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Abstract

Oligonucleotide therapeutics offer great potential to address previously undrug-
gable targets and enable personalized medicine. However, their progress is often
hindered by insufficient safety and efficacy profiles. Predictive modeling and ma-
chine learning could significantly accelerate oligonucleotide drug discovery by
identifying suboptimal compounds early on, but their application in this area lags
behind other modalities. A key obstacle to the adoption of machine learning in the
field is the scarcity of readily accessible and standardized datasets for model devel-
opment, as data are often scattered across diverse experiments with inconsistent
molecular representations. To overcome this challenge, we introduce OligoGym, a
curated collection of standardized, machine learning-ready datasets encompassing
various oligonucleotide therapeutic modalities and endpoints. We used OligoGym
to benchmark diverse classical and deep learning methods, establishing perfor-
mance baselines for each dataset across different featurization techniques, model
configurations, and splitting strategies. Our work represents a crucial first step in
creating a more unified framework for oligonucleotide therapeutic dataset genera-
tion and model training.

1 Introduction

Machine learning (ML) has become a cornerstone of drug discovery, with models routinely predicting
the bioactivity and safety of drug candidates in the early stages of the process [1l]. Recent advance-
ments, including foundation and generative models, hold the promise of accelerating therapeutic
development across diverse modalities like small and large molecules. However, oligonucleotide
therapeutics (ONTs) stand as a notable exception, with limited progress in the development of
ML-based predictive models compared to small molecule and protein-based therapeutics [2].

ONTs represent a relatively new class of drugs with various mechanisms of action, including antisense
oligonucleotides (ASOs), RNA interference (siIRNA/miRNA/shRNA), and aptamers [3]. The first
antisense drug, fomivirsen, was approved by the US FDA in 1998 for cytomegalovirus (CMV)
retinitis [4]. By September 2024, 22 ONTs had received approval from the FDA or EMA, comprising
13 ASOs, 7 siRNAs, and 2 aptamers. ASOs and siRNAs are hybridization-based ONTs that function
through base-pair complementarity to target mRNA transcripts. Their on-target hybridization can
modulate gene expression via mechanisms such as steric blockage or RNase H/RISC-mediated
cleavage. Designing these compounds involves selecting appropriate binding sites on the target
transcript, which dictates their nucleobase sequences. Furthermore, chemical modifications to the
ribose, phosphate, and nucleobase monomers can be introduced to enhance potency, safety, stability,
and delivery [4].

*These authors contributed equally; randomized order.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



The complex design landscape of oligonucleotide sequences and chemical modification patterns
results in a multifaceted and laborious optimization process, underscoring the need for specialized,
domain-specific ML models to expedite discovery [5]. While a seminal work in 2005 demonstrated
the use of artificial neural networks to predict the inhibitory activity of unmodified siRNAs [6]], the
subsequent development of ML models for ONTs has been limited compared to the rapid development
of models for small molecules or protein therapeutics. Moreover, most existing models for ONTs
focus on predicting the efficacy of unmodified siRNAs or ASOs [6H9]], with fewer models addressing
the efficacy of chemically modified oligos or toxicity prediction [[L0-H12], despite the latter being a
significant hurdle in ONT development and a major contributor to clinical trial failures [[13}5]. A
primary reason for the scarcity of ML models for ONTs is the lack of standardized datasets and
evaluation frameworks for training and comparing new models. While small molecule property
prediction has benefited from established datasets such as MoleculeNet [[14] and Therapeutics Data
Commons (TDC) [[15], which have become benchmarks for model development, no equivalent
resources exist for oligonucleotide therapeutics.

To address this critical gap, we introduce the first curated, standardized ML datasets for oligonu-
cleotide therapeutics, encompassing a broad spectrum of modalities, therapeutically relevant proper-
ties, and targets. We employ the industry-standard HELM notation for unified molecular representa-
tion and meticulously collect and store all important metadata for each dataset [[16]. Additionally,
we conduct extensive benchmarking of various classical and deep learning-based models, coupled
with diverse featurization and data splitting strategies, to provide a thorough evaluation of different
approaches for training and assessing models for oligonucleotide drugs.

This work directly addresses a significant deficiency in the oligonucleotide therapeutics field by
providing a comprehensive resource for the development and evaluation of machine learning models.
By establishing standardized datasets and rigorous benchmarking protocols, our aim is to accelerate
the discovery and optimization of oligonucleotide drugs, ultimately leading to improved therapeutic
outcomes.

2 Previous and related work

2.1 Benchmarks in small molecule, protein and RNA therapeutics

For small molecule drug discovery, benchmark collections like MoleculeNet [[14]] and Therapeutics
Data Commons (TDC) [[15] aggregate diverse datasets covering various physicochemical properties,
bioactivities, and ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) endpoints,
providing standardized data splits and evaluation metrics. Similarly, in the protein space, benchmarks
such as TAPE (Tasks Assessing Protein Embeddings) [17] and ProteinGym [18] offer curated tasks
and datasets derived from large protein sequence databases (e.g., Pfam, UniProt) and experimental
deep mutational scans to evaluate protein representations and models on tasks relevant to protein
engineering and fitness prediction. In the RNA domain, RNAGym [19] and BEACON [20] collect a
similarly well-curated set of labeled datasets for RNA fitness and structural prediction.

2.2 Existing resources for oligonucleotide drug discovery

Databases like siRNAmod [21]] and siRNAEfficacyDB [22] aggregate experimental data focused on
siRNA inhibitory activity. The AOBase [23] served as a repository for antisense oligonucleotide
(ASO) experimental results, collecting data from literature regarding ASO design and activity, but it
is no longer maintained.

2.3 Limitations and gaps

Therapeutics Data Commons lacks oligonucleotide-related tasks in its otherwise extensive drug
discovery benchmarks for machine learning. Current RNA benchmarks like BEACON and RNAGym
concentrate on natural RNA function and structure, which are not directly relevant for oligonucleotide
therapeutic endpoints. Although oligonucleotide databases like siRNAmod exist, they are limited
to siRNA efficacy prediction, with no resources available for toxicity endpoints. Moreover, these
resources provide datasets without standardized evaluation and benchmarking for machine learning
models.



3 Curated oligonucleotide property datasets

3.1 Overview

OligoGym’s dataset collection is built upon the pre-clinical oligonucleotide drug discovery pipeline,
relying on various efficacy and safety benchmarks to advance molecules from initial screening to
potential clinical trials. We identify on-target efficacy and toxicity profiles as crucial therapeutic
endpoints influencing decisions across these stages [[10} [13]]. On-target efficacy serves as the primary
endpoint during hit identification, while in vitro toxicity profiling, including general cytotoxicity
and immunomodulation, is employed to de-risk candidate molecules and reflect multifaceted safety
hurdles [13]. Rather than concentrating on a single property type, OligoGym offers a diverse dataset
collection designed to benchmark machine learning (ML) models capable of assessing the overall
developability of oligonucleotide therapeutic candidates, specifically focusing on chemically-modified
oligonucleotides due to the lack of models handling these modifications in the literature. OligoGym
aims to provide a training ground and assessment criteria for ML models that can significantly impact
the multi-parameter optimization landscape of the oligonucleotide therapeutics discovery pipeline.

To create this collection, a review of literature and patents was conducted to find publicly accessible
datasets relevant to oligonucleotide therapeutic outcomes, with an initial focus on in vitro assays
where larger datasets are more common. Datasets previously used for predictive model development
were prioritized to ensure their suitability for machine learning and allow for future comparisons
with existing models. The majority of the collected data consists of efficacy endpoints, where the
variable to predict is the percentage reduction or inhibition of the target gene transcript. This bias
towards efficacy data is explained by the greater public availability of single- or dual-dose knockdown
experiments, typically the initial assays in oligonucleotide lead identification. Conversely, toxicity or
safety datasets are less common due to the higher experimental costs, which also results in in vitro
safety evaluations being performed on a select few top compounds after efficacy screening.

We provide datasets for both antisense oligonucleotide (ASO) and short interfering RNA (siRNA)
modalities. Although both are oligonucleotides, these are fundamentally different therapeutic modali-
ties that are not biochemically interchangeable due to their distinct modes of action, structure, and
chemical modifications. ASOs are single-stranded molecules that typically recruit RNase H or cause
steric hindrance. Their design often incorporates a "gapmer" architecture, as exemplified in the
ASOptimizer, Cytotox LNA, and TLR7/8 datasets, featuring chemically modified flank regions (e.g.,
LNA or MOE) to increase stability and binding affinity, flanking a central DNA "gap" to trigger RNase
H-mediated degradation of the target mRNA. In contrast, siRNAs are double-stranded molecules,
composed of a guide and passenger strand, that are processed by the RISC pathway for mRNA
target cleavage. Their modifications, such as the 2’-fluoro and 2’-O-methyl sugars detailed in the
Shmushkovich and siRNAmod datasets, are optimized for RISC loading, stability, and in some cases,
unassisted cellular uptake, which presents a completely different chemical and structural optimization
problem compared to ASO. We also provide a dataset from short hairpin RNA (shRNA), which are
single stranded RNA folded into a stem-loop structure. shRNA differ from siRNAs in the delivery
method and initial processing by DICER enzyme but otherwise utilize the same RISC pathway for
gene silencing as siRNA. OligoGym provides the necessary codebase for the development of tailored
predictive models for each specific modality.

