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ABSTRACT
Productionizing machine learning projects is inherently complex,
involving a multitude of interconnected components that are as-
sembled like LEGO blocks and evolve throughout development
lifecycle. These components encompass software, databases, and
models, each subject to various licenses governing their reuse and
redistribution. However, existing license analysis approaches for
Open Source Software (OSS) are not well-suited for this context.
For instance, some projects are licensed without explicitly granting
sublicensing rights, or the granted rights can be revoked, poten-
tially exposing their derivatives to legal risks. Indeed, the analysis
of licenses in machine learning projects grows significantly more
intricate as it involves interactions among diverse types of licenses
and licensed materials. To the best of our knowledge, no prior re-
search has delved into the exploration of license conflicts within
this domain. In this paper, we introduce ModelGo, a practical tool
for auditing potential legal risks in machine learning projects to en-
hance compliance and fairness. With ModelGo, we present license
assessment reports based on 5 use cases with diverse model-reusing
scenarios, rendered by real-world machine learning components.
Finally, we summarize the reasons behind license conflicts and
provide guidelines for minimizing them.

CCS CONCEPTS
• Do Not Use This Code → Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper ; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for
Your Paper.

KEYWORDS
License analysis, AI licensing, model mining

1 INTRODUCTION
Over the past decade, the advancement and productization of AI in-
frastructures have significantly accelerated the proliferation of ma-
chine learning (ML) components [25], including AI models [44, 49],
software [19, 52], and datasets [13, 47]. Concurrently, the reuse
of these components has gained popularity, motivated by con-
cerns about their significant demands on financial and energy re-
sources [48], as well as the widespread recognition of the value
advocated by the open-source movement [45]. Unlike code reuse in
the OSS field [39], the reuse of AI models follow a distinct scheme.
A frequently employed approach for AI models reuse is fine-tuning
Pre-Trained Models (PTMs) [17, 49], where PTMs are adapted on
a domain-specific dataset, leveraging their robust generalization
capabilities.

From a legal perspective, model reuse is generally uncontrover-
sial when its developers or affiliated companies own the copyright
for all components. However, data and models often have separate
copyright holders in nowadays ML projects [42, 43, 46, 56]. For in-
stance, GPT-2 [42], developed by OpenAI, was trained on 45 million
web pages containing personal content and copyrighted materials

from third-party platforms likeWordPress, GitHub, and IMDb, none
of which is owned by OpenAI. These crowdsourced web scraping
content [51] typically provides limited usage and distribution rights
to users through pre-agreed licenses (e.g., Creative Commons Li-
censes [8]), which may restrict certain reuse methods like remixing,
reproducing, and translating. To prevent legal risk1, it is essential to
ensure that the final ML projects remain compliant with all license
conditions associated with the reused components [10, 26, 32].

However, compared to license compliance analysis for OSS, en-
suring license compliance in ML projects poses several unique chal-
lenges. First, a ML project is not only a combination of software
like an OSS project but also composed of datasets and models [17],
which may be under different types of licenses (e.g., Free Con-
tent Licenses and AI model licenses [9]). Second, ML components
often follow more complicated coupling paradigms and nested
workflows. For instance, Openjourney [41] is an image generation
model derived from StableDiffusion [44], and fine-tuned on images
generated by another commercial product, Midjourney [40]. This
demonstrates that knowledge can be transferred between models
without explicit code integration [55]. Another challenge is im-
proper and ambiguity licensing in ML projects. For example, GPT-2
and BERT [11] are regarded as part of software and then licensed as
OSS (e.g., MIT and Apache-2.0). However, ML projects like StableD-
iffusion and Llama2 [49] tend to apply responsible AI restriction
terms for both model and code, using AI model licenses such as
OpenRAIL-M [9] and Llama2 Community License [34]. Moreover,
to circumvent the limitations of standard OSS licenses, some licen-
sors adopt non-commercial licenses or custom licenses to protect
the Intellectual Property (IP) of their models by prohibiting commer-
cial use [22], fine-tuning [30], and reverse engineering [15]. Such
ambiguity and the diverse licensing practices within ML projects
increase significant legal uncertainty in license compliance analysis.
As a result, traditional OSS license analysis approaches [32, 35] only
consider replication and linking relationships among software and
also lack support for AI model licenses, making them unsuitable
for ML projects license analysis.

In this paper, we introduce ModelGo, a tool designed to analyze
potential license conflicts, improper license choices, use restrictions
and obligations in ML projects that involve nested component reuse
procedures. To demonstrate the usefulness of ModelGo, we present
5 use cases constructed using 15 datasets and 11 models from real-
world, whose license types cover OSS, free content, and AI model.
Our findings show that there exist potential legal risks when reusing
components under copyleft, non-public, non-commercial licenses,
and point out the need for attention to responsible AImodel licenses.
The main contributions of our paper are:

• We raise the challenge of license analysis for ML projects
and propose ModelGo to assessing it. To the best of our
knowledge, our work is the first attempt to deal with this
challenge in the ML context.

1 Copyright infringement and privacy lawsuits against OpenAI: 3:23-cv-03199,
3:23-cv-04625, 3:23-cv-03223, 3:23-cv-04557, 3:23-cv-03416, 1:23-cv-08292.
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• As part of our work, we introduce a new taxonomy based
on the forms of reused components to identify the appli-
cable conditions for various ML reuse mechanisms. This
method helps mitigate ambiguity in cases of mismatch be-
tween declared license type and actual component type,
allowing ModelGo to analyze components under various
license types, including OSS, free content, and AI models.

• We provide license compliance reports based on 5 use cases
to showcase the effectiveness of our approach. Through
our use cases, we offer valuable insights and experiences
in achieving compliance in ML projects. Additionally, we
also provide license choosing recommendations to minize
the risk of non-compliance.

The rest of the paper is organized as follows. Section 2 introduces
related studies and the motivations behind this work. Section 3
presents the detailed design, including our proposed taxonomy for
bridging AI activities and license language, ML work dependencies
structure, and the license analysis workflow of ModelGo. Section 4
provides five case studies and their corresponding findings, and
Section 5 concludes this work. Code will be available once the
paper is published.

