5c and
figure 5d show the ESS contour plots with multinomial
sampling. First, GR-HMC improves upon SR-HMC for both
trajectory sampling methods. This confirms the benefits of
using the general relativistic momentum proposed in this
paper. Second, SR-HMC with multinomial sampling is
generally better than that with MH sampling. The common
practice of using multinomial sampling also supports this
finding. Third, the relative improvement of GR-HMC to SR-
HMC is smaller when using multinomial sampling than MH.
Most of this is because the multinomial sampling method
is more robust to numerical errors, making improvements
in numerical simulation less visible. Nevertheless, general
relativistic momentum is still beneficial for both methods.

5We check the performance for dimension-wise special rel-
ativistic momentum (section 2.2), for which the same set plots
are provided figure 10 in appendix E.2. We also find that the
dimension-wise variant works better (Lu et al., 2017), but GR-
HMC still performs much better than the dimension-wise SR-
HMC.
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Figure 5: Effects of m and c on ESS for SR-HMC and GR-HMC with different ε. Red arrows on the color bars indicate the
corresponding ESS of RHMC. The trajectory sampling method used is MH for top figures and multinomial for bottom ones.

METHOD \ϵ 0.02 0.04 0.06 0.08 0.1

SR-HMC 18.3 14.8 15.6 14.1 13.3
RHMC 19.3 52.3 105.8 179.2 258.7

GR-HMC 20.6 80.7 147.5 210.2 217.8

(a) HBLR w/ 1,000 samples (m = 0.2, c = 4.0 and α = 1× 106)

METHOD \ϵ 0.1 0.2 0.3 0.4 0.5

SR-HMC 272.8 3968.0 3794.3 918.4 172.4
RHMC 272.0 1490.6 4756.8 4.7 3.0

GR-HMC 160.9 4446.3 4764.1 4456.7 127.1

(b) logGCPP w/ 500 samples (m = 0.5, c = 2.0 and α = 1×106)

Table 2: Sample efficiency (measured by ESS) with different
step sizes on two real-world problems.

6.2.3. REAL-WORLD DATASETS

To validate if the improved sampling efficiency of GR-HMC
is useful in practice, we conduct experiments on two real-
world problems, a hierarchical Bayesian logistic regression
(HBLR) model and a log-Gaussian Cox point process (log-
GCPP) model, that are previously used to benchmark HMC
algorithms (Heng & Jacob, 2019; Xu et al., 2021). The
HBLR problem has a dimensionality of 26, and the log-
GCPP problem has a dimensionality of 64. Due to the space
limitations, we deter the details of these problems to ap-
pendix F. Running HMC on Riemannian manifolds with
full Hessian is not computationally efficient due to the cubic
complexity; therefore, for these two problems, we use the
diagonal approximation in section 5.4. For each problem,
we sweep the step sizes and report GR-HMC with a spec-
ified combination of m and c as well as baseline methods;
we do not sweep m and c as in the previous section because
of computation limitations. The results average from 3 runs
are given in table 2. As it can be seen, GR-HMC has the

best ESS for most of the step sizes except (i) RHMC being
the best for ε = 0.1 on HBLR and (ii) SR-HMC being the
best for ε = 0.1 and ε = 0.5 on logGCPP. For point (i), by
inspecting the average acceptance rates, we find that that of
RHMC does not decrease quickly with increased step sizes
for HBLR, which is likely because the posterior is not too
complex. As a result, RHMC does not suffer much from the
numeric errors with large step sizes, leading to its best per-
formance with ε = 0.1. For point (ii), the step sizes where
SR-HMC excels are notably distant from the optimal values
and lack practical benefits; hence, one should avoid using
these step sizes regardless. GR-HMC achieves notable ESS
across a broad spectrum of step sizes, showing its potential
as a default HMC sampler.

7. Conclusion and Future Work
This paper shows how to stabilize the numerical integration
in Riemannian HMC by constructing relativistic momen-
tum distributions with position-dependent metrics, leading
to a novel HMC sampling method, GR-HMC. It has inter-
esting connections to the theory of general relativity and
substantially improves the stability of HMC methods on
Riemannian manifolds. It paves the way for the practical
use of Riemannian HMC by solving one of the two most
important issues in practice: computational cost and numer-
ical stability. Future work would focus on improving their
computational complexity to make them even more practical
beyond section 5.4. For that purpose, alternative methods to
approximate Hessian based on iterative, first-order gradient-
only approaches have been proven to be effective in opti-
mization, e.g. limited-Memory BFGS (L-BFGS) (Nocedal
& Wright, 1999) and MCMC sampling, e.g. HMC-BFGS
(Zhang & Sutton, 2011).
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Impact Statement
This paper presents work that aims to advance the field of
Bayesian Inference. Our work has many potential societal
consequences, none of which we feel must be specifically
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quantity HMC SR-HMC RHMC GR-HMC

kinetic energy 1
2p

⊤p mc2
√

p⊤p
m2c2 + 1 1

2p
⊤G−1

q p mc2
√

p⊤G−1
q p

m2c2 + 1

relativistic mass – m
√

p⊤p
m2c2 + 1 =: MI(p) – m

√
p⊤G−1

q p
m2c2 + 1 =: MG(q,p)

velocity p 1
MI(p)

p G−1
q p =: p′ 1

MG(q,Aqp)
G−1

q p = 1
MI(p′)p

′

velocity upper bound – c – ∥Aqp∥2

∥p∥2
c

effective step size – 1
MI(p)

