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Figure 1: Geometric Sparse-Voxel Reconstruction. Our method, abbreviated as GeoSVR, delivers
high-quality surface reconstruction for intricate real-world scenes based on explicit sparse voxels.
Our superiority is exhibited compared to the state-of-the-art approaches built upon Gaussian Splatting,
which encounter rough, inaccurate, or incomplete recovery problems even with help from external
estimators, excelling in delicate details capturing with high completeness and top-tier efficiency.

Abstract

Reconstructing accurate surfaces with radiance fields has achieved remarkable
progress in recent years. However, prevailing approaches, primarily based on
Gaussian Splatting, are increasingly constrained by representational bottlenecks. In
this paper, we introduce GeoSVR, an explicit voxel-based framework that explores
and extends the under-investigated potential of sparse voxels for achieving accurate,
detailed, and complete surface reconstruction. As strengths, sparse voxels support
preserving the coverage completeness and geometric clarity, while corresponding
challenges also arise from absent scene constraints and locality in surface refine-
ment. To ensure correct scene convergence, we first propose a Voxel-Uncertainty
Depth Constraint that maximizes the effect of monocular depth cues while present-
ing a voxel-oriented uncertainty to avoid quality degradation, enabling effective and
robust scene constraints yet preserving highly accurate geometries. Subsequently,
Sparse Voxel Surface Regularization is designed to enhance geometric consistency
for tiny voxels and facilitate the voxel-based formation of sharp and accurate sur-
faces. Extensive experiments demonstrate our superior performance compared to
existing methods across diverse challenging scenarios, excelling in geometric accu-
racy, detail preservation, and reconstruction completeness while maintaining high
efficiency. Code is available at https://github.com/Fictionarry/GeoSVR.
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1 Introduction

Surface reconstruction from multi-view images has been a critical long-term problem in computer
vision and graphics. In recent years, with the development of Neural Radiance Fields (NeRF)
[43], impressive performances [[72, 160l 38, |61]] have been shown by combining volume rendering
with signed distance functions (SDF) to learn implicit fields from input images, yet are mostly
computationally expensive. More recently, with the rise of 3D Gaussian Splatting (3DGS) [32],
surface reconstruction with explicit sparse representation is making rapid progress [25 2879, 15,
11,163]], enabling efficient and high-quality geometry learning for a wider range of scenarios.

While significant advancements have been achieved in these 3DGS-based approaches, the method-
ological limitations are emerging as a bottleneck. One critical problem lies in the reliance on
well-structured point clouds initialization. Typically provided by multi-view geometry (MVG)
approaches [52, 53], the point clouds inevitably contain inaccurate and uncovered regions due to ap-
pearance ambiguities, which further aggravates difficulties for 3DGS to refine these challenging areas
accurately in geometry, becoming an inherent flaw. This spatial incompleteness further hinders the
full potential of rapidly evolving geometry foundation models [17, (70} 2] in attempts [15} [14} 36} 165],
obstructing their ability to drive a quality revolution in surface reconstruction. Another key issue is
the lack of clearly defined edges in the Gaussian primitives, making the geometry ambiguous from
both the representation clarity [28, 56]] and the calculation precision trade-offs [56} 49, 42].

Exploring another possibility, this paper presents GeoSVR that tames sparse voxels to achieve
accurate and delicate surface reconstruction. Unlike previous explicit approaches based on 3DGS,
we start with a recently proposed SVRaster [S6] that combines sparse voxels with rasterization to
efficiently refine the scene via level of details. Initialized with fully covered coarse voxels constantly,
the full potential can be maintained to model any part inside the scene with completeness. And with
clearly bounded voxels, geometric details can be better identified compared to the Gaussians or smooth
neural fields. However, while obtaining distinct characteristics, challenges come correspondingly.

Despite competitive surface quality yielded by vanilla SVRaster, significant geometric distortion
persists during the sparse voxels optimization, due to the absence of a strong structure prior like
the point clouds used in 3DGS, hindering further surface refinement. To fully exploit the strength
of the densely covered representation, we resort to the current rapidly evolving and increasingly
well-established monocular depth as the geometry cue to provide dense and easy-to-fetch scene
constraints. However, a key problem arises for our highly accuracy-required surface reconstruction
task: how to effectively utilize this good but not perfect external constraint, while preserving well-
reconstructed geometries from being hurt by errors to avoid quality degradation. To address this,
we first adopt the patch-wise depth regularizer [35] to facilitate local geometry learning, and based
on which, a Voxel-Uncertainty Depth Constraint is proposed, evaluating the geometric uncertainty
of each voxel and adaptively determining the degree of reliance on external cues at pixel level. By
modulating internal photometric and external depth supervisions for confident and ambiguous regions,
our approach enables effective and robust scene constraints, even for well-reconstructed geometries.

Investigating the voxel-based surface formation, we then focus on geometric accuracy refinement
and develop Sparse Voxel Surface Regularization. Since the gradients are shared only with the
nearest neighbors, challenges exist in composing these extremely local and tiny sparse voxels to
ideal surfaces. First, inspired by previous MVG-regularized approaches [20, 16} 11,151} 12]], we try
to adopt the widely used explicit multi-view geometry constraint [26] to help build geometrically
correct surfaces. Nevertheless, the sparse voxel’s extreme locality made this plane-based geometry
regularization less effective in enforcing a regional geometry constraint. To enlarge the refinement of
per voxel, we conduct an interval sample to randomly drop out a portion of voxels to simplify the
learned scene during geometry regularization, thus forcing each tiny voxel to keep a global geometry
consistency. Second, from the perspective of voxel’s surface representation, we introduce two voxel-
wise regularizations: A Surface Rectification to restrict the surface formation to be aligned with a
unique voxel to reduce depth bias; and according to the metioned voxel uncertainty, a Scaling Penalty
to eliminate the participation of the geometrically inaccurate large voxel in the surface formation.
With the help of both, sharp and accurate surfaces are facilitated in the reconstruction.

