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Abstract

We present one of the preliminary NLP works
under the challenging setup of Learning from
Label Proportions (LLP), where the data is pro-
vided in an aggregate form called bags and
only the proportion of samples in each class as
the ground truth. This setup is inline with the
desired characteristics of training models un-
der Privacy settings and Weakly supervision.
By characterizing some irregularities of the
most widely used baseline technique DLLP,
we propose a novel formulation that is also ro-
bust. This is accompanied with a learnability
result that provides a generalization bound un-
der LLP. Combining this formulation with a
self-supervised objective, our method achieves
better results as compared to the baselines in
almost 87% of the experimental configurations
which include large scale models for both long
and short range texts across multiple metrics
(Code Link).

1 Introduction

The supervised classification setting in machine
learning usually requires access to data samples
with ground truth labels and our goal is to then
learn a classifier that infers the label for new data
points. However, in many scenarios obtaining such
a dataset with labels for each individual sample can
be infeasible and thus calls attention to alternative
training paradigms. In this work, we study the
setup where we are provided with bags of data
points and the proportion of samples belonging to
each class (instead of the one-one correspondence
between a sample and its label). The inference
however, still needs to be performed at the instance
level in order to extract meaningful predictions
from the model. This setup, which following (Yu
et al., 2013) we refer to as Learning from Label
Proportions (LLP), is attractive especially for at
least two broad reasons (Nandy et al., 2022).

The first of these is Privacy centric learning
(O’Brien et al., 2022). With ever increasing de-

mand of user privacy in almost all applications of
digital mediums, the individual record (here the
label) for each sample (say a user’s document)
can’t be exposed and thus learning in a fully super-
vised manner deems infeasible. The most notable
applications include medical data (Yadav et al.,
2016) and e-commerce data (O’Brien et al., 2022),
amongst various others. Both of these contain abun-
dant language data with multiple use cases of learn-
ing a classification model to perform disease pre-
diction from patient’s medical data and analyzing
user’s behavior for example, respectively. This
makes LLP a highly relevant learning paradigm
to train models, both large and small, for data that
needs k-anonymity. The second relevant property is
Weak Supervision. Since it is not always feasible
to obtain clean data at a large scale, the training
of the NLP models, both large and small, relies
heavily on weakly supervised or self-supervised
learning scrapped from the open web. LLP can
play a key role as obtaining data at an aggregated
level (formal definition in Section 2) can be a rela-
tively easier and more feasible process.

While there exist various prior works that have
proposed new formulations to learn under this set-
ting (Musicant et al., 2007; Kuck and de Freitas,
2012; Tsai and Lin, 2019), many of them are ei-
ther not readily applicable to learning deep models
or very difficult to align with language data. Fur-
thermore, to our knowledge, there exists only one
prior work of (Ardehaly and Culotta, 2016) that
discusses LLP for language data but is out of scope
of this work as they focus on domain adaptation.
We provide an elaborate discussion of the LLP lit-
erature in Section 5.

In this work, we address some shortcomings
of one of the first loss formulations proposed for
learning deep neural networks under LLP setup
by (Ardehaly and Culotta, 2017), termed as DLLP
method. For a given bag, DLLP optimizes the KL
divergence between the ground truth bag level pro-
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portion and the aggregate of the predictions for the
instances in the entire bag. In Section 3, we high-
light certain properties of DLLP objective that can
be highly undesirable for training deep networks.
Motivated by this, we propose a novel objective
function that is a parametrization of the Total Varia-
tion Distance (TVD), which itself is a lower bound
to the KL via the Pinsker’s inequality. Our formu-
lation enjoys more functional flexibility because
of the introduced parameter while retaining the
outlier robustness property of the TVD. We also
discuss some theoretical results for the proposed
novel formulation. Lastly, we combine our formu-
lation with an auxiliary self-supervised objective
that greatly aids in representation learning during
the fine-tuning stage of the large scale NLP models
experimented with.

Experimentally, we first demonstrate that the
proposed formulation is indeed better and align
with the theoretical motivation provided. In the
main results, we demonstrate that our formulation
achieves better results compared to the baselines
in almost 87% of the 20 extensive configurations
across 4 widely used models and 5 datasets. We
observe up to 40% improvement in weighted pre-
cision metric on the BERT model. In many cases,
the improvements range between 2% to 9% which
are highly substantial. Further analysis including
the bag sizes and hyperparameters also provide
interesting insights into our formulation.

To summarize, we have the following contribu-
tions: (i) A novel loss formulation that addresses
the shortcomings of the previous work with sup-
porting theoretical and empirical results. (ii) One
of the preliminary works discussing the applica-
tion of LLP to natural language tasks. (iii) Strong
empirical results demonstrating that our method
outperforms the baselines in most of the configura-
tions.

2 Preliminaries

We consider the standard multi-class classification
setup with C classes (C = [C] = {1, ..., C}). The
input instances x are sampled from an unknown
distribution over the feature space X . Contrary
to the availability of the data samples of the form
(x,y), where y ∈ C, to train the model in full
supervision, we are provided a bag of input in-
stances, B = {xi|i ∈ [|B|]} (|B| is the cardi-
nality), with associated proportions of the labels
ρ = (ρ1, ρ2, ..., ρC). The elements of ρ are defined

as:

ρj =
|{xi|xi ∈ B,yi = j}|

|B|
(1)

It is important to note that the ground truth labels
yi are not accessible and the entire information
is contained in ρ. This ρ essentially provides the
weak supervision for training the model.
Given the training bags along with the label pro-
portions as the tuple (Bi, ρi) , the objective is still
to learn an instance level predictor that maps an
instance x to the class distribution ∆ = {z ∈
RC
+|
∑C

l=1 z
l = 1}. The predicted class is attained

as: argmaxc∈C ∆. We denote the classifier by
fθ : X → ∆ with learnable parameters θ ∈ Θ,
which typically is a neural network such as BERT
with appropriate classification head.

