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Abstract. The cryptographic foundations of e-auction and e-voting schemes are similar,
for instance, seminal works in both domains have applied mixnets, homomorphic encryption,
and trapdoor bit-commitments. However, these developments have appeared independently
– for example, the adoption of mixnets in e-voting preceded a similar adoption in e-auctions
by over two decades – and the two research communities are disjoint. In this paper, we
demonstrate a relation between e-auction and e-voting: we present Hawk and Aucitas, two
e-auction schemes derived from the Helios and Civitas e-voting schemes. Our results make
progress towards the unification of the e-auction and e-voting domains, thereby paving the
way for developments in e-voting to be capitalised upon in the development of e-auctions.
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1 Introduction

An e-auction is a process for the trade of goods and services from sellers to bidders (or buyers),
with the aid of an auctioneer. We study sealed-bid auctions (see Brandt [Bra10] for discussion
of other types of auctions), which are defined as follows. First, each bidder submits a bid which
encapsulates the price that the bidder is willing to pay. Secondly, the bids are opened to derive
the winning price. Finally, the winner is revealed. The winning price and winner are derived in
accordance with the auction’s policy, for example, in first-price sealed-bid auctions the winning
price is the highest price bid and the winner is the bidder who bid at the winning price. We shall
focus on M th price sealed-bid auctions, which generalise first-price sealed-bid auctions to sell M
identical items at the highest price that M bidders are mutually willing to pay. For instance, in
the case M = 6, six identical items will be sold at the sixth highest price that is bid, because
six bidders are mutually willing to pay this price. Such auctions are used to auction telecoms
spectrum [Gar13], vehicles [US 13b] and land [US 13a], for example.

An election is a decision-making process by which voters choose a representative from some
candidates. We study secret ballot elections (see Saalfeld [Saa95, §2] for discussion of other types
of election), which are defined as follows. First, each voter submits a ballot which encapsulates
the voter’s chosen candidate (i.e., the voter’s vote). Secondly, all ballots are tallied to derive the
distribution of votes. Finally, the representative is derived in accordance with the election’s policy,
e.g., in first-past-the-post elections (see Lijphart & Grofman [LG84] for discussion of other types of
policy) the representative is the candidate with the most votes. In this paper, we shall demonstrate
that it is possible to derive e-auction schemes from e-voting schemes.

Constructing e-auction schemes from e-voting schemes. Our translation from an e-voting scheme
to an e-auction scheme assumes that prices can be represented as candidates, for example, an
e-auction with a starting price of 10, price increments of 5 and a price ceiling1 of 30 can be
represented by the following five candidates: 10, 15, 20, 25 and 30 (we refer to these values as

? This paper is the long version of [MSQ14].
1 A price ceiling – that is, an upper bound on the price that may be offered by bidders – is common in

e-auctions.



biddable prices). In this setting, an e-auction proceeds as follows. First, to bid for a particular
price, bidders “vote” for the candidate that represents the price that the bidder is willing to pay,
for example, a bid at price 20 is captured by a “vote” for the third candidate. Secondly, the
bids are “tallied” to determine the distribution of “votes” and the winning price is derived from
this distribution: the winning price is the largest price in (10, 15, 20, 25, 30) for which at least M
bidders “voted” at or above. Finally, we link the winning price to winning bidders. This final step
distinguishes our e-auction scheme from the underlying e-voting scheme and we shall see that this
can be achieved in the context of secret ballot elections.

1.1 Security properties

Bidders should be able to bid in auctions without fear of repercussions; this property is known as
privacy . Formulations of privacy depend on the environment and bid secrecy has emerged as a de
facto standard privacy requirement of e-auction schemes in collusion-free environments.

– Bid secrecy: A losing bidder cannot be linked to a price.

A stronger formalisation of bid secrecy is bidder anonymity.

– Bidder anonymity: Bidder identities are not revealed.

Bidder anonymity is useful to hide the identities of bidders and, hence, helps prevent bid suppres-
sion (that is, a situation in which a conspirator asks a bidder not to submit a bid, perhaps in
an attempt to eliminate competing bidders). Intuitively, bidder anonymity is stronger than bid
secrecy, since losing bidders cannot be linked to prices in auctions where bidder identities are not
revealed. We are also interested in receipt freeness and collusion resistance2 (to help prevent bid
rigging [ZZ10,JL08,HP89] by conspiring bidders), which provide privacy in hostile environments.

– Receipt freeness: A losing bidder does not gain information which can be used to prove, to
a conspirator, how they bid.

– Collusion resistance: A losing bidder cannot collaborate with a conspirator to gain infor-
mation which can be used to prove how they bid.

Roughly speaking, the above properties correspond to the following properties of e-voting schemes:
bid secrecy corresponds to ballot secrecy, bidder anonymity corresponds to a notion of invisible ab-
senteeism, receipt freeness corresponds to a property with the same name, and collusion resistance
corresponds to coercion resistance [SB13,Sma12,BHM08,DKR09].

Verifiability allows bidders and observers to verify that bids have been recorded and tallied
correctly without trusting the system running the e-auction. The concept is intended to avoid
situations whereby systems are trusted and, subsequently, discovered to be untrustworthy, thus
bringing auctions into disrepute. We distinguish the following three aspects of verifiability.

– Outcome verifiability: A bidder can check that their bid is included in the e-auction and
anyone can check that the winning price is valid.

– Eligibility verifiability: Anyone can check that all bids were submitted by registered bidders.
– Non-repudiation: Anyone can check the winners’ identities.

Outcome verifiability is a de facto standard requirement of e-auction schemes and eligibility ver-
ifiability is important if bidding should be restricted to registered bidders. However, eligibility
verifiability typically increases complexity and reduces usability – for instance, an infrastructure
for bidders’ credentials is assumed by Peng et al. [PBDV03] – and has been largely neglected by
existing e-auction schemes. Non-repudiation prevents winners from claiming that they did not
win. Roughly speaking, outcome verifiability corresponds to individual and universal verifiabil-
ity properties of e-voting, and eligibility verifiability corresponds to a property with the same
name [Smy11,KRS10]. There is no corresponding property for non-repudiation.

We are also interested in the following functional requirement.

2 Dreier et al. [DLL13] refer to collusion resistance as coercion resistance, we dislike this terminology,
since it is suggestive of coercion rather than collusion.
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– Price flexibility: Bidders can submit any price.

Price flexibility avoids restricting the bidding amount (although, for practical purposes, we typi-
cally assume a starting price of 1, price increments of 1, and the price ceiling to be bounded by
the security parameter). Roughly speaking, price flexibility corresponds to the write-in property
of e-voting.