In summary, our main contributions are as follows:

* An exploration GeoSVR to build explicit voxel-based framework for accurate surface
reconstruction, taming sparse voxels to enable delicate and complete geometry learning.



* A Voxel-Uncertainty Depth Constraint that maximizes the utilization of external depth cue
while avoiding quality degradation by the proposed voxel uncertainty evaluation, enabling
effective and robust scene constraints for highly accuracy-required surface reconstruction.

* A Sparse Voxel Surface Regularization for surface geometric accuracy refinement, which
enlarges the global geometry consistency constraint for tiny voxels and facilitates recon-
structing sharp and accurate surfaces by regularizing the voxel-based surface formation.

» Extensive experiments on DTU, Tanks and Temples, and Mip-NeRF 360 datasets demon-
strate that the proposed GeoSVR achieves superior performance compared to the state-of-
the-arts in reconstructing accurate surfaces across diverse challenging scenarios, excelling
in detail preservation and high completeness while maintaining computational efficiency.

2 Related Works

Differentiable Radiance Fields. In recent years, radiance fields have made significant progress in
3D reconstruction by learning scenes directly with differentiable rendering. Neural Radiance Fields
(NeRF) [43] is one of the most important foundations, which uses a large MLP to memorize 3D
scene and renders through differentiable volume rendering, yet is weak in efficiency. Later, hybird
representations come by proposing neural grids [57} 46, 27, plane decompositions [9} 10, 18] 8], or
sparse voxels [[19,|139[75]] with or without neural networks. However, a weakness is that these methods
always assume all the grids are uniform in scale, limiting the quality and scalability. More recently,
3D Gaussian Splatting (3DGS) [32] represents radiance fields by a set of anisotropic 3D Gaussians
and renders with differentiable splatting using rasterization, achieving remarkably successful balances
between fast and high-quality scene reconstruction [40, [77, 50]. However, due to the complexity
of tremendous intersected Gaussians, a view-inconsistent rendering problem is exhibited, and is
hard to fix without large efficiency trade-offs [49, 42| 44]. Also, the reliance on sparse point clouds
brings additional uncertainty. To this end, SVRaster [S6] combines efficient rasterization with explicit
non-uniform sparse voxels to achieve definite, robust, and high-quality scene representation, with less
mandatory dependency on structure prior as well. Nevertheless, its potential for accurate geometry
learning has not been fully explored, which is an open yet invaluable problem for 3D reconstruction.

Surface Reconstruction with Learnable Fields. Reconstructing surfaces from multi-view images
has been a long-standing problem. While multi-view stereo-based methods [26, 82} 53| 71] rely on a
modular pipeline with multiple decoupled stages, earlier neural approaches [73} 48] are proposed
to represent surfaces implicitly with an MLP to learn geometry directly from images. Further
advancements such as UNISURF [47], NeuS [60], VoISDF [72] represent implicit surfaces by signed
distance functions integrated with differentiable volume rendering and achieve better reconstructed
details. Based on these, methods with improvements like geometry regularizations [16} (78,20, |59]
and efficient grid representations [38}166]] extended the quality and available scenarios. However, the
trade-off between training time and quality for complex scenes is still a serious challenge.

More recently, Gaussian-based surface reconstruction has arisen with 3DGS by offering better explicit
geometry with much higher efficiency. SuGaR [23] first focuses on extracting Gaussians as mesh
surfaces with alignment regularization. Then, more efforts appear by integrating 3DGS with SDF
[76} 113} 141,167,180, 136] or improved representations [28, 79} [15], significantly progressing the surface
quality. Specifically, 2DGS [28]] and GSurfel [15] propose squeezing Gaussians as 2D surfels for a
better aligned surface, and GOF creates an opacity field to allow dense and detailed mesh extraction.
However, due to the loose geometry constraint and photometric ambiguities, challenges in accuracy
still exist. For the SDF-integrated approaches, since additional MLP and also grid are usually
required, problems of over-smoothness [80] and limitations for large unbounded scenes [41]] may
occur. To conquer the accurate reconstruction on challenging regions, following previous successes
[20} 16, [12]], PGSR inherits the idea of surfels and incorporates the multi-view geometry constraint
[26], which is widely used in multi-view stereo, to regularize planar accuracy, but the production
leans to be over-smooth, due to the unsharp Gaussians similarly in 2DGS [41] [76]. Meanwhile, some
works [[15} 141136, 63]] attempt to resort to external geometry cues from geometry foundation models
[lL7, 2L [70] for regularization. However, the performance is still far from what the cues could fully
provide, mainly caused by the methodological bottleneck in the strict demand of high-quality initial
points, for which the effect of special densification is also limited [11} [14]. Instead, this work explores
another sparse voxel representation to escape the strict initialization requirement and pursue a clearer
geometry representation, achieving superior accurate, detailed, and complete surface reconstruction.
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Figure 2: Overview of GeoSVR. Our method starts from constantly initialized sparse voxels,
optimized with RGB images. (a) To enforce correct scene convergence while avoiding accuracy
degradation, we apply Voxel-Uncertainty Depth Constraint by evaluating geometric uncertainty to
determine the degree of reliance on monocular depth cue. (b) Voxel Dropout is introduced to enlarge
the global geometry consistency for tiny voxels during the explicit geometry regularization. (c) For
fine-grained surface refinement, we align the voxel-level density field to the surfaces with Voxel
Regularization, facilitating accurate and sharp surface formation.