2 BACKGROUND AND RELATEDWORK
In this section, we present the motivations for this work by intro-
ducing the background and prior related studies.

2.1 Machine Learning Project Licensing
Typically, a ML project is constructed with data, software and mod-
els, which are usually governed by different licensing frameworks.
To profile current ML licensing, we summary licensing details for
ML projects with over 1,000 likes available in Huggingface2 model
repository (See Appendix A.2). Due to a lack of license management
in development, we have tomanually collect the license information
from Huggingface, GitHub, related websites and publications.

Data Licensing in ML. Based on our profile, half of ML projects
claim their data is licensed in a mixture manner. Additionally, 25%
of projects use a single dataset with a standard data license like
Creative Commons (CC). The data source of remaining projects
(25%) is unknown. Obviously, legal compliance cannot be guaran-
teed when using data from unknown sources. However, there is
also potential risk associated with using datasets under a mixture
of licenses or a single license based on follow reasons:

First, the mixture of data sources may involve content under
copyleft, non-public, and non-commercial licenses. We investigated
the sources of mixture and found that only one dataset, the Pile [13],
explicitly removed non-permissive content. Common sources of
risk include Wikipedia, arXiv, PubMed and Common Crawl [21]
(See Table. 3 for more examples). For instance, sharing derivatives
based on non-public licensed content raises suspicion of a license vi-
olation, and integrating copyleft content also poses a risk of license
incompatibility conflicts. Furthermore, some content sources like
IMDb explicitly prohibit data mining in their Conditions of Use3.

Second, the single data license assigned by data collectors may
be invalid. In our profile, all datasets with a single license contain
2 https://huggingface.co/. Projects in same series but different versions are omitted.
3 "You may not use data mining, robots, screen scraping, or similar data gathering
and extraction tools on this site, ..."

risky data sources. Rajbahadur et al. [43] investigated the sources
of six public datasets and shown their inherent incompatibility for
commercial use. A real case is the copyright infringement lawsuit
filed by Getty Images Inc., alleging that Stability AI Ltd. misused
Getty Images photos to train its StableDiffusion [44] generative
model (1:23-cv-00135). However, the claimed license of training
dataset [47] used for StableDiffusion is CC-BY-4.0, which is a per-
missive license allowing for commercial use. This highlights that
ML data licensing is currently irregular and has become a signifi-
cant factor in legal non-compliance. Although Benjamin et al. [3]
have proposed the Montreal Data License (MDL) to foster fair use of
data in AI activities, unfortunately, none of the ML projects adopted
this license as shown in our profile.

Software Licensing in ML. Distinct from OSS projects, only
50% of ML projects release their code with standard OSS licenses.
About one-third of ML projects do not declare the code license
(but have a model license), which is much higher than in OSS
projects [10]. Other projects switch to using AI model or custom
licenses to insert additional disclaimers and restrictions related to AI
activities, thereby increasing the diversity of licenses in this context.
However, given that ML, especially Neural Networks (NNs), is still
in its emerging stages, the license dependency chain is shorter
compared to OSS projects [4], and most of them use the latest
versions of OSS licenses like Apache-2.0 and MIT.

Model Licensing in ML. In contrast to software licensing, all
ML projects have declared their model licenses. The most popular
license is Open Responsible AI License (OpenRAIL) [9], which is a
permissive license but includes copyleft-style use-based restrictions
governing the use of the model and its derivatives. There are 35%
of projects that insist on using unmodified OSS licenses for model
licensing, even though these licensing language incurs conceptual
ambiguities in theML context. An interesting finding is that, despite
their training data being suspected to contain non-public content,
the models are declared as free and open work [21].

Summary. ML project licenseing exhibit the following
characteristics: 1) Ambiguous, unaccredited and over-
permissive license declarations; 2) Emerging RAIL options
for model licensing; 3) Unique license dependency struc-
tures in ML-specific components reusing. There is a need
for new methods to assess ML license compliance.

2.2 OSS License Assessment
License analysis for OSS projects has been extensively researched,
but it’s relatively unexplored in ML context. The research scope
and problems of OSS and ML license analysis can be classified into
three tiers as shown in Figure 1. For instance, German et al. [14]
proposed a sentence-based matching tool to identify the license of
code. Building on this work, Wu et al. [54] further studied incon-
sistent changes among code clones through provenance analysis.
In addition to license identification [24], Vendome et al. [50] pro-
posed a ML-based clustering method to detect license exceptions.
These studies mainly deal with copyright issues at the code lines
level, located in bottom tier of Figure 1, which can be mapped to
similar ML problems: finding the provenance of data sources [43]
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Figure 1: Research scope and problems of ModelGo compare
with traditional OSS license analysis.

or modules [6]. However, these OSS tools perform software com-
position analysis through pattern matching or file scanning [35],
which are not suitable to datasets and models that typically lack
clear provenance and textual licenses.

Shifting the focus to the middle tier, there are some studies
that explore license compatibility and violations in software pack-
ages [32, 53]. Kapitsaki et al. [26] used Software Package Data
Exchange (SPDX) files to detect conflicts in license compatibility
(e.g., GPL-2.0 to GPL-3.0). Cui et al. [10] directly extracted terms
from license texts using Natural Language Processing (NLP) to
analyze license conflicts in OSS projects.However, OSS license
analysis works exhibit clear limitations when extended to
ML projects. First, they lack support for dataset and model licenses.
For example, RAILs and CCs are not listed in the SPDX. Second, the
mixed use of licenses in current ML projects makes it challenging to
interpret license conditions across different frameworks. Last, these
works only consider code replications and links in their analysis,
whereas ML reuse involves a nested and iterative workflow with a
more complex dependency structure (e.g., fine-tuning, embedding).

