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Abstract
Machine learning models that offer excellent001
predictive performance often lack the inter-002
pretability necessary to support integrated hu-003
man machine decision-making. In clinical004
medicine and other high-risk settings, domain005
experts may be unwilling to trust model predic-006
tions without explanations. Work in explain-007
able AI must balance competing objectives008
along two different axes: 1) Models should ide-009
ally be both accurate and simple. 2) Explana-010
tions must balance faithfulness to the model’s011
decision-making with their plausibility to a do-012
main expert.013

We propose to train a proxy model that mimics014
the behavior of a trained model and provides015
control over these trade-offs. We evaluate our016
approach on the task of assigning ICD codes017
to clinical notes to demonstrate that the proxy018
model is faithful to the trained model’s behav-019
ior and produces quality explanations.020

1 Introduction021

Machine learning (ML) methods have demon-022

strated predictive success in medical settings, lead-023

ing to discussions of how ML systems can augment024

clinical decision-making (Caruana et al., 2015).025

However, a prerequisite to clinical integration is the026

ability for healthcare professionals to understand027

the justifications for model decisions. Clinicians028

often disagree on the proper course of care, and029

share their justifications as a means of agreeing on030

a treatment plan. Explainable Artificial Intelligence031

(AI) can enable models to provide the explanations032

needed for them to be integrated into this process.033

However, modern AI models that often rely on034

complex deep neural networks with millions or035

billions of parameters pose challenges to creating036

explanations that satisfy clinician’s demands.037

Similar concerns over model explanations across038

domains have inspired a whole field of interpretable039

ML. Work in this area considers two goals: faith-040

fulness (explanations that accurately convey the041

decision-making process of the model) and plau- 042

sibility (explanations that make sense to domain 043

experts). Balancing these goals can be challeng- 044

ing; faithful explanations that accurately convey 045

the reasoning of complex AI systems may be im- 046

plausible to a domain expert, and vice versa. Mod- 047

els must also balance performance against trans- 048

parency. The methods that perform best on a task 049

may be unable to provide explanations. 050

We propose to disentangle these competing goals 051

by introducing a proxy model. We assume a trained 052

model exists that makes accurate predictions on a 053

dataset but that may not be interpretable. We train 054

a fundamentally-interpretable linear model on the 055

predictions of the trained ML model, so that the 056

behavior of the proxy model mimics the trained 057

model’s behavior, rather than independently model- 058

ing the target task. We then rely on the interpretable 059

proxy to create explanations without changing the 060

original model. We validate our approach by ask- 061

ing both if the proxy faithful to the workings of the 062

trained model, and if the produced explanations of 063

high quality to domain experts. 064

We demonstrate our approach on the task of 065

medical code prediction. While ML methods have 066

achieved predictive success on various versions of 067

International Classification of Diseases (ICD) clin- 068

ical code assignment, the best-performing methods 069

have been neural networks that are notoriously dif- 070

ficult to interpret. We evaluate our proxy method 071

on three models: (1) DR-CAML, a method de- 072

signed to produce explainable predictions, which 073

outperformed several baselines when evaluated by 074

a clinical expert (Mullenbach et al., 2018) (2) Hier- 075

archical Attention Networks, a Bi-GRU document 076

classifier first introduced by Yang et al. (2016) and 077

adapted to ICD code prediction by Dong et al. 078

(2021), and (3) TransICD, a transformer based 079

method (Biswas et al., 2021). 080

We reproduce this work and compare to our 081

proxy model. We use a linear regression proxy 082
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model that learns to closely approximate the be-083

havior of a trained model. We show that the proxy084

model is faithful to the original model and produces085

plausible explanations, as measured on clinician086

annotations of generated explanations. We also087

show that our proxy model outperforms a logis-088

tic regression baseline in comparison to the true089

ICD-9 labels, despite being of equal complexity.090

We release the code1 both for our method and for091

reproducing Mullenbach et al. (2018).092

2 Background093

2.1 Interpretable ML094

Interpretable machine learning falls within the095

growing field of Explainable AI (Doshi-Velez,096

2017). We present an overview of major themes097

in the literature, and direct the reader to recent sur-098

veys for more details (Doshi-Velez, 2017; Guidotti099

et al., 2018; Gilpin et al., 2018).100

Past work distinguishes between “transparent”101

or “inherently interpretable” models that offer their102

own explanations, and “post-hoc” methods that pro-103

duce explanations for a separately-trained model.104

Methods such as logistic regression are often con-105

sidered transparent or inherently interpretable, be-106

cause their simplicity allows a domain expert to un-107

derstand how a change in input would produce a dif-108

ferent output (Guidotti et al., 2018). However, even109

simple models can prove difficult to interpret in110

certain settings, such as when the model’s features111

are complex (Lipton, 2018). LIME is an example112

of a post-hoc method (Ribeiro et al., 2016); given113

a trained model of arbitrary complexity it produces114

explanations for individual predictions. The pri-115

mary trade-off is that inherently-interpretable mod-116

els are often limited in capacity. Deep neural net-117

works, for example, often demonstrate better per-118

formance but are not inherently interpretable (Feng119

et al., 2018), and typically rely upon post-hoc meth-120

ods to derive explanations (Guidotti et al., 2018).121

Lipton (2018) critiques the idea of “inherent”122

interpretability and argues that methods that are123

intended to be transparently understood should pur-124

sue several traits. These include simulatability, or125

whether a human can reasonably work through each126

step of the model’s calculations to understand how127

a prediction is made; decomposibility, or whether128

each parameter of the model can be intuitively un-129

derstood on its own; and algorithmic transparency,130

or whether the model belongs to a class with known131

1Under an MIT license.