3 Method

3.1 Preliminaries: Sparse Voxels Rasterization

Representation. Sparse Voxels Rasterization (SVRaster) [56] represents scene with density field
based on sparse voxels, which are organized in an Octree of the size ws € R and center w, € R3.
Each voxel keeps a set of SH coefficients vy, for voxel color, and densities vge, € [0, +00]2%2%2,
separately on the eight voxel corners to model a trilinear inside density field for geometry. A voxel is
identified with the index v= {4, j, k} at Octree level [, and its size v4 and center v, are given as:

VSZWSXQ_Z, Ve =We — 0.5 X Wy + Vg X0 (1)

Rendering. During rendering, SVRaster adopts a-blending similar to NeRF and 3DGS. Inside each
voxel, SVRaster evenly samples K points in the ray segment of length At between the ray-voxel
intersections, and composes voxel-wise « with trilinear interpolation interp(-) by volume rendering.
Then, the a-blending is available to render the pixel-wise color C that corresponds to the ray:

At K

N i—1
C=> _ Toe, i=]]_ (1-aj); a=T-exp(=7=3 interp(veeo, ak)), ()

where «; and ¢; are alpha and view-dependent color of the i-th intersected voxel, and qy, is the
local position of the k-th sample point in the voxel. According to a-blending, we can render the
pixel-wise normal N and depth D. The pixel-wise depth D can be given similarly via per-point
distance rendering. For voxel’s normal, the analytical gradient is calculated at the voxel center q.:

n = normalize (Vg interp (vgeo, dc)) - 3)

Adaptive Octree Control. To adaptively adjust the scene Octree during training, SVRaster prunes
the voxels with the least blending weight T'«, and accumulates an a-weighted priority based on loss
gradients to select the voxels that need to be subdivided to the next level to represent finer details.

Challenges in Surface Reconstruction. Despite strengths in geometric completeness and clarity,
challenges exist correspondingly: 1) With little native constraint, the optimization often encounters
heavy geometry distortion and blocks further improvement. 2) The impact scope of a single voxel
could be quite local, which is unfavorable to accurate surface formation. Exploring tackling these two
challenges, we present GeoSVR for high-quality voxel-based surface reconstruction, as in Figure 2]

3.2 Voxel Geometric Uncertainty for Scene Constraint

Unlike previous approaches based on SDF [20) 78] or 3DGS [128| [79} 14} [11] that benefit from the
structure constraints from geometric [1l] or sparse points initialization [32], the highly expressive
and constant-initialized sparse voxels require an essential scene constraint to effectively ensure the
geometry converges to approximately correct surfaces, preparing for a further accuracy refinement.



Problem in Monocular Depth Cue. Inspired by previous works [[78, 165], we turn attention to the
increasingly well-established monocular depth [5, 211168 [70], which provides dense, efficient, and
full-time available constraints for scene geometry optimization. Moreover, this dense cue natively
matches the spatially complete voxels to fulfill its potential for compensating appearance ambiguities.

However, the problem of how to maximally utilize this attractive but not perfectly accurate prior
in the highly accuracy-required surface reconstruction remains a long-standing difficulty. Despite
considerable relevant studies [[78, |59, [15} |14} 165, 163, 136]], a solution is still absent to evaluate the
learned geometry’s confidence to determine external cue reliance, which causes only over-conservative
strategies to be available, but could still degrade the quality by the included errors [78, [14].

Voxel Geometric Uncertainty. In this work, we aim to solve the problem by evaluating geometric
uncertainty from the representational capability: 1) In SVRaster, each voxel contains a trilinear
density field to represent the geometry of the cube space with length of v, = w, x 27!, Then,
the accuracy for an under-captured geometry is strictly limited, negatively related to the level [ of
corresponding voxels. 2) During optimization, SVRaster progressively subdivides voxels at [ with
largest gradients to the next level [ + 1. Consequently, the voxels at lower levels denote either regions
with fewer texture constraints or less view coverage, both associated with high uncertainties.

Inspired by these two tight couplings of uncertainty and voxel’s level, we abstract a level-aware

geometric uncertainty that explicitly correlates with Octree level [ to guide identifying scene constraint

targets. For a voxel v at level [, its base and geometric uncertainties Upase and Ugeom are given by:
Ubase(l) = Ugeom ('U) = Ubase(l) : (1 — exp (_Vgeo)) , “4)

Wy
B(l+1o)’

where 3 is a scaling factor, combined with Octree size wy as global scene scale. [ is the starting
level. Geometric uncertainty Ugeom(v) is composed of the level-dependent base uncertainty Up,se and
the voxel density, indicating a voxel at low level with critical geometry leads to higher uncertainty.
Derived in the Appendix Section B, we simplify powers and exponents while preserving the same
trend to prevent numerical blowup in later applying.

Voxel-Uncertainty Depth Constraint. Based on the uncertainty, we next design the constraint
to enable effective and reliable monocular depth integration. To effectively apply the monocular
depth as supervision, we resort to a patch-wise global-local depth loss [35] for better scale alignment
and facilitating the geometry knowledge learning. Then, integrating the geometric uncertainty into
the pixel-wise constraint, we first render an Octree level map L for efficient pixel-wise uncertainty
calculation, directly gathering the volume density term of Eq. with « of Eq. via rasterization:

N At =K |
L= Zi=1 Tiol;, a=1-— exp(—? Zk:l interp(vgeo, dk))- 5)

Next, converting uncertainty to weight, we produce a pixel-wise modulation on depth constraint. To
ensure adaptive and robust constraints for various stages and scenarios, we obtain statistics of L to
set the hyperparameters in Eq. . Specifically, for scale-independence, let the scale term of wg /3
equal to per-view global level scale w; = max(L) — min(L), and set [ = — min(L) to define the
coarsest level of the view. Then, derived from Ugeom, the geometry uncertainty weight Wy, follows:

w
max(1,L — min(L))’

Wiy = w; = max(L) — min(L) (6)
Finally, given the estimated monocular depth D as the constraint for the rendered depth D, W, is
applied to the patch-wise depth loss Lp._pacen [35]] for per-pixel constraint reweight:

ED-unc(Dy f)) = Wunc : ED—patch(Da f)) (7)

As a result, Voxel-Uncertainty Depth Constraint Lp. e pays minimal attention to the voxels with low
uncertainty to be confident of the native photometric constraint, while enhancing highly uncertain
ones to rely on external cue for solving geometry ambiguities. The effect can be illustrated in Figures
[2Jand [6] where level map L is shown to obtain a more uniform range of values for better visual effect.