Distinct with previous studies, the research scope of our work is
located in top and middle tiers. we propose a practical tool ModelGo
to assess potential license violations and non-granting righs errors
in ML context. We hope that ModelGo can assist developers in com-
prehending their obligations and risks when reusing ML compo-
nents with multiple licenses [1], providing insights for constructing
compliant ML systems.

3 METHOD
This section is organized around three key questions in ML license
analysis: (i) How to determine the applicable conditions in licenses
for certain model reuse mechanisms? (ii) How to capture the depen-
dency structure of a ML project? (iii) What types of non-compliance
exist in ML projects and how to assess them? We will present our
solutions to these questions in the following sections.

3.1 Taxonomy for ML License Analysis
Determining the corresponding conditions in licenses is a chal-
lenging task for ML projects due to the conceptual ambiguities
in existing licensing language and the disorganization in current
ML licensing practices. For example, license like CC-BY-ND pro-
hibits the sharing of derivatives of licensed materials. However, its
definition of making derivatives is unclear in the ML domain. For
instance, should embeddings of a corpus be considered a derivative

work upon that corpus? Unfortunately, even though Creative Com-
mons provides a flow chart to illustrate the trigger conditions of CC
licenses in the context of AI activity [7], it raises another question:
Is the output considered protectable copyright subject matter? The
answer depends on how the embedding activity is interpreted, for
example, considering it as a translation of the original work can
trigger the CC licenses.

MDL advocates the use of a Top Sheet to delineate what ML ac-
tivities are allowed with data [3], but this proposal is rarely imple-
mented in practice (life would be easier if it were widely accepted).
Making things more complex, some projects release their models
under free content licenses, like LayoutLMv3 model [22], which is
licensed under CC-BY-NC-SA-4.0. This disorganization makes it
unclear what kinds of ML activities can trigger licenses conditions
in different contexts. An ideal and elegant solution would be to
encourage licensors to make context-appropriate adaptations in
their license agreements or terms of use to clarify the granted rights
related to ML activities. However, some ML components may be
composed of prior works that are shared under copyleft license
templates, which may disallow such relicensing of their derivatives
to a new license. Therefore, it is necessary to establish practical
rules to bridge AI activities and existing licensing language.

To address the above challenge, we propose a new taxonomy
that categorizes all AI activities into four categories based on the
forms of their results. There are four categories of AI activities
following our taxonomy: Combination, Amalgamation, Distillation,
and Generation, which are defined by four forms of their results,
respectively: 1) Combination with strong separation; 2) Combina-
tion with weak separation; 3) Derivatives from concepts; and 4)
Derivatives from data. Correspondingly, we can also categorize the
usage behaviors in licensing language into these four categories
based on their outcome forms.

We leverage Figure 2 to illustrate this idea. The left side consists
of a list of AI activities, many of which pertain to model reusing
methods, categorized based on the forms of their results. Themiddle
part is our taxonomy that can classify these AI activities. Following
this rule, we can also identify the corresponding terms in natural
language license text shown on the right side. For example, Mixture
of Experts (MoE) leverages a gating network to ensemble a batch of
weak learners [23], which leads to a combination with strong sepa-
ration and aligns with licensing terms like link, portion, collection,
etc. Unlike combination, the results of amalgamation are difficult
(or impossible) to separate, corresponding to AI activities such as
modification, fine-tuning, model fusion, etc 4. These unrecoverable
revision of original works are corresponding license text like adapt,
alter, remix, etc. On the other hand, distillation and generation
are derivatives of original works, which means the results will not
contain any portion of the original works. These two AI activities
are mostly defined in AI model licenses but are not covered by
traditional OSS licenses and free content licenses.

By now, we can ascertain the suitable permissions, limitations,
and obligations for each AI activity based on the license language,
even when the license type is not an exact match. However, its
necessarily to emphasize three points. First, our proposed method
4 Whether embeddings constitute a combination with weak separation depends on
the specific case. In ModelGo, we classify embeddings as amalgamation if they are
created under a content license that treats translation as a form of modification.
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Figure 2: Our proposed taxonomy bridging AI activities and
license language keywords based on their result forms.

only applies in cases where ambiguities exist in the definition. If the
conditions of certainAI activities are explicitly defined in the license,
then we should directly follow that. Second, due to the various
definitions adopted in different licenses, the final mappings depend
on each specific case and may differ from Figure 2. Lastly, one AI
activity may trigger multiple license conditions. For example, a fine-
tuned model can be seen as a combination with weak separation
of the original model, while it can also be viewed as a derivative
from fine-tuning data. Therefore, we should design a mechanism
to trace these multi-source dependency structures in ML projects,
which we will detail in the next section.

3.2 Structure of ML Projects
ML projects have unique dependency relationships compared to
OSS projects, like the dependencies between generated content and
generation model, as well as between training data and trained
model. We can summarize these dependencies in ML projects into
three categories:
• Mix-works be embeded in the new work, either verbatim or in

part, in a tangible form. They usually result from direct copying
of original components or reusing them through AI activities
like combination and amalgamation. These components are em-
bedded into ML projects and must be released with the new
work. For example, if we release a new work utilizing Mixture
of Experts (MoE), it is equivalent to releasing all weak learners.

• Sub-works are similar to mix-works, but the difference is that
they are not embedded in the new work. For instance, if we
manage to release MoE model along with the data used for train-
ing the gating network, then this data will be regarded as the
sub-works of MoE model.

• Aux-works are components used to build the new work and are
either included in it or released with it. For example, the original
model used for knowledge distillation.
Figure 3 illustrates the structure of a work constructed by reusing

multiple components in ML projects. The final ML project may be
constructed through iterative reuse of other works, resulting in

New Work

Aux-worksAux-worksSub-worksSub-works

>License Conflicts Analysis
>Rights Granting Validation: Releasing Policy

Mix-worksMix-works

Released Works

>License Register Information
>Restrictions & Obligations
>Rights Granting Validation:
   AI Activity

Relied Works

Recursive 

Figure 3: The proposed structure for capturing work depen-
dencies in ML projects with multiple reused components.

a ternary dependencies tree for this project. The reason we need
this specially-designed tree structure is that works with different
dependency types have different license conditions proliferation
rules, as illustrated by dotted boxes in Figure 3, which need to be
handled separately during subsequent license analysis.

