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Abstract
Quantum control is concerned with the realisation
of desired dynamics in quantum systems, serving
as a linchpin for advancing quantum technologies
and fundamental research. Analytic approaches
and standard optimisation algorithms do not yield
satisfactory solutions for more complex quantum
systems, and especially not for real world quan-
tum systems which are open and noisy. We devise
a physics-constrained Reinforcement Learning
(RL) algorithm that restricts the space of possible
solutions. We incorporate priors about the desired
time scales of the quantum state dynamics – as
well as realistic control signal limitations – as con-
straints to the RL algorithm. These constraints
improve solution quality and enhance computa-
tional scaleability. We evaluate our method on
three broadly relevant quantum systems and in-
corporate real-world complications, arising from
dissipation and control signal perturbations. We
achieve both higher fidelities – which exceed
0.999 across all systems – and better robustness
to time-dependent perturbations and experimental
imperfections than previous methods. Lastly, we
demonstrate that incorporating multi-step feed-
back can yield solutions robust even to strong per-
turbations. Our implementation can be found at
https://github.com/jan-o-e/RL4qcWpc.

1. Introduction
The optimal control of quantum systems is important for
enabling the development of quantum technologies such
as computing, sensing, and communication, and similarly
plays an important role for quantum chemistry (Brif et al.,
2010) and solid state physics (Glaser et al., 2015). Quantum
control requires the application of time-dependent signals
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(laser pulses, microwaves etc.) to a quantum system, to
realise a desired time evolution (Glaser et al., 2015; Koch,
2016; Koch et al., 2022; Mahesh et al., 2022). Examples
of such tasks include system initialisation, (quantum) state
preparation, gate operation, state population transfer or state
measurement. Quantum control enables performing such
tasks with low error rates, which is particularly important for
the realisation of fault tolerant quantum computing (Terhal,
2015). Isolated quantum systems exhibit unitary dynamics
(i.e. reversible) which are comparatively easy to model
for modest system sizes. Yet all real quantum systems are
open, subject to some interaction with the environment and
require the addition of irreversible non-unitary dynamics to
realistically capture their evolution (Breuer & Petruccione,
2002).

Motivated by such real-world experimental setups, we tackle
quantum control with physically realistic models. The com-
bined unitary and non-unitary evolution of quantum systems
is typically modelled by a master equation (Davies, 1974;
Dirr et al., 2009), a first-order linear ODE also known as
a quantum Liouvillian or Lindbladian. Solving the master
equation and controlling larger quantum systems is computa-
tionally expensive, growing quadratically with the quantum
system size, limiting the use of standard optimisation meth-
ods. While stochastic methods (Mølmer et al., 1993) can
reduce the quadratic scaling to a linear one, they require a
large number of trajectories for high numerical accuracies.
For large systems the only feasible option is to sample di-
rectly from a quantum device. Experimental imperfections
and noise – arising from, e.g., signal distortion or attenu-
ation in optical and electronic setups, or due to inherent
system imperfections (Burkard, 2009) – pose additional
challenges which existing approaches fail to address. In
this work, we present a novel approach for controlling real-
world open quantum systems, posing quantum control as
a Reinforcement Learning (RL) problem subject to physi-
cal constraints. Specifically, we learn a control policy that
maximises the fidelity of the quantum control task, while re-
moving control signals which result in overly fast quantum
state dynamics from the space of possible solutions. A ma-
jority of quantum control tasks, including those considered
in this work, are concerned with adiabatically transferring
population between quantum states (Král et al., 2007), such
that the time evolution of the system is slow compared to the
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Figure 1: Minimum infidelity across hyperparameter combinations (1−Fmax, left y-axis, solid red line) and normalised GPU
time per RL update (right y-axis, dotted blue line ±1σ) vs. permissible quantum solver steps Nmax. Limiting Nmax—which
can be understood as placing an upper bound on the rate of change of the quantum system evolution induced by the control
signal—improves solution quality (lower infidelity) while also increasing computational efficiency (lower normalised time).

inverse energy gap of the states (E = ℏω) which facilitate
the transfer. Quantum state dynamics which are fast can
induce leakage errors (decay outside of the desired quantum
state space). Furthermore, fast oscillations in the quantum
state populations severely limit the robustness of control
solutions to any time-dependent noise in real world experi-
ments. In addition to the hard constraint applied to the space
of possible solutions, we introduce a soft constraint that fa-
cilitates smooth pulses and fixed amplitude endpoints with
finite rise-time. Both characteristics are typically required
for real-world implementation of quantum control signals.
Lastly, we investigate using multi-step RL to address larger
levels of system noise.

Incorporating physics-based constraints into the RL problem
not only enhances solution quality but also significantly im-
proves computational scalability. Control signals inducing
fast quantum state dynamics require compute-heavy simu-
lations and thereby longer computation times. Excluding
these signals enables fast parallel optimisation of multiple
hyperparameter configurations by removing simulation bot-
tlenecks.

We validate our approach on three quantum control prob-
lems. We begin with a generalised electronic Λ system, com-
mon in quantum dots, atoms, and circuit quantum electro-
dynamics, revisiting a well known approach (Vitanov et al.,
2017) for transferring population between states. Our im-
plementation successfully learns realistic control signals
with almost two orders of magnitude lower infidelity, and
resilience to time-dependent noise. We then explore the
more complex Rydberg gate (Lukin et al., 2001), crucial for

realising atomic quantum computers. Here, we demonstrate
robust control signals, even in the face of noise, unlike previ-
ous approaches, and achieve higher fidelities at lower pulse
energy than previous works. Lastly, we consider a supercon-
ducting transmon quantum bit (qubit) (Egger et al., 2018b)
for qubit reset, for which we discover a novel, physically-
feasible reset waveform which achieves an order of magni-
tude higher reset fidelity than any previous work.

In conclusion, our work makes the following contributions:

1. We devise a computationally efficient RL implementa-
tion that directly incorporates physical feasibility con-
straints to enable discovery of experimentally realistic
control signals. The improvements over standard RL
algorithms are shown in Fig. 2.

2. Fig. 1 demonstrates that our constraint on the maximum
number of simulation steps significantly improves com-
putational scalability while simultaneously improving
solution quality.

3. Across three quantum systems, we outperform prior
methods by achieving higher fidelities, lower pulse ener-
gies, and greater robustness to time-dependent noise.

2. Related Work
Several algorithms exist for devising optimal time-
dependent control signals for quantum systems. Analytic
methods like Lyapunov (Hou et al., 2012) are effective for
small isolated systems but difficult to generalise to com-
plex environments. Gradient-based methods which consider
the piece-wise evolution of a quantum system, under piece-
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wise controls, such as Gradient Ascent Pulse Engineering
(GRAPE) (Khaneja et al., 2005) or Krotov (Reich et al.,
2012) (which ensures monotonic convergence) work well
on simple cost landscapes for a single objective with good
initial guesses. Since gradients need to be evaluated exactly
at each time-step for these methods, they are well suited
to ideal simulations, but it is challenging to adapt them to
closed-loop experimental optimisation where such gradi-
ents can rarely be determined exactly and a large number
of measurements are required. RL, to the contrary, requires
no intermediate quantum state information and can perform
optimisation with noisy samples. Other variations of global
optimal control exist which consider the optimisation of the
entire time dependent control signal at once (Giannelli et al.,
2022b), which are prone to local minima. Global and local
optimal control methods are explored in combination in (Go-
erz et al., 2015). Methods which reduce the search space by
decomposing the possible signal into a basis (Caneva et al.,
2011) are sensitive to basis choice (Pagano et al., 2024) and
evolutionary algorithms (Brown et al., 2023) lack computa-
tional scalability for larger systems or multiple objectives.

Machine learning has numerous applications in quantum
science (Krenn et al., 2023). Numerous successful studies
applied RL to the logical quantum ciruit level, to find op-
timal error correction codes (Olle et al., 2024), real time
error correction (Sivak et al., 2023) or circuit complication
techniques (Van Der Linde et al., 2023; Quetschlich et al.,
2023). In contrast to these works, our work focusses on
lower-level pulse-level control.

We review prior ML work, distinguishing between real de-
vice sampling and numerical simulations. Baum et al. (2021)
devised an optimal gate set on a superconducting IBM quan-
tum device. Reuer et al. (2023) and Porotti et al. (2022)
use measurements and feedback to prepare quantum states,
but generalisation to unseen environments is difficult. A
model-based Hamiltonian learning approach was applied
in Khalid et al. (2023), which provided important insights
into sample efficiency. Although we focus on realistic quan-
tum simulations, our RL algorithm can be readily applied
to physical experiments by replacing simulations with real-
device sampling.

Several studies have explored reinforcement learning (RL)
for controlling simulated quantum systems. While RL has
been applied to discrete action space control (Paparelle et al.,
2020; An et al., 2021; Zhang et al., 2019), these methods
struggle in real-world settings with analog signals exhibit-
ing finite response time1 and in more complex systems.
We extend prior work on controlling many-body systems

1A particular limitation is the finite rise and fall time of elec-
tronic or optical signals, which refers to the time required to transi-
tion from zero to maximum amplitude (or vice versa), typically on
the order of nanoseconds or greater.

(Bukov et al., 2018; Metz & Bukov, 2023; Schäfer et al.,
2020) to experimentally realistic systems, incorporating
control signal noise into training as suggested by Schäfer
et al. (2020). While Niu et al. (2019) find time-optimal
gate sequences for superconducting qubits using trust re-
gion policy-gradient methods, we advance this by enhancing
computational scaleability by learning entire control signals
in a single step and incorporating more complex noise mod-
els. Our control pulses for a typical Λ system go beyond
existing work (Giannelli et al., 2022a; Norambuena et al.,
2023) by incorporating realistic noise models and simultane-
ous amplitude and frequency control to learn more optimal
and realistic policies. Related work on optimising supercon-
ducting qubit gates robust to noise with RL is presented in
Nam Nguyen et al. (2024), while enhanced superconducting
qubit readout with RL is demonstrated in Chatterjee et al.
(2025).

