
An Adversarial Robustness Perspective on the
Topology of Neural Networks

Morgane Goibert
Criteo AI Lab
Paris, France

m.goibert@criteo.com

Thomas Ricatte
Amazon ∗

Luxembourg
tricatte@amazon.com

Elvis Dohmatob
Meta AI Research ∗

Paris, France
dohmatob@fb.com

Abstract

In this paper, we investigate the impact of neural networks (NNs) topology on
adversarial robustness. Specifically, we study the graph produced when an input
traverses all the layers of a NN, and show that such graphs are different for
clean and adversarial inputs. We find that graphs from clean inputs are more
centralized around highway edges, whereas those from adversaries are more diffuse,
leveraging under-optimized edges. Through experiments on a variety of datasets
and architectures, we show that these under-optimized edges are a source of
adversarial vulnerability and that they can be used to detect adversarial inputs.

1 Introduction

As neural networks (NNs) can be fooled by adversarial examples [44, 16], understanding them
remains an important issue. Several hypotheses have been proposed to explain this still obscure
phenomenon [19, 36, 54, 40, 32, 43]. In this paper, we build on identified characteristics of adversarial
examples to make the following hypothesis: adversarial inputs take different paths than clean inputs
when they traverse a neural network (NN), namely under-optimized edges. To study this hypothesis,
we will use notions from the adversarial robustness field, but also from topological data analysis.

Adversarial Examples. An adversarial example is a perturbed version of a clean input x, i.e
xadv = x + δ, where δ is the perturbation controlled in size (L2 or L∞ norm, say) by a strength
parameter ε. An attacker is any mechanism that constructs such example to cause a given classifier h
to misclassify the example: h(xadv) ̸= h(x), in which case the attack is called successful.

Topological Data Analysis. Topological Data Analysis (TDA) [11, 59] is a field which uses tools
from ideas from topology to analyze high-dimensional data like graphs [27, 8, 48]. TDA is well-suited
for studying the structural properties of data while reducing the dimension of the analysis, which
fits our case since our data are high-dimensional and associated with activation graphs from NNs.
Our paper critically relies on persistence diagrams, which summarize the topological structure of
weighted graphs with a set of points in R2.

Contributions. The main aim of this paper is to demonstrate that the analysis of the topological
structure of NNs is highly relevant to better understand, detect, and defend against the adversarial
phenomenon. We pave the way for this new line of work in this paper, which is organized as follows:

• In Section 2, we propose a new hypothesis on how the topological structure of NNs and under-
optimized parameters are related to the adversarial phenomenon.

• In Section 3, we propose main method to extract structural topological features based on persistence
diagrams and under-optimized edges.
∗Work done at Criteo AI Lab

ML Safety Workshop, 36th Conference on Neural Information Processing Systems (NeurIPS 2022).

• In Section 4 We conduct experiments to validate our hypothesis using our newly-defined features.

2 Our hypothesis

Figure 1: Blueprint of structural dif-
ferences between graphs from clean
vs adversarial inputs.

Based on the observation that most NNs are over-parametrized
(i.e parameter count exceeds training dataset size) and that
pruning away most parameters after training induces smaller
models without degrading accuracy [13], we hypothesize that
only a small set of parameters are critically used for inference
of clean inputs, while the rest of the parameters do not carry
meaningful information. Considering a NN as a graph, and
parameters as edges of that graph, this means that informa-
tion from clean inputs flows through highway edges, while
information from adversarial inputs is more diffuse, and uses
so-called under-optimized edges (i.e. useless edges not well
optimized during training). This results in structural differ-
ences in graphs induced by clean and adversarial inputs, as
simply illustrated by Figure 1. Using the notion of induced
graph, which is a weighted graph representing the information
flow from an input in a NN/graph, and defined later, we can sum up our hypothesis:

Our Hypothesis. Clean and adversarial inputs induce differences in the topological structure
in their respective induced graphs, because under-optimized edges are used by adversaries, but
not by clean inputs. Such edges are thus a source of adversarial vulnerability.

3 Extracting Structural Topological Features: Methods

Induced Graph. Let X = Rn0 be the feature space, where n0 is the input dimension. For any input
x ∈ X , the induced graph (aka activation graph) is a graph on the neurons of the network, whose
edges depend both on the parameters of the network and the inner activations induced by the forward
pass of x. Formally, a NN is a function h : X → [[1,K]] of the form h(x) = argmaxKk=1 g(x)k
where the feature map g : X → RK is defined by g(x) = σL(WL σL−1(WL−1 . . . (σ1(W1 x))),
where Wl ∈ Rnl×nl−1 is the parameter matrix between layer l − 1 and layer l; the component-wise
mappings σl : R → R are the activation functions of the NN (e.g. ReLU). With a slight abuse of
notation, we denote by gl(x) ∈ Rnl the output value of layer l.

Combining information from the NN g and an input x, we construct the so-called induced graph.

G(x, g) = (V,E), with V = {1, 2, . . . , n0 + . . .+ nL}
and E = {(ul, vl+1, wl

u,v)} ⊆ V 2 × R.

Here, the edge weights are given by wl
u,v = |[gl(x)]u × (Wl)v,u|, the value of the parameter weight

of the NN between neurons u and v multiplied by the activation of neuron u: this definition of wl
u,v

is meant to mimic how NNs operate to transfer information from a layer to the next. It applies to
feedforward NNs, and can also be generalized for other structures like ResNet. Moreover, the wu,v’s
can also be obtained for convolutional layers or others (see details in Appendix B).

Selecting under-optimized edges. As classical NNs have a huge number of parameters (even
for small ones as LeNet), it is necessary to reduce dimensionality and select a sub-graph of the
induced graph. Moreover, as we expect adversaries to leverage under-optimized edges, we select only
these edges for our analysis. As defined and studied in [13, 58], an edge (u, v) is under-optimized
if the Magnitude Increase (MI) quantity |(Wl)u,v| − |(W init

l)u,v| is small, (W init
l)u,v being the

parameter’s initialization value. An edge (u, v) of layer l is kept in the thresholded induced graph iff:

|(Wl)u,v| − |(W init
l)u,v| < quantile(q) , (1)

where q is the target fraction of edges to keep. We denote the thresholded induced graph as Gq(x, g).
Note that no assumption is made over the initialization of the NN and that the selection criterion of
under-optimized edges does not depend on the input x, but only on the NN g.

2

Persistent Homology. We can analyze our under-optimized induced graph structure using TDA
tools, namely persistent homology. We only provide a simple overview and some intuitions about
the concepts we use, but the interested reader can find more details in [9] and Appendix B. We
are interested in an object called a persistent diagram (of dimension 0 in our case): it is a set of
points representing the topological structure of a graph through different spatial scales. The graph
is decomposed into a sequence of sub-graphs, starting with a completely disconnected graph, and
ending with the whole graph. In between, edges from the graph are added progressively according
to their weights (highest weights first). The evolution of connected components in the sequence of
sub-graphs is tracked with two indicators: the birth date of the connected component (when a first
edge appears), and its death date (when the connected component is linked to another, older one,
through an edge appearing at this death date, or +∞ when the connected component never dies).
This collection of points (birth dates and death dates) is the persistence diagram, abbreviated PD.
Intuitively, we can derive some simple observations. A highly connected graph, with weights very
close to each other, will have very few points in the PD, and only one infinitely-lived point. On the
contrary, a disconnected graph, with very different weights for the edges, will have many points and
infinitely-lived points in its PD.