3.3 License Analysis in ML Projects
We have outlined all the necessary preparation steps for license
analysis in previous sections. Their detailed implementations in
ModelGo are as follows.

Preparation Step 1: Following our proposed taxonomy, we have
manually transcribed the terms in the license text to a standard
machine-readable file in YAML format5. This file contain following
informations for each license:
• Basic license descriptions, including its full name, SPDX short

ID, license version, license types (e.g., public domain, permissive,
copyleft, proprietary), preferred work types (e.g., software, data,
model), and supporting labels such as disclose code required and
auto-relicensing applied.

• Rights granting information, including granted rights and re-
served rights as defined by the license text, along with the per-
mitted reusing methods and permitted result forms for redistri-
bution. The prefix of such granting also be noted for cases where
the granted rights can be revoked.

• Applicable terms for each AI activity, which contain result forms
and relicensability of the activity, corresponding restrictions, and
obligations. This item will be marked as No Defined if both the
activity and the result forms of this activity are not explicitly
covered in the license text.
Preparation Step 2: To capture the dependency structure of

works as shown in Figure 3, we encode the rules of dependencies
construction for each AI activity. For example, if we generate embed-
dings of a corpus using an NN model, then the corpus is considered
the sub-work of the generated embeddings, with the activity labeled
as embed, and the NN model is categorized as the aux-work with
the activity labeled as use. Furthermore, if the corpus is a collection
of smaller corpora, then these smaller corpuses are categorized as
the mix-works of the integrated corpus, with the activity labeled as
combine. By recursively traversing this dependencies tree, we can
gather all the dependent works and the activities used to build this
ML project.
5 We attempted to use chatGPT to generate this content, but it often behaved unreliably
in understanding our taxonomy and produced some stochastic answers [2].
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It is important to emphasize a concept in our license analysis
approach called activity proliferation, which means that the activity
performed by a work will recursively proliferate to all its mix-works.
In the example of the corpus collection mentioned above, the em-
bed calculation performed on the collection will be applied to all
the smaller corpuses, triggering their license conditions related
to embed as well. Similarly, as shown in Figure 3, all rights grant-
ing validation and license conflicts analysis of a work should be
proliferated to all its mix-works. On the other hand, aux-works
are not released with the project, so they are out of the scope of
license conflict analysis and rights granting validation for release.
In summary, mix-works, sub-works, and aux-works have different
scopes in ML license analysis, which is why we need to distinguish
between them.

Analysis Step: Given the license information and dependencies
tree of ML projects, we are ready to analyze the license conflicts
within it. ModelGo’s license analysis consists of three phases:

Initial phase, where we register each component with exact li-
cense name, version, type, and format (e.g., raw, binary, SaaS), and
then construct their workflows using our predefined reusing func-
tions to capture the dependencies. The release policy should be
preset here, and we support personal use, sharing, and selling. Nor-
mally, few conditions apply when you only use the work personally,
and most license terms limit behaviors like redistribution, subli-
censing, and commercial use.

License determination phase, where we iteratively derive the eli-
gible new licenses for intermediate reused results. Copyleft prolifer-
ation occurs when there is a triggered copyleft license in the relied
components. An error will raise if there are other copyleft licenses
or if there are components that cannot be relicensed. To condense
our analysis results, we prioritize using Unlicense for intermediate
results once they are relicenseable. After this phase, all components
and their derivatives should have a well-determined license name.

License validation phase, where we validate the required rights
for construct and release this project whether can be granted. The
validation also includes compliance with disclosure requirements,
such as when a components is in binary format but subject to
conditions that require source code disclosure. The releaseability of
the final result will be validated upon its mix-works and sub-works,
and then an assessment report will be generated.

Table 1 presents the warnings, errors, restrictions, obligations,
and notices that can be detected using ModelGo. Table 2 lists the li-
censes supported by ModelGo, which collectively cover over 96% of
licensed models and datasets on Huggingface6. In the next section,
we will present five case studies based on real ML components.

4 CASE STUDY DETAILS
An ideal practice of ModelGo is to assess real-world ML projects
and detect their potential license compliance issues. However, this
can be challenging in practice due to three present situations:

(1) Prevalent Licensing Disorganization: Many ML projects lack
publicly available organized licensing information, making it diffi-
cult to ascertain the licenses of individual components.
6 No major changes between different version CCs, so they are all considered as
supported. Licenses without clear names and versions are excluded from the calculation.
Worth mentioning, our coverage represents only 24.8% and 6.0% of the models and
datasets on the entire repository due to the significant number of works without
license information.

Table 1: License warnings, errors, restrictions/obligations,
and notices assessed by ModelGo in initial phase, license
determination phase and license validation phase.

Warning, Error, Restriction, Notice Description
Copyleft / Revocable / No Public Notice This license or its granted rights are copyleft /

revocable / no public.
License Type Mismatch Warning License preferred work type is not compatible

with this work type.
License Disclose Self Warning License requires this work (in binary or SaaS for-

mat) to remain open source or provide a readable
copy of the source code.

Rights Not Granted Warning License of this work does not explicitly grant you
the right to do (...)

Rights Not Granted Error License of this work cannot grant you the right
to do (...)

License Incompatibility Error Work has a license conflict as it involves multiple
incompatible licenses.

Cannot Relicense Error Work has a license conflict as it required relicense
rights not be granted.

Cannot Share Error License prohibits sharing of this work.
State Changes Restriction This work must state changes according to related

license(s).
Include License Restriction This work must retain the original license file

according to the related license(s).
Include Notice Restriction This work must retain all notice files (may con-

tain copyright, patent, trademark and attribution)
according to the related license(s).

Use Behavioral Restriction This work must comply with the use restriction
terms according to related license(s).

Runtime Restriction This work must comply with the rumtime restric-
tion terms according to related license(s).