3. Background
3.1. Reinforcement Learning for Quantum Control

Reinforcement Learning (RL) is a framework where an
agent learns to make decisions by interacting with an envi-
ronment to achieve a specific goal (Sutton & Barto, 1999).
In quantum control, RL can be used to find the control
actions a(t) that steer a quantum system toward a target
state ρdes. The key components in this RL setup are the
state si, which is given as the density matrix ρ(t) of the
quantum system, the control action ai applied to the sys-
tem, a scalar reward ri, derived largely from the closeness
of the system to its target state and the policy π that maps
states to actions. The objective is to learn a policy π∗ that
maximises the expected cumulative expected reward, i.e.
π∗ ∈ maxπ E

[∑T
t=0 rt

]
.

Continuous Bandit Setting In the continuous bandit set-
ting, the RL problem is reduced to a single-step episode. The
agent selects one action a(t) in a continuous space [−1, 1]d,
where d is the action dimension representing the number
of discrete action samples in time, aiming to maximise the
immediate reward based on the fidelity with respect to the
target state. Specifically, the optimal action a∗ is given as
a∗ ∈ argmaxa E [r(a)], where r(a) is the reward obtained
by applying action a.

3.1.1. QUANTUM DYNAMICS SIMULATION

Assessing the quality of an action a(t) in quantum control
involves computing the fidelity (App. (12)), which mea-
sures the overlap between the evolved quantum state and
the target state. The state evolution under a(t) is obtained
by numerically solving the master equation (App. (11)) for
ρ(t), the generalised quantum state at time t. For a de-
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tailed background on quantum dynamics and control, see
App. Sec. 3.1.1. The state evolution is typically simulated
using adaptive step-size solvers that implement higher-order
Runge-Kutta methods (Hairer et al., 1993), which dynam-
ically adjust their internal time steps based on local error
estimates. If the error exceeds the numerical tolerance, the
solver reduces its internal time step; if the error is suffi-
ciently small, the time step is increased to enhance compu-
tational efficiency. Therefore, control signals that lead to
slower quantum state dynamics allow the adaptive solver to
use larger time steps. Hence, slower quantum state dynam-
ics require fewer solver steps and less computation time.

4. Methods
4.1. Physics-Constrained Reinforcement Learning

In practice, applying RL to efficiently find high-fidelity
quantum control solutions requires restricting the space of
possible solutions. First, we constrain signal bandwidth,
and signal area, reflecting the limited instantaneous band-
width of electronics and signal components in experiments,
and limitations in available signal power and duration. We
implement these constraints via the reward function cf. Eq.
2 and Sec. 4.2, similar to the Lagrange Multiplier technique
introduced in (Bhatnagar & Lakshmanan, 2012).

Simulating the quantum system to compute the reward for
the RL agent at each learning step, as detailed in Sec. 3.1.1,
is computationally expensive. For complex quantum sys-
tems and sub-optimal actions, this simulation can require an
extremely large number of solver steps, far exceeding the
computational time needed to update the RL agent. There-
fore, secondly, we constrain the policy to solutions that
can be simulated within a predefined number of maximum
numerical solver steps, Nmax. This constraint incorporates
priors about the physical solution time scales into the algo-
rithm, which incentivises adiabatic quantum state dynamics,
yielding robust and interpretable solutions (cf. App. Fig.
10). Additionally, this constraint incentivises smoothness
(requiring lower bandwidth) of signals, as smooth signals
generally require fewer solver steps.

RL optimisation algorithms are often sensitive to the choice
of hyper-parameters (Henderson et al., 2018), necessitating
hyper-parameter space searching to find optimal policies.
We address this challenge by synchronously optimising con-
trol policies for up to 1024 RL agents in parallel on a single
GPU device, by implementing both the quantum solver and
the RL algorithm using JAX (Bradbury et al., 2018), which
features just-in-time compilation and automatic differenti-
ation. This allows for the compilation of the parallelised
training and simulation loop end-to-end. However, in this
synchronised parallel setup, the quantum simulation time
needed per step is governed by the maximum quantum simu-

lation time across all hyper-parameter configurations, as the
slowest simulation among all learned policies determines
the speed of the entire loop. We mitigate this bottleneck
with a constrained RL algorithm that solves the quantum
control problem subject to the condition that the required
number of quantum simulation steps does not exceed a cho-
sen threshold Nmax. Formally, this constrained RL problem,
for which the quantum simulation can be executed in fewer
than Nmax steps, is defined as:

π∗ ∈ max
π

E

[
T∑

t=0

rt

] ∣∣∣ for a ∈ π NSim(a) < Nmax
Sim (1)

where π is the policy, rt is the reward at time t, and NSim(a)
is the number of solver steps required for conducting the
quantum simulation for an action a sampled from policy
π. Implementing this constrained RL algorithm prevents
bottlenecks as it ensures that all simulations within the vec-
torised run are completed within a fixed maximal time frame.
This approach enables efficient hyper-parameter exploration
with minimal computational cost. The constraint, though
seemingly restrictive, is physically motivated for adiabatic
population transfer between quantum states (Král et al.,
2007). In adiabatic processes, the system evolves slowly
relative to the inverse energy gap, requiring fewer solver
steps. The maximal effective Rabi frequency, Ωeff = Ω

2

∆
,

sets a lower bound for Nmax via the adiabaticity condition
Ωeff · δt ≫ 1 (Král et al., 2007). In practice, we increment
Nmax as long a significant decrease in infidelity is observed
(see Fig. 1 for infidelities at different maximum solver steps
for different quantum systems).

To summarise, the constrained RL approach not only im-
proves computational efficiency but also promotes the se-
lection of physically realistic control signals (cf. App. Fig.
15). By enforcing these constraints, we achieve more in-
terpretable quantum state dynamics (cf. App. Fig. 10)
and prioritise adiabatic solutions, leading to experimentally
feasible, robust and high fidelity control techniques.

4.2. Reward Shaping

We parametrise the control signal as a combination of time-
dependent amplitudes Ωi and time-dependent frequencies
∆i and introduce smoothness constraints that facilitate effi-
cient learning and further improve computational efficiency.
Smoother waveforms are easier to implement experimen-
tally, offer clearer interpretation of the optimal quantum
state evolution, and significantly speed up simulation times
by reducing the number of required solver steps. To facili-
tate smooth signal discovery, we apply a Gaussian convolu-
tion filter to our control signal with a standard deviation tσ
(cf. App. (20)) before simulating the quantum state dynam-
ics which improves learning dynamics by favouring slower
solution dynamics (an ablation over this is found in App.
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Sec. G.4 Fig. 14). The reward function contains auxiliary
smoothing penalties and is defined as

La = − wF log (1−F)− wΩReLU
(∑

S(Ωi)∑
Sbase

− 1
)

− w∆ReLU
(∑

S(∆i)∑
Sbase

− 1
)
− wA

∑
A(Ωi)

Abase

(2)

The first and most important reward-function term incen-
tives high fidelity F = F(ρfin, ρdes) with respect to the
desired final state ρdes. This fidelity reward scales with the
logarithm infidelity log (1−F)). Next we define smooth-
ness penalties, where ReLu(x) defines the ReLu function:
ReLu(x) = 0 if x < 0 || ReLu(x) = x if x >= 0. The
smoothness S is compared to that of a reference signal
Sbase (cf. App. Sec.G.4 Fig. 16 for a definition of and ab-
lation over different smoothing functions). We introduce a
smoothness penalty weighted by small coefficients w∆, wΩ,
to balance fidelity, interpretability, and computational effi-
ciency. Fig. 14 shows an ablation over various smoothing
penalties. Contrary to the Λ system and Rydberg atom, the
Transmon favours stronger smoothing penalties showing
that our approach is adaptable to a wide variety of physical
problem settings. Larger values of tσ and w∆, wΩ also re-
duce the maximum required solver steps and thereby further
enhances computational scaleability. The ability to achieve
high-fidelity solutions across all environments at larger con-
volution standard deviations, tσ , also demonstrates that we
can find optimal signals compatible with realistic electronic
control systems with limited instantaneous bandwidth (cf.
App. Fig. 15).

The final reward term penalises solutions with large pulse
area (cf. App. Sec. C Fig. 8 for an ablation over different
area penalties for the Λ system), we set wA = 0 for the
Rydberg and Transmon problem settings. We introduce
additional physics-informed constraints which are problem
specific and defined in App. Sec. C and App. Sec. D.

5. Experiments
Overview We primarily focus on the continuous bandit
RL setting, with supplementary experiments showing multi-
step RL outperforms bandit methods under strong signal
perturbations. We conduct experiments on three critical
quantum control tasks relevant to quantum information pro-
cessing. First, we address population transfer in multi-level
Λ systems, relevant to quantum chemistry and solid state
physics, where we achieve high-fidelity population transfer
in spite of dissipation and cross-talk. We explicitly show
the effect of our physics driven constraints and the superior-
ity of PPO over other RL alternatives in Fig. 2. Secondly,
we optimise Rydberg gates in neutral atom quantum de-
vices, focusing on enhancing gate fidelities and robustness
to time-dependent noise, which is crucial for scalable quan-
tum computing. Thirdly, we develop efficient reset protocols

for superconducting transmon qubits under bandwidth con-
straints, essential for fast quantum circuit execution and
scaling the volume of quantum gates that can be performed.
Here, we discover a novel, physically-feasible reset wave-
form which achieves an order of magnitude higher reset
fidelity than any previous work. Fig. 1 demonstrates the
efficacy of our proposed method in finding higher-fidelity
solutions while reducing computational demand. Although
in this work we simulate realistic and noisy quantum sys-
tems, we detail in App. Sec. F how our setup can be applied
to real systems directly.