Thus, PDs are very well suited to studying the topological structure of a graph. We expect PDs from
clean inputs to have fewer points / fewer infinitely-lived points than those from adversaries.

4 Clean and Adversarial Examples induce Different Persistence Diagrams

Observing Quantitative Differences. When the induced graphs are sufficiently small, differences
in PDs can be easily observable based on the number of points in the PDs. Figure 2 shows this is the
case for a classical MNIST / LeNet, where adversaries were computed using PGD [24] with ε = 0.1.

(a) Distribution of all PD points. (b) Distribution of infinitely-lived PD points.

Figure 2: PD points computed on MNIST / LeNet

Detecting Adversarial Examples. While differences in PDs are easily observable on simple
setups, it is necessary to extend our analysis to more complex, SOTA setups. Even though not as
easily observable in these cases, we derived a detection framework based on PDs, which can be
used for any dataset/architecture, whose success shows that adversarial PDs (and thus adversarial
inputs) are indeed different from clean ones, for a variety of SOTA attacks (PGD [24] and CW [5]
for the white-box setting, Boundary [3] for the black-box one) and datasets (MNIST, Fashion
MNIST, SVHN, CIFAR10), using LeNets and ResNets architectures. Our code is available at:
https://github.com/detecting-by-dissecting/detecting-by-dissecting.

We defined a feature extraction map for our so-called PD method: ΦPD(x, g) := PD(Gq(x, g)). To
compute distances between different PDs, we used the Sliced Wasserstein Kernel, defined in [7] by:
KPD(x, x

′) = exp
(
− 1

2σ2 SW(ΦPD(x, g),ΦPD(x
′, g))

)
, where SW(·, ·) is the Sliced-Wasserstein

distance between persistence diagrams.

Based on this PD-based feature extraction method and a kernel, we can build a detector using a
simple SVM. We compare our method, called PD (for simplicity), to SOTA detection baselines:
Mahalanobis [26] and Local Intrinsic Dimension (LID) [30]. For the sake of comparison, we also
compare our PD method to a very simple one called Raw Graph (RG), whose features are just a
vector whose elements are the weights of the thresholded induced graphs Gq(x, g).

Figure 3 presents the AUC detection results for the different methods, against our three attacks and
four setups. PD has better AUC results than SOTA methods on the four datasets/architectures and on
all attacks, except on CIFAR10 ResNets, where the results are similar. RG remains competitive with
the two baselines on the (small) LeNet architectures. The main takeaways of these experiments are:

3

https://github.com/detecting-by-dissecting/detecting-by-dissecting

(a) LeNeT/MNIST (b) LeNet/Fashion MNIST (c) ResNet/SVHN (d) ResNet/CIFAR10

Figure 3: Showing detection AUC for different detection methods (legend) against different kinds of
adversarial attacks (rows) and model architectures and datasets (columns). We see that our proposed
method based on PD outperforms the SOTA methods, except for one tie.

• RG’s performances indicate that useful information can indeed be found in the thresholded induced
graph, thus in the under-optimized edges. However, such a simple method is only efficient on
simple models or attacks.

• PD’s performances are overall significantly better than those of previous SOTA detectors, LID and
Mahalanobis. This means not only we have succeeded at constructing a very effective detector, but
also that structural topological information extracted from induced graphs contains discriminative
information about adversarial examples, regardless of the task complexity. Overall, the success of
PD validates our main hypothesis.

The results on the Boundary black-box attack show that our methods (and also the baselines LID
and Mahalanobis) do not rely on gradient masking and can generalize well. More experiments and
illustrations on PDs and under-optimized edges are provided in Appendices C, G and H.

5 Conclusion

Summary. We studied the topological structure of NNs through the lens of adversarial robustness.
We stated that clean and adversarial inputs follow different paths when they traverse a NN, resulting in
different topological structures for their induced graphs. Namely, contrary to clean inputs, adversarial
ones leverage under-optimized edges, whose existence stems from the over-parametrization of NNs.
We verified this hypothesis through a variety of experiments.

Takeaways. Our paper is, to the best of our knowledge, one of the first to link adversarial robustness
and the topological structure of NNs. We validate the need for more in-depth analysis and under-
standing of the topological structure of NNs, of how the information from an input x flows through
a NN, and of the impact of over-parametrization on deep learning. In the context of adversarial
robustness, these lines of research are still not explored, but can greatly improve our understanding of
the phenomenon.

Future works. Refinements and additional experiments on our PD method are left for future work.
Moreover, a better understanding of under-optimized edges (e.g. their trajectories during training,
etc.), and the study of the link between pruning (i.e. removing under-optimized edges) and adversarial
robustness are also left for future work.

4

References
[1] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of

security: Circumventing defenses to adversarial examples. arXiv preprint, 2018.

[2] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adver-
sarial examples. arXiv preprint, 2017.

[3] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks:
Reliable attacks against black-box machine learning models. arXiv preprint, 2017. (Cited on 3)

[4] Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing
ten detection methods. In ACM Workshop on Artificial Intelligence and Security, 2017.

[5] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
IEEE Symposium on SP, 2017. (Cited on 3, 17)

[6] Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society, 2009.

[7] Mathieu Carriere, Marco Cuturi, and Steve Oudot. Sliced wasserstein kernel for persistence
diagrams. In ICML, 2017. (Cited on 3)

[8] Mathieu Carrière, Steve Y Oudot, and Maks Ovsjanikov. Stable topological signatures for
points on 3d shapes. In Computer Graphics Forum, 2015. (Cited on 1)

[9] Frédéric Chazal and Bertrand Michel. An introduction to topological data analysis: fundamental
and practical aspects for data scientists. arXiv preprint, 2017. (Cited on 3)

[10] Gilad Cohen, Guillermo Sapiro, and Raja Giryes. Detecting adversarial samples using influence
functions and nearest neighbors. arXiv preprint, 2019.

[11] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. In IEEE FOCS, 2000. (Cited on 1)

[12] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard, and Stefano Soatto. Em-
pirical study of the topology and geometry of deep networks. In IEEE CVPR, 2018.

[13] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint, 2018. (Cited on 2, 21, 24)

[14] Thomas Gebhart and Paul Schrater. Adversary detection in neural networks via persistent
homology. arXiv preprint, 2017.

[15] Thomas Gebhart and Paul Schrater. Adversarial examples target topological holes in deep
networks. arXiv preprint arXiv:1901.09496, 2019. (Cited on 15)

[16] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint, 2014. (Cited on 1)

[17] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick McDaniel.
On the (statistical) detection of adversarial examples. arXiv preprint, 2017.