Table 2: List of licenses (represented by SPDX short IDs) sup-
ported by ModelGo, covering over 96% of licensed models
and datasets on Huggingface.
OSS License (99.8%) Content License (96.6%) AI Model License (98.2%)
Apache-2.0, Unlicense, MIT,
AFL-3.0, GPL-3.0, AGPL-3.0,
LGPL-3.0, LGPL-2.1, BSD-3-
Clause, BSD-3-Clause-Clear,
BSD-2-Clause, Artistic-2.0,
WTFPL-2.0, OSL-3.0, ECL-2.0

CC0-1.0, CC-BY-4.0, CC-
BY-SA-4.0, CC-BY-NC-4.0,
CC-BY-ND-4.0, CC-BY-NC-
ND-4.0, CC-BY-NC-SA-4.0,
PDDL, C-UDA, LGPL-LR,
GFDL

OpenRAIL++, CreativeML-
OpenRAIL-M, BigScience-
BLOOM-RAIL-1.0, Llama2,
OPT-175B, SEER

(2) Lack of Development Lifecycle Information for ML Reusing:
ML reusing often occurs without a clear record, making it hard to
trace the origins and licenses of components used.

(3) Non-compliance within Datasets: Crowdsourced datasets
often suffer from license non-compliance issues [43], making the
licenses (usually permissive) declared by dataset publishers invalid.

Consequently, directly analyzing real-world ML projects can
result in uncertainty, over-optimistic results. Therefore, to present
more instructive guidelines for assisting developers in understand-
ing the interaction between AI activities and licenses, we have
designed five ML scenarios rendered using 15 common data sources
and 11 models that cover 5 modalities and 7 tasks, respectively.
Table 3 shows the specifications of the involved data sources and
models, whose licenses include copyleft, permissive, public domain,
and no public license7. Furthermore, our case studies can cover
all events listed in Table 1, and the their details and findings are
provided in the following section.

It’s worth noting that, as a license compliance analysis tool,
ModelGo’s goal is to report potential legal risks in ML projects
related to licenses. It is not designed to address legal interpretation
issues such as copyrightability of the final work, assessing copyright
infringement, or establishing authorship, which typically require
verification by a court of law in different regions [20, 31, 36].
7 Some data sources contain crowdsourced content with multiple licenses, and we
selected a non-public domain license among them.
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Table 3: Specifications of AI components used in case studies,
which include Copyleft License, Permissive License, Public
Domain License and Non-Public License.
Work Name License Name Type Modality/Usage
Wikipedia CC-BY-SA-4.0

Data

Text
StackExchange CC-BY-SA-4.0
FreeLaw CC-BY-ND-4.0
arXiv CC-BY-NC-SA-4.0
PubMed CC-BY-NC-SA-4.0
Deep-sequoia CC-BY-NC-ND-4.0
MidjourneyGen CC-BY-NC-ND-4.0

Image
Flickr CC-BY-NC-SA-4.0
StockSnap CC0-1.0
Wikimedia CC-BY-SA-4.0
OpenClipart CC0-1.0
ccMixter CC-BY-NC-4.0 VoiceJamendo CC-BY-NC-ND-4.0
Thingverse CC-BY-NC-SA-4.0 3D model
Vimeo CC-BY-NC-ND-4.0 Video
Baize GPL-3.0

Model

Text GenerationBLOOM BigScience-BLOOM-RAIL-1.0
Llama2 Llama2 Community License
BigTranslate GPL-3.0
BERT Apache-2.0 Fill-Mask
Stable Diffusion CreativeML-OpenRAIL-M Text to Image
MaskFormer CC-BY-NC-4.0 Image
DETR Apache-2.0 Segmentation
Whisper MIT Voice to Text
X-Clip MIT Video to Text
I2VGen-XL CC-BY-NC-ND-4.0 Image to Video

4.1 CASE I : Corpus Combination
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Figure 4: CASE I: Corpus Combination. AI Activities:
E mbed, C ombine.

Our first case is corpus combination, which is very common
in crowdsourced LLM datasets [13, 27, 37]. Additionally, we also
consider scenarios where the corpus is extended with the help of
translation LLM. As shown in Figure 4 (a), we first translate8 arXiv
and Stack Exchange using Big Translate model, then we combine
these translated corpuses with Deep-sequoia and FreeLaw. This com-
bined corpus is the final work, intended for commercial purposes.
Figure 4 (b) depicts a variation in which the final work is a com-
bination of translated corpus and the LLM. Note that, to simplify
analysis, we treat these non-public licenses, such as CC-BY-ND-4.0
and CC-BY-NC-ND-4.0, as permissive licenses with limitations on
8 In our cases, we treat translation as a specific form of embedding with a natural
language output.

sharing derivatives, as they do not include any copyleft terms. If
not specified otherwise, the format of models and datasets is set to
raw (i.e., modifiable), while the other supported formats are binary
and SaaS. The interpretation of license analysis results is as follows:

Results of CASE I (a) The copyleft conditions about translation
of the CCs were triggered, whichmeans that the translated corpuses
are also covered by the original licenses. As a result, the translated
arXiv and Stack Exchange corpuses remain under the original copy-
left CC ShareAlike licenses. However, combining these corpuses
with another copyleft-licensed Deep-sequoia corpus did not result
in the multiple copyleft licenses issue, as the combination with
strong separation falls outside the proliferate coverage of LGPL-LR
and CC ShareAlike licenses [7]. But, the proliferation extended to
the final work and force it to be licensed under LGPL-LR as well.
It is important to note that only the effort taken to combine the
corpuses is under LGPL-LR, and the licensing action to the final
work will not change the inherent licenses of its components.

There are two types of errors according toModelGo’s assessment.
The first error arises from the CC-BY-NC-SA-4.0 license of the
translated arXiv, which doesn’t grant the right of commercial use9.
The second error is caused by the fact that the redistribution rights
of final work are not granted to comply with FreeLaw’s CC-BY-ND-
4.0 license. There are also many restrictions, such as the final work
must state the changes compared to the original work and must
retain the licenses and notice files of the original works. In addition,
ModelGo also indicates that the granted rights of LGPL-LR are
revocable, which poses a potential risk for further redistribution.