theoretical behaviors. Lou et al. (2012) highlights 132

linear and additive models as particularly decom- 133

posible (or intelligible) classes of models, because 134

“users can understand the contribution of individ- 135

ual features in the model.” Our proposed approach 136

uses a linear bag-of-words model to provide a sim- 137

ulatible, decomposible, and transparent method. 138

Interpretability methods are also distinguished 139

by the form and quality of the explanations they 140

produce. We follow Jacovi and Goldberg (2020) 141

in recognizing two primary desiderata for post-hoc 142

explanations of ML systems: “faithfulness” and 143

“plausibility.”2 A faithful explanation accurately 144

represents the original model, by closely approx- 145

imating its behavior or exposing its internal state 146

(Yeh et al., 2019; Lakkaraju et al., 2020). A plau- 147

sible model produces explanations that can be in- 148

terpreted by a human expert (Jacovi and Goldberg, 149

2020; Ehsan et al., 2019). A method could be faith- 150

ful but not plausible, if it accurately explains a 151

model’s predictions but does so in terms of high- 152

dimensional feature vectors that a human cannot in- 153

terpret. Similarly, a method could be plausible but 154

not faithful, if it produces concise natural language 155

summaries that are unrelated to the calculations that 156

produce the model’s predictions (Jacovi and Gold- 157

berg, 2020). Methods should attempt to achieve 158

both goals, but there is a trade-off between the 159

two; explanations typically cannot be both concise 160

and perfectly descriptive. Plausibility, unlike faith- 161

fulness, necessarily requires an evaluation based 162

on human perception (Herman, 2017; Jain et al., 163

2020). A strength of our proposed method is that 164

it is designed for plausibility and transparency, but 165

optimized for faithfulness. 166

2.2 Explainable prediction of medical codes 167

Our work considers the task of predicting medi- 168

cal codes from hospital discharge notes. This task 169

has been widely studied, and we use three pub- 170

lished models on which we evaluate our approach: 171

DR-CAML (Mullenbach et al., 2018), HAN (Yang 172

et al., 2016), and TransICD (Biswas et al., 2021). 173

As all three models contain millions of parame- 174

ters, they are not simulatible or decomposible; a 175

single parameter cannot be understood in any in- 176

tuitive way. However, each model contains an at- 177

tention mechanism that may allow for insight into 178

2Faithfulness is also referred to as fidelity, validity or com-
pleteness; plausibility is alternatively referred to as persuasive-
ness (Herman, 2017) See Jacovi and Goldberg (2020) for a
longer discussion of alternate terminology.
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Figure 1: Relationship between an original trained model and proxy model. The proxy model is trained to predict
the original model’s outputs, rather than the true ICD-9 codes. This optimizes the proxy model for faithfulness.

its decision-making. DR-CAML and TransICD in179

particular seek to produce their own explanations180

using a per-label attention mechanism that high-181

lights regions in the input text that were correlated182

with the model’s predictions.183

The use of attention to produce explanations184

has sparked discussion. Jain and Wallace (2019)185

showed that attention mechanisms can provide mis-186

leading explanations, whereas Wiegreffe and Pinter187

(2019) argued that attention-based explanations are188

often plausible, even when unfaithful. More recent189

work has explored when and how attention mech-190

anisms can be either useful or deceptive (Zhong191

et al., 2019; Grimsley et al., 2020; Jain et al., 2020;192

Pruthi et al., 2020). As researchers continue to use193

this domain to explore methods for explainability194

and document classification (Kim and Ganapathi,195

2021; Vu et al., 2020), we should strive to produce196

models that are both faithful and plausible.197

3 Methods198

Our proposed method is post-hoc and seeks to199

balance faithfulness and plausibility. We assume200

that we have a trained model with good predic-201

tive performance but low interpretability. Given202

this trained model and a dataset on which it can203

be applied, we train a proxy model that takes the204

same input from the dataset, but uses the trained205

model’s predictions as its labels. In other words,206

given the dataset’s input, the proxy model predicts207

the outputs of the uninterpretable model. Figure 1208

gives a visual representation of the proxy model209

setup. For the medical code classification task, the210

original model is trained on the text of discharge 211

summaries and produces a probability for each of 212

the 8,922 possible medical codes. We apply DR- 213

CAML and HAN to the texts in MIMIC III (John- 214

son et al., 2016; Yang et al., 2016) and save its 215

continuous-valued probabilities as the labels for 216

our proxy model. We similarly apply TransICD to 217

MIMIC-III-50, which contains the top 50 most fre- 218

quent labels in MIMIC-III and save the continuous- 219

valued probabilities as the labels3. For all three 220

models, we use the code released by the authors4. 221

We refer to the proxy model trained on X model’s 222

predictions as “Proxy-X” (e.g. Proxy-DRCAML). 223

Training the proxy model on predictions from the 224

existing model optimizes for faithfulness. 225

We also want the proxy model to produce plausi- 226

ble explanations and fulfill the criteria from Lipton 227

(2018): simulatibility, decomposibility, and algo- 228

rithmic transparency. To do so, we restrict our 229

proxy model to a class of models that fulfills these 230

desiderata. The fundamental trade-off here is that 231

if we restrict our model class too much, the proxy 232

will be unfaithful and unable to mimic the behavior 233

of the trained model. But if we allow for a proxy 234

model that is too complex, it may not provide plau- 235

sible or otherwise desirable explanations. These 236

trade-offs may be domain-specific based, for exam- 237

3Training on the full label set was prohibitively computa-
tionally expensive to reproduce and the authors did not release
the trained model weights. In Table 1, TransICD and its proxy
only use these 50 codes. These codes do not include those
used in Figures 3 and 7, so TransICD models are omitted.