1.2 Our contribution and motivation

There is an abundance of rich e-voting research which can be capitalised upon to advance e-
auctions. Indeed, this statement can be justified with hindsight: Chaum [Cha81] exploited mixnets
in e-voting schemes twenty three years before Peng et al. [PBDV04] made similar advances in e-
auctions (Jakobsson & Juels [JJ00] use mixnets in a distinct manner from Chaum and Peng et al.),
Benaloh & Fischer [CF85] proposed the use of homomorphic encryption seventeen years before
Abe & Suzuki [AS02a], and Okamoto [Oka96] demonstrated the use of trapdoor bit-commitments
six years before Abe & Suzuki [AS02b]. In this paper, we demonstrate that e-voting schemes
can be used to construct e-auction schemes, thereby paving the way for developments in e-voting
to be followed by advances in e-auctions. More concretely, we construct the Hawk and Aucitas
Mth price sealed-bid e-auction schemes from the Helios [AMPQ09] and Civitas [CCM08,JCJ05] e-
voting schemes. (In addition, Appendix A adapts Hawk to second-price sealed-bid e-auctions.) The
Helios and Civitas schemes are particularly significant, since they have both been implemented.
Moreover, Helios has been used in real-world elections (e.g., [IAC13,Pri12,AMPQ09]) and Civitas
is the only e-voting scheme to satisfy coercion resistance and individual, universal and eligibility
verifiability.

Hawk. In the Hawk scheme, prices are encapsulated as bids using an additively homomorphic
encryption scheme and the winning price is revealed by decrypting the homomorphic combination
of bids. Since individual prices are never decrypted, we have bid secrecy. Moreover, since bidders
can ensure that their bid is included in the homomorphic combination and observers can check
that the winning price is revealed correctly, we also have outcome verifiability. Bidder anonymity
and non-repudiation are conflicting properties: non-repudiation allows the winner’s identity to
be checked, whereas, bidder anonymity demands that the winner’s identity cannot be revealed.
Accordingly, we propose two variants of our e-auction scheme, one satisfying non-repudiation and
the other satisfying bidder anonymity. Furthermore, we implement the variant satisfying bidder
anonymity.

Aucitas. In the Aucitas scheme, prices are encrypted, mixed, and decrypted. Each encrypted price
is authenticated by a bidder’s credential, however, authenticity is only checked after mixing; this
facilitates the use of dummy credentials and prevents a bidder collaborating with a conspirator to
prove how they bid (in essence, this is due to the indistinguishability of an encrypted price au-
thenticated by a bidder’s credential and an encrypted price authenticated by a dummy credential,
which will be rejected after mixing), thereby ensuring collusion resistance. Moreover, the credential
system ensures eligibility verifiability and non-repudiation. Furthermore, outcome verifiability is
derived from the mixnet. In addition, we achieve price flexibility by defining the biddable prices
as 1, 2, . . . , |m|, where m is the encryption scheme’s message space.

Our results make progress towards the unification of e-auctions and e-voting.

2 Cryptographic preliminaries

We adopt standard notation for the application of probabilistic algorithmsA, namely,A(x1, . . . , xn;
r) is the result of running A on input x1, . . . , xn and coins r. Moreover, A(x1, . . . , xn) denotes
A(x1, . . . , xn; r), where r is chosen at random. We write x← α for the assignment of α to x. Vectors
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are denoted using boldface, for example, x. We write |x| to denote the length of a vector x and
x[i] for the ith component of the vector, where x = (x[1], . . . ,x[|x|]). We extend set membership
notation to vectors: we write x ∈ x (respectively, x 6∈ x) if x is an element (respectively, x is not
an element) of the set {x[i] : 1 ≤ i ≤ |x|}.

Let us recall the syntax for asymmetric encryption schemes.

Definition 1 (Asymmetric encryption scheme). An asymmetric encryption scheme consists
of the following algorithms:

– The key generation algorithm Gen takes as input the security parameter 1k and outputs a
public key pk, private key sk, and message space m.

– The encryption algorithm Enc takes as input a public key pk and message m ∈ m. It outputs
a ciphertext c.

– The decryption algorithm Dec takes as input a public key pk, a private key sk, and ciphertext
c. It outputs a message m or the special symbol ⊥ denoting failure.

Moreover, the scheme must be correct: for all (pk , sk ,m) ← Gen(1k), messages m ∈ m and ci-
phertexts c ← Enc(pk ,m) we have Dec(pk , sk , c) = m with overwhelming probability. We say an
encryption scheme is homomorphic if there exists binary operators ⊕, ⊗ and � such that for
all (pk , sk ,m) ← Gen(1k), messages m1,m2 ∈ m and coins r1 and r2, we have Enc(pk ,m1; r1) ⊗
Enc(pk ,m2; r2) = Enc(pk ,m1 � m2; r1 ⊕ r2). The scheme is additive homomorphic if � is the
addition operator or multiplicative homomorphic if � is the multiplication operator.

We abbreviate the standard security notion of indistinguishability under chosen plaintext attacks
as IND-CPA.

An interactive proof system is a two party protocol between a prover and a verifier on some com-
mon input, which allows a claim of membership to be evaluated. Formally, we capture such proof
systems as sigma protocols (Definition 2) and assume sigma protocols satisfy special soundness
and special honest-verifier zero-knowledge (see [BPW12] for details), in addition to the standard
completeness property.

Definition 2 (Sigma protocol). A sigma protocol for an NP language LR, where LR =
{s | ∃ w such that (s, w) ∈ R}, is a tuple of algorithms (Comm,Chal,Resp,Verify) such that:

– The commitment algorithm Comm takes a statement s and witness w as input, and outputs a
commitment comm and some state information t.

– The challenge algorithm Chal outputs a challenge chal selected from a fixed challenge space.
– The response algorithm Resp takes a challenge chal and some state information t as input,

and outputs a response resp.
– The verification algorithm Verify takes a statement s and transcript (comm, chal, resp) as input,

and outputs > or ⊥.

Our e-auction schemes are dependent upon the sigma protocols given in Definition 3.

Definition 3. Given an asymmetric encryption scheme (Gen,Enc,Dec) and a sigma protocol Σ
for the language LR, we say Σ:

– proves correct key construction if ((1k, pk ′,m′), (sk ′, r)) ∈ R⇔ (pk′, sk′,m′) = Gen(1k; r)
– proves plaintext knowledge in M if M ⊆ m and ((pk , c,M), (m, r)) ∈ R⇔ c = Enc(pk,m; r)∧
m ∈M

– proves correct ciphertext construction if ((pk , c1, . . . , c`), (m1, r1, . . . ,m`, r`)) ∈ R ⇔
∧

1≤i≤`
ci = Enc(pk ,mi; ri)

– is a plaintext equality test (PET) if ((pk , c, c′, i), sk) ∈ R∧i ∈ {0, 1} ⇔ ((i = 0∧Dec(pk , sk , c) 6=
Dec(pk , sk , c′)) ∨ (i = 1 ∧ Dec(pk , sk , c) = Dec(pk , sk , c′))) ∧ Dec(pk , sk , c) 6= ⊥

– proves decryption if ((pk , c,m), sk) ∈ R⇔ m = Dec(pk , sk , c)

where (pk , sk ,m)← Gen(1k).
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We can derive proofs of knowledge from sigma protocols using the Fiat-Shamir heuristic [FS87],
which replaces the verifier’s challenge with a hash of the prover’s commitment, optionally concate-
nated with the prover’s statement [BPW12] and a message.