5.0.1. EXPERIMENTAL IMPLEMENTATION

Constrained RL Implementation To enforce the con-
straint NSim(a) < Nmax

Sim on actions a sampled by policies
π in the bandit setting, we assign a penalty reward rpenalty.
In the bandit setting, rpenalty is assigned to any policy where
NSim(a) >= Nmax

Sim , and the value is chosen to be lower
than any other possible reward in the environment, ensuring
that the optimal policy cannot include states violating the
constraint (Altman, 2021). This approach can be easily ex-
tended to multi-step settings when the bounds of the reward
function are known, which is the case here (Altman, 2021).
The final reward function is then defined as

L =

{
rpenalty if NSim(a) >= Nmax

Sim

La else
(3)

where La is defined in (2). Further details on the implemen-
tation, including all relevant libraries, is found in App. Sec.
G.1. All the code is fully open source at Ref. Ernst et al.
(2025)

5.1. Population Transfer in Multi-level Λ System

Controlling quantum dynamics in multilevel systems is cru-
cial for quantum information processing and relevant to
solid-state physics and chemistry (Bergmann et al., 2019;
Vitanov et al., 2017). We study a common experimental
setup (Vitanov et al., 2017), the Λ system, featuring multiple
ground and excited states, with the latter subject to sponta-
neous decay. We consider two time-dependent control sig-
nals with amplitudes ΩS , ΩP which couple two electronic
states with relative time-dependent frequency detunings ∆P

and ∆δ (cf. App. Sec. C for more details). These four pa-
rameters define the control fields in (10). While analytically
optimal pulses exist for idealised three-level systems (Kuk-
linski et al., 1989; Vasilev et al., 2009), we include excited
state dissipation, parametrised by rate Γ, and an additional
excited state detuned positively by ∆X requiring cross-talk
suppression (cf. App. Sec. C for details). This repre-
sents a common physical configuration, describing nitrogen
vacancy centres (Balasubramanian et al., 2009), quantum
dots (Economou et al., 2012), and single atoms (Ernst et al.,
2023). We present and benchmark results on optimising
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Figure 2: We compare three model-free RL algorithms — PPO (Schulman et al., 2017), DDPG (Lillicrap et al., 2016) and
TD3 (Fujimoto et al., 2018) in the noise-free Λ-system setting. Each algorithm is run on the same Nvidia P100 GPU, using a
single set of optimised hyper-parameters per algorithm, with a common batch size and results averaged over two seeds (one
s.d. shaded) for the same number of total steps. We compare standard (vanilla) versions of the algorithms which use L = F ,
to our constrained formulation, using the reward defined in Eq. 2 and incorporating step-size penalties (cf. Eq. 3). The
constrained variants consistently outperform their vanilla counterparts, demonstrating the effectiveness of the constrained
problem formulation and physically motivated loss function. Our implementation of PPO achieves the best performance,
surpassing DDPG and TD3 by over an order of magnitude in mean fidelity. Furthermore, PPO reaches mean fidelities
exceeding 0.99 up to 100× faster than the alternative RL approaches.

population transfer from one ground state to another, fixing
Γ = 1, Ωmax = 30 and ∆X = 100.

We observe in Tab. 1 that the fidelities F achieved in a 4-
level Λ system are significantly higher than state of the art
and also more robust across different random initial seeds,
highlighting the superiority of RL over methods which di-
rectly differentiate the control action with respect to the fi-
delity. We further find that the learned pulses are physically
viable, while prior work (Giannelli et al., 2022b; Brown
et al., 2021) found infeasible solutions, which exhibit non-
zero amplitudes at the start or end or have instantaneous
parameter changes which cannot be realised on bandwidth
limited hardware. Moreover, we note that our implemen-
tation of PPO achieves the best fidelity > 0.999 and also
achieves > 0.99 fidelity 100x times faster than TD3 (Fuji-
moto et al., 2018) or DDPG (Lillicrap et al., 2016) as shown
in Fig. 2. Sweeping wA cf. (3) we find signals which have
pulse extremely low pulse areas which approach the lower
bound quoted in (Norambuena et al., 2023) (cf. Fig. 8 in the
App.), implying low signal energy requirements. Example
signals differ significantly for different pulse area penalties
which is shown in Fig. 3.

Random fluctuations or noise of either signal ΩS/P or ∆δ/P

are not detrimental to the overall fidelity. We implement
an Ornstein–Uhlenbeck noise process for both ∆δ/P and
ΩS/P , a noise model which creates continuous noise νt in

time with mean µ and standard deviation σ (for details cf.
App. Sec. G.5). Such noise typically arises from a variety
of imperfections in the signal chain, as well as quantum
system level noise, such as magnetic field fluctuation or
motion. Using unbiased (µ = 0) noise with various standard
deviations exemplifies good robustness to low noise levels
as shown in Fig 9 (cf. App. Sec. C) where we attain > 0.99
mean fidelity for σΩ = σ∆ = 0.1. Further increasing σ
leads to significantly reduced population transfer fidelities
which we address with multi-step RL in Sec. 5.4. Solutions
for a larger variety of system parameters and an extension
to partial state transfer are shown in App. Sec. C.

5.2. Rydberg Gates

Neutral atom quantum devices have shown promise for real-
ising scalable, logical quantum computing (Bluvstein et al.,
2023). The realisation of quantum computing requires a two-
qubit gate (Nielsen & Chuang, 2010) which relies on the
interaction of multiple atomic qubits which are brought in
relative proximity (a detailed description of the Hamiltonian
is provided in App. Sec. D) and addressed with laser beams.
We consider an optimisation of the Rydberg gate (Lukin
et al., 2001) under realistic experimental conditions and
signal perturbations.

We consider the most widespread implementation of a Ryd-
berg C-Z gate (a single photon Rydberg gate (Levine et al.,
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Method F Notes
Optimal Control (Giannelli et al., 2022b) 0.890± 0.064 Using BFGS (Fletcher, 1987), n iter = 1000.
Krotov (Goerz et al., 2019) 0.99± 0.001 n iter=10000
Analytic (Vasilev et al., 2009) 0.901 No uncertainty as analytic solution.
Reinforce (Brown et al., 2021) 0.930± 0.034 Not exp. feasible
PINN (Norambuena et al., 2023) 0.83 No code available to benchmark
Vanilla DDPG (Lillicrap et al., 2016) 0.985± 0.004 Vanilla implies reward L = F
Vanilla TD3 (Fujimoto et al., 2018) 0.625± 0.01 –
Vanilla PPO (Schulman et al., 2017) 0.989± 0.0002 –
PPO (this work) 0.999± 0.0003 –

Table 1: We benchmark different methods for optimising coherent quantum population transfer in a multilevel Λ system.
Averaged over 32 random seeds, our method achieves significantly higher F than prior work with reduced sensitivity to the
initial seed, yielding experimentally feasible controls. Timing comparison is provided in App. Sec. G.3.
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Figure 3: Shown are example control signals generated for different pulse area penalties. For wA = 0 (left), the algorithm
seeks to maximise Ω at all times after a fast rise and compensates cross-talk with frequency chirping. For wA = 1 (right),
we plot only the time interval [0.7, 1], as the pulse amplitudes are zero otherwise. We show that the we discover pulses
which reminisce of two interleaved Gaussians, but exhibit non zero two-photon detuning ∆δ = 0 to cancel cross-talk (cf.
App. Sec. C), which differs from the original experimental proposal for coherent population transfer (Vitanov et al., 2017).

2019a; Jandura & Pupillo, 2022) with a single pulse of am-
plitude ΩP and time-dependent frequency ∆P which has
known solutions. This is compared to the two-photon Ryd-
berg C-Z gate which uses two time-dependent signals with
amplitudes ΩP ,ΩS and frequencies ∆P ,∆S (akin to the Λ
system). The single photon Rydberg gate is vulnerable to
time-dependent noise which motivates the determination of
an optimal pulse sequence for the two-photon Rydberg gate
which exhibits superior robustness to external perturbations
(cf. App D). Finding optimal protocols which simultane-
ously optimise both amplitude and frequency of Pump and
Stokes beams is challenging since there exists a large num-
ber of possible control signals in a large Hilbert space. A
similar setup was addressed in Goerz et al. (2014), however
this did not explicitly consider the decay of the Rydberg
state and the optimised signals are extremely challenging to
realise experimentally. Compared to Saffman et al. (2020)
we find a solution (cf. App. Fig. 11) which is higher fi-

delity F = 0.9996 than the analytic solution F = 0.99,
as well as the numerical solution F = 0.997 and faster
0.25µs compared to the 1µs numerical solution. What is
also remarkable is that for moderate levels of unbiased time-
dependent amplitude and frequency noise (cf. App. Sec. D)
we observe F > 0.999. Compared to Sun (2023), who ne-
glect intermediate state decay, we achieve similar fidelities
but with an order of magnitude lower peak Rabi frequencies
which implies lower laser power requirements. Moreover,
we implement a direct C-Z gate which does not require
any additional single qubit rotations. We directly differ-
entiated the input action with respect to the fidelity with
a BFGS (Fletcher, 1987) method over 1000 iterations and
for 32 random initial seeds and achieved a mean fidelity of
0.914 ± 0.0742 (one s.d.) showing the superiority of RL
to reliably achieve high fidelity solutions. The enhanced
computational scaleability offered by our implementation
could be used to optimise multi qubit gates with k > 2
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Figure 4: Optimal Waveform for Transmon Reset (left) discovered by RL and corresponding state evolution (right). The RL
waveform (solid lines) amplitude evolution reminisces of a square-top Gaussian, with a smooth Heaviside-detuning that
accounts for time-dependent frequency shifts. Equivalent reset performance is found by fitting a Heaviside-detuning reset
and a Gaussian square amplitude waveform (dashed lines), simplifying experimental calibration. Our approach shows reset
errors of 0.03% matching the performance under an experimentally unrealistic ideal square pulse, and showing an order of
magnitude improvement over a smoothed square pulse.

which are also robust.

5.3. Transmon Reset

Superconducting quantum bits (qubits) have played a cen-
tral role in quantum computing breakthroughs, including
the demonstration of quantum supremacy (Arute et al.,
2019) as well as the suppression of errors with the sur-
face code (Acharya et al., 2023). The transmon (Koch et al.,
2007), a widely used superconducting qubit, operates within
its two lowest energy levels to form a qubit subspace. Re-
cent advances have extended transmon lifetimes beyond 0.5
ms (Wang et al., 2022), enabling longer quantum circuits
and the implementation of error correction codes. To max-
imise circuit operations within the qubit’s lifetime, trans-
mons must be reset efficiently with high fidelity.