4Mullenbach et al. (2018) released their code under an
MIT license, while Yang et al. (2016) and Biswas et al. (2021)
did not specify a license.
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ple, on the target audience of the explanations.238

For the task of medical code prediction, we use a239

linear regression model trained on a bag-of-words240

representation of the clinical texts. We train a proxy241

model for each medical code independently, but242

each proxy uses only 50k parameters, allowing us243

to train each model on a single CPU in a matter of244

minutes. We implement our method using the lin-245

ear SGDRegressor model from sklearn (Pe-246

dregosa et al., 2011), and apply a log transform to247

the model’s probability outputs and train the proxy248

to minimize squared loss. We release the code for249

training and evaluating our method as an Appendix.250

Our approach is similar to LIME (Ribeiro et al.,251

2016) and SHAP (Lundberg and Lee, 2017), two252

common post-hoc interpretability methods that also253

train simple models to explain black-box predic-254

tions. However, whereas LIME and SHAP train255

models to explain a single prediction, our linear256

model is trained to predict and explain the entire257

dataset of predictions. This has several conse-258

quences. We do not require sampling perturbed259

inputs that do not exist in the training data, which260

can produce contrasts which are misleading or unin-261

tuitive (Mittelstadt et al., 2019). Slack et al. (2020)262

showed that LIME and SHAP can be fooled into263

providing innocuous explanations for models that264

demonstrate racist or sexist behavior by exploit-265

ing its reliance on perturbations. It also means266

that our proxy model is given a more difficult task267

than the models learned by LIME or SHAP. For268

a given pretrained model, it is possible that a lin-269

ear proxy model could be insufficiently flexible, in270

which case we can measure this failure in terms271

of our faithfulness evaluation (see § 4). Because272

LIME and SHAP trains a model linear only in the273

neighborhood of a given instance, its feature im-274

portance scores are difficult to aggregate across275

a dataset, making extrapolation difficult (van der276

Linden et al., 2019). When our proxy model is277

faithful to the trained model, our approach gives278

us explanations that we can expect to apply to fu-279

ture predictions. If the proxy model demonstrates280

sufficient empirical performance, a domain expert281

may even prefer to use it in place of the original282

trained model, an option unsupported by LIME or283

SHAP models. Our focus on faithful explanations284

is similar to that of Jain et al. (2020), which intro-285

duces FRESH to produce a faithful classifier by286

forcing it make predictions from a limited set of287

(plausible) rationales. However, FRESH is not a288

post-hoc method, as the trained classifiers are not 289

designed to approximate the models used for ex- 290

tracting rationales. Related work from Lei et al. 291

(2016) and Bastings et al. (2019) have also focused 292

on extracting rationales to constrain predictors to 293

be inherently interpretable. Future work could use 294

extracted rationales to train a proxy model that re- 295

mains faithful to a black-box model. 296

By applying our proxy method to a black-box 297

model, we enable an evaluation of both faithfulness 298

and plausibility. We evaluate whether our model 299

is faithful by seeing how closely its outputs match 300

the predictions of the original model. Because DR- 301

CAML was designed to be interpretable using its 302

attention mechanism, we can compare its explana- 303

tions against those produced by our proxy. In the 304

next two sections, we introduce our evaluation for 305

the proxy model’s faithfulness to each model and 306

the plausibility of its explanations. 307

4 Faithfulness evaluation 308

The MIMIC-III dataset contains anonymized 309

English-language ICU patient records, includ- 310

ing physiological measurements and clinical 311

notes (Johnson et al., 2016). Following Mullenbach 312

et al. (2018), we focus on discharge summaries 313

which describe a patient’s visit and are annotated 314

with ICD-9 codes. There are 8,922 different ICD- 315

9 codes that describe procedures and diagnoses 316

that occurred during a patient’s stay. The manual 317

assignment of these codes to patient records are re- 318

quired by most U.S. healthcare payers (Topaz et al., 319

2013). We duplicate the experimental setup of Mul- 320

lenbach et al. (2018) and Dong et al. (2021), which 321

use the text of the discharge summaries as input 322

to the DR-CAML and HAN models, respectively, 323

which then are trained to predict all ICD-9 codes 324

associated with that document. After applying their 325

pre-processing code to tokenize the text, the dataset 326

contains 47,724 discharge summaries divided into 327

training, dev, and test splits. We also duplicate the 328

experimental setup of Biswas et al. (2021), which 329

has a similar experimental setup but only predicts 330

the top 50 most common ICD-9 codes. 331

The proxy model is the combination of linear re- 332

gression models trained to predict each model’s log 333

probability for each ICD-9 code, in which there is 334

one linear regression model per label. After a brief5. 335

5We considered L1, L2, and elastic net regularization with
α from 0.1 to 10−7. As HAN was not trained with the fixed
dev set, we simply adopted α=0.01.
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Regression Classification
AUC F1

Model Spearman Pearson Kendall Macro Micro Macro Micro

Logistic to...
DRCAML 0.036 -0.195 -0.135 0.734 0.936 0.012 0.353
HAN 0.204 0.036 -0.139 0.885 0.994 0.017 0.511
TransICD 0.587 0.662 0.419 0.894 0.927 0.476 0.5799

Proxy-X
-DRCAML 0.794 0.498 0.608 0.980 0.995 0.052 0.416
-HAN 0.736 0.519 0.543 0.975 0.997 0.014 0.454
-TransICD 0.838 0.539 0.650 0.960 0.960 0.507 0.592

Table 1: Comparison of the logistic baseline and the proxy model to the DR-CAML, HAN, and TransICD predic-
tions. For the F1 evaluation, we threshold the proxy outputs at 0.5. The logistic model was trained to predict the
ICD codes; the proxy model to predict DR-CAML’s, HAN’s, or TransICD’s predictions, respectively. The proxy
model dramatically outperforms the logistic baseline in terms of faithfulness to the DR-CAML and TransICD
models. On classification metrics, the baseline is a surprisingly excellent proxy for the HAN model.