Results of CASE I (b) Different from CASE I (a), the final work
in CASE I (b) is licensed under another copyleft license GPL-3.0
from Big Translate. This is because LGPL-LR has a license prolif-
eration exemption for reused results that are no longer classified
as linguistic resources. Consequently, the license of final work is
proliferated by GPL-3.0. Additionally, besides the rights not granted
error arising from CC-BY-NC-ND-4.0, this non-public license also
explicitly prohibits any form of sharing derivatives, resulting in a
cannot share error.

Findings 1: To minimize the license violation risk when
collecting ML data, avoid using content under non-public
or non-commercial licenses, and be cautious about the pro-
liferation scope of GPL-like licenses. Based on our assess-
ment, using CC-licensed content (including CC ShareAlike)
carries less risk.

4.2 CASE II : Mixture of Experts
In this case study, we consider the MoE scenario, in which we com-
bine twomodels with a newly trainedmodel using a gating network.
There are two variations in this case, each involving different mod-
els, training data, release policies (SaaS and sharing), as depicted in
Figure 5 (a) and (b), respectively. A real-wrold counterpart could be
Wu Dao 2.0, which is a LLM trained using MoE technology with

9 This error also arises from Deep-sequoia and arXiv (since it is a sub-work of the
translated arXiv), we will omit this type of redundant in the rest of the case studies.
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Figure 5: CASE II: Mixture of Experts. AI Activities: T rain,
M oE.

input from tens of thousands of experts [19]. Additionally, releas-
ing models as a service is commonly observed in commercial AI
applications such as chatGPT and Midjourney.

Results of CASE II (a) There is still significant legal uncertainty
regarding whether CC-licensed works can be applied to AI train-
ing [7]. Since there is no explicit definition of AI training and
corresponding restrictions for resulting models within the license
text, we consider training as an undefined activity that falls outside
the scope of CC agreements. Therefore, even though the copyleft
CC-BY-SA-4.0 license is used for Wikimedia, the trained model
BERT does not trigger the license proliferation conditions and can
be relicensed to Unlicense. The final work’s license is proliferated
to GPL-3.0 from Baize, as in CASE I (b).

There is one error in the assessment: the copyleft-style user
behavioral restriction claimed in BLOOM-RAIL-1.0 is consider as
non-permissive additional terms, which can conflict with GPL-3.0.
Therefore, an license incompatibility error is reported when we
combine Baize and BLOOM usingMoE. The warning is that the final
work released as SaaS should remain open source or provide a read-
able copy of the source code to comply with GPL-3.0. Meanwhile,
user behavioral restrictions also apply to the final work, as it is a
derivative of BLOOM governed by responsible AI conditions [9].

Results of CASE II (b) In this case study, we replaced experts
with CV models. The assessment reveals that the final work can-
not be shared, whether modified or not, even for non-commercial
purposes, if the project includes CC NoDerivs licenses, as these
licenses do not grant redistribution rights to the licensee. This fea-
ture is helpful for licensors who intend to prohibit any derivation
and commercialization of their models without the need to draft a
custom proprietary license. However, this disorganization of ML
projects’ licensing has a negative effect on the entire ecosystem.

Findings 2: Both OSS and CC licenses lack definitions
and corresponding limitations related to model training,
leaving freedom to use the trained results. However, RAILs
provide comprehensive definitions for AI activities and
copyleft-style restrictions, making their derivatives not
GPL-compatible.

4.3 CASE III : Generation Pipeline
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Figure 6: CASE III: Generation Pipeline. AI Activities:
G eneration.

As shown in Table 4, artifact generation has become the most
popular application of ML. In this case study, we leverages genera-
tive models to produce data for different modalities in a pipeline
fashion. The final generated content is released for commercial use.

Results of CASE III There is still an ambiguity in traditional
OSS licenses and free content licenses when it comes to the use
of licensed materials for generating artifacts. From the perspec-
tive of the license agreement, this AI activity is permitted as long
as the Use right is granted, and there are also no further claims
for the generated content. However, there is one restriction from
OpenRAIL-M. The AI model license clearly defines the conditions
for AI activities and applies copyleft-style restrictions to its licensed
work. Therefore, once AI model licensed components are used in
ML projects, all subsequent work should comply with these user
behavioral restrictions, which can potentially lead to the final work
becoming closed source [16].

Findings 3: Leveraging generative models can bypass the
no-sharing conditions of CC NoDerivs licenses and mak-
ing the generated content almost ungoverned. However, if
RAIL-licensed works are involved, the content should com-
ply with their restrictions, potentially leading to further
GPL-compatibility issues.

4.4 CASE IV : Knowledge Transfer and Fusion
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Figure 7: CASE IV: Knowledge Transfer and Fusion. AI Ac-
tivities: D istillation, A malgamation (e.g., model fusion).

The knowledge can be transferred or integrated from one model
to another without the need for explicit code replication or link-
ing. This is achieved through technologies such as Student-Teacher
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Learning [12], Contrastive Learning [29], Federated Learning [33],
Model Fusion [28], etc. Traditional OSS licenses expose a loop-
hole regarding these unique reusing methods from ML, and these
methods also pose challenges for deep IP protection [38]. With the
assistance of ModelGo, we further explore the compliance of these
knowledge transfer methods within existing licensing framework.

Results of CASE IV (a) The knowledge fusion like model aver-
aging and fusion yield a weak separation result from the original
work, which can be interpreted as one form of amalgamation. There-
fore, the final work should be under a CC-BY-NC-4.0, the same as
Mask Former. However, the CC licenses do not define the terms
for the materials used for distillation, so there is no effect from the
copyleft licenses of Wikimedia and I2VGen-XL.