Definition 4 (Fiat-Shamir transformation). Given a sigma protocol Σ = (CommΣ ,ChalΣ ,
RespΣ ,VerifyΣ) and a hash function H, the Fiat-Shamir transformation FS(Σ,H) = (Prove,Verify),
where Prove and Verify are the algorithms defined as follows:

– The proof algorithm Prove takes a statement s, witness w, and (optionally) message m as
input. The algorithm proceeds as follows. First, compute (comm, t) ← CommΣ(s, w). Sec-
ondly, derive chal as follows: if m is defined, then chal ← H(s, comm,m), otherwise, chal ←
H(s, comm). Thirdly, compute resp← RespΣ(chal, t). Finally, output σ = (comm, resp).

– The verification algorithm Verify takes a statement s, candidate proof (comm, resp) and (op-
tionally) message m as input and outputs VerifyΣ(s, (comm, chal, resp)), where chal is derived
as follows: if m is defined, then chal← H(s, comm,m), otherwise, chal← H(s, comm).

3 Syntax for e-auction schemes

Based upon Bernhard et al. [BCP+11,BPW12,SB13], we formalise e-auction schemes as a tuple of
algorithms (Setup,BB,Open,Reveal) which are executed by an auctioneer and bidders as follows.
(We consider a single auctioneer for simplicity and note that schemes can be generalised to several
auctioneers to distribute trust, if necessary.) The Setup algorithm is run by the auctioneer to
initialise a key pair and bulletin board. The Bid algorithm is used by bidders to generate their
bids and the BB algorithm is used by the auctioneer to process bids, in particular, the algorithm
adds correctly formed bids to the bulletin board. Once all of the bids have been collected, the
auctioneer runs Open to find the winning price, which is announced by the auctioneer. Finally, the
Reveal algorithm is used to identify winners; the Reveal algorithm uses private data s to reveal the
winners, for example, s could be a private key which is used to decrypt bids. We define the inputs
and outputs of our algorithms below:

Setup(1k) → (pk , sk , bb, aux -pk).The setup algorithm Setup takes the security parameter 1k as
input and outputs a public key pk , private key sk , bulletin board bb and auxiliary data aux -pk ,
where bb is a set.

Bid(pk , aux -pk ,P, p) → b. The bid algorithm Bid takes as input a public key pk , auxiliary data
aux -pk , vector of biddable prices P and price p, where 1 ≤ p ≤ |P|. It outputs a bid b such
that b = ⊥ upon failure.

BB(pk ,P, bb, b) → bb′. The bulletin board algorithm BB takes as input a public key pk , vector
of biddable prices P, bulletin board bb and bid b, where bb is a set. It outputs bb ∪ {b} if
successful or bb to denote failure.

Open(pk , sk ,P, bb,M)→ (p, aux -open). The opening algorithm Open takes as input a public key
pk , private key sk , vector of biddable prices P, bulletin board bb and parameter M denoting
the number of items to be sold, where bb is a set and M > 0. It outputs the winning price
p and auxiliary data aux -open such that p = 0 if no winning price is found and p = ⊥ upon
failure.

Reveal(pk , s, aux -pk ,P, bb,M, p, aux -open)→ (w, aux -reveal). The reveal algorithm Reveal takes
as input a public key pk , private data s, auxiliary data aux -pk , a vector of biddable prices P,
bulletin board bb, parameter M denoting the number of items to be sold, winning price p and
auxiliary data aux -open, where M > 0 and 1 ≤ p ≤ |P|. It outputs a vector of winners w and
auxiliary data aux -reveal such that w = ⊥ upon failure.

Our definition assumes that a vector of biddable prices P has been published and a bid for price
P[p] is identified by price index p, where P[1] < · · · < P[|P|] and 1 ≤ p ≤ |P|. For ease of
understanding, we sometimes refer to p as a price.
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4 Hawk: An e-auction scheme based on Helios

Hawk is an e-auction scheme derived from the Helios e-voting scheme [AMPQ09] (see Cortier &
Smyth [CS13, §2] for a cryptographic description of Helios).

4.1 Informal description

An auction is created by naming an auctioneer. The auctioneer generates a key pair and a proof of
correct construction. The auctioneer publishes the public key, proof, biddable prices, and number
of items to be sold. The bidding phase proceeds as follows.

Bidding. The bidder creates a bid by encrypting her price with the auctioneer’s public key
and proving that the ciphertext contains a biddable price. The bidder sends her bid to the
auctioneer. The auctioneer authenticates the bidder, checks that she is eligible to bid, and
verifies the bidder’s proof; if these checks succeed, then the auctioneer publishes the bid on
the bulletin board.

After some predefined deadline, the opening and revealing phases commence.

Opening. The auctioneer homomorphically combines the bids, decrypts the homomorphic com-
bination, proves that decryption was performed correctly, and announces the winning price.

Revealing. The auctioneer identifies bids for prices greater than or equal to the winning price,
decrypts these bids, and proves that decryption was performed correctly.

Intuitively, every phase of the auction is verifiable. Bidders can check that their bid appears on the
bulletin board and, by verifying bidders’ proofs, observers are assured that bids represent valid
prices. Moreover, anyone can check that the homomorphic combination of bids and decryption
were correctly computed. Furthermore, anyone can verify that the decrypted bids contain prices
greater than or equal to the winning price. It follows that outcome verifiability is satisfied. In
addition, our scheme satisfies bid secrecy, since bids for prices less than the winning price are
not decrypted, and also provides non-repudiation, assuming that the auctioneer authenticates the
relation between bidders and bids.