DR CAML HAN Trans ICD

Logistic Proxy Orig Proxy Orig Proxy Orig
Macro AUC 0.561 0.901 0.906 0.870 0.884 0.883 0.897
Micro AUC 0.937 0.967 0.972 0.962 0.967 0.907 0.924

Macro F1 0.011 0.142 0.224 0.026 0.077 0.426 0.586
Micro F1 0.271 0.326 0.536 0.251 0.390 0.478 0.640

Prec @ 8 0.541 0.483 0.701 0.519 0.599 0.479 0.502
Prec @ 15 0.412 0.407 0.548 0.406 0.455 0.333 0.343

Table 2: Comparison of and DR-CAML, HAN, and TransICD and their respective proxy models to true ICD labels.
We include the logistic regression baseline; although it was trained to directly predict ICD codes and our proxy
models were not, the Proxy-DRCAML and Proxy-TransICD models outperform the baseline in AUC and F1.

grid search on the validation set, we use L1 regular-336

ization with α = 0.0001 for the DR-CAML proxy337

and α = 0.01 for HAN and TransICD proxies. To338

establish that this collection of linear regressions339

is faithful to the trained models, we want to show340

that it makes similar predictions across all ICD-9341

codes on held-out data. Recall from Figure 1 that342

the proxy is trained not to predict the true ICD-9343

codes but to output the same label probabilities as344

the original model. In fact, the proxy model never345

sees the true ICD-9 codes. We evaluate faithfulness346

by comparing the outputs of the original models347

and the proxy models on the held-out test set. If348

the two systems produced identical outputs on held-349

out data, we would say that the proxy was perfectly350

faithful. We make this comparison in three dif-351

ferent ways – first with regression metrics for the352

continuous outputs of the two models, then using353

classification metrics with binarized original model354

predictions, and finally comparing proxy outputs as 355

predictions for the true ICD-9 codes. For all these 356

comparisons, we use a logistic regression baseline 357

that is trained to directly predict the ICD-9 codes, 358

independent of any black-box model. While we 359

would expect the logistic baseline’s predictions to 360

roughly correlate with those of other models, we 361

would not expect it to be faithful. 362

Our first evaluation uses regression metrics that 363

assess the correlation between the proxy’s predic- 364

tions and the original model’s predicted probabil- 365

ities. We use Spearman and Pearson correlation 366

coefficients and the non-parametric Kendall Tau 367

rank correlation. These metrics range from -1 to 1 368

with 1 indicating perfect faithfulness. Regression 369

results are on the left side of Table 1. 370

Our second evaluation treats the original model’s 371

predictions as binary labels to compute F1 scores. 372

We then evaluate the faithfulness of our proxy 373
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934.1: “Foreign body in main bronchus”

Mullenbach et al. (2018)
CAML (HI) ... line placed bronchoscopy performed showing large mucus plug on the left on transfer to ...
Cosine ... also needed medication to help your body maintain your blood pressure after receiving iv ...
CNN ... found to have a large lll lingular pneumonia on chest x ray he was ...
Logistic ... impression confluent consolidation involving nearly the entire left lung with either bronchocentric or

vascular ...
Ours
DR-CAML 0.38 ... line placed bronchoscopy performed showing large mucus plug on the left on transfer to ...
Logistic 0.28 ... tube down your throat to help you breathe you also needed medication to help ...
Proxy-DRCAML 0.38 ... a line placed bronchoscopy performed showing large mucus plug on the left on transfer ...
Proxy-HAN 0.39 ... line and r radial a line placed bronchoscopy performed showing large mucus plug on ...

Table 3: Comparison of the clinical evaluation from Mullenbach et al. (2018) with our plausibility evaluation. The
example above contains the explanations produced by eight systems. The first four systems for each example
are directly copied from Table 1 of Mullenbach et al. (2018). The (HI) and (I) labels in the second column
indicate whether the clinician labeled those explanations as Highly Informative or Informative. The four systems
below the dotted line are from our evaluation, for which the second column indicates the probability output of our
plausibility classifier. Here, Proxy-DRCAML and DR-CAML produce almost identical explanations. The Proxy-
HAN explanation highlights that our proxy method can generate explanations for black-box models which cannot
explain themselves. Additional comparisons are shown in Tables 5 and 7.