3.3 Sparse Voxel Surface Regularization

Despite the scene constraint exerted, a coarsely correct reconstruction does not exhibit the full
potential of sparse voxels. Therefore, we next investigate the capability of sparse voxels for highly
accurate surface formation under explicit geometry constraint and finer voxel-level regularizations.



Geometry Regularization with Voxel Dropout. Serving as an explicit and strict constraint,
homography patch warping has shown great effect in classical MVS [22} 154, [82] and recent related
works [20} 116} [11} 51} [12] 59], which we also try to apply in our method. Typically, considering a
source view and a reference view with image I and I, we warp the image point x’ in the pixel patch
P of I to the image point x in I, of the reference view by the plane-induced homography H [54]:

R.(RTt; — RTt,)nT
nTp

x = Hx', H = K (R,RT + K (8)
where p is the intersected 3D point calculated from depth D, and the normal n is from Eq. [3| K is
camera intrinsics, and [R, t] is the extrinsics of each view. Then, an occlusion-aware NCC loss [[11]
is applied between the warped P and its target in I,. However, we observe that despite improvements
brought, this technique does not work as ideally as in previous approaches. Due to the extreme
locality of the tiny voxels that connect to only the nearest neighbors by a few corners, the planar
constraint becomes less effective, leading to redundant wrong structures being produced.

To solve this problem, our idea is to enlarge the regularization for each voxel by breaking these incor-
rectly organized geometries, enforcing the tiny voxels to obey a more global geometry consistency
instead of only their own tiny scopes. During the process, we conduct an interval sample of the voxels
with a random ratio in [y, 1] while calculating the full-scale depth D and normal N. Therefore, only a
subset of voxels is used to represent the scene, while the others are temporally dropped out. Then, the
regularization enforces each voxel to respond to the geometry consistency of a larger area, including
where the dropped-out voxels belong, for a forced break and correction of the ill geometries.

Surface Rectification. Subsequently, we focus on the
bias between the trilinear voxel density field and the
weight contribution in rendering, which causes mis-
aligned surfaces from rendering and voxel density. As in
Figure E} due to the trilinear local-linked voxel fields, the
density increase of one voxel will implicate the neighbors,
resulting in decentralized densities that makes the highest
rendering weight w biased to the side regions but not the
correct highest density position, like Figure[3]a.1.

(a) Surface Formation (b) Surface Rectify

To this end, we propose Surface Rectification, a voxel-
level regularization conducted during rendering. In the
process, we first calculate an enter voxel alpha «y, . and
out o, from the density of the intersected enter and out points pe, Po, denoted as red cross in Figure
[l to model the first-time intersection for surface checking, and select the voxels with critical change
density between p, and p, cross a threshold T}, (set to 0.5 in this work) as the surface voxels V:

Figure 3: Illustration of Surface Rectifica-
tion and the visualized process on voxels.

Ve=A{v]ape <To < apo}, Where apeo =1 —exp(—At - interp(vgeo, Peso)) 9)

Then, for these voxels, we penalize the density at p, but encourage at p, to form a sharp segmentation
of the surface and empty spaces, with a penalty term including the voxel’s rendering contribution w:

Rree = w - I(v € V) - (interp(vgeo, Pe) — interp(vgeo, Po)), w = Ta. (10)
Since then, the surface in rendering can be rectified to be aligned to the density, as in Figure[3|a.2.

Scaling Penalty. Inspired by the voxel geometric uncertainty in Sec. [3.2] we present a simple yet
effective regularizer that penalizes the voxels occupying a long sampling distance, which denotes a
less accurate geometry modeling. Normalized with globally minimal voxel size min(v), it follows:

Rep = w - interp(Vgeo, qc) - max(0, logy( )), where q. = (0.5,0.5,0.5). (11)

At
min(vy)
3.4 Loss Function

The total objective is composed of the photometric loss Lppoo from SVRaster, the depth constraint
Lp.unc from Eq. , NCC loss for geometry regularization, and the voxel regularizations in Sec.

L= Ephotn + 77£D—unc + 7-JCNCC + ,Uferec + HZRsp- (12)

In this work, we set the weights of n = 0.1, 7 = 0.01, gy = 1075, and o = 1075, respectively.