4.2 Cryptographic construction

We derive Hawk (Auction Scheme 1) from our informal description using an additively homo-
morphic encryption scheme satisfying IND-CPA, proofs of correct key construction, proofs of
plaintext knowledge, and proofs of decryption. The Setup algorithm generates the auctioneer’s
key pair, proves correct key construction, and initialises the bulletin board. The Bid algorithm
outputs ciphertexts c1, . . . , c|P|, such that ciphertext cp contains plaintext 1 and the remaining
ciphertexts contain plaintext 0, where P[p] is the price that the bidder is willing to pay. The
algorithm also outputs proofs σ1, ..., σ|P| so that this can be verified. Moreover, it outputs a proof
σ|P|+1 that the bidder bid for at most one price. The BB algorithm adds correctly formed ballots
to the bulletin board. The Open algorithm homomorphically combines ciphertexts representing
bids at the highest price and decrypts the homomorphic combination, the algorithm repeats this
process for ciphertexts at lower prices, until the sum of the decrypted ciphertexts is equal to or
greater than the number of items to be sold, i.e., M . (The sum of the decrypted ciphertexts may
be greater than M , since bidders may bid at the same price and, hence, the number of bids eligible
to win may be greater than M . Nonetheless, the Reveal algorithm will identify exactly M winning
bids.)The Reveal algorithm homomorphically combines a bidder’s ciphertexts at or above the win-
ning price, and decrypts the homomorphic combination. The bidder is a winner if the decryption
reveals plaintext 1. (We remark that Hawk’s open and reveal algorithms are both executed by the
auctioneer and could be combined into a single function, however, the separation will be useful in
Section 4.3.) We demonstrate an execution of Hawk in Figure 1.
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Auction Scheme 1 Hawk
Suppose Π = (Gen,Enc,Dec) is an additively homomorphic asymmetric encryption scheme satisfying
IND-CPA, Σ1 proves correct key construction, Σ2 proves plaintext knowledge in {0, 1} and Σ3 proves
decryption, where Π’s message space is {0, 1}∗. Further suppose H is a hash function and let FS(Σ1,H) =
(ProveKey,VerKey), FS(Σ2,H) = (ProveCiph,VerCiph), and FS(Σ3,H) = (ProveDec,VerDec). We define
Hawk as Γ (Π,Σ1, Σ2, Σ3,H) = (Setup,Bid,BB,Open,Reveal).

Setup(1k). Select coins r, compute (pk , sk ,m)← Gen(1k; r); ρ← ProveKey((1k, pk ,m), (sk , r));aux-pk←
(1k,m, ρ); bb← ∅ and output (pk , sk , bb,aux-pk). .

Bid(pk ,aux-pk,P, p). Parse aux-pk as (1k,m, ρ), outputting ⊥ if parsing fails or VerKey((1k, pk ,m), ρ) 6=
>. Select coins r1, . . . , r|P| and compute:

for 1 ≤ i ≤ |P| do
if i = p then mi ← 1 else mi ← 0
ci ← Enc(pk ,mi; ri); σi ← ProveCiph((pk , ci, {0, 1}), (mi, ri), i)

c← c1 ⊗ · · · ⊗ c|P|; m← m1 � · · · �m|P|; r ← r1 ⊕ · · · ⊕ r|P|;
σ|P|+1 ← ProveCiph((pk , c, {0, 1}), (m, r), |P|+ 1)

Output the bid b = (c1, . . . , c|P|, σ1, . . . , σ|P|+1).
BB(pk ,P, bb, b). Parse b as a vector (c1, . . . , c|P|, σ1, . . . , σ|P|+1). If parsing succeeds and∧|P|+1

i=1 VerCiph((pk , ci, {0, 1}), σi, i) = >, where c|P|+1 ← c1 ⊗ · · · ⊗ c|P|, then output bb ∪ {b}, other-
wise, output bb.

Open(pk , sk ,P, bb,M). Parse bb = {b1, . . . , bn} as a set of vectors of length 2 · |P|+ 1, outputting (⊥,⊥)
if parsing fails. Initialise index p ← |P| + 1 and vector aux-open ← (⊥, . . . ,⊥) of length |P|, and
compute:

do
p← p− 1;
c← b1[p]⊗ · · · ⊗ bn[p];
m← Dec(pk , sk , c); aux-open[p]← ProveDec((pk , c,m), sk);
M ←M −m

while M > 0 ∧ p > 0;
if M > 0 then p← 0

Output p and auxiliary data aux-open.
Reveal(pk , sk ,aux-pk,P, bb,M, p,aux-open). Parse bb = {b1, . . . , bn} as a set of vectors of length 2 ·
|P|+ 1, outputting (⊥,⊥) if parsing fails. Initialise a set w ← ∅, vector aux-reveal← (⊥, . . . ,⊥) of
length n and integer j ← 1, and compute:

do
c← bj [p]⊗ · · · ⊗ bj [|P|];
m← Dec(pk , sk , c); aux-reveal[j]← ProveDec((pk , c,m), sk);
if m = 1 then w ← w ∪ {bj}
j ← j + 1

while M > |w| ∧ j ≤ n;

Output (w,aux-reveal).

A comparison of Helios and Hawk. In terms of functionality, the new contribution of Hawk is
the introduction of its reveal algorithm, which can be used to link a price to a bidder, given the
auctioneer’s private key. In addition, we improve efficiency: Hawk’s opening algorithm modifies
Helios’s tallying algorithm, in particular, Hawk only decrypts homomorphic combinations of ci-
phertexts until the sum of the decrypted ciphertexts is equal to or greater than the number of
items to be sold, whereas Helios decrypts all homomorphic combinations of ciphertexts.

4.3 Hawk∗: A variant of Hawk with bidder anonymity

Hawk does not satisfy bidder anonymity, since this property conflicts with non-repudiation. How-
ever, we can sacrifice non-repudiation in favour of bidder anony-mity, as shown by Hawk∗ (Auction
Scheme 2). In this variant, a winning bidder identifies her ballot b on the bulletin board bb, com-
putes r such that b[p]⊗· · ·⊗b[|P|] = Enc(pk , 1; r) – that is, r is a partial homomorphic combination
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Fig. 1 An execution of the Hawk auction scheme

Suppose a seller wants to sell two items (M = 2) using biddable prices P = (10, 15, 20, 25, 30). Further
suppose that Alice, Bob, Charlie and Daniel bid at prices 25, 20, 10 and 15. An execution of the Hawk
auction scheme proceeds as follows.

Bidding. At the end of the bidding phase, the bulletin board is defined as follows.

bb =


(Enc(pk , 0; rA,1),Enc(pk , 0; rA,2),Enc(pk , 0; rA,3),Enc(pk , 1; rA,4),Enc(pk , 0; rA,5)),
(Enc(pk , 0; rB,1),Enc(pk , 0; rB,2),Enc(pk , 1; rB,3),Enc(pk , 0; rB,4),Enc(pk , 0; rB,5)),
(Enc(pk , 1; rC,1),Enc(pk , 0; rC,2),Enc(pk , 0; rC,3),Enc(pk , 0; rC,4),Enc(pk , 0; rC,5)),
(Enc(pk , 0; rD,1),Enc(pk , 1; rD,2),Enc(pk , 0; rD,3),Enc(pk , 0; rD,4),Enc(pk , 0; rD,5))


We omit proofs for brevity and assume that the auctioneer authenticates the relation between bidders
and bids to derive non-repudiation. This assumption could be dropped, in the presence of a public
key infrastructure, by signing bids.