model by treating its outputs as probabilities and374

using classification metrics such as F1 score. These375

metrics range from 0 to 1, where perfectly faithful376

predictions would have 1.0 AUC and F1 scores.377

The proxy model is considered faithful if it cor-378

rectly predicts whether the original model will379

make a binary prediction. We again use the lo-380

gistic regression baseline. Classification results are381

on the right side of Table 1.382

Finally, we use the proxy model’s predictions to383

predict the ground-truth ICD code labels and com-384

pare its predictive performance against that of the385

original model’s in Table 2. While the proxy model386

was not trained using these labels, we can use its387

predictions as probabilities for these codes. By388

comparing against the logistic regression baseline389

(a linear model of equal complexity), we can see390

whether our training setup allows the proxy model391

to learn a better predictor.392

Our results show that our proxies are quite faith-393

ful to the original models. Table 1 shows that394

the Proxy-DRCAML and Proxy-HAN models are395

dramatically more faithful to their corresponding396

black-box models than the logistic regression base-397

line. Interestingly, the baseline is in fact quite faith-398

ful to the TransICD model. Comparing the classifi-399

cation metrics of Table 1 to the results in Table 2,400

we see that on AUC metrics, all three proxies are401

more faithful to the their target models than those402

black-box models were to the original ICD codes.403

In Table 2, we hypothesize that the relatively low404

precision scores result from our proxy regressions405

being fit for each ICD code independently, which 406

prevents the combined model from encoding rela- 407

tive frequency information. 408

Rudin (2019) critiques post-hoc methods in gen- 409

eral, arguing that “if we cannot know for certain 410

whether our [post-hoc] explanation is [faithful], we 411

cannot know whether to trust either the explana- 412

tion or the original model.” Because no post-hoc 413

method can ever be perfectly faithful to an orig- 414

inal model, our explicit measurement of faithful- 415

ness provides a useful approach for understanding 416

whether the proxy is “faithful enough” for a given 417

application. It also allows for a prediction-specific 418

analysis – if we wish to use the proxy model to ex- 419

plain a high-stakes prediction made by a black-box 420

model, we can first check whether both agree upon 421

that specific prediction. 422

In applications where explainability is essential, 423

our proxy model could be used as a more inter- 424

pretable replacement for a high-performing black- 425

box model. In such a case, a domain expert might 426

care less about the evaluation of faithfulness in Ta- 427

ble 1 and more about the ground-truth predictive 428

performance evaluated in Table 2. We leave for fu- 429

ture work the challenge of whether a proxy model 430

produced by our method could be fine-tuned to 431

better predict ground-truth ICD codes. 432

5 Plausibility Evaluation 433

Explanations are considered plausible if they can 434

be reasoned about by a person (Wiegreffe and Pin- 435

ter, 2019). Evaluating plausibility is thus typically 436
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Model Score Interval Best

Logistic 35 (31, 49) 7%
Cosine 38 (32, 51) 13%
CNN 42 (33, 52) 14%
CAML 44 (33, 52) 16%
DR-CAML 48 (34, 53) 22%
Proxy-DRCAML 52 (34, 54) 19%
Proxy-HAN 47 (33, 52) 10%

Table 4: Binary plausibility evaluation using classifier
annotations. We collapse the Highly Informative and
Informative labels from Mullenbach et al. (2018) to a
single positive class. The Score column is out of 99; we
use a binary threshold of 0.45 so that the proportion of
predicted plausible explanations matches the data. To
highlight the uncertainty of this evaluation, we boot-
strap sample 1000 informative labels for each method’s
explanations. The Interval column shows the 95% in-
terval of informative scores across those 1000 samples.
The Best column shows the percentage of samples in
which each method scored highest.

more difficult than faithfulness, because it requires437

input from annotators (Herman, 2017). Further-438

more, an explanation that is plausible to a domain439

expert may not be plausible to a layperson. Mul-440

lenbach et al. (2018) evaluated the plausibility of441

their models’ explanations by collecting annota-442

tions from a clinical expert. For 100 notes, each of443

four models produced an explanation in the form of444

a 14-token subsequence taken from the discharge445

summary. The clinician read the four (anonymized)446

explanations and the corresponding ICD code and447

subjectively rated each explanation as “informa-448

tive”6. Across the 100 examples, the clinician rated449

CAML as slightly more informative than the logis-450

tic regression and CNN baselines. Table 3 shows451

explanations produced by our and Mullenbach et al.452

(2018)’s models.453

The format of Mullenbach et al. (2018)’s plausi-454

bility evaluation does not easily lend itself to repli-455

cation. While the authors shared their annotations456

with us, missing metadata (see Appendix A.2) pre-457

vented a direct reproduction of their analysis. Ad-458

ditionally, since the clinical annotator considered459

explanations in a comparative setting, we cannot460

easily add our proxy model as another method us-461

ing the same annotations. Therefore, we replicate462

this evaluation by using a classifier to predict syn-463

6The annotator was told to mark as informative all expla-
nations that “adequately explain[ed] the presence of the given
ICD code” (Mullenbach et al., 2018).

296.20: “Major depressive affective disorder,
single episode, unspecified”

DR-
CAML

... diagnosis overdose of medications narcotics
benzodiazepine suicide attempt chronic mi-
graine headaches depression stage iv ...

Proxy-
DRCAML

... up from the medications you were evaluated
by psychiatry and will be transferred to ...