Two main reset techniques exist: conditional reset (Ristè
et al., 2012), which follows state measurement, and un-
conditional reset (Magnard et al., 2018), which is faster
and more robust. We focus on optimising waveforms for
unconditional reset (cf. App. Sec. E for further details).
The reset rate is proportional to drive strength, theoreti-
cally favouring high-amplitude square pulses for maximum
fidelity. However, a drive-induced Stark shift alters the trans-
mon’s resonance frequencies (Zeytinoğlu et al., 2015). In
ideal conditions, a square pulse with a calibrated frequency
can counter this shift. IBM demonstrated this approach
experimentally, achieving 0.983 fidelity, while simulations
under ideal conditions reached 0.996 fidelity (Egger et al.,
2018a). This mismatch could be explained by experimen-
tally realistic bandwidth constraints as square pulses have
a finite rise and fall time, which induces a time-dependent

frequency shift. While optimal control (Gautier et al., 2024)
has been applied to the task of reset pulse optimisation, min-
imal bandwidth constraints implied that no novel waveforms
were found for improving the reset transition in a simple and
realistic experiment. Using BFGS with direct differentiation
of the input signal failed to optimise multi-objective reward
functions or satisfy realistic signal constraints. When op-
timising solely for fidelity, it remained slow and prone to
local minima due to the large search space of non-smooth
actions. Similarly, we were unable to attain any reasonable
learning with alternative RL algorithms other than PPO.

We apply our RL method to optimise the transmon re-
set waveform under bandwidth constraints imposed by
Gaussian-smoothing (for further details cf. App. Sec. G.4).
Considering state of the art parameters, as given in the
IBMQ experiment – a qubit lifetime T1 of 500µs – we find
that our RL approach achieves 0.9997 fidelity under realis-
tic bandwidth constraints shown in Fig. 4 (cf. App. E for
further implementation details). This is compared with a
perfect square pulse - which is not experimentally realis-
tic - without any smoothing, and a calibrated square pulse
with smoothing - which represents prior work (Egger et al.,
2018a). The RL waveform matches the theoretical optimal
fidelity of the perfect square pulse and improves the fidelity
of waveform used in prior work (Egger et al., 2018a) by an
order of magnitude. In App. Sec. E we explicitly compare
the results with the parameters used in Egger et al. (2018a),
and find that the RL-discovered reset waveform achieves
the fidelity 0.997 of the ideal square pulse compared to
the measured fidelity of 0.983. A fitted Heaviside detun-
ing function from the RL-discovered waveform corrects the
drive-induced Stark shift, simplifying experimental calibra-
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tion, which we dub Heaviside-Corrected Gaussian Square
(HCGS) and explain further in App. Sec. E.1. Further
results and extensions are provided in App. Sec. E.

5.4. Multi-Step Reinforcement Learning

0 10 20 30 40 50 60

RL Update Step
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100

1
−
F

Bandit RL (µσ = 9)

Multi-Step RL (4 Steps, µσ = 9)

Bandit RL (µσ = 15)
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Figure 5: Comparison of mean infidelity for different values
of µσ for bandit RL and multi-step RL. We observed a 2x
reduction in infidelity for larger noise bias µσ by using
multi-step RL over the bandit setting.

We study the effectiveness of multi-step reinforcement learn-
ing strategies in achieving high fidelity control solutions
under adverse noise conditions. Feedback on nanosecond
timescales has been demonstrated experimentally (Álvarez
et al., 2022; Koch et al., 2010), supporting this approach.
This feedback can be realised by measuring classical signal
noise without affecting quantum coherence. For example, in
atomic quantum systems, laser intensity I can be monitored
separately from the quantum system, as Ω ∝ I . Changes in
I directly modulate ΩS/P and thereby provide feedback.

In multi-step RL, the agent aims to maximise cumula-
tive rewards over multiple steps, unlike the bandit setting
where actions are independent. In our setup, at the start of
each episode, a parameter µΩ is sampled uniformly from
[−µσ, µσ] to initialise an Ornstein–Uhlenbeck noise pro-
cess (see App. Sec. G.5 (25)). The agent’s control signal
at = Ωi(t) (amplitudes only) is affected by this noise, re-
sulting in Ω′

i = Ωi + νt. In bandit RL, the agent does
not observe the noise νt and selects the action in one step.
Conversely, in multi-step RL, each episode is divided into
four sections of 8 action samples corresponding to 0.25µs
each. The agent initially observes Ot = 0 but receives
the value of µΩ at times t = 0.25, 0.5, and 0.75µs (fur-
ther implementation details are given in App. Sec. A.2).
Fig. 5 illustrates that multi-step RL outperforms the bandit
approach, especially as µσ increases beyond 10.

6. Conclusion
In this work, we introduced a novel reinforcement learn-
ing implementation for controlling open quantum systems
by formulating quantum control as a constrained RL prob-
lem. By integrating physics-based constraints that exclude
control signals inducing overly fast quantum dynamics and
enforcing smooth pulses with finite rise-time, we enhanced
both the quality of control solutions and computational scal-
ability. Our approach outperformed existing RL and non-
RL methods on three key quantum control tasks, achieving
higher fidelities and increased robustness to time-dependent
noise. Achieving > 0.999 fidelity for the environments
is significant insofar as this is often quoted as the thresh-
old for error free quantum computing with error correction
(Gottesman, 2002; Fowler et al., 2012). We wish to high-
light here, that especially for the Transmon qubit, we find
novel waveforms that can be described with smooth func-
tional parametrisation and realised with standard hardware.
We are actively working on verifying the quality of our
found solutions on physical devices. For future work, we
envision extending our approach to more complex quantum
systems as required for fault tolerant quantum computing
with error correction, this includes multi-qubit systems and
higher-dimensional state spaces. Exploring adaptive con-
straint mechanisms that adjust during the learning process
could further improve performance in these large systems.
Additionally, future work would extend this to quantum
control tasks which require multiple sequential quantum
gates or other concatenated control operations. Develop-
ing generalised quantum control policies that incorporate
system-dependent observations during learning would en-
able a single policy to adapt across diverse qubits and de-
vices, significantly enhancing scalability. Validating these
solutions on real quantum hardware would accelerate the
practical advancement of quantum technologies. We also
wish to highlight that the methods presented here can ad-
dress a variety of complex control tasks in real-world phys-
ical systems, even in the presence of noise, imperfections,
and parameter drifts.

Limitations While our physics-constrained RL implemen-
tation enhances computational efficiency and solution qual-
ity, it may limit the exploration of control strategies that
involve very fast and non-adiabatic quantum dynamics. The
method’s effectiveness also relies on accurate modelling of
quantum systems, so models would first have to be estab-
lished for black box systems or more complicated real world
devices. Although we address certain types of noise and
perturbations, fully accounting for all experimental imper-
fections is an area for future work and we could consider
grey-box models of real devices.
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and Sanders, B. C. Symmetric rydberg controlled-
z gates with adiabatic pulses. Phys. Rev. A, 101:
062309, Jun 2020. doi: 10.1103/PhysRevA.101.
062309. URL https://link.aps.org/doi/10.
1103/PhysRevA.101.062309.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms,
2017.
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Álvarez, J.-R., IJspeert, M., Barter, O., Yuen, B., Barrett,
T. D., Stuart, D., Dilley, J., Holleczek, A., and Kuhn,
A. How to administer an antidote to schrodinger’s cat.
Journal of Physics B: Atomic, Molecular and Optical
Physics, 55(5):054001, March 2022. ISSN 1361-6455.

15

https://zenodo.org/record/22558
https://zenodo.org/record/22558
https://link.aps.org/doi/10.1103/PhysRevLett.109.240502
https://link.aps.org/doi/10.1103/PhysRevLett.109.240502
https://link.aps.org/doi/10.1103/PhysRevA.101.062309
https://link.aps.org/doi/10.1103/PhysRevA.101.062309
https://iopscience.iop.org/article/10.1088/2632-2153/ab9802
https://iopscience.iop.org/article/10.1088/2632-2153/ab9802
http://dx.doi.org/10.1038/s41586-023-05782-6
http://dx.doi.org/10.1038/s41586-023-05782-6
https://opg.optica.org/oe/abstract.cfm?URI=oe-31-2-3114
https://opg.optica.org/oe/abstract.cfm?URI=oe-31-2-3114
http://dx.doi.org/10.1103/RevModPhys.87.307
http://dx.doi.org/10.1103/RevModPhys.87.307
https://link.aps.org/doi/10.1103/PhysRevA.80.013417
https://link.aps.org/doi/10.1103/PhysRevA.80.013417
http://dx.doi.org/10.1088/0953-4075/32/18/312
http://dx.doi.org/10.1088/0953-4075/32/18/312
https://link.aps.org/doi/10.1103/RevModPhys.89.015006
https://link.aps.org/doi/10.1103/RevModPhys.89.015006
http://dx.doi.org/10.1038/s41534-021-00510-2
http://dx.doi.org/10.1038/s41534-021-00510-2
https://link.aps.org/doi/10.1103/PhysRevA.91.043846
https://link.aps.org/doi/10.1103/PhysRevA.91.043846
https://www.nature.com/articles/s41534-019-0201-8
https://www.nature.com/articles/s41534-019-0201-8


Reinforcement Learning for Quantum Control under Physical Constraints

doi: 10.1088/1361-6455/ac5674. URL http://dx.
doi.org/10.1088/1361-6455/ac5674.

Appendix
Here we present detailed explanations of the extended RL
background, quantum dynamical systems simulated in the
main paper, show auxiliary results and explain our imple-
mentation in greater detail.

A. RL Background
A.1. Bandit Setting in Reinforcement Learning

In the bandit setting, the RL problem is simplified as there
is no state transition, only actions and rewards. Each action
a ∈ A, which are time-dependent quantum control signals
∆i,Ωi yields a reward from a stationary probability distri-
bution. The objective is to maximise the expected reward
over a sequence of actions.