[18] Yiwen Guo, Chao Zhang, Changshui Zhang, and Yurong Chen. Sparse dnns with improved
adversarial robustness. In NeurIPS, 2018. (Cited on 23)

[19] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and
Aleksander Madry. Adversarial examples are not bugs, they are features. arXiv preprint, 2019.
(Cited on 1, 10)

[20] Daniel Jakubovitz and Raja Giryes. Improving dnn robustness to adversarial attacks using
jacobian regularization. In ECCV, 2018. (Cited on 23, 24)

[21] Roger W Johnson. An introduction to the bootstrap. Teaching Statistics, 2001. (Cited on 18)

[22] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

5

[23] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10.

[24] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale.
arXiv preprint, 2016. (Cited on 3, 17)

[25] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[26] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for
detecting out-of-distribution samples and adversarial attacks. In NeurIPS, 2018. (Cited on 3,
19)

[27] Chunyuan Li, Maks Ovsjanikov, and Frederic Chazal. Persistence-based structural recognition.
In IEEE CVPR, 2014. (Cited on 1)

[28] Tianlin Li, Aishan Liu, Xianglong Liu, Yitao Xu, Chongzhi Zhang, and Xiaofei Xie. Under-
standing adversarial robustness via critical attacking route. Information Sciences, 2021.

[29] Bo Liu and Mengya Shen. Some geometrical and topological properties of dnns’ decision
boundaries. arXiv preprint, 2020. (Cited on 10)

[30] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Grant Schoenebeck,
Dawn Song, Michael E Houle, and James Bailey. Characterizing adversarial subspaces using
local intrinsic dimensionality. arXiv preprint, 2018. (Cited on 3)

[31] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint, 2017.

[32] Naren Sarayu Manoj and Avrim Blum. Excess capacity and backdoor poisoning. NeurIPS,
2021. (Cited on 1, 10)

[33] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Univer-
sal adversarial perturbations. In IEEE CVPR, 2017.

[34] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple
and accurate method to fool deep neural networks. In IEEE CVPR, 2016.

[35] Dmitriy Morozov. Dionysus, 2017. (Cited on 12)

[36] Preetum Nakkiran. A discussion of ’adversarial examples are not bugs, they are features’:
Adversarial examples are just bugs, too. Distill, 2019. (Cited on 1, 10)

[37] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[38] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Anan-
thram Swami. Practical black-box attacks against machine learning. In ACM ASIACCS, 2017.

[39] Yuxian Qiu, Jingwen Leng, Cong Guo, Quan Chen, Chao Li, Minyi Guo, and Yuhao Zhu.
Adversarial defense through network profiling based path extraction. In IEEE CVPR, 2019.

[40] Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In
ICML, 2020. (Cited on 1, 10)

[41] Leslie N Smith. Cyclical learning rates for training neural networks. In IEEE WACV, 2017.
(Cited on 17)

[42] Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues. Robust large margin
deep neural networks. IEEE Transactions on Signal Processing, 2017. (Cited on 24)

[43] David Stutz, Matthias Hein, and Bernt Schiele. Disentangling adversarial robustness and
generalization. In IEEE CVPR, 2019. (Cited on 1, 10)

[44] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint, 2013. (Cited
on 1)

6

[45] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick
McDaniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint, 2017.

[46] Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. The
space of transferable adversarial examples. arXiv preprint, 2017.

[47] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. arXiv preprint, 2018.

[48] Katharine Turner, Sayan Mukherjee, and Doug M Boyer. Persistent homology transform for
modeling shapes and surfaces. Information and Inference: A Journal of the IMA, 2014. (Cited
on 1)

[49] Luyu Wang, Gavin Weiguang Ding, Ruitong Huang, Yanshuai Cao, and Yik Chau Lui. Adver-
sarial robustness of pruned neural networks. 2018. (Cited on 23)

[50] Shufan Wang, Ningyi Liao, Liyao Xiang, Nanyang Ye, and Quanshi Zhang. Achieving adver-
sarial robustness via sparsity. arXiv preprint, 2020. (Cited on 23)

[51] Yulong Wang, Hang Su, Bo Zhang, and Xiaolin Hu. Interpret neural networks by identifying
critical data routing paths. In IEEE CVPR, 2018.

[52] Boxi Wu, Jinghui Chen, Deng Cai, Xiaofei He, and Quanquan Gu. Do wider neural networks
really help adversarial robustness? In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, 2021. (Cited on 10)

[53] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint, 2017.

[54] Kaidi Xu, Sijia Liu, Gaoyuan Zhang, Mengshu Sun, Pu Zhao, Quanfu Fan, Chuang Gan, and
Xue Lin. Interpreting adversarial examples by activation promotion and suppression. arXiv
preprint, 2019. (Cited on 1, 10)

[55] Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Mengshu Sun, Hongge Chen, Pin-Yu Chen,
Yanzhi Wang, and Xue Lin. Adversarial t-shirt! evading person detectors in a physical world.
arXiv preprint, 2019.

[56] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples in
deep neural networks. arXiv preprint, 2017.

[57] Chongzhi Zhang, Aishan Liu, Xianglong Liu, Yitao Xu, Hang Yu, Yuqing Ma, and Tianlin
Li. Interpreting and improving adversarial robustness of deep neural networks with neuron
sensitivity. IEEE Transactions on Image Processing, 30, 2020.

[58] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets:
Zeros, signs, and the supermask. In NeurIPS, 2019. (Cited on 2, 21)

[59] Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete & Computa-
tional Geometry, 2005. (Cited on 1)

7

Supplementary Material
An Adversarial Robustness Perspective on the Topology of Neural Networks

Contents

A Characteristics of Adversaries: Motivation Details on Under-Optimized Edges 10

B Induced Graphs and Persistence Diagram: Details 10

B.1 Induced Graphs . 10

B.2 Persistence Diagrams: More Intuition . 11

B.3 Persistence Diagrams: Implementation Details . 11

B.4 Algorithm . 13

C What do PDs spot? 14

C.1 General illustration . 14

C.2 Adversarial robustness illustration . 14

D Related works 15

E Experiments details 15

E.1 Architectures used in the experiments . 15

E.2 More details on time complexity. 16

E.3 Training details. 17

E.4 Attacks details. 17

E.5 Experimental pipeline. 17

E.6 Computing the AUC. 17

F Hyperparameters for methods used in the paper 18

F.1 Selection parameter for PD and RG methods. 18

F.2 Hyperparameters for the LID method. 18

F.3 Hyperparameters for Mahalanobis method. 18

G Additional detection results 19

G.1 Supervised Results . 19

G.2 Unsupervised results on transferred attacks . 19

G.3 Unsupervised results on CIFAR100 . 21

G.4 Using number of points in the Persistence Diagram 21

H PD generalizes better than SOTA - Adversarial training experiments. 22

I Under-optimized edges provide more information than others 23

8

J Pruning and robustness: and further details 23

J.1 A theoretical argument: pruning can improve robustness 23

J.2 Proof of Proposition 1 . 24

J.3 About the Jacobian matrix and its relation with robustness. 24

9

A Characteristics of Adversaries: Motivation Details on Under-Optimized
Edges

Adversarial perturbations are small and yet result in sufficient variation of the output to change the
predicted class. What happens inside a NN to obtain this variation? We recall here three characteristics
of adversaries and link them together to suggest an answer to this question and motivate the use of
graphs and topological tool to study adversaries.