3 Method

Since the supervision under the LLP setup
is coarse grained, given by ρ, the works in
the literature (Ardehaly and Culotta, 2017),
(Dulac-Arnold et al., 2019) utilize training criteria
based on the true proportions ρi and predicted
proportions ρ̃i for the input bag Bi. The predicted
proportions ρ̃i are typically some function of
predicted class distributions fθ(xj) for xj ∈ Bi as
ρ̃i = g(fθ(x1), ..., fθ(x|Bi|)). The popular choice
for g is the mean function and we retain the same
in this work. A descriptive pipeline of the LLP
setup is provided in Figure 1.

3.1 Motivation

The work of (Ardehaly and Culotta, 2017) pro-
posed one of the first loss formulations to learn
deep neural networks under the LLP setup. Their
loss objective over the proportions ρi and ρ̃i is
given by:

LDLLP =

C∑
c=1

ρci log
ρci
ρ̃ci

.

Definition 1 (Lipschitz Continuity). A function
h is called Lipschitz continuous if there exists a
positive constant K such that ||h(x) − h(y)|| ≤
K||x− y||, ∀x, y ∈ dom(h) .

We note some irregularities of LDLLP which can
lead to sub-optimal parameter values post training:
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Figure 1: Demonstration of the Training (left) and Test (right) phase for LLP setup respectively. During training,
a bag of instances is received and the output probabilities (a 4 class example setup, outputs colored based on the
argmax values) generated by the model are aggregated (computation of ρ̃). The proportion loss against the true
proportion ρ is then computed. In the test phase, the predictions are required to be performed at the instance level.

1. It is not upper bounded: Since the denomi-
nator of the log is the quantity ρ̃ci , which can
be arbitrarily close to 0, the loss can go un-
bounded on the positive real axis.

2. It is not robust: follows from the previous
point as small changes in ρc and ρ̃ci can lead
to huge variations in the output.

3. It is not symmetric: due to the asymmetric
nature of the definition of the objective.

4. It is not Lipschitz continuous in either of the
arguments: follows from the first point.

5. It is not Lipschitz smooth (associating to gra-
dients) in either of the arguments: stating
that the gradients of the loss are not Lipschitz
continuous. This can be associated with the
largest eigenvalue of the Hessian, which exists
for most losses in NN training and is critical
to the training dynamics (Gilmer et al., 2022),
thus dictating the optima, if achieved.

The aforementioned irregularities are undesir-
able especially for deep neural network optimiza-
tion. This motivates us to propose a new loss func-
tion that partly remedies the potential failure modes
of LDLLP . To begin, we state the following result:

Lemma 1. [Pinsker’s Inequality] For the probabil-
ity mass functions ρ and ρ̃,

LDLLP = DKL(ρ||ρ̃) ≥
1

2

(∑
c∈C

|ρc − ρ̃c|

)2

= 2×DTV (ρ||ρ̃)2 (2)

where, DKL is the KL Divergence and DTV is the
Total Variation Distance, ρc as defined previously.
ρc is used as a shorthand notation over the domain
here.

3.2 Proposed Formulation
DTV has been utilized as a loss function in mul-
tiple works in the deep learning literature (Zhang
et al., 2021; Knoblauch and Vomfell, 2020). While
it admits a lower bound to the LDLLP term, more
importantly it is robust (Knoblauch and Vomfell,
2020). To further obtain higher functional flexi-
bility while retaining this robustness property, we
propose the following loss formulation, termed as
Lα
TV ⋆ with hyperparameter α:

Lα
TV ⋆ =

1

2

(∑
c∈C

|ρc − ρ̃c|α
)2/α

(3)

We discuss and prove various properties of Lα
TV ⋆

in Appendix A.2 and note that it does not admit
any of the aforementioned irregularities stated
in Section 3.1 for a broad range of values for
α thus providing a better alternative. Further,
we also empirically demonstrate the superiority
of optimizing the model with the Lα

TV ⋆ against
LDLLP in Section 4.

3.3 Learnability under Lα
TV ⋆

We provide the following learnability result for a
class of binary classifiers under the proposed formu-
lation Lα

TV ⋆. The extension to multi-class setting
is feasible via the use of Natarajan dimension and
corresponding tools, however it is slightly more
sophisticated and thus we leave it for future work.



Definition 2 (VC Dimension). The maximum car-
dinality of a set S = (x1, ...xm) ∈ Xm of points
that can be shattered by the hypothesis class H
under consideration.

Theorem 2. Consider a hypothesis class H con-
taining functions f : X → {0, 1} and a target
function f0 ∈ H . Assume a sample S with m
instances sampled i.i.d from X . We represent
the VC dimension of the class H by V . Fur-
ther, denoting ρf = Ex∼µ1[f(x)=1] where µ rep-
resents the probability measure over X and also
ρ̃f = 1

m

∑
x∈S 1[f(x)=1]. Then with probability at

least 1− δ, ∀f ∈ H and ∀α > 0, we have

Lα
TV ⋆(ρf , ρf0) ≤ Lα

TV ⋆(ρ̃f , ρ̃f0)+

κ

(√
8Vlog(em/V)

m
+

√
2log(4/δ)

m

)
(4)

where κ = 22/α−1.