Opening. The opening phase performs the following decryptions:

Dec(pk , sk ,Enc(pk , 0� 0� 0� 0; rA,5 ⊕ rB,5 ⊕ rC,5 ⊕ rD,5)) = 0
Dec(pk , sk ,Enc(pk , 1� 0� 0� 0; rA,4 ⊕ rB,4 ⊕ rC,4 ⊕ rD,4)) = 1
Dec(pk , sk ,Enc(pk , 0� 1� 0� 0; rA,3 ⊕ rB,3 ⊕ rC,3 ⊕ rD,3)) = 1

Thereby revealing two bids at the winning price 20. The ciphertexts representing bids at prices 15
and 10 are not decrypted, because the sum of the decrypted ciphertexts (i.e., 0 + 2) are equal to M .

Revealing. The reveal phase performs the following decryptions:

Dec(pk , sk ,Enc(pk , 0� 1� 0; rA,3 ⊕ rA,4 ⊕ rA,5)) = 1
Dec(pk , sk ,Enc(pk , 1� 0� 0; rB,3 ⊕ rB,4 ⊕ rB,5)) = 1
Dec(pk , sk ,Enc(pk , 0� 0� 0; rC,3 ⊕ rC,4 ⊕ rC,5)) = 0
Dec(pk , sk ,Enc(pk , 0� 0� 0; rD,3 ⊕ rD,4 ⊕ rD,5)) = 0

Alice and Bob are declared winners.

of the coins used by the bidder to construct her bid – and provides b and r as input to the reveal
algorithm. Unlike Hawk’s reveal algorithm, Hawk∗’s reveal algorithm does not take the auction-
eer’s private key as input and it follows that the algorithm can be executed by the seller, rather
than the auctioneer. This introduces the possibility of an e-auction scheme in which the seller
learns the winning bidders’ identities, but not the auctioneer. We demonstrate an execution of
Hawk∗ in Figure 2.

Intuitively, Hawk∗’s reveal algorithm can be optimised by omitting ciphertexts, from the homo-
morphic combination, for which no bid was made and the corresponding coins can be omitted from
the bidders’ input (a similar optimisation can be made to Hawk’s reveal algorithm). For instance,
in our example (Figure 2), the last ciphertext in each bid can be omitted from the homomorphic
combination, because the opening phase has shown that no bids were cast at price 30, and the
bidders will omit rA,5 and rB,5 from their partial homomorphic combinations of coins.

Implementation. We implement Hawk∗. Our implementation3 exploits the additive homomor-
phic [CDS94,CGS97] and distributed decryption [Ped91,CP93] properties of ElGamal [ElG85],
and proofs of knowledge demonstrating disjunctive proofs of equality between discrete loga-
rithms [BPW12,AMPQ09,CDS94]. (Note that our implementation distributes trust amongst sev-
eral auctioneers.) The implementation builds upon the Helios code base, adding approximately
900 lines of Javascript and Python code to ensure that: 1) the coins used to construct the bid
are revealed to bidders (the coins are not revealed by Helios to provide some practical resistance
against vote selling), enabling bidders to disclose the coins during the reveal phase; 2) auctioneers

3 Our implementation is available from the following URL: http://bensmyth.com/publications/

2014-Hawk-and-Aucitas-auction-schemes/.
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Auction Scheme 2 Hawk∗

Suppose Γ (Π,Σ1, Σ2, Σ3,H) = (Setup,Bid,BB,Open,Reveal), where Π, Σ1, Σ2, Σ3 and H sat-
isfy the preconditions of Auction Scheme 1. We define Hawk∗ as Γ ∗(Π,Σ1, Σ2, Σ3,H) =
(Setup,Bid,BB,Open,Reveal∗), where Reveal∗(pk , s, ρ,P, bb,M, p,aux-open) is defined as follows. If
VerKey(pk, ρ) = ⊥, then output (⊥,⊥). Otherwise, parse bb as a set of vectors of length 2 · |P| + 1
and s as a vector (b1, r1, . . . , bM , rM ), outputting (⊥,⊥) if parsing fails. Compute:

w ← ∅;
for 1 ≤ i ≤M do

c← Enc(pk , 1; ri);
if bi ∈ bb ∧ c = bi[p]⊗ · · · ⊗ bi[|P|] then w ← w ∪ {bi}

Output (w,⊥).

Fig. 2 An execution of the Hawk∗ auction scheme

Suppose the bidding and opening phases of a Hawk∗ auction are given in Figure 1. The reveal phase
proceeds as follows.

Revealing. Alice and Bob reveal rA,3 � rA,4 and rB,3 � rB,4, and the reveal phase checks that
Enc(pk , 1; rA,3) ⊗ Enc(pk , 0; rA,4) = Enc(pk , 1; rA,3 � rA,4) and Enc(pk1; rB,3) ⊗ Enc(pk , 0; rB,4) =
Enc(pk , 1; rB,3 � rB,4).

We assume that the bidders’ coins are not revealed for bidder anonymity. This assumption could be
dropped using designated verifier proofs that demonstrate knowledge of coins.

only provide partial decryptions if the sum of the decrypted ciphertexts is equal to or greater than
M .

4.4 Security analysis

Since cryptographic security definitions have not been proposed in the literature (Dreier et al.
[DLL13,DJL13] propose definitions in the symbolic model), we present an informal security analysis
and leave formal analysis as a direction for future work.

Bid secrecy. Hawk and Hawk∗ derive bid secrecy from the ballot secrecy (i.e., voters’ votes cannot
be revealed) property of Helios. Informally, this can be witnessed up until the reveal phase as
follows: by contradiction, suppose a losing bidder can be linked to a price before the winners are
revealed; since Hawk and Hawk∗ are constructed from Helios as per our description in Section 1,
it follows immediately that actions in an auction can be mapped to actions in an election and,
hence, the link between a losing bidder and a price can be mapped to a relation between a voter
and a vote, that is, a voter’s vote is revealed, thereby deriving a contradiction. Moreover, it follows
from our definition of the Reveal algorithm that the reveal phase only leaks the winners, hence, we
conclude that our schemes satisfies bid secrecy: a losing bid cannot be linked to a bidder. We stress
that the existence of the reveal algorithm is not prohibited by Helios’s ballot secrecy property,
because ballot secrecy asserts that an adversary cannot derive the private key4 and, hence, the
reveal algorithm cannot be used by the adversary to obtain an advantage.