There is one error in the assessment. Since the modification of a
CC NonCommercial licensed work cannot be relicensed according
to its conditions, the amalgamated result face a no commercial
rights error when commercialized.

Results of CASE IV (b) This case study assess license compli-
ance towards NLP models. There have two errors all detected from
Llama2. The first error is the license incompatibility between its use
limitations terms and the GPL-3.0. The second error is because the
Llama2 license does not grant sublicense rights for further republi-
cation, conflicting with the releasing policy. Additionally, the rights
granted by the Llama2 license are revocable, posing a potential
risk in the final ML project. Furthermore, the final work should
also comply with the user behavioral restrictions demanded by
BLOOM-RAIL-1.0 and Llama2.

Findings 4: Knowledge transfer is a powerful method to
bypass the reproduction prohibition of models. However,
model fusion may trigger the terms like remix, incorporate,
and adapt, necessitating the reusing procedures to remain
in compliance. In addition, the rights may be revocable
even if granted by a permissive license.

4.5 CASE V : Remix Data
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Figure 8: CASE V: Remix Data. AI Activities: G generation,
A malgamation, C ombination.

Mirroring the CASE IV, this case considers the scenario of data
remix and integration, which can arise when using data augmen-
tation methods such as mixup[57], SMOTE[5], ADASYN [18], etc.
We reuse the generation pipeline depicted in Figure 6 to increase
the complexity of the assessment.

Results of CASE V We first analysis the remix of StockSnap,
Midjourney Gen Image and Thingverse. For content under public
domain licenses like CC0-1.0, we can freely remix this content with-
out worrying about any conflicts. However, conflicts may arise
when remixing content under CC-BY-NC-4.0 and CC-BY-NC-SA-
4.0 licenses. As shown in Figure 7 (a), CC-BY-NC-4.0 cannot be
relicensed for its remixed result, while CC-BY-NC-SA-4.0 requires
performing license proliferation. But the outcome is this remixed
work can be relicensed to CC-BY-NC-SA-4.0 because there is a
one-way compatibility between CC licenses, as indicated by a sup-
plementary interpretation from Creative Commons10. A conflict
due to multiple copyleft licenses will arise if we attempt to further
remix withWikimedia. Furthermore, there will be a cannot relicense
issue if we attempt to augmentWikimedia and relicense it to a new
permissive license to bypass the mentioned conflict.

On the other hand, remixing the generated ccMixter and Vimeo
is governed by CC-BY-NC-ND-4.0, which is responsible for almost
all errors and restrictions in the final product. However, we can get
rid of these constraints by leveraging the loophole of generative
content as shown in CASE III.

Findings 5: Directly remixing raw data should ensure
compatibility between licenses, which can be challenging
in crowdsourced scenarios. One feasible solution is to ex-
clude all content under copyleft and non-public licenses.
An irregular tactic is to exploit the current ambiguity in
licensing frameworks regarding generated content.

4.6 Summary
Based on the findings from our case studies, we conclude five guide-
lines to minimize license conflicts and legal risks in ML projects:

(1) Avoid reusing any works under proprietary or unknown
licenses, as theymay pose a risk of copyright infringement. (2) If you
intend to use anyML components under RAILs (or other responsible
AI model licenses), avoid including GPL-like licensed works in your
projects, and vice versa. (3) Refrain from using any non-public or
non-commercial licensed works if you plan to share the project or
sell it, respectively. (4) If you’re uncertain about compatibility, limit
your project to using at most one copyleft license. (5) Ensure that
all components are under appropriate licensing frameworks. We
provide a flowchart to illustrate this idea in Appendix A.2.

Please note that our guidelines are aimed at minimizing potential
risks related to license terms and do not provide legal interpreta-
tions as previouslymentioned. See our disclaimers in Appendix A.1.

5 CONCLUSION
Component reusing is prevalent in today’s ML project development
lifecycle, yet legal compliance issues are often ignored. Furthermore,
it can be challenging for developers to understand elusive license
terms and identify the potential risk of license violations. Therefore,
given the particularity of ML projects and licensing practices, we
propose a practical license analysis tool to analyze their license
conflicts. We leverage five case studies to demonstrate the feasibility
of our method, and our findings provide constructive guidelines to
minimize conflicts.
10 https://wiki.creativecommons.org/wiki/Wiki/cc_license_compatibility
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A APPENDIX
A.1 DISCLAIMER
The content presented in this article is intended for general infor-
mational purposes only and should not be construed as legal advice.
Any views, opinions, findings, conclusions, or recommendations
expressed in this material are the sole responsibility of the author(s)
and do not represent the perspectives of any organization or entity.

A.2 Additional Figure and Table
Figure 9 illustrates the flowchart for minimizing license conflicts in
a ML project. Table 4 displays the summary of licensing details for
ML projects with over 1K likes on Huggingface. Table 5 presents
statistical data related to licenses and their corresponding number
of works on Huggingface.
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Figure 9: Flowchart for minimizing license conflicts in ML
projects.
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Table 4: Summary of licensing details for ML projects with over 1K likes on Huggingface (Accessed on October 11, 2023).

ML Project Task Data License Software License Model License Dataset Risk Resource
Stable Diffusion v1-5 Text to Image CC-BY-4.0 CreativeML-OpenRAIL-M CreativeML-OpenRAIL-M LAION-5B Common Crawl
BLOOM Text Generation Mixture Unknown BigScience-BLOOM-RAIL-1.0 Crowdsourced Common Crawl,

Wikipedia, etc.
OrangeMixs Text to Image Mixture Unknown CreativeML-OpenRAIL-M Crowdsourced Danbooru
ControlNet Text to Image Unknown Apache-2.0 OpenRAIL Unknown n/a
Openjourney Text to Image CC-BY-NC-4.0 Unknown CreativeML-OpenRAIL-M Midjourney Gen Midjourney Gen
ChatGLM-6B Text Generation Mixture Apache-2.0 Custom the Pile, Wudao,

Crowdsourced
PubMed, Wikipedia,
arXiv, GitHub, etc.