3.2 Curation

Twelve diverse datasets (Tab. [I) encompassing regression tasks for ASO, siRNA, and shRNA efficacy
and toxicity were initially curated. Each dataset underwent individual review to confirm complete
compound structure information, including modifications. Reports detailing compound diversity,
label distribution, and machine learning suitability were generated for each dataset. All compounds
were converted to HELM notation, an industry standard for macromolecules, with any missing
monomer information marked as unknown to minimize making potentially incorrect assumptions.
Comprehensive details on sequence and modification patterns were provided, utilizing the HELM-
CoreLibrary as the reference library for monomer identification and symbols, as recommended by
the Pistoia Alliance [16]. The selected datasets cover a range of therapeutic endpoints, including
efficacy, cytotoxicity, neurotoxicity, and immunomodulation. For siRNA datasets, the presence of
both antisense (guide) and sense (passenger) strands was verified. Labels were either maintained as
originally reported or minimally transformed to improve machine learning model training (detailed



Table 1: Summary of each dataset provided in this study. All datasets are regression tasks.

Dataset Modality ~ # Measurements  # Compounds # Targets Endpoints
OpenASO [25] ASO 3913 3868 86 efficacy
ASOptimizer [9] ASO 32602 20749 18 efficacy
TLR7 [26] ASO 192 192 4 immunomodulation
TLRS [26] ASO 192 192 4 immunomodulation
Cytotox LNA [12] ASO 768 768 1 cytotoxicity
Neurotox LNA [10] ASO 1825 1812 3 neurotoxicity
Neurotox MOE [27H37] ASO 2437 2398 13 neurotoxicity
siRNAmod [38} 121] siRNA 907 823 unavailable efficacy
Sherwood [39] shRNA 291551 239845 17802 efficacy
Ichihara [40] siRNA 419 419 12 efficacy
Huesken [6}140] siRNA 2431 2431 30 efficacy
Shmushkovich [41] siRNA 356 356 unavailable efficacy

in Tab. [AT). Additionally, natural base sequences and SMILES representations [24]] were included
for all compounds to allow for more detailed featurization and modeling of chemically modified
oligonucleotides in the future. We contend that providing SMILES representations for oligonucleotide
benchmarking datasets is crucial to prevent ambiguities in the chemical structure caused by monomer
misannotation. Finally, when available, identifiers of the target mRNAs were included for each
dataset.

3.3 Availability

The datasets are publicly accessible through our GitHub repository, which includes comprehensive
code libraries enabling programmatic interaction and seamless data manipulation. This repository
hosts the datasets in a standardized and user-friendly format, ensuring easy retrieval and utilization.
Each dataset is accompanied by detailed metadata facilitating data understanding. Furthermore,
our provided codebase offers pre-built functionalities for immediate modeling of these datasets,
supporting both traditional machine learning algorithms and deep learning approaches. This allows
users to quickly begin analyzing and extracting insights without the need for extensive preprocessing
or model implementation. The code is available at github.com/Roche/oligogym.

4 Evaluation framework

4.1 Featurization

Oligonucleotide compounds are defined by their nucleobase sequences and the specific patterns of
chemical modifications on the nucleobase, ribose, and phosphate groups. These modifications are
critical determinants of the properties of a compound, influencing its efficacy, safety, and biodistri-
bution. Consequently, incorporating these modifications as features could be essential for building
accurate predictive models of oligonucleotide properties. In this work, we employed two distinct and
modular featurization techniques, allowing for the inclusion or exclusion of chemical modification
features depending on the experimental requirements.

To create features from HELM representations, we developed a simple but powerful string parser that
converts a HELM string into a more human-readable format we call XNA. This intermediate format
is the input to the featurizers we implemented for this work. This string parsing module is also made
available with the code and can be used for a variety of tasks beyond the scope of this study.

4.1.1 K-mers featurizer

In biological sequence analysis, k-mers are contiguous subsequences of length k extracted from a
larger sequence. The composition and frequency of these k-mers provide a means to analyze and
characterize biological sequences. Despite their straightforward nature, k-mers are widely employed
in various analytical and predictive tasks in computational biology and remain a popular feature
engineering technique for machine learning models [42]]. Our k-mer featurizer implementation
enables the selection of specific k values or a range of k values. For a given set of compounds, it
generates a vector representation for each compound based on the k-mer frequencies of its nucleobase
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sequence. To incorporate information about chemical modifications, we have included an option to
count the occurrences of each modified monomer and append these counts to the k-mer frequency
vector. For double-stranded compounds, the counts of k-mers and, if included, modified monomers
are determined by considering both strands and adding them together.

4.1.2 One-hot encoder

One-hot encoding is a fundamental and widely adopted featurization technique for categorical data,
enabling its representation as vectors. Importantly, unlike k-mers, one-hot encoded representations
preserve positional information, and can be used for sequence-based modeling. In bioinformatics,
one-hot encoding is commonly applied to biological sequences like DNA or RNA, transforming a
nucleotide string of length L into an L x 4 matrix where each position is represented by a one-hot
vector (A = [1,0,0,0],C =10,1,0,0], G =[0,0,1,0], T = [0, 0, 0, 1]) along each position:

Xpaseons € RE* (1

To achieve a comprehensive representation of oligonucleotide compounds, including their chemical
modifications, we extend one-hot encoding beyond the nucleobase sequence to encompass sugar and
phosphate monomers. Each unique sugar monomer in the dataset is represented by a distinct one-hot
encoded vector, resulting in an L X S matrix:

Xsugargyy € RE*S 2)

where S is the number of unique sugar monomers present in the dataset. Similarly for phosphate
monomers, we obtain an L. X P matrix:

XphosphateOHE € RLXP (3)

where P is the number of unique phosphate monomers present in the dataset. These modular
representations are then concatenated to form a complete feature matrix:

Xowg = [XbaSEOHE ) XSU_(](Z’I‘QHE ) XphosphateOHE] € RL X(4+5+P) )
Note that while the individual components are one-hot encoded, the resulting X o ;7 p matrix at each
position will contain multiple *1’s, specifically one for the base, one for the sugar, and one for
the phosphate monomer, reflecting the composition of the compound at that position. In the case
of double-stranded compounds, we opted to one-hot encode the two strands separately and then
concatenate them along the length axis.

4.2 Models

For this benchmarking study, we aimed to evaluate the performance of various machine learning
models on oligonucleotide property prediction tasks. Our selection included both established statis-
tical learning algorithms and deep learning architectures to provide a comprehensive comparison.
These models were chosen with the goal of establishing simple yet robust baselines, leveraging
well-established architectures, several of which have also been widely applied to specific tasks within
this benchmark [10,43]]. Our evaluation framework further incorporates domain knowledge by means
of the tailored featurization techniques described in the previous sections.

Linear Model We utilized the scikit-learn [44] implementation of linear regression (LinearRegres-
sion) and Ridge regression (Ridge) [45]].

Nearest Neighbors Model (KNN) We employed the scikit-learn KNeighborsRegressor, a k-NN
regression model [46]. The number of neighbors (k) was treated as a hyperparameter.

Random Forest Model (RF) We used the scikit-learn RandomForestRegressor for random forest
regression [47]], exploring the maximum depth and number of estimators as hyperparameters.



XGBoost (XGB) We integrated the XGBoost algorithm [48] via its Python package, tuning the
maximum depth and number of estimators.

Multilayer Perceptron (MLP) We implemented a multi-layer perceptron architecture [49] using
PyTorch Lightning, with hyperparameters encompassing the number and size of hidden layers, as
well as the dropout rate.

Convolutional Neural Network (CNN) We implemented a simple convolutional neural network
architecture [50] in PyTorch Lightning [S1]. Hyperparameters included the network depth (number of
convolutional and pooling layers), the number of filters, the kernel width, and the pooling operation.

Gated Recurrent Unit (GRU) We implemented a gated recurrent unit [52] architecture in PyTorch
Lightning, varying its hidden dimensionality and the number of layers as hyperparameters.

Transformer We implemented a simple transformer model [53] in Pytorch Lightning. The em-
bedding dimensionality, number of attention heads, dimensionality of the feedforward network, and
dropout rate were defined as hyperparameters.

4.3 Splitting strategies

We used two data splitting strategies to assess model performance. The first was a standard 5-fold
cross-validation using random splits. Random splitting is a simple and generally applicable technique
but may not capture temporal or experimental distribution shifts, potentially leading to an overly
optimistic performance evaluation.

To mitigate this issue, more rigorous techniques like time-based splits (testing on more recent
compounds) and molecular scaffold-based splits (grouping by chemical structure) are common in
cheminformatics and QSAR modeling. In this work, we used a nucleobase splitting strategy where a
k-mer representation of the compounds is used to perform k-means clustering. The cluster labels
were then used to stratify the final train/test split. To evaluate the variability in model performance,
similar to cross-validation, we repeated this splitting process five times with different random seeds
for the clustering. While this generates five distinct splits, it does not ensure that every compound is
included in a test set at least once. Random splits and nucleobase splits were performed independently
for each run.