Outcome verifiability. Hawk and Hawk∗ derive outcome verifiability from the individual verifi-
ability (i.e., a voter can check that her own ballot is published on the election’s bulletin board)
and universal verifiability (i.e., anyone can check that all the votes in the election outcome corre-
spond to ballots published on the election’s bulletin board and at most one vote is tallied per ballot)
properties of Helios, in particular, we have “a bidder can check that their bid is included in the

4 Formally, we can witness that ballot secrecy asserts that the adversary cannot derive the private key
from [SB13, Definitions 3 & 5], since the tally algorithm can be used to reveal votes encapsulated inside
individual ballots, given the private key.
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e-auction” from the individual verifiability property and “anyone can check that the winning price
is valid” from the universal verifiability property.

Bidder anonymity/non-repudiation. Hawk satisfies non-repudiation and Hawk∗ satisfies bidder
anonymity. We derive non-repudiation in Hawk under the assumption that the auctioneer authen-
ticates the relation between bidders and bids, hence, a winner’s identity can be checked by verifying
if the corresponding bid contains plaintext 1 in the homomorphic combination of ciphertexts at or
above the winning price. We derive bidder anonymity in Hawk∗ under the assumption that coins
supplied by the winners are not leaked and the auctioneer does not reveal bidder identities, since,
in this case, bidder anonymity follows immediately from bid secrecy. Our assumptions can be re-
laxed using digital signatures for non-repudiation and designated verifier proofs that demonstrate
knowledge of coins.

5 Aucitas: An e-auction scheme based on Civitas

Aucitas is an e-auction scheme derived from the Civitas e-voting scheme [CCM08,CCM07], which
extends the e-voting scheme by Juels, Catalano & Jakobsson [JCJ02,JCJ05,JCJ10].

5.1 Informal description

An auction is created by naming an auctioneer and registrar. The auctioneer generates a key pair
and a proof of correct key construction. The auctioneer publishes the public key, proof, biddable
prices, and number of items to be sold. The registration phase proceeds as follows.

Registration. For each eligible bidder, the registrar constructs a (private) credential, sends the
credential to the bidder, and derives the public credential by encrypting the credential with
the auctioneer’s public key.

The registrar authentically publishes the public credentials L and the bidding phase proceeds as
follows.

Bidding. The bidder produces two ciphertexts under the auctioneer’s public key: the first con-
tains her price and the second contains her credential. In addition, the bidder proves plaintext
knowledge of both ciphertexts. The bidder sends the bid – namely, the ciphertexts and proof –
to the auctioneer. The auctioneer verifies the bidder’s proof and if verification succeeds, then
the auctioneer publishes the bid on the bulletin board.

After some predefined deadline, the opening and revealing phases commence.

Opening. The auctioneer proceeds as follows.

– Eliminating duplicates: The auctioneer performs pairwise plaintext equality tests on the
ciphertexts containing credentials and discards any bids for which a test holds, that is,
bids using the same credential are discarded.

– Mixing: The auctioneer mixes the ciphertexts in the bids (i.e., the ciphertexts containing
prices and the ciphertexts containing credentials), using the same secret permutation for
both mixes, hence, the mix preserves the relation between encrypted prices and credentials.
Let C1 and C2 be the outputs of these mixes. The auctioneer also mixes the public
credentials published by the registrar and assigns the output to C3.

– Checking credentials: The auctioneer discards ciphertexts C1[i] from C1 if there is no
ciphertext c in C3 such that a PET holds for c and C2[i], that is, bids cast using ineligible
credentials are discarded.

– Decrypting: The auctioneer decrypts the remaining encrypted prices in C1 and proves that
decryption was performed correctly.

The auctioneer identifies the winning price from the decrypted prices.
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Revealing. The auctioneer identifies ciphertexts C1[i] containing prices greater than or equal to
the winning price, and performs PETs between C2[i] and L to reveal the identities of winning
bidders.

Intuitively, every phase of the auction is verifiable and, hence, outcome and eligibility verifiability,
and non-repudiation are derived from the individual, universal and eligibility verifiability properties
of Civitas. Moreover, we shall define biddable prices from a starting price of 1 using price increments
of 1 and a price ceiling equal to the size of the encryption scheme’s message space, hence we have
price flexibility. Furthermore, we derive collusion resistance from the coercion resistance property
of Civitas.

5.2 Cryptographic construction

For our cryptographic construction of Aucitas, we extend the syntax for e-auctions schemes to in-
clude a registration algorithm, hence, an e-auction scheme is a tuple of algorithms (Setup,Register,
Bid,BB,Open,Reveal) such that Register(pk , aux -pk)→ (d, pd), where pk is the auctioneer’s public
key, aux -pk is auxiliary data, d is a (private) credential, and pd is a public credential. Moreover,
we modify the input parameters of Bid, Open and Reveal, namely, Bid(d, pk , aux -pk ,P, p) → b,
Open(pk , sk , aux -pk ,P, bb,M,L)→ (p, aux -open) and Reveal(pk , sk , aux -pk ,P, bb, p, aux -open,L)
→ (L′, aux -reveal), where d is a bidder’s credential, L and L′ are vectors of public credentials, and
the remaining inputs and outputs are as per Section 3. We define a mixnet as Mix(c) → (c′, ρ)
such that c′ contains a permutation of the ciphertexts in c after re-encryption and ρ is a proof
that the mix has been performed correctly. For brevity, we omit a formal definition and refer the
reader to Jakobsson, Juels & Rivest [JJR02].

We present Aucitas in Auction Scheme 3. The Setup algorithm generates the auctioneer’s
key pair using an asymmetric encryption scheme, proves that the key has been correctly con-
structed, and initialises the bulletin board. The scheme is price flexible using biddable prices
P = (1, 2, . . . , |m|), where m is the encryption scheme’s message space. The Register algorithm
generates bidders’ credentials and we assume that the auctioneer provides the bidder with a cre-
dential d corresponding to a public credential Enc(pk , d); this assumption can be dropped using
designated verifier proofs, for example. The specification of the Bid, BB, Open and Reveal algo-
rithms follow from our informal description in Section 5.1. We demonstrate an execution of Aucitas
in Figure 3.

Intuitively, collusion resistance is satisfied if a bidder can convince a conspirator that they
behaved as instructed, when they actually behaved differently. In Aucitas, this condition is satisfied
as follows: given an instruction, a bidder generates a fake credential and follows the instruction
using the fake credential. For instance, if the bidder is instructed to bid for a particular price, then
the bidder constructs a bid for the price using the fake credential. It follows from the description
of Aucitas that this bid will be removed during credential checking, however, the adversary will be
unable to detect this, assuming at least one bidder bids at the adversary’s price. We acknowledge
that price flexibility and collusion resistance are conflicting properties – allowing bidders to submit
any price decreases the probability that at least one bidder bids the price instructed by an adversary
– and we can balance the degree of price flexibility and collusion resistance by restricting the prices.