Table 1: Quantitative Comparison on the DTU Dataset. Bests are in highlight. Our GeoSVR
achieves the highest reconstruction quality on the Chamfer distance while retaining fast training.
24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean  Time

VolSDF 1.14 126 081 049 125 070 072 129 118 070 0.66 108 042 061 055 0.86  >12h
% NeuS 1.00 1.37 093 043 1.10 0.65 057 148 109 083 052 120 035 049 054 0.84  >12h
= Neuralangelo 037 072 035 035 087 054 053 129 097 073 047 074 032 041 043 0.61  >128h
£ GeoNeuS 038 054 034 036 080 045 041 103 0.84 055 046 047 029 036 035 0.51 > 12h
MonoSDF [78] 0.66 088 043 040 0.87 078 0.81 123 118 0.66 0.66 096 041 057 051 0.73 6h
2DGS 048 091 039 039 1.01 083 081 136 127 076 070 140 040 076 0.52 0.80 0.2h
GOF 050 082 037 037 112 074 073 1.18 129 0.68 0.77 090 042 066 049 0.74 1h
£  SVRaster 061 074 041 036 093 075 094 133 140 0.61 063 1.19 043 057 044 0.76 0.1h
= GS2Mesh 059 079 070 038 0.78 1.00 0.69 125 096 059 050 0.68 037 050 046 0.68 0.3h
& VCR-GauS 055 091 040 043 097 095 084 139 130 090 076 092 044 075 0.54 0.80 ~1h
MonoGSDF [36] 045 065 036 036 094 070 0.67 127 099 063 049 084 039 053 047 0.65 hrs
PGSR (111 036 057 038 033 078 058 050 1.08 063 059 046 054 030 038 034 0.52 0.5h
GeoSVR (Ours) 032 051 030 033 071 048 042 1.03 0.62 056 033 046 030 034 032 0.47 0.8h

: \k 4
Reference GeoSVR (Ours) PGSR SVRaster VCR-Gau$S

Figure 4: Reconstructed Mesh Visualization on the DTU Dataset. Our GeoSVR achieves
superior reconstruction both in accuracy and completeness, handling difficult regions well by geometry
cue constraints while still preserving fine-grained details. Better visualized with zoom in.

4 Experiments

Implementation Details. Our code is implemented with PyTorch and CUDA kernels, built upon
SVRaster [56]]. In the experiments, we train each model with 20, 000 iterations, with the learning rates
for density and SHs at degree 0 and the others of 0.05, 0.01, and 0.00025 in Adam [33]] optimizer.
We use DepthAnythingV2 [70] to provide the depth cues. The patch size of 7 x 7 is used for patch
warping, and 7y in voxel dropout is set to 0.5 and 0.3 for DTU and TnT datasets. The Octree setups
keep the same as in [56], and the prune interval is increase to 2,000 for finer expression. In our
method, we use TSDF for mesh extraction. All experiments are conducted on RTX 3090 Ti GPUs.

4.1 Comparision

Dataset. We use the prevailing DTU, Tanks and Temples (TnT), and Mip-NeRF 360 datasets for
evaluation. The scene selections of DTU and TnT are consistent with previous works [[72}[60} 38}, 28],
preprocessed following 2DGS [28]] and Neuralangelo [38]. The voxel size of TSDF is set to 0.002 for
DTU and is calculated for TnT following PGSR [L1]. The images in DTU and TnT are downsampled
2%, and in Mip-NeRF 360 are downsampled 2x or 4 x following for indoor and outdoor scenes.

Baselines. We take the state-of-the-art surface reconstruction approaches as baselines, including
implicit (e.g., NeuS [60], Neuralangeo [38], Geo-NeuS [20]) and explicit methods (e.g., 2DGS [28]],
GOF [[79], PGSR [11]]). Among them, MonoSDF [[78]], GSurfel [13], VCR-GauS [14], GS2Mesh
[63], and MonoGSDF [36]] take external geometry cues from pre-trained depth and/or normal models
for regularization. Basic representations like 3DGS and SVRaster [56] are also included.



Table 2: Quantitative Comparison on the Tanks and Temples Dataset. GeoSVR achieves the
best on the F1 score, demonstrating superior reconstruction quality on various real-world scenarios.

Implicit Explicit
NeuS Neuralangelo Geo-NeuS MonoSDF | 2DGS GOF SVRaster VCR-GauS MonoGSDF PGSR ‘ GeoSVR
Barn 0.29 0.70 0.33 0.49 0.41 0.51 0.35 0.62 0.56 0.66 0.68
Caterpillar 0.29 0.36 0.26 0.31 0.23 0.41 0.33 0.26 0.38 0.44 0.49
Courthouse 0.17 0.28 0.12 0.12 0.16 0.28 0.29 0.19 0.29 0.20 0.34
Ignatius 0.83 0.89 0.72 0.78 0.51 0.68 0.69 0.61 0.72 0.81 0.83
Meetingroom | 0.24 0.32 0.20 0.23 0.17 0.28 0.19 0.19 0.25 0.33 0.37
Truck 0.45 0.48 0.45 0.42 0.45 0.59 0.54 0.52 0.62 0.66 0.66
Mean | 038 0.50 0.35 039 | 030 0.46 0.40 0.40 0.47 052 | 0356
Time | >24h >128h >12h 6h | 16m 24m 11m 53m 3h 45m | 68m

Reference GeoSVR (Ours) PGSR 4 SVRaster

Reference GeoSVR (Ours) VCR-GauS GOF
Figure 5: Reconstructed Mesh Visualization on the Tanks and Temples Dataset. Our

GeoSVR stands out by reconstructing accurate surfaces even for difficult scenes like complex
buildings and weak texture regions, delivering intricate details as well as precise flats.

Surface Reconstruction. To evaluate surface reconstruction performance, we make comparisons on
the DTU and TnT datasets with Chamfer distance and F1-score. The results are reported in Table
[[and 2] On the DTU dataset, our method outperforms all the baselines in the overall accuracy,
exceeding previous SDF and 3DGS-based SOTA methods Geo-NeuS and PGSR, and also all the
methods leveraging external geometry cues as well. On the TnT, our method also achieves the
best in F1-score, and gets better results in most scenes compared to the SDF-based Neuralangelo,
monocular depth-hinted (i.e., DepthAnythingV2) MonoGSDF, and geometry regularized PGSR.