Table 5: Examples of differing explanations between
DR-CAML and its proxy. Our informative classifier
gives the DR-CAML and proxy explanations scores of
0.47 and 0.33, respectively. Additional examples are
shown in Table 8.

thetic labels as to whether the clinical domain ex- 464

pert would have labeled our models’ explanations 465

as plausible. Using BioWordVec embeddings re- 466

leased by Zhang et al. (2019), the text of the ICD- 467

9 code description, and the 14-gram explanation 468

produced by each model from Mullenbach et al. 469

(2018), we train a classifier that predicts whether 470

an explanation would have been rated as informa- 471

tive. This annotation classifier achieves a binary 472

classification accuracy of 67.2% and an AUC score 473

of 0.726 on held-out explanations, indicating it is 474

a useful but noisy stand-in for the clinician. Addi- 475

tional training details are in Appendix A.3. 476

To conduct our plausibility evaluation, we first 477

use or reproduce the baseline methods from Mul- 478

lenbach et al. (2018) and Biswas et al. (2021). Each 479

model, including the proxy, produces a 14-token 480

explanation from the discharge summary by first 481

finding the 4-gram with the largest average feature 482

importance and then including five tokens on either 483

side of the 4-gram. The logistic regression baseline 484

is the same as in § 4, where feature importance 485

is computed using the coefficients of the logistic 486

model. The proxy model’s explanations are com- 487

puted in the same manner, finding the 4-gram with 488

the largest average coefficient weights. For CAML, 489

DR-CAML, and the CNN models, we use the code 490

released by Mullenbach et al. (2018) to extract ex- 491

planations. The CNN baseline primarily differs 492

from CAML in that it does not use an attention 493

mechanism. Finally, we reimplement their Cosine 494

baseline which picks the 4-gram with the highest 495

cosine similarity to the ICD-9 code description text. 496

We extract the model’s explanations for the 497

same7 discharge summaries as were evaluated by 498

Mullenbach et al. (2018). For each explanation, 499

we use the annotation classifier described above to 500

7Using the 99 (of 100) discharge summaries that could be
uniquely identified. See Appendix A for details.
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predict the probability that each explanation would501

have been labeled as informative. If we set the502

classifier threshold such that 45% of explanations503

are rated as informative (matching the proportion504

from the original annotations), we get the results505

in the Score column of Table 4. The proxy model506

produces the largest number of informative explana-507

tions according to our classifier; however, the clas-508

sifier’s inaccuracy introduces uncertainty. Rather509

than thresholding the outputs of the annotation clas-510

sifier, we can use its probability outputs to sample511

a set of informative labels for each explanation.512

We sample 1000 such sets of labels and report the513

95% confidence interval for each model’s score in514

the Interval column of Table 4. Accounting for this515

uncertainty dramatically reduces the differences be-516

tween the methods. Because 95% of all classified517

plausibility probabilities are between 24.1% and518

58.1%, these intervals skew towards lower scores.519

Despite the inherent uncertainty involved in extrap-520

olating plausible scores from a fixed set of clinical521

annotations, our evaluations suggest that the proxy522

model produces explanations that are at least as523

plausible as those of DR-CAML.524

Table 3 shows that DR-CAML and Proxy-525

DRCAML produce very similar explanations. The526

other two examples presented in Mullenbach et al.527

(2018) are in Appendix A.4. The similarity is per-528

haps surprising because DR-CAML extracts expla-529

nations using its attention mechanism, whereas the530

proxy model uses unigram feature importance val-531

ues that do not vary between examples. For this532

example, it appears that the proxy is faithful both533

in the predictions it makes and how it makes those534

predictions. We additionally include the explana-535

tions for Proxy-HAN. As HAN cannot produce its536

own explanations, this highlights the ability of our537

proxy method can also be applied to models that538

are not interpretable by design. Table 5 shows an539

example where the proxy and DR-CAML diverge540

the most. We include two additional examples in541

Appendix A.4. These cases highlight two benefits542

of the proxy model. First, its feature importance543

weights are global across all predictions, providing544

an aggregate representation of the proxy’s behavior.545

Second, the approach for extracting proxy expla-546

nation n-grams is transparent and simulatible; it is547

just the average of n feature weights. These fac-548

tors may be particularly appealing in cases where549

explainability is paramount.550

6 Discussion 551

We have introduced a method for post-hoc explana- 552

tions that is designed to be interpretable and plau- 553

sible while maintaining faithfulness to the trained 554

model. By constraining the proxy to a class of 555

models that is decomposible, simulatible, and algo- 556

rithmically transparent, our optimization for faith- 557

fulness gives us a clear way to evaluate several 558

dimensions of interpretability. A key benefit of 559

our method is its simplicity and wide applicability. 560

Even for a proprietary trained model for which the 561

learned parameters are unknown, a proxy can be 562

trained as long as we have a dataset that includes 563

the trained model’s predictions. Our approach has 564

the additional benefit of producing a standalone 565

proxy model that can provide global feature ex- 566

planations. If the proxy has sufficient predictive 567

performance, a skeptic of post-hoc methods (e.g. 568

Rudin (2019)) might prefer to use the inherently- 569

interpretable proxy. 570

The present work has several limitations that are 571

left for future work. Though the task of medical 572

code prediction has important implications and has 573

been widely studied in interpretability research, we 574

only consider this single task on a single English- 575

language dataset. While we have shown our proxy 576

approach works for three different black-box mod- 577

els, it requires additional study in new domains 578

and tasks. There may be black-box models for 579

which no linear proxy is faithful. Our evaluation 580

is also limited to only a single form of explana- 581

tion: n-grams extracted via importance or attention 582

weights. Barocas et al. (2020) has proposed al- 583

ternate formulations, which may be more or less 584

accommodating of our proxy method. Our plau- 585

sibility evaluations rely heavily on a single set of 586

expert annotations from which we extrapolate using 587

a classifier. Future work should collect new annota- 588

tions that consider metrics such as sufficiency and 589

simulatibility that rely on human evaluations (Jain 590

et al., 2020; Hase and Bansal, 2020). 591

As the ML community continues to explore new 592

directions for interpretable methods, new desider- 593

ata may arise based on the domain experts who 594

turn to ML methods for decision support. Inter- 595

pretable ML methods should clearly define how 596

they expect to satisfy criteria such as faithfulness 597

or plausibility; by designing for plausibility and 598

transparency and optimizing for faithfulness, our 599

proposed method is broadly applicable. We release 600

our code to enable future work. 601
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7 Ethics and Broader Impacts602