4.4 Experimental setup

To comprehensively benchmark feature engineering and modeling choices, an extensive experiment
was conducted across a grid of featurizer and model hyperparameters. Featurizer options aimed to
evaluate the impact of including chemical modification information and the choice of & for the k-mer
featurizer (Tab. [A2). For each model, hyperparameters were tuned by assessing performance across a
range of values (Tab. [A3). A configuration comprised a specific combination of featurizer and model
options.

All possible configurations were evaluated for each dataset. K-mer features were excluded when
using sequence-based models (CNN, GRU, Transformer). Conversely, one-hot encoded features
were utilized across all model architectures. For non-sequence-based models, the one-hot encoded
representation was flattened into a vector. Any configuration that presented potential dimensionality
issues (for example, a CNN with an excessively large kernel size relative to the input sequence length,
which could lead to invalid convolution operations) was preemptively excluded from the experimental
runs. Each valid configuration was evaluated with 5-fold random cross-validation or nucleobase splits
as detailed in the previous section.

Neural network models were trained using the Adam optimization algorithm for a maximum of
100 epochs [54]. We used early stopping with a patience of five epochs to avoid overfitting. For
every completed run configuration and across each split generated by the two splitting strategies, a
suite of standard regression metrics was tracked. These metrics included the Pearson correlation
coefficient (PCC), which measures the linear relationship between predicted and true values; the
Spearman correlation coefficient (SCC), assessing the monotonic relationship; the mean absolute
error (MAE), representing the average magnitude of errors; the root mean squared error (RMSE),



giving a higher weight to large errors; and the R? score, indicating the proportion of variance in the
dependent variable that is predictable from the independent variables. This comprehensive set of
metrics allowed for a thorough comparison of the performance of different feature engineering and
modeling approaches.

4.5 Computational resources

All runs with statistical learning models (Linear, KNN, RF, XGB) were performed on CPU nodes
with an Intel® Xeon® Platinum 9242 Processor, while runs with deep learning models (MLP, CNN,
GRU, Transformer) were performed on GPU nodes using either a NVIDIA A100 GPU paired with
an AMD EPYC 7542 CPU or a NVIDIA L40S GPU paired with an AMD EPYC 7643 CPU. Eight
CPU cores were requested for each job. Jobs were parallelized and managed using a job scheduler on
our in-house compute cluster.

The final benchmarking experiment consisted of 10,657 runs, where each run evaluated the combina-
tion of a featurizer and its parameters, a model class and its hyperparameters, one of two splitting
strategies and the dataset to train on. The total CPU time of the experiment amounted to roughly 70
days, with an average RAM usage of 3.43 GB. The total GPU time amounted to approximately 33
days.

5 Results

5.1 Model benchmarks

To provide an overview of model performance across different datasets, we first identified the optimal
feature engineering and model hyperparameter settings for each model on each dataset. This selection
process was based on the results obtained using a standard 5-fold cross-validation splitting strategy.
Specifically, we ranked the different configurations based on their average Pearson correlation
coefficient (PCC) across the five folds. Tab. [2]and Fig. [AT] present the mean PCC and the standard
deviation of the PCC across the five cross-validation folds for these top-performing configurations.

The benchmark results indicate that random forest models generally performed well, emerging as
the top-performing approach for 8 out of the 12 datasets. Even when not the absolute best, random
forests consistently achieved competitive results, confirming previous findings that such models
can deliver state-of-the-art performance on small datasets [53]]. In contrast, deep learning models
exhibited more variability in their performance across the datasets. Convolutional neural networks
(CNNs) achieved the highest performance on three datasets, but their performance was considerably
worse than traditional machine learning algorithms on others. Gated recurrent units (GRUs) showed
relatively high standard deviations in performance across the cross-validation folds and generally
worse results, suggesting potential difficulties in effectively training these recurrent architectures
for this type of data. Despite their success in other biological datasets, transformer models did not
outperform CNN and classical ML models in our benchmarks. This is likely due to the short length
(under 30 nucleotides) of oligonucleotide sequences, which do not benefit from a transformer’s
capacity for long-range dependencies. Additionally, small sample sizes in most datasets could lead to
overfitting with a complex transformer architecture.

Interestingly, models trained on tabular representations of the data (Linear, KNN, RF, XGB, MLP)
either outperformed or were on par with sequence-based models (CNN, GRU, Transformer), suggest-
ing that the association between compound features (e.g., nucleotides, chemical modifications) and
measured endpoints may not strongly depend on their positional context within a sequence. We also
benchmark graph neural networks (GNN), an architecture popular with small-molecule datasets, but
this did not yield improved performance (Tab. [AT3). Details and performances of the GNN models
can be found in the appendix section[A.4] Furthermore, we tested a transfer learning approach of
training a CNN model on embeddings from an RNA foundation model, the details can be found in
the appendix section[A.5]

Certain datasets, such as Shmushkovich, Ichihara, and OpenASO appeared to be intrinsically more
challenging to model. A potential explanation for the Shmushkovich dataset could be the partially
missing monomer information which might hinder model performance, while the challenge with the
other two could be ascribed to the fact that they were gathered from different sources, introducing
more experimental variability. The same analysis displaying Spearman correlation coefficient (SCC)



Table 2: Summary of model performance evaluated with a random cross-validation approach. The
results of the best performing configuration for each model class are shown. Each cell contains the
mean and standard deviation of the PCC across folds.

Model Linear KNN RF XGB MLP CNN GRU Transformer
Dataset

OpenASO 0.33+£0.02 0.32+0.01 0.35+0.04 0.27+0.02 0.27+0.03 0.30+0.03 0.18 £0.02 0.29+0.03
ASOptimizer  0.47 £0.01 0.63+0.01 0.64 +0.01 0.64 +0.01 0.58+0.01 0.56+0.02 0.57+0.01 0.52+0.02
TLR7 0.77+£0.02 0.60+0.09 0.78 +0.04 0.74 £0.07 0.72+0.08 0.66+0.09 0.35+0.22 0.76 £0.04
TLRS8 0.54+0.13 0.42+0.14 0.68+0.08 0.59+0.14 0.53+0.12 0.19+0.07 0.16+0.16 0.25+0.19

Cytotox LNA  0.79£0.02 0.88+0.03 0.91£0.02 0.91+0.01 0.86+0.01 0.88+0.02 0.49£0.05 0.73 £0.04
Neurotox LNA  0.64 +0.03 0.68 +0.03 0.76 £0.02 0.71+0.03 0.63+0.03 0.67+0.04 0.42+0.21 0.60+0.05
Neurotox MOE 0.70 +£0.02 0.69+0.01 0.74+0.02 0.73+0.02 0.73+0.04 0.75%0.02 0.73+0.02 0.75 +0.02
siRNAmod 0.62+0.06 0.56+0.04 0.69£0.03 0.68+0.03 0.62+0.07 0.62+0.04 0.17+0.11 0.45+0.06

Sherwood 0.78+0.00 0.85+0.00 0.92+0.00 0.96+0.00 0.82+0.00 0.85+0.00 0.13+0.00 0.59*0.06
Ichihara 0.54+£0.07 0.38+0.07 0.49+0.02 0.38+0.08 0.54+0.07 0.56+0.02 0.18+0.14 0.37£0.05
Huesken 0.63+0.02 0.45+0.02 0.62+0.04 0.53+0.03 0.64+0.01 0.65+0.02 0.14+0.03 0.52+0.05

Shmushkovich  0.24 £0.09 0.38 +0.07 0.50 +£0.08 0.41 +£0.07 0.30+0.21 0.27+0.08 0.05+0.06 0.17+0.07

values showed largely the same trends observed with PCC (Tab. [A4] Fig. [A2). For this reason, and
for simplicity, we report from now on only PCC values. We provide tables with the best featurizer

and hyperparameter configurations for each combination of model, dataset and splitting strategies in
Tables[AS]

5.2 The effect of the splitting strategy

With the goal of investigating the effect of the choice in splitting strategy we analyzed the results
obtained when performing repeated nucleobase splits compared to random cross-validation (Tab[3]
Fig. [A3). The first notable result is the generally lower performance obtained when using this
splitting strategy. This is likely because generalizing across nucleobase-based splits presents a greater
challenge for models due to the distributional shifts in sequence patterns between training and test sets.
Notably, the performance difference between classical machine learning and deep learning models
diminished, with the latter becoming the top performers for 6 out of 12 datasets. This suggests that
deep learning models may possess a greater capacity to generalize across more significant distribution
shifts. Furthermore, the performance metrics obtained from random cross-validation and nucleobase
splitting exhibited a strong correlation (Fig. [A4).