On the two datasets, our method also retains fast o .
training comparable to the 3DGS-based meth- Table 3: Quantitative Results on Mip-NeRF 3.60
ods. In Figure E and EL we visualize the re- Dataset. The best scores for surface reconstruction

constructed meshes from ours and competitive Methods are highlighted with colors.
baselines. Our productions obtain both the best eI — PR ——
accuracy and completeness. And due to the ba- PSNR 1 SSIM 1 LPIPS | |PSNR 1 SSIM 1 LPIPS |
sis of the initial prior-free and densely covered ~ NeRF 2146 0458 0515 | 2684 0790  0.370
Is. GeoSVR handle the refl Decp Blending | 21.54 0524 0364 | 2640 0844 0261
sparse voxels, Geo can handle the reflec-  InstantNGP | 2290 0566 0371 | 29.15 0880 0216
tive regions and areas with insufficient coverage, = Mip-NeRF360 | 2447 0601 0283 | 3172 0917  0.180
. 3DGS 2467 0728 0240 | 3096 0.924  0.187
where the 3DGS-based methods are limited, due  svraster 2468 0738 0206 | 3065 0927 0.161

to insufficient initialization points. Additionally, ~ BakedSDF 2247 0585 0349 | 27.06 0836 0258

- | £ SuGaR 2293 0629 0356 | 2943 0906 0225

GeoSVR performs better than previous geome 3 20Gs 2434 0717 0246 ‘ 3040 0916 0,195
try cue-reliant methods (e.g., VCR-GauS) that % Gor 2482 0750 0202 3079 0924 0.184
- . £ VCR-Gaus | 2431 0707 0280 3053 0921 0.184

may lead to oversmoothing and underfitting. 5 PGSR 2476 1707527 0203 | 3036 [0934 0147

Appearance Reconstruction. Achieving accu- GeoSVR (Ours)| 2483 0738 0218 3046 0921 0.172

rate geometry reconstruction, our method main-

tains the capability for high-quality novel view synthesis as well. In Table[3] we compare our methods
on the Mip-NeRF 360 dataset with the baselines in the aspect of rendering quality. Our method
exhibits competitive performance among the surface reconstruction methods as well as the NVS-
specific baselines such as our basis SVRaster. Due to the lack of geometry ground-truth, we do not
evaluate the surface reconstruction quality. Qualitative comparisons can be found in the Appendix.




4.2 Ablation Study

In this section, we verify the effect of our designs on the Tanks and Temples [34] dataset and report
the mesh reconstruction metrics. The quantitative scores are reported in Table [d] As references,
the reproduced SVRaster and PGSR with TSDF are reported in the comparison. Additionally, we
summarize the baselines with external cues in Table [3]to exhibit the effect of the methodology itself.

Table 4: Ablation Study on the TnT Dataset. Table 5: Accuracy Comparison to
Items | Settings | Precision T Recall 7 F1-Score 1 Baselines with External Cues.
A. | SVRaster (Base) 0.383 0.421 0.397 Method Geo.  Init.& Cues gﬂ ‘gff
PGSR (Reference) 0.509 0.560 0.527 4
PGSR + Patch-wise Depth (Reference) 0.517 0.576 0.538 MonoSDF SDF N(lg(zrll\?o[r);gih 039 073
A. + Sparse Points 0.363 0.409 0.382 SEM pts
A. + Inverse Depth 0.383 0.421 0.398 GSurfel GS Mono Normal 0.83
B. | A.+Patch-wise Depth 0.474 0.438 0.449 .
+ Fateh-wise Dep GS2Mesh Gs  gomps 0.68
B. + Multi-view Reg. 0.520 0.568 0.538 p
C. | B.+Multi-view Reg. + Voxel Dropout |  0.533 0.569 0.546 VCR-Gaus (@] | GS \ SIMPE 040 080
ono Normal
C. + Surface Rectif. 0.536 0.572 0.549 GS+ SfM pts
D. ‘ C. + Surface Rectif. + Scaling Penalty ‘ 0538 0577 0552 MOOSPFEY | spr  monopepn 047 065
E. | D.+ Voxel-Uncertainty Depth (Ours) |  0.549 0.581 0.560 Ours | Voxel Mono Depth  0.56 0.47

Scene Constraint. Scene constraint dominates an essential start for further refinement. In Table[d] we
observe that regularizations of sparse depth from SfM points and monocular depth with inverse loss
both help less, while the patch-wise depth loss of Table[d] B breaks through to improve the geometry
effectively. A step further, even though the reconstruction already achieves a high quality (0.552 in
F1), our Voxel-Uncertainty Depth Constraint still remarkably recognizes the uncertain regions and
refines the geometry and preserving the well-reconstructed parts, as shown in Figure [f]and Table [ E.

iter=20k -
Octree Level Map w/o Voxel-Uncertainty Depth w/ Voxel-Uncertainty Depth w/o Surface Rectif. w/ Surface Rectif, Reference

Figure 6: Qualitative Studies for the Voxel-Uncertainty  Figure 7: Qualitative Studies for the
Depth. Recognizing regions with uncertain voxel geometry, Surface Rectification. Facilitation for
the challenging inaccurate surfaces can be effectively fixed. sharp and accurate surfaces is made.

Multi-view Regularization. Based on the scene constraint, we then analyse the multi-view regular-
ization part. Consistent with the conclusions like in previous works [20} 16}, [11]], adding the explicit
multi-view geometry objective can hugely improve the geometry accuracy, yet by relieving the local
trap of sparse voxels, our Voxel Dropout strategy further improves the multi-view consistency to a
higher level and exceeds the patch-warping regularized reference method with monocular depth.

Voxel Regularization. To further facilitate the surface-depth consistency, we apply the Surface
Rectification and Scaling Penalty for the voxels to get finer surfaces. As shown in Table[d]D and Figure
the voxel regularization designs benefit the formation of accurate surfaces from the perspective of
voxel-based representation, therefore improving the geometry both quantitatively and qualitatively.