Strategies used by adversaries. [54] shows that adversarial perturbations can be categorized into
suppressing ones, meaning perturbations that focus on reducing the true label score, or promoting
ones, meaning perturbations that focus on increasing the target label score. Adversaries can (and
usually do) output a mixed behavior. Interestingly, the suppressing/promoting nature of an adversary
comes from the set of input features (e.g. pixels for images) it perturbs: modification in one input
neuron cascades through the whole NN and results in a suppressing/promoting relative behavior.

What features are used by adversaries? Using [19, 36] terminology, the features of the data
distribution can be divided into 1) useful and robust, 2) useful and non-robust, 3) non-useful ones.
Both of these works show the existence of two types of adversaries (see also [43]), even though one
can expect that most adversaries lie on a scale between these two extremes:

• Adversaries leveraging useful and non-robust directions: e.g. when an image from the class "dog" is
perturbed to be classified as a "cat", the perturbation has something to do with the class "cat". Then,
the adversary is on-distribution (the direction of the perturbation is parallel to the data manifold,
thus the adversary does not leave the data manifold).

• Adversaries leveraging non-useful directions: e.g. the image from class "dog" is perturbed with
a perturbation that has nothing to do with class "cat". Then, the adversary is off-distribution
because the perturbation can occur in any arbitrary direction (the direction of the perturbation is
perpendicular to the data manifold, thus the adversary leaves the manifold).

Over-parametrization. The link between over-parametrization and robustness is still not com-
pletely understood, however, some works (e.g. [40, 32, 52]) have shown that NNs vulnerability may
increase when they are over-parametrized. It occurs when a NN has too many parameters: after train-
ing with e.g. SGD, parameters in excess still have non-zero values, and thus are used for prediction.

Figure 4: Adv. inputs characteristics. Full
(dashed) lines denote positive (negative) weights
and thickness denotes absolute value.

It enables highly curved decision boundaries [29]
and can lead to overfitting the training data. Thus,
over-parametrization can translate into having a
NN with many under-optimized and non-useful pa-
rameters for the classification task at hand. These
non-useful parameters can be leveraged to build
adversarial attacks (e.g. via promoting behav-
iors). Such behavior is the most expected one
for standard NNs, because they usually are over-
parametrized, and most attacks (e.g. PGD) use
non-useful directions to perturb clean inputs [43].
In the alternative case where under-optimized and

non-useful parameters are removed (by e.g. pruning), adversarial perturbations can still leverage
useful but non-robust parameters to create on-distribution adversarial examples.

Figure 4 illustrates these characteristics, leading the NN to classify the clean input (resp. adversarial
input) as a positive (negative).

B Induced Graphs and Persistence Diagram: Details

B.1 Induced Graphs

Figure 5 provides an illustration of the way an induced graph is computed. Figure 5(a) shows a
trained NN, with the weights for each layer written in the matrices. For an input x = (1, 2,−1, 3),
Figure 5(b) shows the corresponding induced graph. Another illustration is provided in Figure 7

10

(a) Trained NN (b) Induced graph

Figure 5: A trained NN (a) and its corresponding induced graph for an input x (b). We highlighted
the activation values at each layer (blue), i.e. the values of the neurons. We also provided the weights
for two edges (red), which denotes the information flow from input x carried by the edge.

B.2 Persistence Diagrams: More Intuition

Simplicial complexes. A simplicial complex is a topological object generalizing the notion of
triangulation, composed of vertices and edges. Up to some constraints, it is a set of simplexes (a
n-simplex is a triangle in dimension n). We can smoothly compute their homology groups, whose
elements, homology classes, represent different structural "holes" and are our relevant topological
information. A graph, like our induced graphs, is of course composed of vertices and edges and thus
can be seen as a simplicial complex.

Persistence diagrams. In order to study the topological features at different scales, we decompose
the simplicial complex as a filtration of sub-complexes. The set of homology groups of each element
of the filtration is called a persistent homology. A persistence diagram (PD) is the representation of
the birth and death dates of the homology classes through the filtration. Then, a point with a long
lifetime (far from the diagonal) represents a feature for the simplicial complex under study; on the
contrary, a point with a short lifetime (close to the diagonal) represents noise.

Intuitions and illustrative example. As our graphs are feedforward and do not represent 3-d
objects, we focus our analysis on the 0th-dimensional persistence diagrams. The sub-complex for
parameter t thus is the sub-graph composed of edges with weights smaller than t (and corresponding
neurons). The filtration is the collection of sub-complexes from t = 0 (empty graph) to t = +∞
(whole graph). Intuitively, the persistence diagram then represents how the connected components of
the sub-complexes evolve through different spatial scales given by the weights of the graph. Highly
connected subsets of edges (with small edge weights) will form a connected component during
many sub-complexes: it will create a point in the persistence diagram with a long lifetime, far from
the diagonal, representing an important structural feature for the whole graph. An illustration is
given in Figure 6. Notice that with this natural definition of sub-complexes, a small-weighted edge
corresponds to an important edge, as it connects two neurons with close spatial proximity. In an
induced graph G(x, g), edge weight denotes information flow, not spatial proximity: a high-weighted
edge thus corresponds to an important edge. To circumvent this issue, we replace the weight w > 0
with its opposite −w.

B.3 Persistence Diagrams: Implementation Details

In this paragraph, we give more detail about the different steps required to compute the persistent
diagram for a given image x.

Step 1: Get the activations by layer. As described in Section 3, the induced graph depends both
on the parameters of the networks and on the inner activations induced by x. Therefore, the first step
is to perform a forward pass through our network and save all the intermediate activations (note that,
in practice, we only focus on a subset of the layers as detailed in Figure 12). For layer l, we denote
by gl(x) ∈ Rnl the inner activation.

11

(a) A regular graph and its PD (b) A structured graph and its PD

Figure 6: Two graphs with different topological structures and their corresponding PDs (dashed lines
correspond to infinity). In (a), the weights are similar: the only important subgraph is the whole
graph, thus one point is far from the diagonal. In (b), there are two edges with much smaller values
than the others (red): they form two important subgraphs, thus two points far from the diagonal.

Step 2: Matrices per layer. To compute the induced graph, we need to weight the activations by
the strength of the connection between neurons. For a linear layer parametrized by a weight matrix
Wl ∈ Rnl+1×nl , this is straightforward and we can write:

wl = Wlgl(x) .

For a convolutional layer, we need first to compute an equivalent weight matrix Wl from the kernels
Kl (the "sparse fully connected counterpart"). When padding= 0, stride= 1 and nb_channels= 1,
we can notice that the equivalent matrix is simply composed of Toeplitz matrices based on each row
of Kl stacked by block. Here is an example.

gl(x) is the stacked version of

[
1 2 3
4 5 6
7 8 9

]
so that gl(x) = [1 2 3 4 5 6 7 8 9]

T and

Kl =

[
10 20
30 40

]
. Then

Wl =

10 20 0 30 40 0 . . .
0 10 20 0 30 40 . . .
. . . 10 20 0 30 40 0
. . . 0 10 20 0 30 40

where the Toeplitz matrices are T1 =

[
10 20 0
0 10 20

]
and T2 =

[
30 40 0
0 30 40

]
The reasoning is similar in the general case where nb_channels ≥ 1, stride ̸= 1 and padding ≥ 0.
In practice, we leverage the sparseness of these matrices when we build them and use the Numba
package to accelerate the computations.