ε – 1
MG(q,Aqp)

ε

Table 3: Physical interpretation for Hamiltonian quantities. Here A⊤
qAq = G−1

q and p′ = Aqp.

A. Additional Discussion on Physical Interpretation
Connection to the theory of general relativity The theory of general relativity, formulated by Einstein, is a fundamental
theory in physics that describes how matter and energy influence the fabric of spacetime, resulting in the curvature of
this four-dimensional manifold. In this theory, space and time are intertwined, forming a dynamic interplay known as the
spacetime continuum. The Hamiltonian system with our proposed kinetic energy has a similar spacetime interaction through
the position-dependent metric, leading to position-dependent velocity upper bounds. Note while this does not induce a
global upper bound of the velocity strictly as in the general relativity theory, we can introduce extra assumptions on the local
concavity of the potential energy and its Lipschitz constant, and obtain a global upper bound for the system.

Quantities in physical interpretation In addition to the high-level connections, many quantities studied in the paper have
direct physical interpretations. Table 3 provides a summary of the physical quantities discussed for all four HMC methods.

B. Additional Illustrations
Figure 6 (relativistic mass) and figure 7 (speed upper bounds) provide a complete set of plots with eight evenly spaced
directions (surrounding plots in each) as well as the density of the target as a standalone plot (middle plot in each), which
are only partially displayed in figure 2 of section B due to space limitations.

C. Geweke tests for implementation correctness validation
Geweke tests (Geweke, 2004; Grosse & Duvenaud, 2014) is a standard method to validate the overall correctness of MCMC
implementation, i.e. integrated tests. To perform Geweke tests, one requires a generative model with latent variables z and
data/observations x: p(z, x) = p(z)p(x | z) where p(z) is the prior and p(x | z) is the likelihood.

The main idea behind Geweke tests is that there are two equivalent ways to sample from the joint p(z, x):

1. marginal-conditional simulator:

(a) sample z′ ∼ p(z) and
(b) sample x′ ∼ p(x | z = z′)

2. successive-conditional simulator:

(a) given a sample x∗ (e.g. x′ from the marginal-conditional simulator or x′′ the successive-conditional simulator of
the previous round), sample z′′ ∼ p(z | x = x∗) using MCMC samplers and

(b) sample x′′ ∼ p(x | z = z′)

We then use the equivalence of these simulators to perform the Geweke tests. These two simulators are run iteratively to
produce two sets of N samples from the joint: Dfwd = {(z′i, x′

i)}Ni=1 and Dbwd = {(z′′i , x′′
i )}Ni=1. These two sets of samples
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Figure 6: Contour plots of the potential energy (middle) and the general relativistic mass overlaid (the rest surrounding) with
m = 0.5, c = 2.0 for p = r[cos(θ) sin(θ)] (r = 1, θ = 0

4π, . . . ,
7
4π) on 2D Neal’s funnel. Red arrows indicate the values

on the color bars for the corresponding relativistic mass of SR-HMC, which is position-independent and constantly 0.707 in
all directions.

are then used to produce the quantile-quantile plot (Q-Q plot) to check the sampler’s correctness: since the two sets of
samples should follow the same distribution for a correct sampler, the ideal Q-Q plot should be a diagonal line. We use the
MCMCDebugging.jl package with a 3-D latent funnel model in the Turing language (Ge et al., 2018) to perform the
Geweke tests with N = 500 for all samplers studied. The hyper-parameters, number of iterations M , leapfrog steps L, mass
m, speed c, step size ε, fixed-point iteration steps n, scale of identity matrix added to Hessian λ and SoftAbs parameter α,
used for each sampler are

• HMC: M = 200, ε = 0.15, L = 16

• SR-HMC: M = 200, ε = 0.1, L = 16,m = 0.2, c = 20.0

• RHMC: M = 200, ε = 0.025, L = 16, n = 6, λ = 1× 10−2, α = 20.0

• GR-HMC: M = 200, ε = 0.05, L = 16, n = 6, λ = 1× 10−2, α = 20.0,m = 0.2, c = 4.0

The probabilistic program of the generative model is given in figure 8 and the Q-Q plots for all samplers are given in figure 9.
As it can be seen, all samplers pass the test by showing Q-Q plots closer to the ideal one.