A comparison of Civitas and Aucitas. Similarly to Hawk, in terms of functionality, the new con-
tribution of Aucitas is the introduction of its reveal algorithm, which can be used to link a price to
a bidder, given the auctioneer’s private key. In addition, we improve efficiency: Aucitas’s bid algo-
rithm modifies Civitas’s vote algorithm by dropping the proof that demonstrates that ciphertext
c1 contains a biddable price. This proof is needed in the election setting to prevent the following
attack [JCJ10, §2.1]: an adversary coerces a voter to cast a vote for a random string, this ensures
that the adversary can verify if the voter followed instructions by checking that the random string
is output by the tallying algorithm and ensures that this vote is not counted, since random strings
do not correspond to legitimate candidates. However, this attack is not possible in the e-auction
setting, because every message in the encryption scheme’s message space corresponds to a price.
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Auction Scheme 3 Aucitas
Suppose (Gen,Enc,Dec) is a homomorphic asymmetric encryption scheme satisfying IND-CPA, Σ1 proves
correct key construction,Σ2 proves correct ciphertext construction,Σ3 proves decryption,Σ4 is a PET, and
H is a hash function. Let FS(Σ1,H) = (ProveKey,VerKey), FS(Σ2,H) = (ProveBind,VerBind), FS(Σ3,H) =
(ProveDec,VerDec), and FS(Σ4,H) = (ProvePET,VerPET). We define Aucitas below.

Setup(1k). Select coins r, compute (pk , sk ,m) ← Gen(1k; r); ρ ← ProveKey((1k, pk ,m), (sk , r)); bb ←
∅;aux-pk← (1k,m, ρ) and output (pk , sk , bb,aux-pk).

Register(pk ,aux-pk). Parse aux-pk as (1k,m, ρ), outputting (⊥,⊥) if parsing fails. Assign a random
element from m to d and compute pd← Enc(pk , d) and output (d, pd).

Bid(d, pk ,aux-pk,P, p). Parse aux-pk as (1k,m, ρ), outputting ⊥ if parsing fails or
VerKey((1k,m, ρ), ρ) 6= >. Suppose m = {m1, . . . ,m|m|} such that m1 < · · · < m|m|. Select coins r1 and
r2, compute c1 ← Enc(pk ,mp; r1); c2 ← Enc(pk , d; r2);σ ← ProveBind((pk , c1, c2), (mp, r1, d, r2)); b ←
(c1, c2, σ) and output bid b.

BB(pk ,P, bb, b). Parse b as (c1, c2, σ). If parsing succeeds and VerBind((pk , c1, c2), σ) = >, then output
bb ∪ {b}, otherwise, output bb.

Open(pk , sk ,aux-pk,P, bb,M,L). Parse aux-pk as (1k,m, ρ) and bb = {b1, . . . , bn} as a set of vectors
of length 3, outputting (⊥,⊥) if parsing fails. Proceed as follows.

– Eliminating duplicates: Let aux-dupl be a vector of length n and BB be the empty vec-
tor. For each 1 ≤ i ≤ n, if there exists σ and j ∈ {1, . . . , i− 1, i+ 1, . . . , n} such that
σ ← ProvePET((pk , bi[2], bj [2], 1), sk) and VerPET((pk , bi[2], bj [2], 1), σ) = >, then assign
aux-dupl[i] ← σ, otherwise, compute σj ← ProvePET((pk , bi[2], bj [2], 0), sk) for each j ∈ {1,
. . . , i− 1, i+ 1, . . . , n} and assign aux-dupl[i] ← (σ1, . . . , σi−1, σi+1, . . . , σn);BB ← BB ‖ (bi),
where BB ‖ (bi) denotes the concatenation of vectors BB and (bi), i.e., BB ‖ (bi) =
(BB[1], . . . ,BB[|BB|], bi).

– Mixing: Suppose BB = (b′1, . . . , b
′
`), select coins r, and compute (C1,aux-mix1) ←

Mix((b′1[1], . . . , b′`[1]); r); (C2,aux-mix2)← Mix((b′1[2], . . . , b′`[2]); r); (C3,aux-mix3)← Mix(L).
– Checking credentials: Let aux-cred be a vector of length |C2|. For each 1 ≤ i ≤ |C2|, if there exists
σ and c ∈ C3 such that σ ← ProvePET((pk ,C2[i], c, 1), sk) and VerPET((pk ,C2[i], c, 1), σ) = >,
then assign aux-cred[i] ← σ, otherwise, compute σj ← ProvePET((pk ,C2[i],C3[j], 0), sk) for
each j ∈ {1, . . . , |C3|} and assign aux-cred[i]← (σ1, . . . , σ|C3|).

– Decrypting: Let aux-dec be the empty set. For each 1 ≤ i ≤ |C1| such that |aux-cred[i]| = 1
assign aux-dec ← aux-dec ∪ {((C1[i],C2[i]), σ,m)}, where m ← Dec(pk , sk ,C1[i]) and σ ←
ProveDec((pk ,C1[i],m), sk).

If |aux-dec| < M , then output (0,⊥). Otherwise, output (p,aux-open), where p ∈ {1, . . . , |m|} is the
largest integer such that M integers in the set {m | (b, σ,m) ∈ aux-dec} are greater than or equal to
mp, and aux-open← (aux-dupl,aux-mix1,aux-mix2,aux-mix3,aux-cred, aux-dec).

Reveal(pk , sk ,aux-pk,P, bb,M, p,aux-open,L). Let aux-dec ← aux-open[6]. Parse aux-pk as
(1k,m, ρ) and aux-dec as a set of vectors of length 3, outputting (⊥,⊥) if parsing fails. Sup-
pose m = {m1, . . . ,m|m|} such that m1 < · · · < m|m|. If there exist M distinct triples
(b1, σ1,m

′
1), . . . , (bM , σM ,m

′
M ) ∈ aux-dec and ciphertexts c1, . . . , cM ∈ L such that for each 1 ≤ i ≤M

we have VerPET((pk , bi[2], ci, 1), τi) = > ∧m′i ≥ mp, where τi ← ProvePET((pk , bi[2], ci, 1), sk), then
output ((c1, . . . , cM ), (τ1, . . . , τM )), otherwise, output (⊥,⊥).

6 Related work

Magkos, Alexandris & Chrissikopoulos [MAC02] and Her, Imamot & Sakurai [HIS05] also study the
relation between e-auction and e-voting schemes. Magkos, Alexandris & Chrissikopoulos remark
that e-voting and e-auction schemes have a similar structure and share similar security properties.
Her, Imamot & Sakurai contrast privacy properties of e-voting and e-auctions, and compare the
use of homomorphic encryption and mixnets between domains. Our work is distinguished from
these earlier works, since we demonstrate a relation between e-auction and e-voting schemes.