Formally, given a set of actions A, each action a ∈ A has
an unknown reward distribution with expected reward R(a).
The goal is to find the action a∗ that maximises the expected
reward:

a∗ = argmax
a∈A

E [R(a)] (4)

This setting forms the basis for more complex RL problems.

A.2. Extended Time Horizon in Multi-step RL

For multi-step RL, we consider an extended time horizon.
In contrast to the bandit setting, each episode is divided into
four sections, each of 1/4 the length of the total number
of action samples comprising the control signal. The agent
does not observe any information about the noise at time
step t = 0, with the observation Ot = 0. However, at time
steps t = 0.25, 0.5, and 0.75, the agent receives the value
of mean noise µΩ sampled at the beginning of the episode.
Formally, the observation function Ot is defined as:

Ot =

{
0 if t = 0

µΩ if t = 0.25k for k = 1, 2, 3
(5)

The agent’s policy π then uses this observation to decide the
action at each time step, where S̃t is the union of the state in
the bandit setting st and the observation Ot which defines
an action at through a conditional probability distribution
P:

π(s̃t, at) = P[at|s̃t, θ] (6)

In general extended time horizon RL, the agent must con-
sider the long-term consequences of its actions. This is
formalised through the discount factor γ, which ensures that
future rewards are appropriately weighted. Given that we
have a fixed number of four steps we set the discount factor
to zero.
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A.3. Proximal Policy Optimisation (PPO)

Proximal Policy Optimisation (PPO) (Schulman et al., 2017)
is a popular algorithm in modern RL, combining the benefits
of policy gradient methods with stability improvements.
PPO aims to optimise the policy by ensuring that updates
do not deviate too much from the previous policy. This is
achieved using a clipped objective function.

The objective function in PPO is defined as:

LCLIP(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1± ϵ)Ât

)]
(7)

where:

• rt(θ) =
πθ(at|st)
πθold (at|st) is the probability ratio under the new

and old policies.
• Ât is an estimate of the advantage function at time-step
t.

• ϵ is a hyper-parameter that controls the clipping range.

The clipping mechanism in the objective function ensures
that the new policy does not deviate significantly from the
old policy, thereby improving training stability and prevent-
ing large, destabilising updates.

PPO also incorporates an entropy bonus to encourage ex-
ploration and prevent premature convergence to suboptimal
policies. The overall objective with the entropy bonus can
be written as:

L(θ) = Et

[
LCLIP(θ) + c1Ât + c2E[πθ](st)

]
(8)

where c1 and c2 are coefficients, and E[πθ](st) denotes the
entropy of the policy at state st.

In summary, PPO effectively balances exploration and ex-
ploitation while ensuring stable policy updates, making it a
robust choice for RL in quantum control tasks.

B. Quantum Dynamics & Control
Quantum dynamics describes the time evolution of quan-
tum systems. A system’s state is represented by a
quantum state, a vector in a complex Hilbert space
H. The most common representation is the state vec-
tor |ψ⟩ ∈ H. A pure quantum state is described by
a normalised vector (Nielsen & Chuang, 2010) |ψ⟩ =(
ψ1, ψ2, · · · ψn

)⊤
, where ⟨ψ|ψ⟩ = 1. A more

general representation is the density matrix ρ, which for a
pure state is ρ = |ψ⟩ ⟨ψ| , (Nielsen & Chuang, 2010), and ex-
tends to classical mixtures of pure quantum states. The quan-
tum state populations are defined as |ψi|2 (i.e. the diagonal
terms of ρ). Operators in quantum mechanics are unitary,
making dynamics reversible. The unitary time evolution
of |ψ(t)⟩ is governed by the time-dependent Schrödinger
equation:

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ |ψ(t)⟩ , (9)

where ℏ is the reduced Planck constant, and Ĥ is the Hamil-
tonian operator representing the system’s total energy. Quan-
tum control manipulates systems to achieve desired dynam-
ics using time-dependent control fields, represented by the
control Hamiltonian. The total Hamiltonian Ĥ(t) of a con-
trolled system is (Giannelli et al., 2022b):

Ĥ(t) = Ĥ0 +
∑
i

ai(t)Ĥi, (10)

where Ĥ0 is the drift Hamiltonian, ai(t) are time-dependent
control actions, and Ĥi are control Hamiltonians. In open
quantum systems, environmental interactions lead to non-
unitary evolution, also sometimes described as non-coherent.
The master equation (Davies, 1974; Dirr et al., 2009) cap-
tures this evolution as:

∂ρ(t)

∂t
= − i

ℏ
[Ĥ, ρ(t)] + L(ρ(t)), (11)

where [Ĥ, ρ(t)] denotes matrix commutation, and L(ρ) de-
scribes non-unitary evolution (e.g. spontaneous emission,
dephasing, cavity decay, etc.). Fidelity is a common mea-
sure of similarity between quantum states. For arbitrary
density matrices ρ and σ, the fidelity (Jozsa, 1994) reads:

F(ρ, σ) =

(
Tr
√√

ρσ
√
ρ

)2

, (12)

where Tr is the trace. In this paper, we evaluate the fidelity
between a target state ρdes and the final evolved state ρ(tf )
to assess the effectiveness of the applied controls ai(t).

C. Electronic Λ Systems
A very common system configuration in quantum infor-
mation contains two ground-states |g1⟩ , |g2⟩, coupled by
a common excited state |e1⟩, as is required for the imple-
mentation of many quantum population transfer protocols,
such as Stimulated Raman Adiabatic Passage (STIRAP)
(Vitanov et al., 2017). We also include an additional ex-
cited state |e2⟩, detuned positively by an amount ∆X from
|e1⟩ to show the effect of crosstalk due to a coupling to an
undesired transition. This configuration is ubiquitous and
arises naturally in colour centres, quantum dots or other elec-
tronic quantum systems. An explicit energy level diagram
is provided in Fig. 6. ΩP/S denote the Rabi frequencies
of the Pump and Stokes pulses respectively and ∆P/δ are
the detuning of the Pump pulse from resonance as well as
the two photon detuning respectively. The Hamiltonian HΛ

used to model the unitary dynamics, defined in the basis
(|g1⟩ , |g2⟩ , |e1⟩ , |e2⟩), after an application of the rotating
wave approximation reads:
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|e1⟩

|e2⟩

|g1⟩ |g2⟩

|gΓ⟩

ΩP
ΩS

∆X

∆δ

∆P

Figure 6: Energy level diagram for four level Λ system with
state |e2⟩, detuned positively by ∆X from |e1⟩, to which
cross talk is suppressed. There is an additional state |gΓ⟩
which does not partake in the unitary dynamics, but to which
the excited states decay (cf. red dotted lines). This gives rise
to a lower bound in attained population transfer fidelities.
The laser couplings from Stokes and Pump laser are shown
in blue.

HΛ/ℏ =


0 0 ΩP

2
ΩP

2

0 ∆P −∆δ
ΩS

2 −ΩS

2
ΩP

2
ΩS

2 ∆P 0
ΩP

2 −ΩS

2 0 ∆P +∆X

 (13)

All Rabi frequencies ΩP/S are real. Additionally we include
a sink state to which spontaneous emission occurs which
couples equally to both excited state with rate Γ/

√
2, this is

realistic insofar as spontaneous emission can always occur
to states outside the manifold of interest, but as we do not
consider spontaneous emission to g1 or g2 we obtain lower
bounds on any population transfer fidelities F . The Lind-
bladian operator reads; Γ/

√
2 |gΛ⟩ ⟨ei|. In the main text,

the initial state is always fixed as |g1⟩, but the desired final
states are |g2⟩, as well as |+⟩ = 1/

√
2(|g1⟩ + |g2⟩), such

that we have two fidelity measures, Fπ and Fπ/2 where the
subscript denotes the rotation angle in the ground state basis.
Generally, the protocol can be extended to arbitrary angles θ,
but we focus on two without loss of generality. θ = π is an
extremely common scenario which is described extensively
in the literature (Vitanov et al., 2017) and θ = π/2 is also
common and has been described in Ref. (Vitanov et al.,
1999).

For the Λ system we introduce an additional reward term
which reads −wx · (⟨e1⟩ + ⟨e2⟩). This assigns lower re-
wards to non-coherent dynamics, since we seek coherent
population transfer and speeds up the learning dynamics.

We showcase two particular reference pulses for different
pulse areas in Fig. 3. Trade-offs between pulse areas and
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Figure 7: We show pulse area versus the fidelity for a
partial state rotation Fπ/2 and sweep wA, the pulse area
penalty weight defined in (3) (cf. App. Sec. G.4 for more
details) over a range of values [0, 0.1, 0.25, 1, 2] and ap-
proach minimal pulse area with respect to Ref. (Noram-
buena et al., 2023) whilst achieving significantly higher
fidelities > 0.975. There is a clear trade off and lower pulse
areas generally adversely affect fidelities.
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Figure 8: We sweep wA, the pulse area penalty weight (cf.
(3)) over a range of values [0, 0.1, 0.25, 1, 2] and approach
minimal pulse area with respect to Norambuena et al. (2023)
(green dotted line) whilst achieving significantly higher fi-
delities Fπ > 0.83 (cf. Norambuena et al. (2023)). There is
a clear trade off and lower pulse areas generally adversely
affect fidelities.

population transfer fidelity are shown in Figs. 7 and 8 for
θ = π/2, π respectively and we show that we approach the
lower pulse area limit described in Ref. (Norambuena et al.,
2023). We also show robustness to time-dependent noise in
Fig. 9.
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Figure 9: Robustness of PPO for Λ-system to randomly generated noise with µ∆ = 0.1 MHz (left) and µ∆ = 1 MHz (right)
plotted on a logarithmic scale and averaged over multiple seeds. The solid lines show the average infidelity, while the shaded
regions indicated one s.d. parallel environments. For small noise levels F > 0.999 as shown in the left plot for µ∆ = 0.1
MHz, but as it increases fidelities drop to just below 0.97. Robustness to larger levels of noise is addressed with multi-step
feedback in Sec. 5.4.