5 Conclusion

In this work, we have presented GeoSVR, an explicit voxel-based framework that explores and
extends the under-investigated potential of sparse voxels to deliver accurate, detailed, and complete
surface reconstruction with high efficiency. Our study first analyzes voxel uncertainty in geometry
representation to distinguish the confidence of learned geometry, enabling effective and robust scene
constraint from external cues. Next, we investigate the problem of voxel-based surface refinement,
reconstructing surfaces with superior quality by our solution. In the future, it will be interesting to
explore enhancing voxel’s globality to conquer challenges like varying lights and textureless regions.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The proof and assumptions of the involved theoretical results are given in the
main paper and the appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The details of the implementation of our method, baselines, and experiments
are well described in the main paper and the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code has been made open-source. The datasets in experiments are all from
third parties and publicly open-access.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details of the implementation of our method, baselines, and experiments
are well described in the main paper and the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer:

Justification: Consistent with previous works, considering the performance of surface
reconstruction is stable, the experiments do not involve metrics related to the statistical
significance.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiment devices, time consumptions and other details are reported in
the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This work conforms to the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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10. Broader impacts

11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have discussed the societal impacts in the appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not contain these risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We use the assets properly, following the corresponding requirements.

Guidelines:
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13.

14.

15.

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets in the submission.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix
A Ablation Study

A.1 Scene Constraint

To better verify and demonstrate the  Table 6: Additional Ablation Study on Scene Constraint.
effect of scene constraint, we con- The absence of scene constraint leads to obvious distorted

duct an .addit'ional ablation study by geometry (red). This drawback can be solved via our proposal.
solely disabling the scene constraint
on our full GeoSVR and ablate its ef- Backbone Monocular Model — Uncertainty | Precision T Recall T F1-Score 1

fect with more monocular models, in-  pggr None . N/A ‘ 0.509 0.560 0.527
cluding DepthAnything ﬂ@] Depth— DepthAnythingV2 N/A 0.517 0.576 0.538
9

Pro [Ia]’ and DepthAnythingV2 m None N/A \ 0.511 0.549 0.523

] ] DepthAnything X ‘ 0.526 0.568 0.540

As analysed in our main paper, un- . qvr 4 0.539 0.574 0.551

like 3DGS or SDF that natively ob- X 0537 0.574 0.549

: . : DepthPro v 0546 0579 0557
tain a geometric hypothesis for better : : :

convergence, the absence of scene DepthAnythingV2 ’ ‘ et OV (R

constraint of SVRaster leads to unde-
sirable and heavily distorted surfaces.
Although a competitive accuracy on partial regions can be gained after applying our efforts of Sparse
Voxel Surface Regularization, the distorted geometry leads to a lot of inaccurate reconstructions and
drags the overall performance improvement compared to the SOTA 3DGS-based approach PGSR [11]],
as quantitatively and qualitatively shown in Table[6|and Figure[§] By introducing monocular depth as
a solution, it can be observed that this drawback of the representation has been well addressed.

B

SfM Point Clouds PGSR PGSR + Patch-wise Depth GeoSVR w/o Scene Constraint GeoSVR Full

Figure 8: Comparison of Challenging Region Reconstruction without/with Scene Constraint.

Despite the rich geometric cues provided, previous 3DGS-based approaches are much more limited
in exploiting monocular depths for improvements, which demonstrates the advantage of our explored
sparse voxels. For demonstration, we apply the monocular depth with our used patch-wise loss to
the SOTA PGSR and adjust the coefficient to fit the best F1-score, and visualize the reconstructed
surfaces in Figure [§] It can be observed that for challenging areas that are difficult to reconstruct
through multi-view consistency, 3DGS-based approaches can hardly recover the accurate geometry
even when applying monocular depth constraints, mainly limited by their heavy reliance on the initial
SfM points. Notably, PGSR also applies a specific densification technique AbsGS to relieve this
limitation, but this is still marginal for such cases. Instead, when just applying the less advanced
DepthAnything, our method gets much larger improvements, especially equipped with the proposed
Voxel-Uncertainty Depth Constraint. With DepthPro that is less robust for outdoor scenes, our method
can still retain high-quality reconstruction, exhibiting the effectiveness and robustness of our method.

A.2 Voxel Dropout

In the main paper, we have quantitatively veri-
fied the effect of Voxel Drouput, which improves
the release of the power of geometry regulariza-
tion for the local voxels significantly. Due to the
space limitation of the main paper, we supple-
ment the qualitative comparisons here to help
demonstrate its effect in Figure[9] As shown, | = S
different from the situations in SDF or 3DGS Reference w/o Voxel Dropout w/ Voxel Dropout
where smooth surfaces are reconstructed by ap-
plying the homography patch warping, several
redundant geometric structures remain in our local voxel-based representation when not applying

Figure 9: Effect of Voxel Dropout Strategy.
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voxel dropout. Analysing these geometric artifacts, we found that despite the geometry regularization
can recognize and penalize these regions, the effect is marginal because the effect scope is quite
small for a tiny voxel and it does not receive the gradient from the distant neighbors, whereas it can
not move as the primitives in 3DGS, making local minima between the appearance supervision and
geometry regularization. Getting inspiration from the classic dropout [55]] that solves the overfitting
from complex parameters, which is similar to our problem, we simplify the voxel-based scene
representation by dropping out parts of the voxels, and make each voxel obtain a large responsibility
for geometric consistency during geometry regularization. This proposal finally relieves the problem.