Lipmaa, Asokan & Niemi [LAN02] propose an e-auction scheme, based upon homomorphic
encryption, which is similar to the e-voting scheme proposed by Damg̊ard, Jurik & Nielsen
[DJN10,DJ01] (although the similarities are not explicitly discussed) and Hawk. In essence, their
scheme is defined as follows: 1) encrypted bids are sent to the seller during the bidding phase, 2)
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Fig. 3 An execution of the Aucitas auction scheme

Suppose a seller wants to sell one item (M = 1) using biddable prices P = (1, 2, . . . , |m|), where m =
{1, . . . , |m|} is the encryption scheme’s message space. Further suppose that Alice, Bob and Charlie bid
at prices 25, 20 and 15. In addition, let us suppose that an adversary instructs Charlie to bid 20. An
execution of the Aucitas auction scheme proceeds as follows.

Registration. The registration phase results in the publication of public credentials L =
(Enc(pk , dA; r1),Enc(pk , dB ; r2),Enc(pk , dC ; r3)).

Bidding. At the end of the bidding phase, the bulletin board is defined as follows.

bb =


(Enc(pk , 25; rA),Enc(pk , dA; r̂A)),
(Enc(pk , 20; rB),Enc(pk , dB ; r̂B)),
(Enc(pk , 20; r),Enc(pk , d; r̂)),
(Enc(pk , 15; rC),Enc(pk , dC ; r̂C))


We omit proofs for brevity. The ballot (Enc(pk , 20; r),Enc(pk , d; r̂)) is constructed by Charlie to avoid
coercion.

Opening. The opening phase proceeds as follows.

– Eliminating duplicates. Since credentials are only used once, no bids are discarded from bb.
– Mixing. The auctioneer mixes the ciphertexts encapsulated in bids, resulting in two vectors:

the first vector contains a permutation of Enc(pk , 25; r′A), Enc(pk , 20; r′B), Enc(pk , 20; r′) and
Enc(pk , 15; r′C), and the second contains a permutation of Enc(pk , dA; r̂′A), Enc(pk , dB ; r̂′B),
Enc(pk , d; r̂′) and Enc(pk , dC ; r̂′C), using the same permutation in both vectors. In addition,
the auctioneer mixes the public credentials, resulting in a vector containing a permutation of
Enc(pk , dA; r′1), Enc(pk , dA; r′2) and Enc(pk , dB ; r′3).

– Checking credentials. The auctioneer discards Enc(pk , 20; r′).
– Decrypting: The auctioneer decrypts the remaining encrypted prices to reveal 25, 20 and 15.

The auctioneer identifies the winning price as 25.
Revealing. The auctioneer performs pairwise PETs between Enc(pk , dA; r̂′A) and L to reveal

Enc(pk , dA; r1) as the winning bidder’s identity.

these encrypted bids are homomorphically combined by the seller in the opening phase and the
homomorphic combination is decrypted by the auctioneer, and 3) bidders demonstrate to sellers
that they are winning bidders during the reveal phase. Their scheme satisfies bid secrecy under
the assumption that either the seller or auctioneer is trusted; by comparision, Hawk assumes that
the auctioneer is trusted. This suggests that Hawk requires a stronger trust assumption, however,
as we have discussed (Section 3), we can mitigate against the possibility that the auctioneer is
dishonest by distributing trust amongst several auctioneers and, hence, the trust assumptions of
Hawk and the scheme by Lipmaa, Asokan & Niemi are similar in the case that the seller is also
an auctioneer. In addition, Lipmaa, Asokan & Niemi claim that their e-auction scheme could be
used to construct an e-voting scheme [LAN02, §9]; by comparision, we focus on the inverse, i.e.,
the construction of e-auction schemes from e-voting schemes.

Abe & Suzuki [AS02a] propose an e-auction scheme based upon homomorphic encryption.
Their scheme satisfies bid secrecy and a complimentary privacy property: with the exception
of the winning price, prices are not revealed (this property helps protect bidding strategies, for
example). The scheme is similar to Hawk until the opening phase, but differs thereafter, using
Jakobsson & Juels’s mix and match technique [JJ00] to find the winning price, for instance. By
contrast, Hawk and Hawk∗ are conceptually simpler, and Hawk∗ has the additional property that
allows the seller, rather than the auctioneer, to learn the winning bidders’ identities.

Peng et al. [PBDV04] propose an e-auction schemes based upon mixnets, however, unlike
Aucitas, they focus on bid secrecy rather than collusion resistance. Abe & Suzuki [AS02b] introduce
an e-auction scheme using trapdoor bit-commitments and Chen, Lee & Kim [CLK03] introduce
a scheme using mixnets; these two schemes satisfy collusion resistance. However, Abe & Suzuki
assume the existence of a bidding booth, where the bidder must bid and cannot communicate with
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a conspirator, and Chen, Lee & Kim assume the seller is trusted. By comparision, Aucitas achieves
collusion resistance without such assumptions.
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A Second-price sealed-bid e-auctions

This paper focuses on first-price sealed-bid e-auctions in which the winning price is the highest
price bid and the winner is the bidder who bid at the winning price. Vickrey [Vic61] has shown
that first-price auctions motivate bidders to adopt strategies such as bid shading (i.e., bidding
below their valuation of the item) to maximise their expected utility. Second-price sealed-bid e-
auctions (also known as Vickrey auctions) overcome this problem by defining the winning price
as the second-highest price bid, which incentivises bidders to bid their valuation of the item. In
this appendix, we show how Hawk can be adapted to second-price e-auctions.

A variant of Hawk for second-price e-auctions We can derive a variant of Hawk to construct
second-price auctions by announcing the second-highest price bid, rather than the highest, which
can be achieved by re-running the open algorithm with M = 2. Since the open algorithm reveals
the number of bidders that bid at a particular price, rather than the identities of bidders that
bid at a particular price, bid secrecy is preserved. We demonstrate an execution of our variant
as follows. Suppose the bidding phase of an auction is given in Figure 1. The initial execution of
the open algorithm (parametrised with M = 1) performs the first two decryptions given in the
opening phase of Figure 1 and the re-run performs the remaining decryption to identify 20 as
the winning price (i.e., the second-highest price bid). Finally, the reveal algorithm computes the
decryptions Dec(pk , sk ,Enc(pk , 1� 0; rA,4 ⊕ rA,5) = 1, Dec(pk , sk ,Enc(pk , 0� 0; rB,4 ⊕ rB,5) = 0,
Dec(pk , sk ,Enc(pk , 0 � 0; rC,4 ⊕ rC,5) = 0 and Dec(pk , sk ,Enc(pk , 0 � 0; rD,4 ⊕ rD,5) = 0, and
announces Alice as the winner.
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