The choice of splitting strategy had a different impact on the performance evaluated on the various
datasets. While some datasets (Shmushkovich, siRNAmod, and TLR8) showed similar perfor-
mance distributions under both random cross-validation and nucleobase splitting, others (OpenASO,
ASOptimizer, Neurotox LNA, and Cytotox LNA) exhibited a significant performance decrease with
nucleobase splitting (Fig. [A5). This suggests that accurate predictions for the latter group may heavily
rely on specific sequence features that become underrepresented in the test set when splitting based
on nucleobase patterns. Similar conclusions can be drawn when looking at the difference in the root
mean squared error achieved by the top models for each splitting strategy (Fig. [AG).

5.3 The effect of feature engineering choices

Given the diverse options for feature engineering profiled in our experiment, we aimed to understand
the impact of featurization choices on prediction performance. First, we compared one-hot encoding
of only the nucleobase sequence against encoding both the sequence and chemical modifications
(sugar and phosphate monomers) (Fig. [Th). We observed sizable performance differences for the
Cytotox LNA and siRNAmod datasets. This was anticipated, as these datasets were designed to study
the effect of chemical modifications on the respective biological activities; consequently, excluding
this information reduced model performance. Similarly, our k-mer featurizer can be configured to
include modified monomer counts. Comparing results with and without these monomer features
yielded similar trends to those observed with one-hot encoding (Fig. [Ib), highlighting the importance
of incorporating chemical modification information when relevant to the endpoint.

Another aspect we investigated for the k-mer featurizer was the effect of the choice of k£ on model
performance. For most datasets, including more k-mer lengths generally improved model performance



Table 3: Summary of model performance evaluated with nucleobase splits. The results of the best
performing configuration for each model class are shown. Each cell contains the mean and standard
deviation of the PCC across splits.

Model Linear KNN RF XGB MLP CNN GRU Transformer
Dataset

OpenASO 0.29+0.08 0.23+0.06 0.29+0.03 0.21+0.02 0.23+0.09 0.25+0.08 0.19+0.05 0.27+0.11

ASOptimizer  0.39+0.04 0.45+0.06 0.48+0.03 040+0.06 0.43+0.08 0.48+0.04 0.41+0.03 0.44+0.08
TLR7 0.68 +0.07 0.56+0.13 0.73+£0.10 0.66+0.07 0.66+0.11 0.62+0.17 0.32+0.13 0.72+0.11

TLR8 0.59+0.08 0.41+0.13 0.70 £0.06 0.58 +0.16 0.57+0.10 0.25+0.19 0.13+£0.13 0.26+0.20

Cytotox LNA  0.64£0.16 0.64£0.07 0.69+0.09 0.64+0.15 0.72+0.11 0.70+0.11 0.32+0.23 0.72 +0.06
Neurotox LNA  0.56 £0.09 0.49 £0.09 0.56+0.08 0.50+0.16 0.53 £0.08 0.57+0.08 0.17 £0.22 0.53 £0.10
Neurotox MOE 0.59 +0.24 0.49+0.05 0.61+0.11 0.58+0.04 0.66+0.07 0.67+0.10 0.67+0.12 0.70 + 0.06
siRNAmod 0.44+0.11 0.50+0.09 0.53+0.09 0.42+0.14 0.47+0.07 0.49+0.12 0.25+0.09 0.49 +0.09

Sherwood 0.70+0.05 0.73+0.03 0.82+0.03 0.90 +£0.03 0.74+0.04 0.74+0.04 0.12+£0.10 0.44 £0.09
Ichihara 049+0.09 0.38+0.14 0.49+0.06 034+0.13 0.57+0.12 0.48+0.10 021 £0.10 0.35%0.14
Huesken 0.62+0.01 0.44+0.01 0.59+0.01 0.51+0.03 0.62+0.01 0.63+0.03 0.16+0.04 0.51+0.09

Shmushkovich  0.20 £0.08 0.28 £0.16 0.42+0.14 0.35+0.07 0.35+£0.04 0.27+0.10 0.12+0.11 0.17+0.20
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Figure 1: (a) Average PCCs across datasets of all configurations using one-hot encoding, the results
obtained with a full (nucleobase and chemical modification) and a reduced (nucleobase only) encoding
are compared. (b) Average PCCs across datasets of all configurations using the k-mer featurizer, the
results obtained with and without modification information are compared. Error bars display the
standard deviation.
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as anticipated (Fig. [Z). However, the extent of this improvement varied. While adding 3-mers resulted
in only marginal gains for most datasets, a more substantial increase was observed for Sherwood,
Huesken, and Ichihara. Notably, these three datasets all pertained to siRNAs, suggesting that longer
sequence motifs may be more critical for determining siRNA properties compared to ASOs.

6 Discussion

This work introduces OligoGym, the first curated and standardized collection of datasets for oligonu-
cleotide drug discovery, comprising 12 datasets across diverse modalities and therapeutic endpoints.
It addresses a critical need for standardization in a field challenged by inconsistent molecular rep-
resentations and assay readouts. We used OligoGym to benchmark a range of classical and deep
learning models with tailored featurization techniques, thus establishing initial performance baselines
for machine learning in oligonucleotide therapeutics.

While OligoGym represents a significant step forward, the current benchmarks do not capture the
full range of possible feature engineering approaches. Notably, thermodynamic or structural features
were not explored. The selection of models, though diverse, was limited to architectures suited to
general regression tasks. Future work should benchmark models that incorporate domain knowledge
and inductive biases. Dataset sizes are also relatively small compared to other drug modalities, often
bordering on low-data regimes. This highlights the need for larger, more comprehensive datasets
with sufficient technical and biological replicates to better estimate the achievable upper bounds
of predictive performance. Biological variability and assay noise further underscore the value of
multiple measurements per compound.

Equally important is the real-world utility of benchmarks. In oligonucleotide discovery, the perfor-
mance thresholds for ML models vary with the discovery stage. During hit identification, a rank
correlation greater than 0.7 can prioritize the top 10-20 % of candidates for experimental validation,
typically out of 1,000-2,000 compounds [56]. For lead optimization, where precise property im-
provements are sought in hundreds of compounds, metrics like RMSE are more appropriate, ideally
matching the assay’s standard deviation for reliability [57]. For toxicity endpoints, a recall of at
least 0.95 at a defined cutoff would minimize the risk of advancing unsafe compounds. Accordingly,
OligoGym provides a range of performance metrics tailored to different discovery stages.

Despite its limitations, OligoGym lowers the entry barrier for ML research in oligonucleotide
therapeutics by providing accessible, ML-ready datasets and well-defined challenges. Oligonucleotide
drugs’ reliance on chemical modifications creates a complex interplay between biological sequence
and medicinal chemistry, offering unique challenges for multi-scale modeling that is relevant beyond
this domain [58H60]. To facilitate research, we provide natural base, SMILES, and HELM sequences
for all datasets. The scarcity and synthetic nature of these molecules limit the use of pretrained
foundation models (see Appendix A.5), highlighting the importance of low-data and few-shot
learning, another emerging direction in drug discovery [61]]. Furthermore, the multifaceted nature of
oligonucleotide development opens opportunities for research in multi-objective optimization.

7 Conclusion

In conclusion, OligoGym offers a foundational and standardized platform poised to catalyze the
application of machine learning in oligonucleotide drug discovery. By providing a curated collection
of datasets and establishing initial benchmarks, this resource lowers the barrier for computational
researchers entering the field. Recognizing the existing limitations in feature exploration, model
selection, and dataset sizes, future work should focus on expanding these aspects to unlock the full
potential of machine learning for this therapeutic modality. Ultimately, we anticipate that OligoGym
will serve as a valuable community resource, fostering collaboration and accelerating the development
of novel oligonucleotide-based therapeutics through enhanced data sharing and predictive modeling.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contribution of this work is the collection and curation of datasets
and benchmarks for oligonucleotide drug discovery. To the best of our knowledge, this is
the first effort of this kind. This is stated in the abstract and introduction.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We provide a discussion on the limitations of our work in the last section of the
manuscript. No strong assumptions were made about the datasets and models benchmarked
in this study. We discuss potential factors that influence performance extensively in our
results section. Since the datasets in this study are not of a large size, discussions about
scaling and computational efficiency are not applicable.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper only shows empirical results and therefore no theoretical proofs are
needed.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided an extensive description of the experimental setup, including
details on model implementation and the hyperparameter search space. We also provide
all the code used to produce and visualize the results, and the collected metrics from the
benchmarking experiment.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the datasets and code used in this paper in a public GitHub
repository: github.com/Roche/oligogym.
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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Answer: [Yes]

Justification: We provided an Experimental Setup section which outlined all the methodology
used in the paper and can be reproduced with the provided codebase.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
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Justification: We provide the standard deviations and error bars for all tabular results and all
figures. The meaning of the error bars is explained in the figure captions.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
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Answer: [Yes]

Justification: We provide a thorough description of the computational resources we used
and the total compute required to perform the benchmarking in the Evaluation framework
section of this manuscript (see Sec. [).
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and we can confirm that this
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work makes use of previously published datasets and model architectures.
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets we used are publicly available data and we provide all citations to
the original publication and patents the data were sourced from.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code used to produce the results showed in this manuscript are provided
together with extensive documentation and notebook tutorials.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Justification: This study does not involve any crowdsourcing or human subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This study does not involve any crowdsourcing or human subjects.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The study does not involve the use of LLMs in the core methods.
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A Appendix

A.1 Description of curated datasets

In addition to the curation process described in the main text we provide an overview of the study
and dataset generation from the original sources below and summarize them in Tab[AT]

Table Al: Description of each dataset and the labels extracted from the original source.