This paper is situated in a broader field of clini-603

cal applications of machine learning. While our604

work does not raise new ethical issues within this605

domain, there are general concerns that also apply606

to this work. ML methods should not be deployed607

in real-world settings without extensive validation608

(Wiens et al., 2019). In the clinical domain, par-609

ticular attention must be paid to the possibility of610

perpetuating disparities that have been encoded in611

the training data (Rajkomar et al., 2018). While612

MIMIC-III provides a useful benchmark for devel-613

oping and evaluating methods, it is not represen-614

tative of the the enormous variety of clinical and615

linguistic data. Domain experts and those most616

likely to be affected by new ML systems should be617

given oversight of potential deployments.618
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A (Re-)implementation details827

A.1 Reproducing CAML predictive828

performance829

The trained DR-CAML model released by Mul-830

lenbach et al. (2018) produced predictions that831

matched the published F1 and ROC scores. We832

were unable to precisely replicate the outputs of833

the CAML model. Table 6 shows the scores pub-834

lished by Mullenbach et al. (2018) as well as those835

for a CAML reimplementation done by Wiegreffe836

et al. (2019). We include the scores we observe837

using the model weights released on GitHub as838

well as the scores for a model we retrained from839

scratch. We use the released model instead of the840

retrained model as its performance is much closer841

to the published numbers.842

A.2 Reproducing plausibility scores843

The clinical plausibility annotations provided to us844

by the authors of Mullenbach et al. (2018) contains845

the text explanations and their corresponding an-846

notations, but was missing the crucial metadata of847

which models produced which explanations. The848

metadata also did not indicate from which specific849

discharge summary the texts were derived; while850

the text explanations were uniquely identifying for851

all but one of the 100 examples. For that one ex-852

ample, because some patients had multiple docu-853

ments sometimes containing duplicated segments854

of text, there were three discharge summaries from855

which the explanations could have been drawn. We856

thus excluded this example from our analyses. To857

replicate their analysis the best we could, we re-858

trained or reimplemented their logistic regression,859

vanilla CNN, and cosine similarity methods. We860

then looked at the attention or feature importance861

weights for each trained model and the text expla-862

nations that had been annotated, and assigned each863

model the text explanation for which it provided864

the highest weight. This assignment did not per-865

fectly align with past work: there were six cases866

(out of 99) where a text explanation was “chosen”867

by more models than times it appeared as an option.868

Ignoring that issue and then simply aggregating the869

Informative and Highly Informative clinician an-870

notations, we obtained the plausibility scores in871

the Ours column of Table 9. The Theirs column872

shows the published numbers from Mullenbach873

et al. (2018). While the numbers change substan-874

tially, the ordering is relatively stable with only two875

swaps: CAML and Cosine, and Logistic and CNN.876

The other columns of the table are described below. 877

A.3 Plausibility annotation classifier 878

To evaluate the plausibility of our proxy model’s 879

explanations, we trained a classifier to predict 880

whether an explanation would have been labeled 881

as plausible by the clinical domain expert. We 882

treat this as a binary classification task by grouping 883

the “Informative” and “Highly Informative” anno- 884

tations as a single “plausible” label. Conscious of 885

the fact that we have only 99 examples with four 886

text explanations each, we use two approaches with 887

which to train and evaluate our classifier. The first 888

used leave-one-out cross validation at the exam- 889

ple level, such that the classifier was trained on 890

98 examples at a time and then evaluated on the 891

remaining one. We refer to this evaluation as “E1” 892

in Table 9. The second also used leave-on-out cross 893

validation but at the explanation level; we held out 894

a single text explanation, trained on all other ex- 895

planations across all examples, and then evaluated 896

on the held-out explanation. When an explanation 897

appeared more than once in a single example, we 898

made sure to remove its duplicates from the train- 899

ing data for predicting that explanation. We refer 900

to this evaluation as “E2” in Table 9. 901

The trained model is a simple logistic regres- 902

sion classifier trained on a fastText embedding of 903

both the explanation and the target ICD-9 code 904

description. Using the BioWordVec embeddings 905

released by Zhang et al. (2019), we embed each 906

both the explanation and code description into a 907

200-dimensional vector, concatenate the two vec- 908

tors, and pass it to the logistic regression. In the 909

E1 evaluation, the model achieves an accuracy of 910

60.6% and an ROC AUC score of .640. In the E2 911

evaluation, that increases to an accuracy of 67.2% 912

and an AUC score of .726, indicating that the ad- 913

ditional within-example explanations substantially 914

help the classifier. 915

When using these classifiers to label the explana- 916

tions generated by each model instead of the plau- 917

sibility scores derived in A.2, we get the results 918

shown in columns E1 and E2 of Table 9. 919

Finally, we retrain our final classifier on all the 920

explanations, leaving none held out. Rather than 921

using our classifier to evaluate the explanations that 922

were actually shown to the clinician, we instead use 923

our (re-)implementation of the four models to ex- 924

tract an explanation from each of the 99 discharge 925

summaries. These explanations thus may or may 926
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AUC F1 P@n

Macro Micro Macro Micro 8 15
Mullenbach et al. (2018) 0.895 0.986 0.088 0.539 0.709 0.561
Wiegreffe et al. (2019) 0.889 0.985 0.080 0.542 0.712 0.562
Ours (using released weights) 0.892 0.978 0.090 0.298 0.636 0.471
Ours (retrained) 0.628 0.884 0.001 0.024 0.042 0.027

Table 6: Published predictive performance of CAML and our replicated results. Our experiments throughout the
paper use the model with the released weights, which is closest to the published numbers (despite Micro F1).