The proof of the theorem is delegated to the
Appendix. This result characterizes that for any
function f in the hypothesis class, the loss Lα

TV ⋆

between the population output aggregates obtained
from f and the target function can be bounded via
the corresponding sample output aggregates. We
use the term aggregates to denote the mean over
the indicator values 1[f(x)=1]. (Fish and Reyzin,
2017) provided one of the early results under the
framework of Learnable from Label Proportions,
where they provided an in-depth analysis for the
specific case which corresponds to α = 1 in our
formulation.

3.4 Auxiliary Loss

While the theorem above provides guarantees for
the performance over aggregated output, in order
to further improve the quantitative performance of
the model, we follow the success of various works
in the deep learning literature that utilize auxiliary
losses along with the primary training objective for
improved generalization of the model (Trinh et al.,
2018; Zhu et al., 2022; Rei and Yannakoudakis,
2017). This is directly tied to better representation
learning for the model.
The category of Self Supervised Contrastive (SSC)
losses has emerged as one of the most promising
representation learning paradigms in recent years
(Fang and Xie, 2022; Meng et al., 2022) and thus
a popular choice for auxiliary losses as well. The
recent work of (Nandy et al., 2022) proposed an
SSC loss based on the embeddings of the instances

from the penultimate layer of the model. The high-
light of their proposed approach is that it does not
require explicit data augmentation or random sam-
pling to construct negative pairs. This directly im-
proves the runtime of the algorithm by a factor of 2,
assuming linearity, as compared to many other pop-
ular choices of SSC losses (we refer the reader to
the survey of (Jaiswal et al., 2020)). We therefore
utilize their SSC objective to improve the overall
performance of our formulation. Rewriting the
model as fθ = f1(f2(x)), where f1 and f2 are
the parametrized sub-networks performing classi-
fication (only the final layer, ie, the classification
head) and the representation learning respectively,
the loss is given as

LSSC =
1

|Bi|
∑

xj∈Bi

−log
es(f

2(xj),f
2(xj))∑

xk∈Bi
es(f

2(xj),f2(xk))

(5)

here s is a similarity function between the
embeddings, given by cosine, s(a, b) = aT b

||a||2||b||2 .

Thus the overall training objective for our
method is the following objective:

L = Lα
TV ⋆ + λLSSC (6)

where λ is the hyperparameter to control the auxil-
iary loss. The other hyperparameter in this objec-
tive is α under Lα

TV ⋆

4 Experiments

To investigate the effectiveness of the novel
loss formulation in Eq. 6, we conduct extensive
experiments across various models and datasets.
These cover both short and long range texts as well
as corresponding models developed to handle these
texts. We begin by providing a brief overview of
the setup.

4.1 Setup
Models: We consider the following 4 models: (i)
BERT proposed by (Devlin et al., 2019) where we
use a fully connected layer on the [CLS] token
for classification. The documents are truncated
at length of 256. (ii) RoBERTa proposed by (Liu
et al., 2019b) where we use the similar setting as
BERT to perform classification. (iii) Longformer
proposed by (Beltagy et al., 2020) is explicitly de-
signed to handle long range documents via an atten-
tion mechanism linear in the sequence length. The



input documents are truncated at the length of 2048.
(iv) DistilBert proposed by (Sanh et al., 2019) is a
distilled version of the primary BERT model with
only around 40% of the parameters but retaining
up to 95% performance. We truncate the sequences
at the length of 512. All models are loaded using
the Huggingface Transformers library (Wolf et al.,
2019).

Datasets: We experiment on the following
datasets: (i) Hyperpartisan News Detection (Kiesel
et al., 2019), is a news dataset where the task is to
classify an article having an extreme left or right
wing standpoint. (ii) IMDB (Maas et al., 2011), is
a movie review dataset for binary sentiment clas-
sification. (iii) Medical Questions Pairs (Medi-
cal QP) (McCreery et al., 2020), contains pairs
of questions where the task is to identify if the
pair is similar or distinct. Following the common
practice, we concatenate the questions in a given
pair before tokenizing. (iv) Rotten Tomatoes (Pang
and Lee, 2005), is a movie reviews dataset where
each review is classified as positive or negative.
Along with these, we also include a multi-class
(non-binary) dataset Financial Phrasebank (Malo
et al., 2014) with 3 classes to assess the formula-
tions under a more difficult setting. It is a sentiment
dataset of sentences written by various financial
journalists from financial news. The statistics of
the datasets are provided in Table 5.