D. Rydberg gates
We first consider a Rydberg gate based on a single laser ex-
citation which is near resonant with the ground-state qubit
|1⟩ and Rydberg level |r⟩ transitions. Following the imple-
mentation experimentally shown in (Levine et al., 2019b)
and the Hamiltonian definition given in (Pagano et al.,
2022) the Hamiltonian for the one-photon Rydberg gate
Hr1 = H0 +Hint reads:

H0

ℏ
=

1∑
i=1

[
Ω

2

(
|r⟩ ⟨1|i + |1⟩ ⟨r|i

)
−∆ |r⟩ ⟨r|i

]
Hint

ℏ
= B |r, r⟩ ⟨r, r|

(14)

Here Ω(t) and ∆(t) are real amplitudes and detunings of a
Rydberg laser and B describes the dipole blockade strength.
The Linbladian terms are described by the addition of a
sink state gΓ which imposes a lower bound on fidelity
since any population which spontaneously decays leaves
the computational subspace, as for the Λ system. They
read;

∑
i Γr(|gΓ⟩ (⟨r, i| + ⟨i, r|) + Γr(|gΓ⟩ ⟨r, r|), where

Γr describes the decay rate of the Rydberg level. Many
optimisation protocols consider B → ∞, since the Rydberg
gate operates in the regime Ω << B which precludes cou-
pling of both qubits to |r⟩, however we fix B to a finite but
realistic value in the range of hundreds of MHz (Pagano
et al., 2022; Pelegrı́ et al., 2022; Sun, 2023).

One of the drawbacks of this implementation, as described
in the main text however, is that it is not particularly robust

in the face of signal imperfections and noise, such as atomic
motion, laser intensity of frequency fluctuations. Some
work has been done to improve its robustness to quasi-static
errors (Jandura et al., 2023; Mohan et al., 2023), but this
often comes at the expense of the overall gate duration
(Fromonteil et al., 2023) which is undesirable. Using the
physics of a two photon process (similar to the Λ system
dynamics) we follow the Hamiltonian definition Hr2 =
H0,2 +Hint,2 for a two-photon Rydberg gate given in (Sun,
2023) (where h.c. denotes the hermitian conjugate):

H0,2

ℏ
=

ΩP (t)

2
|10⟩ ⟨e0|+ ΩS(t)

2
|e0⟩ |r0⟩+ h.c.

+∆P (t) |e0⟩ ⟨e0|+∆S(t) |r0⟩ ⟨r0|
(15)

with time-dependent Rabi frequencies ΩP (t),ΩS(t), and
values for the one photon detuning ∆P and two-photon
detuning ∆S . The Hamiltonian terms for |01⟩ follow anal-
ogously from symmetry considerations by swapping all
qubits in their respective state in H0,2.

The interaction Hamiltonian Hint,2 for the state |1, 1⟩ con-
sists of the atom light interaction as well as the dipole-
dipole interaction akin to (14). A basis transformation sim-
plifies the Hamiltonian, the new basis states read |ẽ⟩ =
(|e1⟩ + |1e⟩)/

√
2, |r̃⟩ = (|r1⟩ + |1r⟩)/

√
2 and |R̃⟩ =

(|re⟩ + |er⟩)/
√
2, after the rotating wave approximation,

and effectively neglecting |ee⟩, as we are in the regime
where ∆P >> ∆S , Hint,2/ℏ can be expressed as:
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Figure 10: Comparison of quantum state dynamics for our
RL solution (top) and Optimal Control solution (bottom).
The RL solution exhibits a clearer interpretation of the op-
timal state dynamics with a smooth population of |g2⟩ and
low excited state population |ei⟩. The optimal control so-
lutions achieves high final population of the state |g2⟩, but
the time evolution of the quantum states do not offer such
a clear interpretation of the optimal time dynamics of the
system.

Hint,2

ℏ
=

ΩP (t)√
2

|11⟩ ⟨ẽ|+ ΩS(t)

2
|ẽ⟩ ⟨r̃|+

ΩP (t)

2
|r̃⟩ ⟨R̃|+ ΩS(t)√

2
|R̃⟩ ⟨rr|+ h.c. +

∆P (t) |ẽ⟩ ⟨ẽ|+ (2∆P (t) +B) |rr⟩ ⟨rr|+
(∆P (t) + ∆S(t)) |R̃⟩ ⟨R̃|+∆S(t) |r̃⟩ ⟨r̃|

(16)

Parameters ΩS/P ,∆S/P , B are defined as in (14). The Lind-
bladian decay terms for the two photon Rydberg gate are
described similarly as for the one photon Rydberg gate.
They read;

∑
i Γr(|gΓ⟩)(⟨r, i| + ⟨i, r|) + Γr(|gΓ⟩ ⟨r, r|) +∑

i Γe(|gΓ⟩ (⟨e, i| + ⟨i, e|) + Γe(|gΓ⟩ ⟨e, e|), where Γr de-
scribes the decay rate of the Rydberg level and Γe the decay
of the excited level |e⟩ where for typical atoms Γe >> Γr.

Akin to the Λ system we introduce an additional reward term
which reads −wx ·(⟨rr⟩+⟨ẽẽ⟩+⟨r̃r̃⟩+⟨rr⟩+⟨R̃R̃⟩). This
assigns lower rewards to non-coherent dynamics, since we
seek coherent population transfer and speeds up the learning
dynamics.

The fidelity FR is defined by the Bell state fidelity as is com-
mon in optimisation protocols of the Rydberg gate (Saffman
et al., 2020; Jandura et al., 2023):

FR =
1

16
|1 +

∑
10,01,11

e−iθq ⟨q⟩ψ0
q |2, (17)

without loss of generality, we focus on the C-Z gate where
θq = 0, except θ1,1 = π, this is particularly useful insofar as
it does not require additional single qubit rotations (in com-
parison to a general C(θ) gate) and does not introduce any
further time overhead associated with additional rotations.

As described in the main text, we focus on the implemen-
tation of a two-photon Rydberg gate. For this, we fix the
detuning of the pump pulse to a constant value, since a time-
dependent frequency chirp offers no advantages in terms
of achievable maximum fidelities, so we merely optimise
its constant value. Over a duration of 0.5µs we fix ΩS to a
maximum value of 40 and Ω2

P /(2∆P ) (the effective Rabi
frequency) to a maximum value of 56.6 with a pump detun-
ing of 2.5 GHz and obtain an optimal control signal which is
shown in Fig. 11. It shall be noted that the signals are differ-
ent from results in the literature since we impose the realistic
constraint of amplitudes to start and end at zero amplitude
compared to (Sun, 2023). The optimal time-dependent con-
trol signals for a direct realisation of a C-Z gate are shown
in Fig. 11. Simulated randomised benchmarking with 100
randomly generated initial states yields very similar fideli-
ties to those obtained from the definition given in 17 with
the 0.25µs C-Z gate yielding F ≈ 0.99957± 0.0003 (ver-
sus ≈ 0.99958 as obtained by taking the Bell state fidelity).
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Figure 11: We show optimal signals for a two photon Rydberg gate directly realising a C-Z gate, with amplitudes (i.e. Rabi
frequencies) for Stokes and Pump pulses in MHz shown in the top column. The effective maximum Rabi frequency of the
pump pulse (Ω2

P /2 ∗∆P ) is ≈ 20 to match that of the Stokes pulse. Detunings of the Stokes and Pump pulse are shown in
the bottom row. Note the symmetry of the Stokes detuning in time which shows a semblance of a reflection symmetry about
its centre which ensures that a relative π phase is acquired between the basis states (cf. (17)) and their populations largely
return to their initial values. This pulse yields a fidelity of 0.99917 for a 0.5µs duration and can be shortened to 0.25µs
with all signals re-scaled by 2 which yields a fidelity of 0.99958 since we are mainly Rydberg level lifetime limited, with a
finite blockade strength of 500MHz. This pulse is also shown to be robust across a variety of noise levels in amplitude and
detuning.
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Figure 12: Comparisons of different RL Algorithms for Two Photon Rydberg Environment. As in Fig. 2 We compare
three model-free RL algorithms — PPO (Schulman et al., 2017), DDPG (Lillicrap et al., 2016) and TD3 (Fujimoto et al.,
2018). Each algorithm is run on the same Nvidia V100 GPU, using a single set of optimised hyper-parameters per method,
with a common batch size (one s.d. shaded) for the same number of total steps. We compare standard (vanilla) versions
of the algorithms with the reward function L = F , to our constrained formulation, using the reward defined in Eq. 2 and
incorporating step-size penalties (cf. Eq. 3). Vanilla PPO still performs reasonably, but it should be noted that it generates
solutions which are extremely difficult to realise experimentally because of very high instantaneous bandwidth requirements,
therefore, motivating a constrained formulation which also improves computational speed as shown in FIg.. 1. PPO achieves
the best overall performance, surpassing DDPG and TD3 by several orders of magnitude in mean infidelity. Furthermore,
within a 24 hour GPU runtime period we could not achievable any reasonable fidelities with the alternative RL algorithms.

Moreover, we observe a mean fidelity of F > 0.999 for
time-dependent unbiased amplitude noise of σΩ = ±1 MHz
and frequency noise of σ∆ = ±20 MHz over 10 different
randomly generated noise samples (cf. Eq. 25) for further
details.

Following remarks made in Ref. (Sun, 2023) we reiterate
that we show increased resilience to noise and achieve fi-
delities in excess of 0.999 even with significant levels of
time-dependent noise, spontaneous emission (using realistic
parameters for a 87Rb (Sun, 2023) atom) and a finite block-
ade strength of 500 MHz. Moreover, our control solution
is robust in fidelity across a variety of smaller blockade
strengths.