442.84: “Aneurysm of other visceral artery”

Mullenbach et al. (2018)
CAML (I) ... and gelfoam embolization of right hepatic artery branch pseudoaneurysm coil embolization of the

gastroduodenal ...
Cosine ... coil embolization of the gastroduodenal artery history of present illness the pt is a ...
CNN ... foley for hemodynamic monitoring and serial hematocrits angio was performed and his gda was ...
Logistic (I) ... and gelfoam embolization of right hepatic artery branch pseudoaneurysm coil embolization of the

gastroduodenal ...
Ours
DR-CAML 0.55 ... gelfoam embolization of right hepatic artery branch pseudoaneurysm coil embolization of the

gastroduodenal artery ...
Logistic 0.57 ... biliary stents hx cbd r colonic fistula r colectomy partial l nephrectomy for renal ...
Proxy-DRCAML 0.55 ...embolizationof righthepaticarterybranchpseudoaneurysmcoilembolizationof thegastroduodenal

artery history ...
Proxy-HAN 0.55 ...embolizationof righthepaticarterybranchpseudoaneurysmcoilembolizationof thegastroduodenal

artery history ...

428.20: “Systolic heart failure, unspecified”

Mullenbach et al. (2018)
CAML ... no mitral valve prolapse moderate to severe mitral regurgitation is seen the tricuspid valve ...
Cosine ... is seen the estimated pulmonary artery systolic pressure is normal there is no pericardial ...
CNN ... and suggested starting hydralazine imdur continue aspirin arg admitted at baseline cr appears

patient ...
Logistic (HI) ... anticoagulation monitored on tele pump systolic dysfunction with ef of seen on recent echo ...

Ours
DR-CAML 0.39 ... anticoagulation monitored on tele pump systolic dysfunction with ef of seen on recent echo ...
Logistic 0.37 ... seen the mitral valve leaflets are mildly thickened there is nomitral valve prolapse ...
Proxy-DRCAML 0.39 ... anticoagulation monitored on tele pump systolic dysfunction with ef of seen on recent echo ...
Proxy-HAN 0.36 ... blood cultures obtained repeated cxr echocardiogram showed an ef of and therefore zestril was ...

Table 7: Comparison of the clinical evaluation from Mullenbach et al. (2018) with our plausibility evaluation.
There are two examples above, each which contains the explanations produced by eight systems. The first four
systems for each example are directly copied from Table 1 of Mullenbach et al. (2018). The (HI) and (I) labels in the
second column indicate whether the clinician labeled those explanations as Highly Informative or Informative. The
four systems below the dotted line are from our evaluation, for which the second column indicates the probability
output of our plausibility classifier.

455.0: “Internal hemorrhoids without mention of complication”

DR-CAML 0.38 ... and she then underwent a colonoscopy with gi that also did not detect evidence ...
Proxy-DRCAML 0.52 ... past medical history diverticular disease diverticulitis sbo anxiety hemorrhoids past surgical history

s p ...

592.0 : “Calculus of kidney”

DR-CAML 0.30 ... if you develop any of these symtpoms please call the office or go to ...
Proxy-DRCAML 0.46 ... the colon gastroesophageal reflux asthma irritable bowel syndrome gastroparesis osteoporosis

anxiety and or depression ...

Table 8: Additional differing explanations and classifier scores between DR-CAML and the proxy.
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Model Theirs Ours E1 E2 Full

Logistic 41 43 47 49 35
Cosine 48 48 41 40 38
CNN 36 46 51 47 42
CAML 46 54 47 43 44
DR-CAML – – 45 44 48

Table 9: Plausibility evaluations and comparison to
Mullenbach et al. (2018). The Theirs column shows
the published numbers; Ours shows our best attempt
at matching the clinical evaluation to the trained mod-
els. While the numbers change dramatically, the order-
ing only changes by two swaps. The clinical evalua-
tion did not include DR-CAML. E1 and E2 show the
results with predicted plausibility labels under the two
evaluation settings described in A.3. Full duplicates the
results from Table 4 for comparison.

not appear in the training data for the classifier. For927

the Full evaluation we are not worried about the928

classifier overfitting, as the classifier functions as a929

direct replacement for the clinician who produced930

the training data. The results of this analysis are931

the numbers shown in Table 4 in § 5, reproduced in932

Table 9 in the “Full” column. The Logistic model933

does much worse on the Full evaluation than in934

either E1 or E2. This may be because the expla-935

nations selected by the trained model were worse936

than those selected by the model which was used937

for the original clinical evaluation.938

A.4 Additional Examples939

We provide two additional examples of eight dif-940

ferent models’ explanations in Table 7. These are941

the same examples shown in (Mullenbach et al.,942

2018). We include the four explanations as pub-943

lished in Mullenbach et al. (2018), our reproduction944

of DRCAML, the logistic regression baseline, and945

the explanations from two proxy models, Proxy-946

DRCAML and Proxy-HAN. As we can see from947

the examples, Proxy-DRCAML produces similar948

explanations to DR-CAML. Proxy-HAN shows949

that our method is able to produce explanations950

for models not originally designed to do so. We951

also include two additonal examples in which DR-952

CAML and Proxy-DRCAML diverge the most in953

Table 8.954
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