Name

Description

OpenASO [25]

ASOptimizer [9]

siRNAmod [38} 21]

Sherwood [39]

Shmushkovich [41]

Ichihara [40]

Huesken [6} 40]

TLR8 [26]

TLR7 [26]

Cytotox LNA [12]

Neurotox MOE [27H37]]

Neurotox LNA [10]

An ASO efficacy dataset collected by IDT from an ASO database and also from patent data.
According to the publication each ASO has a full phosphorothioate backbone and no chimeric
sequences. The efficacy is reported as an activity level range from 0 (complete target inhibi-
tion) to 1 (no difference in target activity when compared to appropriate control). The activ-
ity was measured from either the protein product or direct mRNA abundance. The dataset

is obtained from a pre-curated GitHub repository.https://github.com/lackeylela/
openASO.

A collection of inhibitory activity for different gapmer ASOs collected from various patents
and publication. The labels are reported as percentage inhibition of target mRNA relative to
untreated controls with concentration of the ASO also provided.

A curated siRNA efficacy dataset that contains only sugar and base information. The labels
are reported as percentage knockdown of the target mRNA.

A biased screening of shRNAs using the miR-30 scaffold. The DSIR algorithm was used to
select for sequences likely to be active. The labels are reported as minmax-scaled scores. The
raw scores were obtained from a high-throughput assay based on a SORT-seq strategy using a
fluorescence reporter construct with the target site in the 3° UTR of the reporter gene.

A study of cholesterol-conjugated siRNA efficacy using dual luciferase reporter in HeLa cells
at 1 uM. The labels are reported as percentage remaining relative to a control siRNA.

A pre-curated collection of unmodified siRNA efficacy data collected from five different
studies with different assays. The labels are reported as percentage inhibition relative to
control from various assays as reported by authors of the curated dataset.

A dataset of unmodified siRNA efficacy for various target genes. The labels are reported as
percentage inhibition relative to a control using an eCFP-eYFP dual reporter assay.

2’0OMe gapmer screen of TLRS potentiation. The labels are reported as TLR8 levels after in-
duction with 100 nM ASO as measured by fluorescence as using NF-xB-Luciferase reporter
in HEK293-TLRS cells. The values provided are relative to those obtained after induction
with Resiquimod (= 1.0).

2’0OMe gapmer screen of TLR7 inhibition. The labels are reported as TLR7 levels after induc-
tion with 100 nM ASO as measured by fluorescence as using NF-<xB-Luciferase reporter in
HEK293-TLR7 cells. The values provided are relative to those obtained after induction with
Resiquimod (=100).

A study looking at the relationship between nucleobase and LNA sequence on ASO activity
and cytotoxicity. The labels are reported as minmax-scaled average Caspase levels (N=3)
measured in HeLa cells.

Acute neurotoxicity data for MOE modifed ASOs scraped from patents. The labels are
rounded 3-hour Functional Observational Battery (FOB) scores in mice (7 categories: O (safe)
to 7(toxic)).

Acute neurotoxicity of LNA gapmers as measured with Calcium oscillation scores in neuronal
cells.
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A.1.1 OpenASO

The OpenASO dataset originates from a study aimed at improving the rational design of antisense
oligonucleotides (ASOs) by identifying short sequence motifs (2-5 bases) significantly associated
with high or low gene suppression activity [25]. The goal was to discover sequence features beyond
simple thermodynamics that influence efficacy, thereby enhancing predictive models. The dataset
comprises 3913 ASO sequences compiled from the ODNBase database and USPTO patent data. Strict
inclusion criteria were applied: sequences had to possess a complete phosphorothioate backbone,
excluding chimeric molecules. The associated activity levels represent experimentally measured gene
suppression at the cellular level (via mRNA or protein quantification) on a normalized scale from
0.0 (complete inhibition) to 1.0 (no inhibition). Because the original dataset is no longer available,
the dataset was instead obtained from a pre-curated GitHub repository (https://github.com/
lackeylela/openASQ).

A.1.2 ASOptimizer

The ASOptimizer dataset was collected for the study by Hwang et al. [9], which aimed to develop
a deep-learning framework, named ASOptimizer, for the efficient design of potent and safe RNase
H-mediated antisense oligonucleotides (ASOs). The framework focuses on both selecting optimal
ASO target sites on mRNA and optimizing ASO chemical modification patterns to enhance inhibitory
activity and reduce cytotoxicity. The data collection process involved compiling a large database of
187,090 experimental results from granted patents (sourced via Lens.org) and scientific publications.
This extensive effort required manually extracting ASO sequences, details of their chemical modifica-
tions, experimental conditions (cell line, dose, transfection method, etc.), and the corresponding target
mRNA inhibition rates, typically measured by qRT-PCR. While the full dataset was not publicly
available, the authors released a subset of 32,602 datapoints used in original model development; this
is the subset curated here.

A.1.3 siRNAmod

The siRNAmod dataset used in [38] was derived from the siRNAmod database, a specialized
repository created to address the lack of centralized resources for chemically modified siRNAs (cm-
siRNAs) [21]. The aim of the database was to consolidate scattered experimental data to facilitate
research and therapeutic development. They manually curated the database by exhaustively searching
literature (initially screening 900 PubMed articles), extracting information for 4894 experimentally
validated cm-siRNAs from 96 articles. The curated data included siRNA sequences, details on 128
unique chemical modifications (type, position, structure, SMILES), measured biological efficacy
(e.g., percentage knockdown), target gene, cell line, experimental assay details, and references. In
[38] the authors subsequently utilized this database, applying filtering criteria (e.g., 21-mer length,
specific activity reporting, minimum modification frequency) to obtain a subset of 907 chemically
modified siRNAs for training and evaluating machine learning models to predict siRNA silencing
efficiency based on sequence and modification patterns.

A.1.4 Sherwood

The Sherwood dataset was generated with the primary aim of developing "shERWOOD," a computa-
tional algorithm to accurately predict the gene knockdown potency of short hairpin RNAs (shRNAs),
addressing the previous lack of reliable sShRNA design tools [39]. To create the extensive dataset
needed for algorithm training, they employed a high-throughput, multiplexed sensor assay to measure
the efficacy of a large pool of shRNAs. This involved synthesizing libraries of doxycycline-inducible
shRNA constructs, each paired with a GFP-tagged target sequence, which were then introduced
into reporter cells. Upon shRNA expression, potent shRNAs led to a reduction in GFP signal; cells
exhibiting low GFP were isolated via fluorescence-activated cell sorting (FACS), and the enriched
shRNA sequences were identified and quantified using next-generation sequencing. The resulting ef-
ficacy data, derived from both unbiased shRNA tiling libraries and shRNAs pre-selected by the DSIR
algorithm, were consolidated into single potency scores for each shRNA to train the ssEERWOOD
prediction model.
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A.1.5 Shmushkovich

The Shmushkovich et al. [41] study aimed to identify key functional features determining the efficacy
of heavily chemically modified, cholesterol-conjugated, self-deliverable siRNAs (sdRNAs) and to
develop a predictive algorithm specifically for such modified oligonucleotides, as existing models
for unmodified siRNAs proved unsuitable. The dataset was generated by synthesizing a panel of
356 unique sdRNAs targeting different genes, all featuring extensive chemical modification pattern
including 2’-fluoro and 2’-O-methyl sugars, phosphorothioate linkages, and a 3’-cholesterol conjugate
on the sense strand for unassisted cellular uptake. The efficacy of these sdRNAs was evaluated using
a dual-luciferase reporter system in HeLa cells; target sequences were cloned into the 3° UTR of
Renilla luciferase in psiCheck-2 vectors, and cells were treated with 1 uM of each sdRNA, with
knockdown quantified as the percentage of Renilla luciferase expression remaining relative to controls
after 48 hours.

A.1.6 Ichihara

The Ichihara dataset, as described by Ichihara et al. [40], was primarily compiled to validate their
siRNA activity prediction algorithm, "i-Score." The study aimed to create a simple yet effective algo-
rithm based exclusively on nucleotide preferences at each of the 19 positions in an siRNA sequence,
using a linear regression model. The dataset, referred to as "Dataset B" in their publication, consists
of 419 unmodified 19-mer siRNA sequences and their corresponding experimentally determined
inhibitory activities, which were manually curated from five previously published research articles.
This collection served as an independent validation set to assess the predictive accuracy of i-Score
and to investigate the influence of siRNA duplex thermostability on prediction dependability.