Training: We fine tune the pretrained versions
of the 4 models under the LLP setup over the bags.
The input to the models follows the structure of
(input, label), where "input" is a bag Bi and "label"
is the ground truth proportion ρi. To construct the
bags Bi during training, we gather the instances in
groups based on the size mentioned in Tables 6 and
7, from the list of all training instances. To obtain
the corresponding ground truth label proportions
per bag ρi, we directly average the one-hot vector
representations of the labels for the instances in
the bag. Note that the ground truth labels are not
used at any other phase of the setup except testing
which is performed at the instance level. There, the
use of the ground truth labels is restricted to com-
pare the performance of our formulation against
the baselines. We construct new bags at each epoch
by shuffling the data. This is inline with practical
purposes where an instance can be shared across
different bags across different training epochs, for
example - advertising (CTR prediction) and medi-
cal records. The setup with fixed bags beforehand

is much harder and potentially requires extremely
large sized datasets (Nandy et al., 2022). Adher-
ing to the memory constraints, we utilize one bag
per iteration typically containing 16 - 32 instances
(Tables 6 and 7) which is the standard batch size
range for fine-tuning. Although, there is no strict
constraint for the number of bags per iteration and
more bags can be utilized given sufficient memory.
Most of the fine-tuning details and parts of code
are retained from the recent work of (Park et al.,
2022) which provides an extensive comparison of
large scale models for standard supervised classifi-
cation. Since we don’t assume access to true labels
even for the validation set, common techniques for
parameter selection (based on performance on the
validation set) are difficult to utilize. Following
(Nandy et al., 2022), we thus use an aggregation of
both training and validation losses across the last
few epochs to tune the hyperparameters. Tables 6
and 7 detail the important hyperparameters. All the
experiments were conducted on a single NVIDIA -
A100 GPU.

Baselines: While there are no prior works di-
rectly studying the setup of LLP for natural lan-
guage classification tasks, we consider two existing
approaches that can be readily applied here. The
first is the formulation of (Ardehaly and Culotta,
2017) which we refer as DLLP and the correspond-
ing loss as LDLLP , presented in Section 3. The
second is the work by (Nandy et al., 2022) which
uses the LDLLP loss in conjunction with the con-
trastive auxiliary objective in Eq. 5, which we will
refer as LLPSelfCLR baseline. They also propose
an additional diversity penalty to further diversify
the learned representations. Section 5 provides an
elaborate overview of other works in the literature.

We use the weighted versions of precision, re-
call and F1 score to evaluate the performance of the
models as these metrics quantify the performance
in a holistic and balanced manner. The acronyms
W-P, W-R and W-F1 for these metrics are used
while describing the results. We perform the analy-
sis experiments on diverse configurations in order
to ensure coverage and completeness across the
possible combinations.

4.2 Main Results

Table 1 highlights the main results of our complete
loss formulation in Eq. 6 and comparison against
the baselines on the binary classification datasets.
We also quantify the difficulty of the LLP setup



Base Model Formulation Dataset
Hyperpartisan IMDB Rotten Tomatoes Medical QP

W-P W-R W-F1 W-P W-R W-F1 W-P W-R W-F1 W-P W-R W-F1

Longformer

DLLP 34.17 58.46 43.13 86.06 85.89 85.87 64.66 55.25 46.71 51.45 50.41 40.41
LLPSelfCLR 79.94 75.38 72.99 90.39 90.38 90.38 83.87 83.42 83.37 53.18 53.03 52.55

Ours 79.92 80.00 79.94 92.49 94.48 92.47 85.61 85.07 85.01 53.19 53.03 52.52
Oracle 95.72 95.38 95.33 95.49 95.48 95.48 88.63 88.59 88.58 86.91 86.37 86.32

RoBERTa

DLLP 34.17 58.46 43.13 89.03 89.01 89.01 78.85 69.29 66.39 25.08 50.08 33.42
LLPSelfCLR 54.34 53.84 54.04 90.08 90.08 90.08 77.42 77.23 77.19 50.47 49.18 49.31

Ours 61.06 61.53 56.21 90.14 90.13 90.13 85.41 85.30 85.29 53.70 53.53 53.03
Oracle 69.61 64.61 64.39 93.58 93.58 93.57 88.47 88.45 88.44 83.62 82.92 82.83

BERT

DLLP 55.10 58.46 45.69 84.33 84.33 84.33 75.04 74.13 73.89 56.36 56.32 56.22
LLPSelfCLR 50.71 56.92 46.95 86.85 86.82 86.83 75.04 74.13 73.89 66.08 66.00 65.96

Ours 77.36 63.07 52.73 87.58 87.50 87.49 74.94 73.80 73.49 64.54 64.53 64.52
Oracle 87.70 87.69 87.61 91.59 91.57 91.57 86.00 85.86 85.85 81.44 81.28 81.25

DistilBERT

DLLP 34.17 58.46 43.13 86.89 86.86 86.85 79.63 77.41 76.98 25.08 50.08 33.42
LLPSelfCLR 67.92 67.69 65.60 86.89 86.86 86.85 79.63 77.41 76.98 52.73 52.70 52.63

Ours 70.21 69.23 66.93 87.64 87.62 87.62 79.69 77.46 77.03 55.17 55.17 55.17
Oracle 92.56 92.30 92.22 92.81 92.82 92.81 83.76 83.75 83.75 77.83 76.35 76.04

Table 1: Comparison of our formulation against the baseline methods DLLP and LLPSelfCLR. Oracle denotes the
performance in the supervised setting, the bag size of 1, and is demonstrated solely to quantify the difficulty of the
problem. The best numbers are highlighted in bold and second best underlined. Our formulation achieves better
results in almost 83% of the configurations.