E. Transmon Qubit Reset
Methods for unconditional transmon qubit reset with fixed-
frequency devices involve using the coupling of a transmon
to a low lifetime resonator through which excitations de-
cay quickly. One particular hardware efficient protocol is
based on a cavity-assisted raman transition utilising the
drive-induced coupling between |f0⟩ and |g1⟩, where |sn⟩
denotes the tensor product of a transmon in |s⟩ and a read-
out resonator mode in the fock state |n⟩. By driving the
transmon simultaneously at the |e0⟩ ↔ |f0⟩ transition and

the |f0⟩ ↔ |g1⟩ transition, we can form a Λ system in the
Jaynes-Cummings ladder which can be used to reset the
transmon through fast single photon emission. The trans-
mon reset Hamiltonian is given by

H

ℏ
=χa†aq†q +

gα√
2δ(δ + α)

Ω(t)(q†q†a+ h.c. )+

(∆(t) + δS(t))q
†q

(18)

where a(a†) is the resonator lowering (raising) opera-
tor, q(q†) the transmon lowering (raising) operator, χ the
transmon-resonator dispersive shift, α the transmon anhar-
monicity, g the transmon-resonator coupling rate, δ the dif-
ference in the transmon and resonator resonant frequencies,
Ω(t) the transmon drive amplitude, ∆(t) the transmon drive
detuning, and δS(t) the drive-induced stark shift. As deter-
mined in Zeytinoğlu et al. (2015), this stark shift is to first
order quadratic in the drive amplitude, δS(t) = kΩ2(t). For
the transmon mode we consider three levels |g, e, f⟩ cou-
pled with a two level resonator. We neglect self-Kerr terms
in the resonator mode as we target single photon populations
where such non-linearities are not significant.

The Lindbladian for the transmon reset simulation is given
by
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ρ̇ = −i [HS , ρ] + κD[ρ] + ΓD[ρ] (19)

with κ describing the resonator decay rate, and Γ the trans-
mon decay rate.

We construct the transmon reset environment to match the
physical parameters in Egger et al. (2018a), with maximum
drive amplitudes of 330 MHz, however with an additional
small detuning control of up to ±100 kHz for frequency
corrections. To represent bandwidth constraints, we add a
Gaussian convolution of duration 14ns to the amplitude and
detuning defined in (20). We use the same reward function
as in previous environments with a calibrated max-steps
limit of 900, and we neglect the pulse area penalty.

We first optimise the reset for a higher qubit lifetime of
T1 = 500 us, representing the transmon lifetimes currently
attainable in experiment. Optimal waveforms and corre-
sponding transmon populations are shown in Fig. 4, where
the RL Pulse can achieve fidelities of 0.9997 even with
realistic bandwidth constraints. Notably, we find the RL
agent consistently produces Gaussian-square like waveform
for the drive amplitude, satisfying the high amplitude reset
rate and optimising its smoothing. Novelty is observed in
the time-dependent detuning, which first stays at a constant
frequency throughout the drive until at reset a quick shift
is observed from negative to positive. This results in the
overall waveform correcting dynamic stark-shifts induced
by the drive amplitude fall time, allowing for near ideal reset
fidelities.

When reducing the transmon lifetime to T1 = 48µs as used
in prior experimental work, the RL agent produces a similar
waveform that achieves 0.997 fidelity matching the ideal
calibrated square evolution, and achieving higher results
than a calibrated square pulse which gets 0.992 and the
experimental results in Egger et al. (2018a) which achieved
0.983. The success in optimising over a range of transmon
T1 lifetimes demonstrates that high fidelity unconditional
reset can be achieved on current Noisy Intermediate Scale
Quantum devices with advanced pulse control.

We further verify the RL solution quality in the context of a
more significant Gaussian-smoothing kernel of 25ns and a
qubit T1 = 500µs, and find that it achieves high fidelities of
0.9995 while a standard square calibrated waveform deterio-
rates further to 0.9944 as errors arising from the uncorrected
stark shifts become more significant.

E.1. Heaviside Corrected Gaussian Square

For the |f0⟩ ↔ |g1⟩ transition in the reset process, the RL
agent consistently finds a Gaussian Square pulse for the
drive amplitude which reminisces of prior works, however
with an additional Heaviside detuning profile as seen in

Figure 4 which applies a frequency shift during the ring-
down of the amplitude pulse.

This pulse, which we dub Heaviside-Corrected Gaussian
Square (HCGS), directly corrects for a Hamiltonian which
includes a drive-dependent stark-shift. Due to the finite ring-
up time required for the amplitude, a negative frequency
shift is applied to correct the positive amplitude-induced
stark-shift. The negative frequency shift is applied through-
out the reset until the ring-down. Before the ring-down of
the square pulse, the Heaviside profile produces a positive
detuning to correct for the negative amplitude-induced stark
shift.

We note that this profile behaves quite similarly to past
protocols such as DRAG where an additional phase com-
ponent can be added to correct for unwanted Hamiltonian
terms in the system. To further account for frequency band-
width limitations, i.e. finite rise times for the phase control,
the Gaussian Square duration t0 and the Heaviside switch
time t1 can be at different points, with the Heaviside typi-
cally occurring a few nanoseconds earlier to account for the
amplitude-driven stark shift.

Overall the HCGS reset pulse only requires 4 parameters,
the amplitude Ω0 and duration t0 of the Gaussian Square,
along with the detuning magnitude ∆0 and the Heaviside
switch time t1. Since the calibration of the Gaussian square
pulse parameters has already been described in various past
works (Magnard et al., 2018; Egger et al., 2018a), to cali-
brate the HCGS reset only a further sweep of the detuning
magnitude and switch time would be required to reach real
world performance of RL-optimised waveforms.

F. Experimental Feasibility
Although we focus on simulations of physical experiments
we want to highlight below that it is physically feasible to
implement our RL approach on real physical devices with
fast gate times < 1µs in feasible time frames.

The amount of measurements is a function of the amount
of RL steps required until convergence, specifically, for the
Lambda system and Transmon system it is Nupdates ∗ b
where b is the batchsize. For the noise free Lambda and
Transmon system, this number is: 5100 ∗ 256 and 578 ∗ 256.
For the Rydberg system, the physical number of measure-
ments is m ∗ Nupdates ∗ b (where m = 4 – which is an
overhead associated with the quantum state reconstruction),
for the Rydberg environment this number is: 4 ∗ 6800 ∗ 256.

In Baum et al. (2021) the authors show that they generate
complete gate sets on a real device with O(106) measure-
ments (i.e. individual steps) per gate, with gate times on
the order of 100ns. The reported experimental runtime in
(Baum et al., 2021) is on the order of hours, with API calls
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dominating this time overhead, showing the feasibility of
scaling to large measurement numbers in real devices.

G. Implementation Details
G.1. Training Implementation Details

We leverage the Qiskit-Dynamics Solver interface (Puzzuoli
et al., 2023) 2 for constructing both Hamiltonians and col-
lapse operators, enabling the simulation of open quantum
systems through the dissipative master equation. We employ
the Diffrax ODE solver (Kidger, 2022) for quantum system
simulation, which utilise adaptive step-sizing techniques to
efficiently integrate the first-order linear differential equa-
tions, PureJAXRL for implementing PPO algorithms (Lu
et al., 2022) and CleanRL (Huang et al., 2022) for TD3 and
DDPG.

G.2. Hyperparameters for RL Algorithm Benchmark

Hyperparameter PPO TD3 DDPG
ACTIVATION relu6 relu6 relu6
ANNEAL LR false false false
CLIP EPS 0.2 – –
ENT COEF 0 – –
GAE LAMBDA 0.95 – –
GAMMA 0.99 0.99 0.99
LAYER SIZE 256 256 256
LR / LR ACTOR 0.0005 0.0003 0.0003
LR CRITIC – 0.0003 0.0003
MAX GRAD NORM 0.5 – –
MINIBATCH SIZE 32 – 32
NUM ENVS 256 256 256
NUM MINIBATCHES 8 – 8
NUM STEPS 1 1 1
NUM UPDATES 30,000 30,000 30,000
UPDATE EPOCHS 4 – 4
BATCH SIZE – 256 256
BUFFER SIZE – 100,000 100,000
EXPLORATION NOISE – 0.15 0.15
NOISE CLIP – 0.5 –
POLICY FREQ – 1 1
POLICY NOISE – 0.2 –
TAU – 0.01 0.01
LEARNING STARTS – 1,000 1000
VF COEF – – 0.5

Table 2: Comparison of RL hyperparameters for comparison
of PPO, TD3, and DDPG in Figs. 2 and 12.

We describe the RL hyper-parameters for our algorithm
comparisons in Tab. 2. The vanilla algorithms use a loss

2Similar functionality is available in Dynamiqs with compara-
ble performance characteristics (Guilmin et al., 2024).

function which only contains a linear fidelity term F . The
constrained formulations use a loss function as defined in Eq.
2 with appropriate smoothing hyper-parameters described
in Fig. 14 and a max step size as inferred form Fig. 1.

G.3. Benchmarking of Simulation Speed

Benchmarking absolute compute times across different hard-
ware platforms, such as CPUs and GPUs, is challenging due
to both systematic and random variations, even within the
same architecture. Nevertheless, Fig. 13 highlights the ad-
vantages of GPU parallelisation for quantum simulations.
We observe up to a two-order-of-magnitude improvement
in speed per environment step, showcasing the significant
performance benefits of running parallelised quantum simu-
lations on GPUs, despite potential variability in the absolute
timings.

Algorithm Time to Conv. (s)
Our PPO 239.1
Reinforce RL (Brown et al., 2021) 2284.8
OC (BFGS) (Giannelli et al., 2022b) 274.08
Krotov (Goerz et al., 2019) 3997

Table 3: Comparison of convergence times for different
control algorithms which are benchmarked in Tab. 1 in the
main text. Most of the algorithms we benchmarked did not
run on GPU so we provide a CPU benchmark here (Mac
M1 2020). We use a batch-size of 16 for Reinforce and our
PPO implementation. We note that our implementation is
largely faster due to the use of just in time compilation and
automatic differentiation (Bradbury et al., 2018), but some
speed up also comes from using a step size constraint on the
ODE solver.