A.1.7 Huesken

The Huesken et al. [6] study aimed to develop a robust algorithm, BIOPREDsi, using an artificial
neural network (ANN) to predict the efficacy of small interfering RNAs (siRNAs), which would then
be used to design a genome-wide siRNA library with a high likelihood of potent gene knockdown.
To generate the large, homogeneous dataset required for training the ANN, they screened 3,106
randomly selected 21-mer siRNAs (typically with dTdT overhangs) targeting 34 different mRNA
species (including human and rodent genes) using a high-throughput dual-fluorescent reporter gene
system (eYFP as target, eCFP as control) in H1299 cells. After applying quality control filters, a
final dataset of 2,431 siRNAs with their corresponding inhibition percentages (derived from the
eYFP/eCFP ratio) was established; this dataset formed the basis for training (2,182 siRNAs) and
testing (249 siRNAs) the BIOPREDsi algorithm.

A.1.8 TLRS and TLR7

The TLR7 and TLRS datasets described by Alharbi et al. [26] were generated to investigate the
sequence-dependent immunomodulatory effects of 2’-O-methyl (2’0OMe) gapmer antisense oligonu-
cleotides (ASOs) on Toll-Like Receptor 7 (TLR7) and TLRS8 signaling. The study aimed to char-
acterize ASO structural and sequence determinants that cause divergent outcomes—specifically,
suppression of TLR7 versus potentiation of TLRS activity—and to enable the rational design of
ASOs that can selectively modulate these receptors, for instance, to enhance TLR8-mediated immune
responses for immunotherapy while avoiding TLR7 suppression. The dataset comprises activity
measurements for a library of 192 unique 2’0OMe gapmer ASOs (with phosphorothioate backbones,
designed against four different human transcripts) which were screened for their effects on TLR7
and TLR8 signaling in HEK293 cells stably expressing either human TLR7 or TLR8, along with an
NF-xB-luciferase reporter. Cells were treated with the ASOs (100 nM or 500 nM) before stimulation
with the TLR7/8 agonist Resiquimod (R848), and the resulting modulation (inhibition for TLR7,
potentiation for TLR8) was quantified by changes in luciferase activity relative to R848-only controls.

A.1.9 Cytotox LNA

The Cytotox LNA dataset, from the study by Papargyri et al. [[12], was generated to systematically
investigate how the chemical and structural diversity of Locked Nucleic Acid (LNA)-modified gapmer
antisense oligonucleotides influences their functional properties, particularly their target knockdown
activity and cytotoxic potential. The study aimed to establish structure-activity relationships to guide

20



the optimization of LNA gapmers for improved pharmacological profiles. To achieve this, they
designed and synthesized 768 architecturally diverse, iso-sequential LNA gapmers (16-mers and
13-mers with full phosphorothioate backbones) targeting two distinct regions of the human HIFI1A
mRNA. These gapmers featured systematically varied numbers and positions of LNA modifications
in their flank regions. The dataset relevant to "Cytotox LNA" comprises the cytotoxic potential
measurements obtained by treating HeLa cells with each of these 768 gapmers (typically at 100 nM
via transfection) and quantifying induced apoptosis through caspase activation assays 24 hours later.

A.1.10 Neurotox MOE

The Neurotox MOE dataset was newly curated to aggregate data on the acute neurotoxicity of
2’-O-Methoxyethyl (MOE) modified antisense oligonucleotides (ASOs). The data collection process
involved manually scraping information from numerous patents. [27H37] Specifically, Functional
Observational Battery (FOB) scores from studies in mice and rats observed around 3 hours post-
administration were extracted, and these scores were then rounded (e.g., into 7 categories where 0
indicates safe and >7 indicates toxic) to serve as labels for the dataset.

A.1.11 Neurotox LNA

The Neurotox LNA dataset by Hagedorn et al. [10] was generated as part of a study aimed at
predicting and mitigating acute, non-hybridization-dependent neurotoxicity of Locked Nucleic Acid
(LNA)-modified antisense oligonucleotides (ASOs) following intracerebroventricular (ICV) dosing
in mice. The primary goal was to develop a sequence-based bioinformatics tool to identify ASO
designs with acceptable neurotoxic potential, thereby reducing the reliance on animal testing. The
dataset primarily consists of in vitro data from LNA-modified ASOs (targeting MAPT pre-mRNA),
which were evaluated for their effects on spontaneous calcium oscillations in primary rat cortical
neurons using a fluorescent calcium indicator assay; this cellular assay was found to correlate with
acute neurobehavioral side effects observed in mice. The study identified key sequence features (e.g.,
guanine and adenine content, G-free stretch from the 3’-end) that influence these calcium oscillation
scores and subsequently developed a weighted linear regression model to predict this neurotoxic
potential.
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Table A2: Featurizer hyperparameters.

A.2 Hyperparameter grid search for baseline models benchmarking

Featurizer Parameter Values
K-mers K [1]9 [13 2], [19 2’ 3]
modification information  False, True

One-hot encoder

encoded components

[base], [base, sugar, phosphate]

Table A3: Model hyperparameters.

Model Parameter Values
Linear L2 weight 0,1
KNN K 5,10, 15
RF max depth 10, 20, 30
number of estimators 100, 500, 1000
XGB max depth 10, 20, 30
number of estimators 100, 500, 1000
MLP number of hidden layers 1,2
hidden layer dimensionality 64, 128
dropout rate 0,0.25
CNN depth 1,2
number of filters 32,64
kernel width 3,5,7
pooling operation max, avg
GRU number of hidden layers 1,2
hidden layer dimensionality 32, 64
Transformer embedding dimensionality 64, 128
number of heads 2.4
feedforward network dimensionality 64, 128
number of transformer layers 1,2
dropout rate 0,0.25
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A.3 Additional results
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Figure Al: PCC of the best performing configurations for each model and dataset, evaluated with a
random cross-validation approach. Error bars display the standard deviation.

Table A4: Summary of model performance evaluated with a random cross-validation approach. The
results of the best performing configuration for each model class are shown. Each cell contains the
mean and standard deviation of the SCC across folds.

Model Linear KNN RF XGB MLP CNN GRU Transformer
Dataset

OpenASO 0.31£0.02 0.29+0.03 0.33+0.03 0.25+0.02 0.26+0.02 0.30+0.02 0.18 £0.03 0.27+0.03
ASOptimizer  0.47 £0.01 0.62+0.01 0.63+0.01 0.63+0.01 0.58+0.01 0.56+0.01 0.56+0.01 0.51+0.02
TLR7 0.77+£0.02 0.59+0.09 0.79 +£0.04 0.73+£0.07 0.71£0.10 0.67+0.08 0.31+0.22 0.74 £0.07
TLRS8 0.55+0.14 0.41+0.08 0.62+0.10 0.57+0.13 0.52+0.12 0.16+0.06 0.14+0.14 0.25+0.20
Cytotox LNA  0.83+0.03 0.89+0.03 0.92+0.00 0.93+0.01 0.88+0.01 0.91+0.01 0.51+0.05 0.76 +0.04
Neurotox LNA 0.62 +£0.03 0.64£0.05 0.72+0.01 0.69+0.03 0.62+0.03 0.64+0.03 0.41+0.22 0.61+0.04
Neurotox MOE 0.72 +0.01 0.69 £0.01 0.76 £0.01 0.74 +0.02 0.74+£0.02 0.75+0.01 0.74+0.02 0.74 +£0.01
siRNAmod 0.60+0.05 0.55+0.05 0.72+0.03 0.70+0.04 0.62+0.05 0.59+0.03 0.05+0.08 0.44+0.05
Sherwood 0.77+0.00 0.83+0.00 0.90+0.00 0.95+0.00 0.80+0.00 0.83+0.00 0.17+£0.01 0.58 £0.07
Ichihara 0.56 £ 0.07 0.42+0.07 0.51+0.05 0.39+0.07 0.55+0.06 0.54+0.05 0.22+0.14 0.36+0.04
Huesken 0.65+0.01 0.46+0.03 0.62+0.04 0.54+0.04 0.65+0.01 0.66+0.03 0.15+0.03 0.53+0.06
Shmushkovich 0.23 +0.10 0.36 +0.07 0.44 +£0.08 0.36+£0.05 0.28 +£0.11 0.30+0.07 0.07+0.19 0.24+0.14

Table AS: Best hyperparameters and featurizers for the linear model across splitting strategies. « is
the weight of the L2 regulatization term for the linear model.

Splitting strategy ~ Random Nucleobase

Dataset

OpenASO KMers (k=[1, 2], mod=False), a=0 KMers (k=[1, 2], mod=False), a=1
ASOptimizer OHE (full), a=1 OHE (full), a=1

TLR7 OHE (full), =1 OHE (full), a=1

TLRS8 KMers (k=[1, 2], mod=True), a=0 OHE (full), a=0

Cytotox LNA OHE (full), a=1 KMers (k=[1], mod=True), a=1
Neurotox LNA KMers (k=[1, 2, 3], mod=True), a=0 OHE (full), a=1

Neurotox MOE OHE (full), a=1 OHE (full), a=1

siRNAmod OHE (full), a=1 KMers (k=[1], mod=True), a=1
Sherwood OHE (full), a=1 OHE (full), a=0

Ichihara OHE (full), a=1 OHE (full), a=1

Huesken KMers (k=[1, 2, 3], mod=False), a=1 KMers (k=[1, 2, 3], mod=True), a=0
Shmushkovich OHE (full), =1 KMers (k=[1, 2, 3], mod=False), a=1

23



Table A6: Best hyperparameters and featurizers for the k-nearest neighbors model across splitting
strategies. K is the number of neighbors used by the model.