Formulation Longformer RoBERTa
W-P W-R W-F1 W-P W-R W-F1

DLLP 69.97 70.18 65.85 76.97 73.91 72.44
LLPSelfCLR 80.62 78.57 78.30 78.62 75.67 74.18

Ours 81.38 79.50 79.06 80.64 77.43 76.82
Oracle 82.69 80.53 80.43 82.64 80.84 81.18

BERT DistilBERT
W-P W-R W-F1 W-P W-R W-F1

DLLP 63.32 61.90 58.91 74.14 68.42 63.92
LLPSelfCLR 73.92 70.80 70.96 72.43 73.08 71.80

Ours 78.02 75.67 73.88 76.58 75.46 72.75
Oracle 79.67 77.01 76.51 80.90 77.63 78.12

Table 2: Comparison of our formulation against the
baselines on Financial Phrasebank dataset. The nota-
tions follow same meaning as described previously. Our
formulation achieves better results across all the models.

by providing the results in the corresponding fully
supervised setup, with bag size of 1, named as Ora-
cle. Note that Oracle is not a true feasible baseline
here. The same result for DLLP and LLPSelfCLR
in some configurations in the table correspond to
the cases where LLPSelfCLR does not outperform
DLLP baseline and the optimal choice for its hyper-
parameter controlling the contrastive loss is almost
0. Same results for the DLLP baseline across the
models such as RoBERTa, Longformer and Distil-
BERT on Hyperpartisan dataset, demonstrate that
it is not able to optimize and learn properly. Similar
observations are accounted for Medical QP dataset.
We see that our formulation achieves the best re-
sults in almost 83% of the values in the table cu-
mulating across all configurations in the precision,
recall and F1 scores. In the settings where we don’t
outperform the baselines, the relative margins are
extremely small, often in the order of the decimal

precision. On the other hand, in the settings where
we outperform the baselines, the relative gains are
as large as up to 40% (BERT on Hyperpartisan
dataset) and up to 10% (RoBERTa on Rotten Toma-
toes and Hyperpartisan datasets) in weighted preci-
sion. Weighted Recall and F1-score mostly show
similar gains in the corresponding configurations.
In various configurations including DistilBERT and
RoBERTa on Medical QP, Longformer on IMDB
and Rotten Tomatoes), we also observe notable
improvements ranging from 2% to 9% uniformly
across the metrics. These results also align with
the architectural designs and findings of previous
works as Longformer achieves comparatively better
performance especially on long-range datasets: Hy-
perpartisan and IMDB while DistilBERT exhibits
more robust results compared to BERT. It is also
important to note that the margins observed for our
formulation are significant for the relatively small
sized dataset Hyperpartisan which also generalizes
to Medical QP to an extent. To summarize, the
gains exhibited by our formulation are consistent
across all models and datasets including small and
large sized datasets with both long and short texts.
The results for the Financial Phrasebank dataset
are provided in Table 2. Similar to the results in
the binary dataset configurations, we again observe
that our formulation achieves consistently better
results across the 4 models. Although the gains are
not as high as 40% which were observed in some
binary settings, we still note significant improve-
ments of around 23% w.r.t to DLLP and 5.5% w.r.t



Dataset W-P W-R W-F1

Hyperpartisan
DLLP 34.17 58.46 43.13
Lα

TV ⋆ 76.80 61.53 49.72
Overall 79.92 80.00 79.94

Rotten
Tomatoes

DLLP 64.66 55.25 46.71
Lα

TV ⋆ 84.37 84.32 84.31
Overall 85.61 85.07 85.01

Table 3: Comparison of DLLP loss against our proposed
Lα
TV ⋆ in Eq. 3 (note this is without the auxiliary loss of

Eq. 5) for Longformer. Performance of the overall loss ,
Eq. 6, is also provided.

LLPSelfCLR on W-P for BERT model. Generally
speaking, we observe around 2− 3% gains on the
metrics across the models. These relative margins
can be attributed to the fact that the multi-class set-
ting with more than 2 classes is more challenging
in both theory and practice.

4.3 Analysis
4.3.1 Justification of Lα

TV ⋆and LSSC

As stated in Section 3, the DLLP loss admits var-
ious undesirable properties which motivated us
to propose the first part of the loss function in
Eq. 6. Here, we provide an empirical evidence
that Lα

TV ⋆(Eq. 2) indeed generalizes better than
LDLLP under various configurations. Table 3 pro-
vides the results comparing the two formulations on
Longformer model over Hyperpartisan and Rotten
Tomatoes datasets. It is evident that our formula-
tion achieves significantly better results of which
particularly noteworthy are the metric values of
W-P on Hyperpartisan, more than 2x, and W-F1 on
Rotten tomatoes, almost 1.8x. Other values also
highlight similar trends and noteworthy margins.
More experiments are provided in appendix A.1.1.
Correspondingly, we can also observe the practi-
cal benefits of using SSC objective by comparing
the results of Lα

TV ⋆against the overall loss formu-
lation of Eq. 6 in Table 3.We note that for Hy-
perpartisan, the relative improvements brought via
the SSC objective are more notable in the W-F1
score. On the other hand, for Rotten Tomatoes, we
observe only marginal improvements using SSC.
This demonstrates that while Lα

TV ⋆ leads to strong
results, using an auxiliary objective such as an SSC
loss can further improve the performance, notably
or marginally.