Moreover, we compare the runtime of the different algo-
rithms benchmarked in Tab. 1 in the main text in Tab. 3
on a CPU and note that our implementation is faster. The
RL algorithms implemented in Fig. 2 all ran on the same
GPU and exhibit very similar compute times, hence we did
not include an explicit timing comparison (the same holds
for Fig. 12). However, we note that on the same GPU our
constrained PPO formulation achieves > 0.99 fidelity in
39s compared to 4945s for DDPG and 4517s for TD3.

G.4. Signal Processing & Analysis

The RL agent samples actions from the interval [−1, 1], for
Rabi frequencies ΩP/S , we rescale this on the output range
[0, 1] such that all amplitudes ΩP/S are always positive and
real, since phase changes are already considered by the
optimisation of ∆P/δ . No analogous rescaling is performed
for detunings ∆i. Thereafter,we rescale any action (in what
follows any action, either amplitude Ωi or detuning ∆i is
defined as ai) by the maximum Rabi frequency Ωmax or
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Figure 13: We compare the time per environment step for Qiskit Dynamics simulation across multiple environments (Λ
system, two photon Rydberg gate and Transmon) under noise-free and Orstein Uhlenbeck noise conditions. The left panel
shows the Λ system simulation timings, while the right panel illustrates the Rydberg two-photon simulation timings on a
V-100 Nvidia GPU where we parallelise the simulation of several environments with different random actions and a fixed
number of ODE solver steps= 4096. The solid lines represent the simulation times obtained with a GPU, while the dashed
and dotted horizontal lines indicate the corresponding CPU timings (Apple Silicon M1) for Qiskit (noise-free and O-U noise,
respectively). Simulation time per environment is plotted on a logarithmic scale and in the best case we get up to about two
orders of magnitude improvement in simulation time per environment in a larger batch by moving to a GPU.
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Figure 14: Ablation over smoothness penalty coefficients w∆ = wΩ and filter standard deviation tσ for three different
environments. Choice of smoothing parameters is important for learning policies with low mean infidelity 1−F (averaged
over 64 parallel environments). For some systems, like the Λ system higher filter s.d. leads to lower infidelity, whilst for
other like the Transmon higher smoothing penalties lead to lower infidelities. The relationship to experimental feasibility
with limited bandwidth electronics is analysed in Fig. 15.
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Figure 15: Using the optimised control signals for the Λ-system obtained from the smoothing hyper-parameter ablation
study (Fig. 14), we analyse the instantaneous frequency change between successive output samples. This quantity is defined
as | dS

dsample |, where S = Ω(t) cos
(
2π

∫ t

0
∆(τ)dτ

)
, and the signal S(t) is digitally sampled at 1GSa/s, corresponding to

state-of-the-art arbitrary waveform generator (AWG) capabilities (Keysight, 2024). We plot the mean (left) and maximum
(right) instantaneous frequency changes across consecutive samples. Our results show that lower smoothing penalties
and smaller kernel standard deviations lead to significantly larger maximum and mean instantaneous frequency variations.
Instantaneous frequency changes of several hundred MHz pose serious challenges for experimental realisation, as changes
exceeding 200MHz between samples are likely to induce severe signal distortions and fall outside the operational bandwidths
of typical digital-to-analog converters (DACs), amplifiers, and other components in the signal chain. In contrast, signals with
maximal instantaneous frequency changes of ≈ 100MHz are far more compatible with standard experimental hardware.
Thus, in addition to improving computational efficiency, the application of smoothing constraints is critical for ensuring that
the optimised control signals are easily experimentally realisable. Similar results are found for the other physical systems
but they are not further presented in favour of brevity.
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maximum detuning ∆max.

We apply additional smoothing and rescaling operations to
ensure the agent discovers experimentally realistic pulses.
The time-scale of the dynamics simulation of fixed to some
finite value, namely 1µs for the Λ system, 0.5µs the Ryd-
berg atom and 0.2µs for the transmon. In turn all control
signals are defined in units of MHz, both ∆P/δ and ΩP/S

are divided into 50 timesteps for the Λ system and Rydberg
atom and 100 timesteps for the transmon. This gave a good
tradeoff between signal expressiveness and speed.

The actions ai are smoothed with a Gaussian convolution
(a ∗ G)(t) =

∫∞
−∞ A(τ)G(t − τ) dτ , where the Gaussian

function G(t) is defined as:

G(t) = N(tσ) exp

(
− t2

2 · t2σ

)
, (20)

where tσ defines the standard deviation and its value corre-
sponds to the strength of the convolution filter. An ablation
over this is provided in Fig. 14. This ensures that the
generated time-dependent control signals are smooth and
give rise to dynamics which can be solved in fixed number
of time-steps, particularly at the beginning of the learning
process when signals are randomly initialised. Pulse ampli-
tude ends are always fixed at zero to ensure experimental
viability with finite rise time effects, as signals cannot in-
stantaneously start at non-zero amplitudes. Additionally, we
use cubic spline interpolation (or linear interpolation for the
transmon) between action samples which is efficient for use
with adaptive step size solver used for solving the master
equation in different environments.

The pulse smoothness is defined in terms of different pulse
smoothness functions. The first smoothing function is con-
structed by calculating the second derivative of A(t):

Sder(a(t)) =

∫ 1

0

(
d2A
dt2

)2

dt. (21)

An alternative smoothing function is defined in terms of
the difference in output to that generated by a low pass
Butterworth filter (Butterworth, 1930). This requires an
expression of the filtered action which is the convolution
of A(t) with the impulse response h(t) of the Butterworth
filter:

afilter(t) = (h ∗A)(t) =
∫ 1

0

h(t− τ)A(τ) dτ (22)

Calculating the difference with respect to the unfiltered
signal, we get an expression for the low-pass smoothness
with respect to a cut-off frequency ωmax and the filter order
norder:

Slp(a(t), norder, ωmax) =

∫ 1

0

|afilter(t)− a(t)| dt. (23)

It shall be noted that since all signals are discretised, the inte-
grals decompose into discrete sums. The reference smooth-
ness for an action is given by S(B(t)), where B(t) is the
Blackman window comprised of n samples where n also
defines the number of signal samples corresponding to Ωi

or ∆i.

B[n] =


0.42− 0.5 cos

(
2πn
N−1

)
+

0.08 cos
(

4πn
N−1

)
, 0 ≤ n ≤ N − 1,

0, otherwise.
(24)

This choice is made as it is designed to have minimal spec-
tral leakage, which means it suppresses high-frequency com-
ponents effectively and mimics the smoothness of the sig-
nals that we are looking for. Penalising pulse smoothness
is required because even after applying a convolution filter,
we do not attain signals which exhibit low enough smooth-
ness. The importance of generating ”smooth” functions is
three-fold. Firstly smoother waveforms are easier to exper-
imentally implement with electronics with limited instan-
taneous bandwidth, as well as finite modulator rise times,
and they are less vulnerable to signal chain delay or timing
issues. This is shown in Fig. 15. Secondly, they are more
interpretable in terms of the time evolution of the different
quantum states. This is shown in Fig. 10. Thirdly, increased
smoothness significantly speeds up the adaptive step size
solver time which is particularly advantageous when work-
ing with limited computational resources or larger quantum
systems.

Choosing the right smoothness penalty in the construction
of the reward function is important as it can determine the
learning speed and the extent to which realistic and inter-
pretable controls are generated. We find, that a low-pass
filter approach with the right cut-off frequency generally
works well and provides the fastest learning of ”smooth
signals” as shown in Fig. 16. Other simpler smoothness
functions such as the L1 or L2 norm are not considered be-
cause they were less well adapted for finding smooth signals
that solved the quantum dynamics problems with a finite
number of maximal adaptive solver steps.

Picking the right hyper-parameters for the Gaussian convo-
lution filter standard deviation tσ defined in (20), as well as
the right smoothing penalties w∆ and wΩ (cf. (3)) is cru-
cial to ensure the optimal trade-off between smooth signal
discovery to facilitate parallel optimisation, improved inter-
pretability and discovery of high fidelity solutions. Overly
strong signal smoothing or smoothing penalties result in
the optimiser focussing largely on signal smoothness over
fidelity of the quantum control task which is the primary
objective. This is shown clearly in Fig. 14, where the Λ
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Figure 16: Comparison of different smoothing functions for
mean infidelity (1- F ) across 32 parallel environments with
different seeds plotted against the number of RL Updates
for multi-level Lambda system. The legend corresponds to
the type of smoothness penalty used where the ordering of
the labels describes the amplitude and detuning smoothness
functions respectively. One can observe that particularly
for the amplitudes Ωi, using a low pass filter (LPass cf.
(23)) instead of a second derivative penalty (SDer cf. (21))
allows for significantly sped up learning and also higher
mean fidelity. For this ablation, the smoothness penalties
wΩ = w∆ are fixed to 0.001.

system benefits from higher strict smoothing in form of a
larger Gaussian kernel and higher weak smoothing in form
of a larger pulse smoothness penalty, compared to the two
photon Rydberg gate.

A final objective which competes with the fidelity, are the
pulse areas A(Ωi) and implicitly the pulse duration. Ωmax

is limited physically by laser, RF or microwave power. Ad-
ditionally, minimising pulse area is important for reducing
the pulse energy and in turn the amount of heat introduced
into the system, particularly for those quantum systems op-
erating at cryogenic temperatures. Generally faster pulse
sequences increase the clock cycles of a particular quantum
operation which is desirable, but secondary to their fidelity,
so implementing optimal control for some maximal ampli-
tude Ωmax but with a minimal pulse area is considered in
the example of a Λ system. The baseline pulse area (cf. (3)),
which is particularly relevant for the results shown in Fig. 8
and Fig. 3 is computed by comparing the generated pulse
area A =

∫ t=1

t=0
Ω(t)dt to the area of a Blackman window

AB defined over the same timescale.

G.5. Noise Model

We use an Ornstein-Uhlenbeck noise model defined with
standard deviation σ and mean µ which defines time-

dependent noise in time t:

νt = νt−1(1− α2) +
√
2σX(t)α+ σ2µ, (25)

where α defines the characteristic time scale of the noise
fluctuations and X(t) is random Gaussian noise at time t
with a standard deviation of 1 and a mean of 0.
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