Note that the weight matrices per layer are computed once at the beginning of the process so that we
can simply multiply Wl and gl(x) to assemble the induced graph.

Step 3: Get the induced graph. The induced graph is represented by its adjacency matrix A ∈
Rn1...nL×n1...nL . For NNs without any shortcuts (unlike ResNets for example), A can be obtained by
constructing a diagonal matrix by block, where the l-th block is simply the induced matrix of layer l.

Step 4: Edge selection. We select the edges to keep based on the Magnitude Increase criteria as
described in Equation (1): for each layer, we consider both Wl and the initial weight matrix W init

l to
compute the list of edges to be kept (independently of the activations). Then, for any input image x,
we removed from its induced graph all the edges that are not in our list. As indicated in Section 3, we
chose to restrict ourselves to uniform selection parameter, i.e. we keep the same fraction of edges q
in every selected layer.

Step 5: Compute the Persistent Diagram. We use Dionysus [35] to compute the Persistent
Diagram from a custom filtration where each edge (u, v) appears at time −|wl

u,v| (strongest links
appear first). An illustration of this process is given in Figure 7. The persistence diagram we obtain is
just a vector of tuples, containing the birth and death dates of every point in the persistence diagram.

12

(a) Trained NN (b) Induced graph (c) Under-optimized induced
graph

(d) Filtration. Corresponding persistent diagram: {(−5,∞), (−3,∞)}.

Figure 7: Persistence Diagram illustration - If we have a simple linear NN with its trained parameters
in Figure 7(a) (for simplicity, the initial values of the parameters were set to 0) and the selection
parameter q = 0.5, then: 1) we select only the thin edges, not the thick ones, in Figure 7(a). 2) An
example x flows through the graph so that we obtain the corresponding induced graph in Figure 7(b).
3) Applying our selection parameter q = 0.5, we restrain ourselves to the under-optimized induced
graph in Figure 7(c). 4) The corresponding filtration is given by Figure 7(d).

Step 6: Computing the Sliced-Wasserstein gram matrices. We can now compute the Sliced-
Wasserstein kernel as proposed in [?]. The main parameter of the kernel is the number of sampled
directions M : the higher M , the more accurate the value of the kernel. In our experiments, we set
M = 50, and tested that it was high enough to obtain a good approximation by comparing the results
obtained with other values like M = 100. For accelerating the computation of the Sliced-Wasserstein
gram matrices, we use parallel C++ code.

B.4 Algorithm

To compute PDs, we used the following simplified Algorithm 1. The complete code is available at
https://github.com/detecting-by-dissecting/detecting-by-dissecting

Algorithm 1: Persistence Diagram embedding

Input :a NN g with parameters W (after training) and W init (at initialization); a dataset D; a
parameter q; the SW kernel KPD.

Output :An embedding dataset F = {ΦPD(x, g) | ∀x ∈ D}
for each x ∈ D do

for each pair of connected layers (l, l′) do
/* 1 - Adjacency matrices */
- Get Wl,l′ (parameter matrix) and gl(x) (output of layer l) as defined in Section 3;
- Compute ∀ i, j [Al,l′(x)]i,j = |[gl(x)]i ∗ [Wl,l′]i,j | ;
/* 2 - Selecting under-optimized */
for each matrix indexes (i, j) do

if |[Wl,l′]i,j | − |[W init
l,l′]i,j | ≥ quantile(q) then

[Al,l′(x)]i,j ← 0;

/* 3 - Global adjacency matrix */
Create A(x) by stacking by block the Al,l′(x);
/* 4 - Persistence Diagram */
- Compute ΦPD(x, g) = PD(A(x));
- Add ΦPD(x, g) to F ;

13

https://github.com/detecting-by-dissecting/detecting-by-dissecting

(a) Noisy circle 1 (b) Noisy circle 2 (c) Adv. circle

Figure 8: Persistence diagrams are stable to random noise, not to adversarial noise.

(a) Toy
dataset.

(b) Dgms of four inputs illustrating transi-
tion phase

(c) KDE plots of clean vs
adv dgms

Figure 9: Persistence diagrams from clean vs adv inputs are highly dissimilar.

C What do PDs spot?

C.1 General illustration

Persistence diagrams can identify structural properties of points clouds or graphs. In dimension 0,
as previously stated, points in persistence diagrams represent the lifetime of holes. An interesting
property of persistence diagrams is that they are robust to noise. It means that two noisy circles
(the points in the dataset were generated following a circle equation to which a gaussian noise with
mean= 0 was added) will output very similar persistence diagrams. However, non-random noise,
such as adversarial noise, can deeply modify the persistence diagram. We illustrate this feature in
Figure 8. In the "adversarial" circle, we clearly see that even though there is only one adversarial point
in the dataset, its position induce the presence of an abnormal point in the corresponding persistence
diagram (emphasized with a red circle), whereas the two versions of the noisy circle dataset on the
left output very similar diagrams.

C.2 Adversarial robustness illustration

The robustness to noise property of persistence diagrams should result in having similar clean PDs
(especially for inputs from the same class), but different from adversarial PDs because adversarial
perturbations are non-random. Stemming from these non-random shifts in the structure of the induced
graphs, we also expect a clear transition phase from the clean regime to the adversarial one. Since PDs
from classical tasks such as MNIST / LeNet have way too many points to be visually understandable,
we trained a classical NN with one convolutional layer and two dense layers on a toy dataset. The
dataset is a binary classification task on 3x3 images, where each pixel of an input conditionally to its
class is drawn independently from a normal distribution with standard deviation= 0.05, and means
as shown in Figure 9(a). Our simple model outputs a standard accuracy of 0.99. Now, let us explore

14

what PDs from clean vs adversarial inputs look like. We generated adversaries using PGD with
ε = 0.1. In such a small setting, all PDs have very few points. However, even in this simple setting,
we can illustrate that our hypotheses hold.

Figure 9(b) shows that PD from an adversary (created from a class 0 input, predicted as class 1)
outputs a different behavior than the two clean ones: in addition to having larger birth dates, there is a
particular point with a birth date and death date that do not correspond to any other point from either
class 0 or class 1 diagrams. This behavior leads to a high distance between the adversarial diagrams
and the clean diagrams from both classes. Figure 9(c) clearly shows that clean diagrams points lie in
two very specific spots, whereas adversarial diagrams points are more dispersed, meaning that clean
PDs (event from the two different classes) are quite similar, contrary to adversarial PDs.

D Related works

Our work is inspired by the preliminary works of Gebhart and Scharter [15]. However, our methodol-
ogy overcome several limitations of their work and differ in many aspects. We summarize here the
outline of their methods, before discussing the limitations and the differences with our paper.

Gebhart and Schrater methodology. In [15], the authors also use topology tools, and more
specifically persistence diagrams, to detect adversarial examples. Their work do not rely on under-
optimized edge, which is at the core of our work here. The simply compute a persistence diagrams
on a whole induced graph, select some points of the persistence diagram and reconstruct a sub-graph
based on them. Then, they perform an analysis of the said sub-graph (e.g. eigenvalues of the
Laplacian matrix).