4.3.2 Variation of Bag size
The size of the input bags is a direct control factor
for the performance in the LLP setup. We thus con-
duct an experiment to note the performance of our

method against the baselines for varying bag sizes.
Previous works (Liu et al., 2019a; Dulac-Arnold
et al., 2019) have exhaustively demonstrated that
the performance of the models degrade as the bag
size increases. This is due to reduction in the su-
pervision available to train the models. Figure 2(a)
plots the comparison for the different formulations
for RoBERTa on Rotten Tomatoes dataset. These
results align with the findings in the literature ac-
counting for the amount of supervision provided.
It is noteworthy that our method is more stable as
compared to the baselines. For smaller bag sizes
(2 - 8), all the models demonstrate fairly competi-
tive performance. For the size 16 DLLP performs
closer to our formulation however LLPSelfCLR
incurs non-trivial degradation. For larger bag size,
the performance reduces further (significantly for
DLLP) and the gap between our formulation to the
baselines admit large difference. This result is thus
inline with the claims presented for our formulation
in Section 3.

4.3.3 Variation of hyperparameters
To analyze the effect of the hyperparameters on the
performance, we conduct experiments by varying
the values of α and λ, Eq. 6. While varying the
value of one, the other is kept constant. The results
are plotted in Figures 2(b) and 2(c). The analysis
for α is performed over BERT on Medical QP and
for λ over BERT on IMDB to ensure diverse cov-
erage. For both the subfigures corresponding to α
and λ, it is non-trivial to find a direct trend. This
aligns with many works in various machine learn-
ing literatures since the hyperparameters play a key
role in determining the output performance and a
small variation can account for large deviations in
the model performance. In both the configurations,
we first observe the optimal performance point as
we increase the value of the corresponding hyper-
parameter followed by a sharp degradation and
further improvement. However, it is noteworthy
that for almost all the cases, all the 3 metrics pro-
vide highly calibrated results (ie, highly balanced
results) across the y-axis, thus further verifying the
efficacy of our approach.

5 Related Work

We discuss the literature of LLP via the following
taxonomy:
Shallow Learning based: This is the category of
models that doesn’t leverage deep learning models.
The notable works include (Musicant et al., 2007)
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Figure 2: Variation of Bag size (subfigure a): For increasing bag size, we observe substantial difference between our
method and the baseline formulations. Analysis of Hyperparameters α (subfigure b) and λ (subfigure c): We don’t
observe a direct trend however the performance is well calibrated across the metrics.

(using SVM, k-NN), (Kuck and de Freitas, 2012;
Hernández-González et al., 2013) (probabilistic
models), (Scott and Zhang, 2020) (mutual contami-
nation framework) etc. Note that these methods do
not scale for higher dimensional and larger datasets,
thus making these unfit for language tasks.

Deep Learning based: Some of the notable
works include (Ardehaly and Culotta, 2017) and
(Dulac-Arnold et al., 2019) which aim to minimize
a divergence between the true proportions ρ and
the predicted proportions of a given bag ρ̃. (Dulac-
Arnold et al., 2019) also used the concept of pseudo
labeling (Lee, 2013), where an estimate of the indi-
vidual labels within each bag is jointly optimized
with the model during training. (Liu et al., 2021)
revisited pseudo labeling for LLP by proposing a
two-stage scheme that alternately updates the net-
work parameters and the pseudo labels. However,
both these works leveraging pseudo labeling per-
form experiments with computer vision datasets
only. Furthermore, open source codes could not be
found thus making it difficult to compare against
these formulations.

Auxiliary Loss based: Recent trends in learning
with auxiliary losses alongside a primary objec-
tive also gained attention in the LLP community.
(Liu et al., 2019a) proposed LLP-GAN framework
by incorporating generative adversarial networks
(GAN). (Tsai and Lin, 2019) proposed LLP-VAT
that incorporated an additional consistency regu-
larizer to learn consistent representations in the
setting where the input instances are perturbed ad-
versarially. It is noteworthy that both these methods
leverage vision datasets for experiments. The tasks
of generation and adversarial perturbation incur
significant overhead for NLP and in various cases,

this overhead can be larger than the primary objec-
tive task itself. For example, the generation of new
instances via GANs. (Nandy et al., 2022) proposed
a contrastive self-supervised auxiliary loss to im-
prove the representation learning of the underlying
deep network in conjunction with the DLLP loss.
They augment this with an extra penalty term to
further diversify the representations learned.

Lastly, to our knowledge, the only work that
emphasizes the setting of LLP for natural language
classification tasks is the work by (Ardehaly and
Culotta, 2016). However, it is out of the scope of
this work as they aim to improve the performance
of models under the LLP setup when the training
and testing data admit change in the underlying
domain distributions, ie, the Domain adaptation
setting.

6 Conclusion

We study the setup of learning under label propor-
tions for natural language classification tasks. The
LLP setup admits two properties: Privacy centric
learning and Weak Supervision that render it as a
highly practical modern research topic. We first
discuss the shortcomings of one of the first LLP
loss formulations proposed for learning deep neu-
ral networks. These provide the motivation for
our novel loss formulation, termed as Lα

TV ⋆, that
does not admit such irregularities. The formulation
is also supported with theoretical justification and
hardness results. Empirically, we justify that the
new loss function achieves better performance on
diverse configurations. The main results achieved
by combining this loss with a self-supervised con-
trastive formulation achieve significantly better per-
formance as compared to the baselines.