Splitting strategy ~ Random Nucleobase

Dataset

OpenASO KMers (k=[1, 2, 3], mod=True), K=10  KMers (k=[1, 2], mod=True), K=10
ASOptimizer KMers (k=[1, 2, 3], mod=True), K=10  KMers (k=[1, 2, 3], mod=True), K=15
TLR7 KMers (k=[1], mod=True), K=10 OHE (full), K=15

TLRS8 OHE (full), K=15 OHE (full), K=10

Cytotox LNA OHE (full), K=5 OHE (full), K=15

Neurotox LNA KMers (k=[1, 2, 3], mod=True), K=5 KMers (k=[1, 2], mod=True), K=15
Neurotox MOE KMers (k=[1, 2, 3], mod=True), K=10 KMers (k=[1, 2, 3], mod=True), K=15
siRNAmod KMers (k=[1, 2, 3], mod=True), K=10  KMers (k=[1], mod=True), K=10
Sherwood OHE (full), K=15 OHE (full), K=15

Ichihara KMers (k=[1, 2], mod=False), K=5 OHE (full), K=15

Huesken OHE (full), K=15 OHE (full), K=15

Shmushkovich KMers (k=[1], mod=False), K=15 KMers (k=[1, 2], mod=False), K=15

Table A7: Best hyperparameters and featurizers for the random forest model. D is the maximum

depth of the tree and N is the number of estimators.

Splitting strategy ~ Random Nucleobase

Dataset

OpenASO KMers (k=[1, 2, 3], mod=True), D=10, N=500  KMers (k=[1, 2, 3], mod=True), D=20, N=1000
ASOptimizer KMers (k=[1, 2, 3], mod=True), D=20, N=500 KMers (k=[1, 2, 3], mod=True), D=20, N=1000
TLR7 OHE (full), D=20, N=500 OHE (full), D=10, N=1000

TLRS8 OHE (full), D=20, N=500 OHE (full), D=30, N=100

Cytotox LNA OHE (full), D=10, N=500 KMers (k=[1, 2, 3], mod=True), D=30, N=1000
Neurotox LNA KMers (k=[1, 2, 3], mod=True), D=20, N=500  KMers (k=[1, 2], mod=True), D=20, N=100
Neurotox MOE OHE (full), D=30, N=500 OHE (full), D=10, N=100

siRNAmod OHE (full), D=10, N=500 OHE (full), D=20, N=1000

Sherwood OHE (full), D=10, N=500 OHE (full), D=10, N=500

Ichihara OHE (full), D=20, N=1000 OHE (full), D=30, N=500

Huesken OHE (full), D=30, N=1000 OHE (full), D=20, N=100

Shmushkovich KMers (k=[1, 2, 3], mod=True), D=20, N=100  KMers (k=[1, 2], mod=False), D=10, N=500

Table A8: Best hyperparameters and featurizers for the XGBoost model. D is the maximum depth of
the tree and N is the number of estimators.

Splitting strategy
Dataset

Random

Nucleobase

OpenASO
ASOptimizer
TLR7

TLRS8

Cytotox LNA
Neurotox LNA
Neurotox MOE
siRNAmod
Sherwood
Ichihara
Huesken
Shmushkovich

KMers (k=[1, 2], mod=False), D=10, N=1000
KMers (k=[1, 2, 3], mod=True), D=10, N=100
OHE (full), D=10, N=100

OHE (full), D=10, N=1000

OHE (full), D=10, N=100

KMers (k=[1, 2, 3], mod=True), D=20, N=500
OHE (full), D=10, N=500

OHE (full), D=10, N=1000

OHE (full), D=10, N=500

KMers (k=[1, 2, 3], mod=True), D=30, N=1000
OHE (full), D=10, N=1000

KMers (k=[1], mod=False), D=10, N=100

KMers (k=[1, 2, 3], mod=True), D=20, N=1000
OHE (full), D=10, N=500

OHE (full), D=10, N=500

OHE (full), D=20, N=100

KMers (k=[1], mod=True), D=10, N=1000
KMers (k=[1, 2], mod=True), D=30, N=1000
OHE (full), D=10, N=500

KMers (k=[1, 2], mod=True), D=20, N=500
OHE (full), D=10, N=500

OHE (full), D=20, N=1000

OHE (full), D=10, N=500

KMers (k=[1, 2], mod=False), D=20, N=100
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Table A9: Best hyperparameters and featurizers for the MLP model. H are the hidden layer dimen-

sionalities and D is the dropout rate.

Splitting strategy
Dataset

Random

Nucleobase

OpenASO OHE (full), H=[128], D=0 OHE (full), H=[64, 64], D=0
ASOptimizer KMers (k=[1, 2, 3], mod=True), H=[128, 128], D=0  OHE (full), H=[64, 64], D=0

TLR7 OHE (full), H=[64, 64], D=0 OHE (full), H=[64, 64], D=0

TLR8 OHE (full), H=[64], D=0 OHE (full), H=[64], D=0

Cytotox LNA OHE (full), H=[64], D=0 KMers (k=[1], mod=True), H=[128], D=0
Neurotox LNA OHE (full), H=[128], D=0 OHE (full), H=[64], D=0

Neurotox MOE OHE (full), H=[128, 128], D=0 OHE (full), H=[64], D=0

siRNAmod OHE (full), H=[128], D=0 OHE (full), H=[64], D=0.25

Sherwood OHE (full), H=[64], D=0 OHE (full), H=[128], D=0

Ichihara OHE (full), H=[128], D=0.25 OHE (full), H=[128], D=0

Huesken OHE (full), H=[128], D=0 OHE (full), H=[64], D=0

Shmushkovich KMers (k=[1], mod=False), H=[64, 64], D=0 KMers (k=[1], mod=False), H=[128, 128], D=0

Table A10: Best hyperparameters and featurizers for the CNN model. H is the number of convolutional
filters used, W is the kernel width of the filters, D is the depth of the model and P is the pooling

operation.

Splitting strategy ~ Random Nucleobase

Dataset

OpenASO OHE (full), H=32, W=5, D=1, P=max  OHE (full), H=64, W=3, D=1, P=avg
ASOptimizer OHE (full), H=64, W=5, D=2, P=avg OHE (full), H=64, W=3, D=2, P=avg
TLR7 OHE (full), H=64, W=7, D=1, P=max  OHE (full), H=64, W=3, D=1, P=avg
TLR8 OHE (full), H=64, W=3, D=2, P= OHE (full), H=64, W=3, D=2, P=avg
Cytotox LNA OHE (full), H=64, W=5, D=2, P= OHE (full), H=64, W=5, D=1, P=avg
Neurotox LNA OHE (full), H=64, W=5, D=2, P: OHE (full), H=32, W=3, D=2, P=avg
Neurotox MOE OHE (full), H=64, W=5, D=2, P OHE (full), H=32, W=3, D=1, P=max
siRNAmod OHE (full), H=64, W=7, D=1, P: OHE (full), H=32, W=5, D=1, P=max
Sherwood OHE (full), H=64, W=7, D=1, P=max  OHE (full), H=32, W=5, D=1, P=max
Ichihara OHE (full), H=64, W=7, D=1, P=max  OHE (full), H=64, W=5, D=1, P=avg
Huesken OHE (full), H=64, W=3, D=1, P=max  OHE (full), H=64, W=3, D=1, P=max
Shmushkovich OHE (full), H=64, W=5, D=1, P=avg OHE (full), H=64, W=3, D=1, P=max

Table A11: Best hyperparameters and featurizers for the GRU model. H is the hidden dimensionality
and N is the number of layers.

Splitting strategy ~ Random Nucleobase

Dataset

OpenASO OHE (full), H=64, N=1  OHE (full), H=32, N=2
ASOptimizer OHE (full), H=64, N=2  OHE (full), H=32, N=1
TLR7 OHE (full), H=64, N=2  OHE (full), H=64, N=2
TLR8 OHE (full), H=32, N=2  OHE (full), H=32, N=2
Cytotox LNA OHE (full), H=32, N=2  OHE (full), H=64, N=2
Neurotox LNA OHE (full), H=64, N=2  OHE (full), H=32, N=1
Neurotox MOE OHE (full), H=64, N=1  OHE (full), H=64, N=1
siRNAmod OHE (full), H=64, N=2  OHE (full), H=64, N=2
Sherwood OHE (full), H=32, N=1 OHE (full), H=32, N=1
Ichihara OHE (full), H=64, N=1  OHE (full), H=32, N=2
Huesken OHE (full), H=64, N=1  OHE (full), H=64, N=1
Shmushkovich OHE (full), H=64, N=1 OHE (full), H=64, N=1




Table A12: Best hyperparameters and featurizers for the transformer model. H is the embedding

dimensionality,

the number of attention heads and D is the dropout rate.