D. Default Hyper-parameters Used Across All Experiments
Other than the hyper-parameters we studied in the paper, such as step size ε, mass m, etc., some other important hyper-
parameters used in HMC are not specified in the main text, mostly due to limited space and the need to improve the
presentation of the paper. For completeness, we enumerate them all in table 4.
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Figure 7: Contour plots of the potential energy (middle) and the local velocity upper bounds overlaid (the rest surrounding)
with m = 0.5, c = 2.0 for p = r[cos(θ) sin(θ)] (r = 1, θ = 0

4π, . . . ,
7
4π) on 2D Neal’s funnel. Red arrows indicate the

values on the color bars for the corresponding relativistic mass of SR-HMC, which is position-independent and constantly
0.707 in all directions.

parameter name value comment

the number of leapfrog steps 8
the number of fixed-point iterations 6
scale of identity matrix added to Hessian (λ) 1× 10−2 we use H+ λI to regularize the Hessian
initial position distribution U(−1, 1) this follows Betancourt (2013)

Table 4: Common hyper-parameters used across experiments in section 6.

E. Additional Results
E.1. Complete results for stability of numerical integration

As a complementary to table 1 in section 6.1, table 5 provides the percentages of divergent simulation for all methods at
intermediate inspection steps L = 50, 100 and the full steps 200.

E.2. Contour plots of ESS for dimension-wise special relativistic momentum

Figure 10 provides the same set of contour plots over different step sizes studied in section 6.2.1 for dimension-wise
relativistic HMC by varying m, c.

F. Details of Real-World Problems
Here, we provide details on the real-world problems used in section 6.2.3. To prepare the datasets, we follow the pre-
processing steps in (Heng & Jacob, 2019) for the German credit dataset (Asuncion & Newman, 2007) and the Finnish pine
saplings dataset (Møller et al., 1998) used in logistic regression and log-Gaussian Cox point process respectively.
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Figure 8: Probabilistic program of the generative model used in Geweke tests

(a) HMC (0.0117) (b) SR-HMC (0.0113) (c) RHMC (0.0109) (d) GR-HMC (0.00622)

Figure 9: Q-Q plots from Geweke tests for all samplers. The number in each sub-figure next to the sampler name is the
quantile error, measuring the difference from the ideal line.

Hierarchical Bayesian logistic regression We use the first 100 data points in the German credit dataset, resulting in
a R24×100 design matrix. Denote an Exponential distribution with rate λ as E(λ). Given data {(xi, yi)}100i=1 where xi is
the features and yi ∈ {0, 1} is the binary responses, the hierarchical Bayesian logistic regression follows the following
generative process:

s2 ∼ E(λ)
a ∼ N (0, s2)

bd ∼ N (0, s2) for d = 1, . . . , 24

yi ∼ B(σ
(
b⊤xi + a

)
) for i = 1, . . . , 100

,

where the variance s2 ∈ R+, the intercept a ∈ R and the coefficients b ∈ R24, giving a total dimension d = 26.

Log-Gaussian Cox point process Firstly, the plot of the forest is discretized into an n × n grid. For i ∈ {1, . . . , n}2,
the number of points in each grid cell yi ∈ N is assumed to be conditionally independent given a latent intensity variable
Λi and follows a Poisson distribution with mean aΛi, P(aΛi), where a = n−2 is the area of each cell. We denote
the logarithm of Λ as X and put a Gaussian process prior with mean µ ∈ R and exponential covariance function
Σi,j = s2 exp (−|i− j|/(nb)) on it, where s2, b and µ are hyperparameters. The generative process of the number of grid
cell points follows X ∼ GP(µ,Σ), ∀ i ∈ {1, . . . , n}2 : Λi = exp(Xi), yi ∼ P(aΛi). Following (Møller et al., 1998), we
use a dataset of 126 Scot pine saplings in a natural forest in Finland, and adapt the parameters s2 = 1.91, b = 1/33 and
µ = log(126)− s2/2. We use n = 8 for discretization, leading to a target of dimension 64.
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ϵ 0.05 0.06 0.07 0.08 0.09 0.10

L 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200

HMC 0.0 1.0 0.5 0.0 2.0 1.0 3.9 4.0 3.0 3.9 4.0 3.0 3.9 5.0 5.0 5.9 7.9 5.5
SR-HMC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RHMC 2.0 1.0 2.0 7.8 7.9 6.5 13.7 11.9 11.9 25.5 23.8 22.9 37.3 33.7 34.3 45.1 43.6 44.8
GR-HMC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.9 3.0 2.5

Table 5: Percentage (%) of simulations with divergent leapfrog integration (numeric errors or total energy differences
> 10, 000) at L = 50, 100, 200.
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(a) MH sampling
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(b) multinomial sampling

Figure 10: Effects of m and c on ESS for dimension-wise SR-HMC with different ε. Red arrows on the color bars indicate
the corresponding ESS of RHMC. Subfigures are for two different trajectory sampling methods.
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