7 Limitations

While the proposed formulation achieves better re-
sults in the majority of the configurations, the gap
between the best results and the corresponding su-
pervised oracle is large in some cases. This can be
configuration dependent and thus harder to inter-
pret. Another limitation which follows from the
black-box nature of the large models is that the
current theoretical understanding of the proposed
formulation are not sufficient especially at the in-
terplay between LTV ⋆ and LSSC in eq 6. More
work in this direction will help unfold not only the
underlying mechanisms but also aid in designing
better loss formulations.
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Dataset W-P W-R W-F1

IMDB
DLLP 86.06 85.89 85.87
Lα

TV ⋆ 88.40 88.36 88.36
Overall 92.49 94.48 92.47

Financial
Phrasebank

DLLP 69.97 70.18 65.85
Lα

TV ⋆ 76.36 74.94 71.48
Overall 81.38 79.50 79.06

Table 4: Comparison of DLLP loss against our proposed
Lα
TV ⋆ in Eq 3 (note this is without the auxiliary loss of

Eq 5) for Longformer. Performance of the overall loss ,
Eq 6, is also provided.

A Appendix

A.1 Additional Experiments

This section contains additional experiments to sup-
port the proposed loss formulation as well as fur-
ther analyse the hyperparameter variation. The di-
verse selection of model and datasets in the follow-
ing experiments provide sufficient coverage across
the configurations.

A.1.1 Analysis of Lα
TV ⋆

Table 4 reports the comparison of DLLP against
Lα
TV ⋆ on more datasets over longformer model. We

note that the findings from table 3 extend to other
configurations as well.

A.1.2 Variation of hyperparameters
The variation of α value has been plotted in figure
3(a) for BERT on Hyperpartisan dataset.
The variation of λ value has been plotted in figure
3(b) for RoBERTa on Financial Phrasebank dataset.

A.2 Properties of Lα
TV ⋆

Here, we discuss the theoretical properties that the
proposed loss formulation Lα

TV ⋆ admits. The fol-
lowing lemmas demonstrate that it does not exhibit
any of the irregularities highlighted in Section 3.1
for a broad range of values of α used in majority
of experiments .

Lemma 3. Lα
TV ⋆ admits an absolute upper bound

for all inputs pairs ρ and ρ̃ for α ≥ 1.

Proof. For α ≥ 1, using that DTV ≤ 1, we have
that Lα

TV ⋆ ≤ 2×D2
TV ≤ 2

Lemma 4. Lα
TV ⋆ is symmetric.

Proof. By definition of Lα
TV ⋆, we have

Lα
TV ⋆(ρ, ρ̃) = Lα

TV ⋆(ρ̃, ρ)

Lemma 5. Lα
TV ⋆ is Lipschitz continuous in both

the arguments for α ≥ 1.

Proof. Given the two arguments as discrete distri-
butions ρ1, ρ2, we prove the result for ρ1 and by
symmetry it follows in both arguments.
We have that Lα

TV ⋆(ρ1, ρ2) is differentiable almost
everywhere in the interior of the simplex. We com-
pute the gradient of Lα

TV ⋆(ρ1, ρ2) w.r.t to ρi1, cor-
responding to the ith element in the support,

∂Lα
T V⋆(ρ1, ρ2)

∂ρi1
=

(∑
i

|ρi1 − ρi2|α
) 2

α
−1

× |ρi1 − ρi2|α−1 × sign(ρi1 − ρi2)
(7)

Here, sign(·) is the sign function.
To show Lipschitz continuity, it is sufficient to show
that the norm of the gradient, ||∇Lα

TV ⋆(ρ1, ρ2)||,
is bounded.
Now,

||∇Lα
TV ⋆(ρ1, ρ2)|| =

(∑
i

|ρi1 − ρi2|α
) 2

α
−1

√∑
i

|ρi1 − ρi2|2α−2 (8)

Given a fixed number of classes, it is trivial that

||∇Lα
TV ⋆(ρ1, ρ2)|| = O(κ(C)) (9)

Here, κ(C) is a constant function of the number of
classes. Thus, Lipschitz continuity holds.

Lemma 6. Lα
TV ⋆ is Lipschitz smooth in both the

arguments for α ≥ 1.

Proof. Following the previous lemma, given the
two arguments as discrete distributions ρ1, ρ2, we
prove the result for ρ1 and by symmetry it follows
in both arguments.
We begin by noting that Lα

TV ⋆ is a convex function
in either of the arguments due to the convexity of
norms.
Furthermore, we also have

c1D
2
TV ≤ Lα

TV ⋆ ≤ c2D
2
TV (10)

for constants c1 and c2. This is obtained using
equivalence of norms.

To show the desired smoothness result, it is suf-
ficient to prove that the function

f(ρ1) =
B

2
ρT1 ρ1 − Lα

TV ⋆(ρ1, ρ2) (11)
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Figure 3: Variation of hyperparameters.

is convex ∀ρ1 and fixed ρ2. B being the smooth-
ness constant.

The key element to the proof is the convexity of
the following

Bc1

2
ρT1 ρ1 − c1D

2
TV (ρ1, ρ2) (12)

Bc1 being the smoothness constant, which depends
upon the fixed constant c1 stated in Eq 10.

Thus, we can upper bound Eq 11 using Eq 12 to
obtain the desired Lipschitz smoothness ∀α ≥ 1 .