N is the number of layers, F is the dimensionality of the feedforward network, A is

Splitting strategy
Dataset

Random

Nucleobase

OpenASO OHE (full), H=128, N=2, F=64, A=2, D=0 OHE (full), H=128, N=1, F=64, A=2, D=0
ASOptimizer OHE (full), H=64, N=2, F=128, A=4, D=0 OHE (full), H=128, N=1, F=64, A=4, D=0.25
TLR7 OHE (full), H=64, N=2, F=64, A=4, D=0 OHE (full), H=64, N=2, F=128, A=4, D=0
TLRS OHE (full), H=64, N=2, F=64, A=4, D=0 OHE (full), H=128, N=2, F=64, A=4, D=0
Cytotox LNA OHE (full), H=128, N=2, F=64, A=4, D=0 OHE (full), H=128, N=2, F=128, A=2, D=0.25
Neurotox LNA OHE (full), H=64, N=1, F=128, A=4, D=0 OHE (full), H=128, N=1, F=128, A=2, D=0
Neurotox MOE OHE (full), H=64, N=1, F=64, A=2, D=0 OHE (full), H=128, N=2, F=128, A=2, D=0.25
siRNAmod OHE (full), H=64, N=1, F=128, A=2, D=0 OHE (full), H=64, N=1, F=64, A=2, D=0
Sherwood OHE (full), H=64, N=2, F=64, A=4, D=0 OHE (full), H=128, N=2, F=64, A=2, D=0
Ichihara OHE (full), H=64, N=1, F=64, A=4, D=0 OHE (full), H=128, N=1, F=64, A=4, D=0.25
Huesken OHE (full), H=128, N=1, F=128, A=2, D=0.25  OHE (full), H=64, N=1, F=64, A=4, D=0.25
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Figure A2: SCCs of the best performing configurations for each model and dataset, evaluated with a
random cross-validation approach. Error bars display the standard deviation.
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Figure A3: PCCs of the best performing configurations for each model and dataset, evaluated on
nucleobase splits. Error bars display the standard deviation.
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Figure A4: Average PCCs evaluated on the test set (average across folds) from each configuration
measured with a random split (x-axis) versus a nucleobase split (y-axis).
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Figure A6: Differences in test RMSE evaluated with a random CV and nucleobase splits for the best
performing models for each dataset.

A.4 Graph Neural Network

Graph neural network (GNN) has recently become a popular deep learning architecture for small
molecule modeling. For molecular property prediction, atoms are represented as nodes while bonds
are represented as edges, and a GNN model uses a message-passing mechanism to aggregate feature
information from neighbouring nodes. These updated node features are then aggregated into a single
graph-level feature vector that represents the entire molecule. This graph-level representation is
then used for the prediction of the target property. Here we adapt this approach for the modeling
of oligonucleotide polymer and benchmark the performance of GNN for oligonucleotide property
prediction.

A.4.1 Featurizer

To prepare the oligonucleotide sequences for GNN model, we developed a custom featurizer that
converts the HELM representation of each molecule into a graph structure. Unlike traditional atom-
level molecular graphs, our approach employs a coarse-grained representation where each node
corresponds to a nucleotide monomer component: a sugar, a base, or a phosphate group. This method
models the oligonucleotide’s chemical topology by creating distinct nodes for each component and
connecting them based on their covalent bonds. Specifically, A sugar-phosphate backbone is formed
by creating edges between the phosphate node of one monomer and the sugar node of the subsequent
monomer. Each base node is connected as a branch to its corresponding sugar node. Each sugar node
is also connected to its corresponding phosphate node within the same monomer unit. The features
for each node is the one-hot encoded monomer identity. The final output for each oligonucleotide
is a graph vector containing a node feature matrix and an edge index matrix. This coarse-grained
featurization allows the model to learn hierarchical patterns based on the fundamental building blocks
of the oligonucleotide polymer rather than individual atomic interactions.

A.4.2 Model

We implemented a Graph Convolutional Network (GCN) architecture using the PyTorch Geometric
python library. The model processes the input graph through a stack of GCN layers, where each layer
updates a node’s feature vector by aggregating information from its immediate neighbors, followed
by a ReLLU activation. After the final GCN layer, a global pooling operation aggregates all the node
embeddings into a single, fixed-size vector that represents the entire oligonucleotide. This graph-level
embedding is then fed into a fully connected linear layer to yield the final prediction for the target

property.
A.4.3 Experimental setup

We utilize the same experimental set up as for the models presented in the main text for benchmarking
GNN model on the OligoGym dataset. Specifically we perform a grid-search of key hyperparameters
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and evaluated each hyperparameter combination using a range of regression metrics on a standard
5-fold random cross validation and a 5-fold repeated nucleobase split. The hyperparameter grid used
in this study is comprised of number of hidden dimension in each graph convolution layer (32, 64),
number of graph convolution layers (1, 2) and the choice of global pooling operations (mean, max,
sum). All models were trained with the Adam optimizer for maximum of 100 epochs. We used early
stopping with patience of five epochs to avoid overfitting.

A.4.4 Performance

We report the performance of the best GNN model on the random and nucleobase split in Table
The GNN models did not yield improved performance for any dataset in OligoGym compared to
sequence-based deep learning models or classical machine learning models. The lack of improvement
observed with GNN models is likely attributable to the sequential nature of oligonucleotide graphs.
Unlike the more complex structural graphs of small molecules, oligonucleotide graphs are relatively
simple linear polymer graphs. Consequently, a GNN architecture offers minimal advantages compared
to sequence models for this type of data. A promising future study is to use a more fine-grained
representation of oligonucleotides, for example at the atomic level using the SMILES representation
provided in the datasets. This could enable a more detailed understanding of the chemical nature of
these modified oligonucleotide and could lead to improved performance.

Table A13: Summary of GNN performance, PCC.

Splitting strategy Random Nucleobase

Dataset

OpenASO 0.27+0.02 0.20+0.02
ASOptimizer 0.37+0.01 0.33+0.09
TLR7 0.52+0.10 0.52+0.15
TLRS 032+0.15 024+0.28

Cytotox LNA 0.76 £0.03 0.65+0.16
Neurotox LNA 0.55+£0.04 0.52+0.16
Neurotox MOE 0.67 +0.03 0.60+0.09

siRNAmod 047+0.07 0.46+0.06
Sherwood 0.27+0.00 0.23+0.17
Ichihara 031+0.09 035+0.11
Huesken 0.36+0.04 0.34+0.06

Shmushkovich 0.11+0.09 0.12+0.10

A.5 RNA-FM embeddings

A common strategy to improve predictive performance in low-data regimes is transfer learning, where
embeddings from large-scale foundation models are used as inputs to smaller architectures—a process
often referred to as fine-tuning.

In this work, we evaluated whether such an approach could provide benefits by conducting a small-
scale comparison. Specifically, we trained a convolutional neural network (CNN) on two types of
input representations: (i) one-hot-encoded nucleotide sequences and (ii) nucleotide-level embeddings
generated by the widely used RNA-FM foundation model [62]. RNA-FM is pretrained primarily on
non-coding RNA sequences from the RNAcentral database, and its embeddings have been shown to
enhance performance in other RNA benchmarks [[19, 20]. For consistency, the CNN was fixed to a
single set of hyperparameters (D=2, H=64, W=5, P=max), the experimental setup was otherwise the
same as that used for the large benchmarking experiment. Results are summarized in Tab.

Overall, the use of RNA-FM embeddings offered little to no improvement over the one-hot baseline.
In fact, for certain datasets (e.g., Cytotox LNA and siRNAmod), the one-hot representation performed
substantially better. This outcome is unsurprising: RNA-FM does not account for chemically modified
nucleotides, so the input was limited to natural analogs, thereby missing all the information about
chemical modifications that are known to modulate efficacy and toxicity. The observed patterns
closely mirror those in Fig. [T} where we compare the performance of models when trained with a
one-hot-encoding with and without chemical modification information.
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While transfer learning from large foundation models remains a promising research direction, our
findings highlight a key limitation for oligonucleotide modeling. Models that cannot represent
chemical modifications may fail to provide a clear advantage, whereas models trained purely on
chemical representations such as SMILES strings may lack the abstraction needed to capture the
properties of long, linear nucleotide chains. Future advances in this space will likely require hybrid
approaches that integrate the strengths of both sequence-based foundation models and chemically
informed models to achieve more expressive and robust representations.

Table A14: Comparison of different featurizers on the ASO and siRNA datasets.

Featurizer OneHotEncoder RNA-FM Embeddings
Dataset

OpenASO 0.28 £0.04 0.28 +0.02
ASOptimizer 0.55+0.01 0.54 +£0.01
TLR7 0.59 +£0.17 0.59 +£0.11
TLRS8 -0.01+0.24 0.02+0.14
Cytotox LNA 0.88 £0.02 0.58 +£0.06
Neurotox LNA 0.64 +0.04 0.66 = 0.06
Neurotox MOE 0.73 £0.02 0.7+0.03
siRNAmod 0.56 +0.05 0.21 +£0.07
Sherwood 0.84 £0.0 0.82 £0.01
Ichihara 0.45 +0.08 0.48 +0.15
Huesken 0.63 £0.02 0.59 £0.04
Shmushkovich 024 0.1 0.23+0.14
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