Limitations. Two major limitations from [15] are: 1) Uninterpretable results: they detect differences
in the topology of clean vs adversarial induced graphs, but are not able to provide an explanation
stating why such differences are visible. On the contrary, in our work, we first provide an hypothesis
about how adversarial examples operates, and verify this hypothesis thanks to topological tools. Our
work is then aligned with the objective of improving our understanding of adversarial examples.
2) Scalability: computing a persistence diagram depends on the number of edges and neurons in
the graph, which is very large even for quite small NNs like LeNets. As [15] compute persistence
diagrams for each input on the entire NN, the computation complexity is much too high to study
larger networks, and indeed, the experiments focus on 3 or 4- layers CNNs. Their method does not
apply to larger networks. On the contrary, by selecting only under-optimized edges in the induced
graph before computing the persistence diagram, our PD method is scalable.

A third limitation is the complexity of their methods. Reconstructing a sub-graph is not straightfor-
ward, and extracting relevant features directly from graph objects is, again, not straightforward. Many
possibilities can be explored: computing a classical metric for graph (the eigenvalue of the Laplacian
matrix is only one of them), using custom features (the vectorization method used in [15] is only one
of them too), using GNNs, etc. Finding the most relevant metric is challenging, which is not the case
when studying directly the persistence diagram as we do.

Fundamental differences with our work. The main difference of approach between [15] and
our work is that, when studying different inputs (clean or adversarial), we study the same edges for
all. The persistence diagrams corresponding to these inputs are different (because the weights on
these edges are different), but the structural object remains the same. On the contrary, [15] study
input-specific edges. Both approaches are relevant and interesting, however, our approach enables
us to provide more insights on these specific edges and on the behavior of adversarial inputs. This
corresponds to our analysis of under-optimized edges.

E Experiments details

E.1 Architectures used in the experiments

The two LeNets and the two ResNets used are represented in Figure 10.

15

(a) MNIST and Fashion MNIST LeNet architecture

(b) SVHN and CIFAR10 ResNet 18 architecture

Figure 10: Architectures used in the paper.

E.2 More details on time complexity.

Figure 11 illustrates the fact that the time complexity of our PD methods grows linearly with parameter
q. However, one can see that even small values of q yield great detection results, with almost no
compromise on the AUC (green star). Note that Mahalanobis requires the estimation of large precision
matrices (one for each considered layer, of size nb neurons x nb neurons), which makes it substantially
slower than LID.

Figure 11: Detection AUC (up) and time (down) as a function of q (CIFAR10 ResNet vs PGD
ε = 0.05).

16

E.3 Training details.

The usual procedure was used for training, by separating the datasets into training, validation, and test
sets and using an Adam optimizer (for LeNets) and an SGD optimizer (for ResNets). The learning
rate was set to 0.001 for the LeNets, and a one-cycle policy (see [41]) with varying learning rates in
the range [0.008, 0.12] for SVHN and CIFAR10 ResNets. The number of epochs was set to 50 for
MNIST LeNet and 100 for the others.

Note that the ResNet32 model used for CIFAR100 was a pre-trained model without further training,
downloadable here: https://github.com/chenyaofo/pytorch-cifar-models/releases/download/resnet

We ran all our experiments on a computer equipped with 1 GPU (Tesla V100-PCIE-16GB) and 60Gb
of RAM.

Our code is available here: https://github.com/detecting-by-dissecting/
detecting-by-dissecting

E.4 Attacks details.

Recall that PGD attack [24] is defined by: xadv
0 = x and xadv

t+1 =

Clipx,ε
(
xadv
t + εiter sign (∆xL(θ, x, y))

)
. for each t ∈ [[1, T]]. In our experiments, we set

T = 50 and εiter = 2 ∗ ε/50 and different ε values (reported in the results).

The objective of CW [5] is to find δ∗ = argminδ||δ||2 + cf(x+ δ) with f a well-chosen function. In
our experiments, we set the number of binary search steps to find c to 15; the number of iterations to
optimize the objective function to 50 (Adam optimizer).

E.5 Experimental pipeline.

There are 3 steps in the detection pipeline: 1) Pre-processing. We create first a (successful) adversarial
dataset by running an attack on the NN and clean inputs. For the clean dataset, we keep only examples
that were not involved in the creation of the adversarial dataset. 2) Feature extraction. We apply
our methods (or SOTA) to the clean and adversarial datasets (see Algorithm 1 in Appendix B.4 for
PD). 3) Detector. An SVM is trained with the features of each method, and its outputs enable us to
compute any detection metric (namely the AUC).

Moreover we ran unsupervised and supervised experiments. Supervised ones use adversarial data
during training: by assuming something about the type of attack, they are uninformative about
the generalization ability of the method (they give a false sense of security). The unsupervised
experiments are using a one-class SVM trained only on clean data: it is a better setting to evaluate
detection methods. We only show unsupervised results in the main paper (see Appendix G.1 for the
rest, where our method still outperforms SOTA methods). Note then that SOTA results are not as
high in this setting compared to the results reported in other papers.

E.6 Computing the AUC.

As a reminder, when computing the AUC, the attack method (and the attack strength) and the detection
parameters (like the parameter q for PD and RG) are given. To compute this score, the SVM needs to
have a kernel as input. For the PD method, the kernel used was the Sliced-Wasserstein kernel. For
the three other methods (RG, LID and Mahalanobis), the kernel used was just the classical Radial
Basis Function (RBF) kernel, defined as:

KΦ(x, x
′) = exp

(
− 1

2σ2
∥Φ(x)− Φ(x′)∥2

)
, (2)

where Φ denotes the features for each method, e.g. ΦRG(x) := ΦRG(x, g) = Vect(W q(x, g)), where
W q(x, g) is the matrix of weights of the under-optimized induced graph Gq(x, g).

SVM outputs scores for each input: if it is above a discrimination threshold, the input is flagged as
clean (otherwise, flagged as adversarial). The ROC curve is a plot representing the TPR as a function
of the FPR when the discrimination threshold varies. The AUC is the integral of the ROC function (so

17

https://github.com/detecting-by-dissecting/detecting-by-dissecting
https://github.com/detecting-by-dissecting/detecting-by-dissecting

that the discrimination threshold is integrated out), and represents how well the detector can separate
the two classes (the higher the AUC, the better).

Confidence Intervals As mentioned in ??, the main source of variability of a run comes directly
from the variability of the dataset. For a fixed detector, we denote by F the distribution of the images.
We want [p, q] that satisfies (80%-confidence interval)

PF {AUC < q} = 0.1 and PF {AUC > p} = 0.1

To estimate [p, q], we use resampling and estimate the AUC on 100 bootstraps of size n//2 (where n
is the total number of samples). It can be shown (see for instance [21]) that a good approximation of
[p, q] is given by

[2 ˆAUC − c90, 2 ˆAUC − c10] ,

where ˆAUC is the AUC estimated on the n samples, c10 (resp. c90) is the 10-th percentile (resp.
90-th percentile) of the 100 bootstrapped AUCs.

F Hyperparameters for methods used in the paper

We cross-validated the parameter values for all parameters presented below, and kept only the best
ones that were used afterward in our experiments.