A.3 Proof of Theorem 2

Definition 3 (Empirical Rademacher Complexity).
For a sample S = (x1, ...xm) ∈ Xm of points and
a function class A of real valued functions, A :
X → R, the empirical Rademacher Complexity of
A given S is

RS =
1

m
Eσ

[
sup
A∈A

m∑
i=1

σiA(xi)

]
(13)

where σi are independent random variables drawn
from the Rademacher distribution, ie, Pr(σi =
+1) = Pr(σi = −1) = 1

2

Proof of Theorem 2. We begin using the equivalent
bounds in PAC learning by (Shalev-Shwartz and
Ben-David, 2014) and using the proof sketch of
(Fish and Reyzin, 2017).
First, consider the loss function l(f, x) = (f(x)−
f0(x))

2. This is a function with |l(f, x)| ≤ 1, thus
a generalization bound can be derived using the
empirical Rademacher Complexity RS of the class
H , stating that with probability at least 1− δ, ∀f ∈

H , we have:

Ex∼µ[l(f, x)]−
1

m

∑
x∈S

l(f, x) ≤
√

2log(2/δ)

m
+

2ES∼µm [RS({(l(f, x1), ..., l(f, xm))|f ∈ H})]
(14)

Using the Sauer-Shelah lemma we have that

|{(f(x1), ..., f(xm))|f ∈ H}| ≤
(
em

V

)V
(15)

and we also have

|{(l(f, x1), ..., l(f, xm))|f ∈ H}| ≤
(
em

V

)V

(16)

Since |l(f, x) ≤ 1| the Massart’s lemma implies
that for a sample S, we have the following

RS({(l(f, x1), ..., l(f, xm))|f ∈ H}) ≤√
2Vlog(em/V)

m
(17)

Thus combining Eq 14, 15, 16 and 17 above, for the
loss l we have with probability 1− δ/2, ∀f ∈ H

Ex∼µ[l(f, x)]−
1

m

∑
x∈S

l(f, x) ≤

2

√
2Vlog(em/V)

m
+

√
2log(4/δ)

m
(18)

Repeating the argument, we also have with proba-
bility 1− δ/2, ∀f ∈ H

1

m

∑
x∈S

l(f, x)− Ex∼µ[l(f, x)] ≤

2

√
2Vlog(em/V)

m
+

√
2log(4/δ)

m
(19)



Thus using the union bound we obtain with prob-
ability 1− δ, ∀f ∈ H

|Ex∼µ[l(f, x)]−
1

m

∑
x∈S

l(f, x)| ≤

2

√
2Vlog(em/V)

m
+

√
2log(4/δ)

m
(20)

Using Jensen’s inequality and for any α > 0 we
also have the following ,

Ex∼µ[l(f, x)] ≥ (ρf − ρf0)
2

=

[
1

2
× (|ρf − ρf0 |α + |(1− ρf )− (1− ρf0)|α)

]2/α
(21)

= 21−2/αLα
TV ⋆(ρf , ρf0) (22)

Similarly, we also obtain

1

m

∑
x∈S

l(f, x) ≥ (ρ̃f − ρ̃f0)
2

=

[
1

2
× (|ρ̃f − ρ̃f0 |α + |(1− ρ̃f )− (1− ρ̃f0)|α)

]2/α
(23)

= 21−2/αLα
TV ⋆(ρ̃f , ρ̃f0) (24)

Under a mild monotonicity condition, we can com-
bine Eq 20, 22 and 24 to obtain the desired bound
of Eq 4

Lα
TV ⋆(ρf , ρf0) ≤ Lα

TV ⋆(ρ̃f , ρ̃f0)+

κ

(√
8Vlog(em/V)

m
+

√
2log(4/δ)

m

)
(25)

where κ = 22/α−1



Dataset # Train # Val # Test Average
# Words

Hyperpartisan 516 64 65 565
IMDB 22500 2500 25000 231

Rotten Tomatoes 7464 1068 2130 21
Medical QP 2134 305 609 40

Fin. Phrasebank 3394 486 966 23

Table 5: Statistics of the datasets. The first 3 columns represent total number of instances. Bag sizes in training and
validation are provided in Table 6

Model Dataset
Hyperpartisan IMDB Rotten Tomatoes

B E LR λ α B E LR λ α B E LR λ α

Longformer 16 20 5e−5 1.0 1.0 32 10 3e−3 1.0 0.5 32 10 2e−4 1.0 0.33

RoBERTa 16 10 3e−3 1.0 2.5 32 10 3e−3 0.0 1.0 32 10 2e−4 1.0 0.33

BERT 16 20 5e−5 1.0 1.0 32 10 3e−3 1e−4 3.5 32 10 2e−3 1e−3 0.33

DistilBERT 16 10 5e−5 1.0 1.0 32 10 3e−3 0.0 4.0 32 10 2e−4 1e−6 0.33

Table 6: Hyperparameter Details for the different configurations. The notations represent the following: B - size of
bag, E - number of epochs in training, LR - learning rate, λ - regularization parameter in the final formulation Eq 6,
α - parameter in loss Lα

TV ⋆ in Eq 3.

Model Dataset
Medical QP Financial Phrasebank

B E LR λ α B E LR λ α

Longformer 16 10 3e−5 1.0 1.0 16 10 2e−4 1e−2 2.5

RoBERTa 16 10 3e−3 1.0 5.0 16 10 2e−4 1e−2 2.0

BERT 16 10 3e−5 1e−2 0.5 16 10 2e−3 0.1 1.0

DistilBERT 16 10 3e−3 1.0 0.33 16 10 3e−3 1e−2 4.0

Table 7: Hyperparameter Details for Medical Questions Pairs and Financial Phrasebank datasets.