Llama2 Text Generation Unknown Llama2 Community License Llama2 Community License Unknown n/a
StarCoder Text Generation Mixture Apache-2.0 BigCode-OpenRAIL-M The Stack none
Falcon-40B Text Generation ODC-By Apache-2.0 Apache-2.0 RefinedWeb Wikipedia, Reddit,

StackOverflow, etc.
Waifu Diffusion Text to Image Mixture Unknown CreativeML-OpenRAIL-M Unknown n/a
Dolly-v2-12B Text Generation CC-BY-SA-3.0&4.0 MIT MIT databricks-dolly

-15k, the Pile
PubMed, Wikipedia,
arXiv, GitHub, etc.

Dreamlike Photoreal Text to Image Unknown Unknown Modified CreativeML-
OpenRAIL-M

Unknown n/a

Counterfeit Text to Image Unknow Unknown CreativeML-OpenRAIL-M Unknown n/a
GPT-2 Text Generation Mixture Modified MIT Modified MIT Crowdsourced WordPress, GitHub,

wikiHow, IMDb, etc.
GPT-J-6B Text Generation Mixture Apache-2.0 Apache-2.0 the Pile PubMed, Wikipedia,

arXiv, GitHub, etc.
LLaMA-7B Text Generation Mixture Custom Custom Crowdsourced GitHub, arXiv, etc.
BERT Fill Mask Mixture Apache-2.0 Apache-2.0 Book Corpus,

Wikipedia (en)
Wikipedia (en)

Whisper ASR Unknown MIT MIT Unknown n/a
MPT Text Generation Mixture Apache-2.0 Apache-2.0 Crowdsourced Common Crawl,

Wikipedia, etc.
Mistral-7B Text Generation Unknow Apache-2.0 Apache-2.0 Unknow n/a
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Table 5: List of Huggingface supported licenses and number of works, with ModelGo supported licenses highlighted in BOLD.
Note that many works do not explicitly indicate their license version. (Accessed on October 11, 2023).

Model Licenses (Total: 355,150) Dataset Licenses (Total: 69,277)
License Name # of Works License Name # of Works
Apache-2.0 46,758 MIT 5,415
MIT 21,365 Apache-2.0 3,026
OpenRAIL 17,760 OpenRAIL 1,639
CreativeML-OpenRAIL-M 12,059 CC-BY-4.0 1,355
other 6,521 other 1,257
CC-BY-NC-4.0 2,867 CC-BY-SA-4.0 609
CC-BY-4.0 2,676 AFL-3.0 515
AFL-3.0 2,111 CC 444
Llama2 1,776 CC0-1.0 435
CC-BY-NC-SA-4.0 1,312 CC-BY-NC-4.0 385
GPL-3.0 1,080 CC-BY-NC-SA-4.0 378
CC-BY-SA-4.0 959 CC-BY-SA-3.0 377
OpenRAIL++ 667 CreativeML-OpenRAIL-M 290
CC 625 GPL-3.0 266
BigScience-OpenAI-M 596 CC-BY-NC-ND-4.0 190
Artistic-2.0 579 BigScience-OpenRAIL-M 114
BSD-3-Clause 525 CC-BY-3.0 94
BigScience-BLOOM-RAIL-1.0 422 CC-BY-2.0 91
WTFPL 331 Artistic-2.0 91
CC-BY-SA-3.0 288 ODC-by 80
CC0-1.0 270 WTFPL 80
BigCode-OpenRAIL-M 251 Unlicense 68
AGPL-3.0 237 Llama2 63
Unlicense 199 BSD 62
CC-BY-NC-ND-4.0 194 GPL 54
GPL 173 C-UDA 49
BSD 155 AGPL-3.0 46
CC-BY-3.0 104 CC-BY-NC-SA-3.0 38
GPL-2.0 84 ODBL 35
CC-BY-2.0 80 GFDL 34
BSL-1.0 75 BSD-3-Clause 34
BSD-2-Clause 74 CC-BY-ND-4.0 32
LGPL-3.0 65 CC-BY-NC-3.0 28
C-UDA 57 BigScience-BLOOM-RAIL-1.0 28
CC-BY-NC-2.0 48 GPL-2.0 26
CC-BY-NC-3.0 45 OpenRAIL++ 24
OSL-3.0 44 CC-BY-NC-2.0 21
ECL-2.0 35 BigCode-OpenRAIL-M 20
PDDL 35 PDDL 20
BSD-3-Clause-Clear 28 BSD-2-Clause 16
CC-BY-ND-4.0 27 LGPL-3.0 15
GFDL 26 CDLA-Sharing-1.0 14
Ms-PL 26 CC-BY-2.5 12
Zlib 25 Ms-PL 11
LGPL 21 CDLA-Permissive-2.0 11
DeepFloyd-IF-License 19 CC-BY-NC-SA-2.0 10
CC-BY-NC-SA-3.0 19 MPL-2.0 10
LGPL-LR 17 EUPL-1.1 10
MPL-2.0 16 CC-BY-NC-ND-3.0 10
ISC 15 BSL-1.0 10
CC-BY-NC-SA-2.0 15 BSD-3-Clause-Clear 8
ODBL 15 LGPL 6
CC-BY-2.0 14 ECL-2.0 6
CC-BY-NC-ND-3.0 14 OSL-3.0 5
ODB-by 13 ISC 5
NCSA 9 LGPL-LR 4
EPL-2.0 9 PostgreSQL 3
EUPL-1.1 9 Zlib 3
CDLA-Sharing-1.0 7 EPL-2.0 2
LGPL-2.1 6 OFL-1.1 2
PostgreSQL 5 LGPL-2.1 1
LPPL-1.3c 5 CDLA-Permissive-1.0 1
EPL-1.0 4 CC-BY-2.0 1
OFL-1.1 3 NCSA 1
TII-Falcon-LLM 2 DeepFloyd-IF-License 1
CDLA-Permissive-2.0 2 EPL-1.0 1
CDLA-Permissive-1.0 2 LPPL-1.3c 1
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