F.1 Selection parameter for PD and RG methods.

Recall that the parameter used for our PD and RG methods is denoted by q: it is the proportion
of edges kept for the construction of the induced graph. We use the same value q for selected
layers (uniform selection), thus we have to identify the layers kept in the analysis, and then find the
paramater to use for all these layers. Note that the parameter was optimized on the PD method, and
kept the same for the RG method.

Models Max percentile q List of layers
MNIST LeNet 0.025 All layers

Fashion MNIST Lenet 0.05 All layers
SVHN ResNet 0.275 Last conv. and linear layers

CIFAR10 ResNet 0.3 Last conv. and linear layers

Figure 12: Selection parameter used for PD and RG methods in the experiments

F.2 Hyperparameters for the LID method.

LID has two parameters that we cross-validated.

Models Nearest Neigh. % Batch size
MNIST LeNet 0.08 250

Fashion MNIST Lenet 0.02 250
SVHN ResNet 0.05 150

CIFAR10 ResNet 0.1 50

Figure 13: LID parameters used in the experiments

F.3 Hyperparameters for Mahalanobis method.

Mahalanobis has two parameters: the first one, ϵpreprocessing, controls the size of the noise added to the
input, in order to make in- and out-of-distribution samples more separable. We set this parameter to
0.0. The second one is the layer selected for the analysis. When it was available (for the two setups

18

Models Selected leyers
MNIST LeNet Last two linear layers

Fashion MNIST Lenet Last two linear layers
SVHN ResNet Last layer of each four ResNet block

CIFAR10 ResNet Last layer of each four ResNet block

Figure 14: Mahalanobis parameters used in the experiments

using ResNet), we used the same layers as the one used by the authors of Mahalanobis in [26]. For
the experiments using LeNet, we kept the last two linear layers.

In addition, note a substantial difference between our experiments and theirs when evaluating against
PGD attack: the ε parameter in [26]’s implementation corresponds in fact to εiter in our paper: thus,
at the end, when they run a PDG attack with strength ε, the resulting perturbation is much higher, of
size ε/× number of iteration for PGD. This leads to better detection results since they evaluate on
much stronger attacks.

G Additional detection results

G.1 Supervised Results

As mentioned before, supervised results can give a false sense of security because, in practice, one
cannot anticipate which algorithm will be used to craft an adversarial example (see Figure 15): for
LID and Mahalanobis, the supervised AUCs are noticeably better than the unsupervised ones, with
confidence intervals for these almost not overlapping; on the contrary, PD is more stable between
these settings (the difference is around six times smaller). We report results from this unsupervised
setting. To compare with literature (where most of the results are reported under the supervised
setting) we also provide supervised results in the Appendix. Keep in mind that great results on
supervised experiments are easier to achieve than on unsupervised experiments because, obviously,
the task is harder.

Sup. Unsup. Diff
PD 0.884 [0.858, 0.910] 0.873 [0.851,0.902] 0.011
LID 0.835 [0.799, 0.870] 0.776 [0.744, 0.817] 0.059

Maha 0.772 [0.737, 0.811] 0.712 [0.664, 0.748] 0.06

Figure 15: Supervised vs unsupervised detection of adversarial examples. Showing AUC for ResNet
/ SVHN subject to PGD attacks with ε = 0.01. Smaller diff. is better.

However, results using the supervised setting are quite similar to those obtained under the unsuper-
vised setting (the AUC are overall higher, because the task is simpler): the hierarchy between the
detection methods is identical, with Persistence Diagram providing the best results, followed by LID
and Mahalanobis. Note that, as mentioned in the main paper, some AUC results are significantly
higher in the supervised setting (Raw Graph, Mahalanobis, etc.), illustrating the false sense of security
we can get by studying only supervised results.

G.2 Unsupervised results on transferred attacks

We also ran experiments using transferred attacks on MNIST and Fashion MNIST LeNets, reported in
Figure 17. Transferred attacks were generated on control models (using the same LeNet architecture),
and successful adversaries on these control models were saved. Then, these attacks were submitted
to our original target models, and detection methods were launched to flag these adversaries. The
results reported here correspond to a black-box setting.

The results are quite similar to those observed for the white-box setting, with our PD method still better
than LID and Mahalanobis. As mentioned in ??, the three main methods (PD, LID, Mahalanobis)
seem to generalize well in this black-box setting.

19

(a) LeNet / MNIST (b) LeNet / Fashion
MNIST

(c) ResNet / SVHN (d) ResNet / CIFAR10

Figure 16: Supervised results - Showing detection AUC for different detection methods (legend)
against different kinds of adversarial attacks (rows) and model architectures and datasets (columns)

(a) LeNet / MNIST (b) LeNet / Fashion MNIST

Figure 17: Transferred attacks results - Detection AUC for different detection methods (legend)
against different kinds of adversarial attacks (rows) and model architectures and datasets (columns).

20

Figure 18: Results for ResNet32 / CIFAR100 (unsupervised).

G.3 Unsupervised results on CIFAR100

To experiment with a higher number of classes, we consider the CIFAR100 dataset. This dataset is
similar to CIFAR10, except it has 100 classes containing 600 images each. We consider a ResNet32
pretrained on this dataset (from https://github.com/chenyaofo/pytorch-cifar-models/).
We provide in Figure 18 the detection results. Note that for this experiment, we don’t have access to the
initial weights of the model and therefore, we cannot identify the under-optimized edges as presented
in Section 3. We replace in Equation (1) the Magnitude Increase criteria |(Wl)u,v| − |(W init

l)u,v| by
the simpler Large Final criteria |(Wl)u,v| also studied in [13, 58].

This task being significantly harder than the ones studied before (100 vs 10 classes), adversaries were
expected not only to be harder to detect but also to behave differently according to the adversarial
attack used: we thus decided to adapt our parameters to each attack. Our PD method clearly outputs
better detection results in the case of PGD attack. However, for CW and Boundary attacks, LID has
not significantly better results, even though on these two more subtle attack algorithms, both PD and
LID are almost not able to differentiate clean vs adversarial inputs.

Overall, these experiments confirm what was already stated for the other experiments in the main
paper: our PD method still gives better results than LID, or comparable ones.

G.4 Using number of points in the Persistence Diagram

We showed in Section 4 that using the number of points in PDs can be an efficient strategy to
differentiate clean vs adversarial inputs. To emphasize these results, we created two very simple
detectors based on the number of points in persistence diagrams (one for all points, one for infinitely-
lived points) using an SVM with an RBF kernel. The results are shown in Figure 19. It illustrates
the fact that indeed, the number of points in diagrams provides relevant information, even enough
to match our PD method in the two simplest settings. When the task is more difficult, however
(in CIFAR10 / ResNet setting), it is not enough to yield as good results as when using directly all
information from persistence diagrams, like in our PD method.

21

https://github.com/chenyaofo/pytorch-cifar-models/

(a) LeNet / MNIST (b) LeNet / Fashion
MNIST

(c) ResNet / CIFAR10

Figure 19: Unsupervised detection results using number of points only.

(a) MNIST / LeNet (b) Fashion MNIST / LeNet

Figure 20: Adversarial accuracy (against PGD) of AT vs standard NNs.

H PD generalizes better than SOTA - Adversarial training experiments.

We illustrated in the main paper the fact that by being a structural method, PD can generalize to all
sorts of adversaries. Successful adversaries on adversarially trained (AT) NNs are unusual adversaries
by nature, because they can fool a robust model trained to resist the usual adversaries. As such,
running our detection methods on AT NNs is a good way to check the generalization ability of said
methods: if there is no drop in performance compared to the classical setting, then the method is

(a) LeNet / MNIST (b) LeNet / Fashion MNIST

Figure 21: Unsupervised detection results (on PGD) of AT vs standard NNs

22

highly generalizable; if there is one, maybe the method was built on too strong assumptions about
adversaries that are not satisfied by all of them.

Figure 20 shows the standard and adversarial accuracy against PGD of the AT NNs compared to the
standard ones. Figure 21 shows the detection results’ discrepancies between standard and AT NNs
using PGD attacks, for all methods. Our PD method outputs almost no performance gap, contrary to
LID and Mahalanobis, meaning that our method is more general, and that all types of adversaries do
leverage under-optimized edges.

I Under-optimized edges provide more information than others

We provide here an experimental illustration of the impact of edge-selection by comparing the use of
under-optimized edges to detect adversarial inputs with our PD method, instead of "well-optimized"
edges. The results shown in Figure 22 indicate that the detection AUC is better when using under-
optimized edges vs well-optimized ones, which also supports our hypothesis stating that these edges
contain more information about adversaries.

Figure 22: Impact of edge-selection methods on AUC (ResNet / CIFAR10).

J Pruning and robustness: and further details

J.1 A theoretical argument: pruning can improve robustness

In ??, we have shown that structural information flow in under-optimized edges are different for
clean vs adversarial inputs: these edges represent a vulnerability for NNs. A natural robustification
idea would stems from pruning, i.e. exactly removing these under-optimized edges during training.
We present a theoretical argument showing how having less active paths, e.g. by pruning, can
help robustness. For an input example x ∈ X , let P(x) be the set of all weighted paths in the
activation graph G(x, g) of x as defined in Section 3. Each α ∈ P(x) can be identified with a

schema u0(α)
w1(α)−→ u1(α)

w2(α)−→ . . .
wL−1(α)−→ uL(α), where ul(α) ∈ [[1, nl]] is the index of the

neuron through which the path traverses the lth layer of the network, and wl(α) is the weight of
edge weight connecting the former neuron to the next neuron on the path. The subset A(x) of
paths which are active for the input example x is given by A(x) := {α ∈ P(x) | wl(α) ̸= 0 ∀l ∈
[[1, L]]}. Information from input to output only flows along such paths. Finally, let W (α) :=
ΠL

l=1(Wl)ul−1(α),ul(α) be the product of all the parameters of the NN along the path α. We have the
following result (the proof is in Appendix J).

Proposition 1. For every class label k ∈ [[1,K]] and input feature index j ∈ [[1, n0]], we have:
∂[g(x)]k

∂xj
=

∑
α W (α), where the sum runs over all active paths α ∈ A(x) such that u0(α) = j and

uL(α) = k, i.e., active paths which start at the jth input neuron and end at the kth output neuron.

Note that the (Frobenius) norm of the jacobian matrix J(x) = (∂g(x)k∂xj
)j,k is a proxy for the

robustness to perturbations on input x, as it is related to the distance to the closest adversarial
example for x (see [20] and Appendix J). Thus, decreasing this sum improves robustness: we could
1) decrease/remove large W (α) (but it would likely hinder the standard accuracy) or 2) reduce the
cardinality of A(x), i.e., have very few active paths: this can be achieved by pruning a NN and
suggests that under-optimized edges may be a problem for robustness because of their quantity.

Figure 23: Adversarial accuracy of pruned
MNIST LeNet models against PGD.

Illustration. Some works have focused on the
link between adversarial robustness and spar-
sity [18, 49, 50] but the conclusion remains un-

23

clear. We pruned an MNIST LeNet model (fol-
lowing [13]’s protocol and our definition of under-
optimized edges and ran PGD attacks to measure
each model’s adversarial accuracy. Figure 23 shows
that some degree of under-optimized edges prun-
ing might be helpful for adversarial robustness (e.g.
67% seems to be desirable).

J.2 Proof of Proposition 1

Let us first recall the Proposition 1:
Proposition 1. For every class label k ∈ [[1,K]] and input feature index j ∈ [[1, n0]], we have:
∂[g(x)]k

∂xj
=

∑
α W (α), where the sum runs over all active paths α ∈ A(x) such that u0(α) = j and

uL(α) = k, i.e., active paths which start at the jth input neuron and end at the kth output neuron.

Note that it holds for the ReLU activation.

Proof. Let zl := gl(x) ∈ Rnl be the output of the lth layer of the neural network. Note that
zl = σl(Wlzl−1). By the chain rule, we have

∂[g(x)]k
∂xj

=

nL−1∑
k′=1

∂[zL]k
∂[zL−1]k′

· ∂[zL−1]k′

∂xj
. (3)

On the other hand, for ReLU activation we have (still via the chain rule)

∂[zL]k
∂[zL−1]k′

= [Wl]k,k′σ′(Wlzl−1) = [Wl]k,k′

{
1, if [Wl]

⊤
k zk′ > 0,

0, else.

Thus the claim follows directly from (3) by recurring on the depth L.

J.3 About the Jacobian matrix and its relation with robustness.

In [42], authors have shown that the Frobenius norm of the Jacobian matrix is related to the general-
ization error: regularizing it induces smaller generalization errors. Following this work, [20] have
linked the Jacobian matrix to adversarial robustness. For an input x, the Froebenius norm of the
Jacobian matrix at point x is related to the distance to its closest adversarial example (more precisely,
their proposition 3 shows it is an upper bound for the L2-norm of distance to the closest adversary of
x): minimizing this norm thus leads to improved robustness.

24

	Introduction
	Our hypothesis
	Extracting Structural Topological Features: Methods
	Clean and Adversarial Examples induce Different Persistence Diagrams
	Conclusion
	Characteristics of Adversaries: Motivation Details on Under-Optimized Edges
	Induced Graphs and Persistence Diagram: Details
	Induced Graphs
	Persistence Diagrams: More Intuition
	Persistence Diagrams: Implementation Details
	Algorithm

	What do PDs spot?
	General illustration
	Adversarial robustness illustration

	Related works
	Experiments details
	Architectures used in the experiments
	More details on time complexity.
	Training details.
	Attacks details.
	Experimental pipeline.
	Computing the AUC.

	Hyperparameters for methods used in the paper
	Selection parameter for PD and RG methods.
	Hyperparameters for the LID method.
	Hyperparameters for Mahalanobis method.

	Additional detection results
	Supervised Results
	Unsupervised results on transferred attacks
	Unsupervised results on CIFAR100
	Using number of points in the Persistence Diagram

	PD generalizes better than SOTA - Adversarial training experiments.
	Under-optimized edges provide more information than others
	Pruning and robustness: and further details
	A theoretical argument: pruning can improve robustness
	Proof of sec:lemma
	About the Jacobian matrix and its relation with robustness.