A.3 Surface Rectification

In Table 4, we ablate the Surface Rectification on the Table 7: Additional Ablation Study on Sur-
TnT datasets to show its effect, and report the com- face Rectification on the DTU [31]] dataset.

parison on DTU in Figure 7. Acting as a fine-grained
regularization technique on tiny voxels with critical ~Setting d2s | s2d| cf-dist|
density changes, its effect can be better exhibited on /0 Surface Rectif. 0.433 0521 0477

the DTU dataset, which focuses on the evaluation / Surface Rectif.  0.426 0511  0.468

for highly accurate surface reconstruction. For better
demonstration, we report the quantitative ablation results on DTU in Table[7] Compared to the TnT
dataset, the improvement on it is more significant to bring about a 0.01 improvement on Chamfer
distance. This is even close to the entire gap between some previous methods (e.g., 0.51 from
Geo-Neus v.s. 0.52 from PGSR) in Table 1, especially considering the quality is already quite close
to the ground truth, which demonstrates our technique’s effectiveness in accurate surface refinement.

B Derivation of Voxel Geometric Uncertainty

Here we provide the detailed derivation of the Voxel Geometric Uncertainty in Eq. (4).

Derivation. Review the representation, the scene geometry is represented with the composition of
non-overlapping trilinear voxels, of which the density inside a voxel is trilinearly weighted by the 8
corner points with a density value of each. Therefore, the geometry representation capability for a
single voxel is constant and scale-independent, which we denote as a constant value Gy« to indicate
the maximum quantity of information of each voxel for geometry representation.

Then, consider a local region of the quantity of information pge, in geometry per unit volume that
needs to be learned. For a voxel with the length of vy in it, the desired quantity of information () for
representation should be:

W

5% (13)

In most situations, the sparse voxel model can not fully capture the geometry information with
unlimited resolutions due to the limited computational resources. Therefore, for the underfitted
regions, the maximum information retention ratio 7,,x can be given:

GITIaX Gmax 2l
Tlmax = = : (7
Q Paco  Ws
After getting the ideal upper-bound, we focus on the common cases for the uncertainty.

Q:pgeo'vg7 s.t. Vs:WsX2_l = Q:pgeo'(

)3 € (0,1). (14)

First, considering Eq. |14 only gives the maximum retention ratio, while we try to estimate the actual
voxel uncertainty, the local target for different voxels should be considered. Then, based on the
retention ratio 7max, our goal is to model a proper base to weight the uncertainty that is only relevant
to the voxel’s characteristic. Therefore, we build the voxel uncertainty based on an inverse 7 to
indicate the information loss, which ensures the weight does not shrink to 0 to cause failure when the
ideal Gax meets the target @, and introduce a coefficient g(v) to adjust the local target for different
voxels. The voxel geometric uncertainty U in the initial follows:
o, 1 Wy

_ G'max - Gmax 2! 3 3
- Q g(v) - Peco g(U) : ;b) 9 U(U) = Nmax — Gmax : (?) * Pgeo g(v) (15)

/
nmax

Coefficient Definition and Approximation. Turn to the real situations, since it’s difficult to precisely
define the value of constants Gy and pgeo, and variance gy, we denote the constant Gpax as a
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Reference SVRaster 2DGS PGSR GeoSVR (Ours)

Figure 10: Qualitative Comparison on Mip-NeRF 360 [3]] dataset. Our GeoSVR provides more
detailed and complete surface reconstruction for the real-world captured scenes.

coefficient 3 that relates to a glocal geometry scale, and take the sampled voxel density to approximate
represent the term pge, - g(v) to reflect the local quantity of geometric information, reasonably
assuming the already learned densities in voxels have already been approximately accurate during
the past optimization and are positively correlated to their local quantity of geometric information.
Therefore, based on Eq. (]E[), the approximated voxel geometric uncertainty Uypyris given by:

5 (50 (1= exp (—viga). (16)

where interp(-) is not shown to indicate non-specific sampling. Considering further probable
involvement in various calculations, given the values of Octree level [ may increase to be up to 16 or
even larger, Uy, can easily cause numerical blowup to an extremely extensive data range due to its
contained power and exponent in (2!)2, and thus brings instability. Therefore, keeping the same trend
and also a suitable data range as a weight for later, we cancel the overall power of 3 and replace the
term 1/2! with 1/1. To additionally compensate for the degree of value variation, we introduce a bias
lp on the Octree level to help control the shape of the function. Consequently, the final formulations
of the Voxel Geometric Uncertainty in Eq. (4) are derived:

Ubase(l) = ,B(ZL-:Z())’ Ugeom(v) = Ubase(l) . (]— — €Xp (_Vgeo)) . a7

Uappe(v) =

C Qualitative Comparison on Mip-NeRF 360

Here we supplement the qualitative comparison on Mip-NeRF 360 [3] dataset. As shown in Figure
[T0] our GeoSVR provides more detailed and complete surface reconstruction for the real-world
captured images. As discussed in the main paper, both 2DGS and PGSR suffer from the geometry
representation ambiguity from the Gaussians, and thus lead to over-smooth surfaces and a lack
of details. Instead, our method overcomes the geometry distortion in SVRaster while preserving
high-quality details with completeness to deliver accurate surface reconstruction.

D Experimental Details
D.1 Datasets

We use the DTU ﬂ Tanks and Temples (TnT) EL and Mip-NeRF 360 El datasets for evaluation.
Specifically, we follow the previous works to select 15 scans with ids of 24, 37, 40, 55, 63, 65, 69,

'https://roboimagedata.compute.dtu.dk/?page_id=36
“https://www.tanksandtemples.org/
*https://jonbarron.info/mipnerf360/
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83, 97, 105, 106, 110, 114, 118, 122, and use the half-resolution images as the training data. The
DTU dataset used in the experiment is preprocessed from 2DGS [28]] through COMLAP [53,152] ﬂ
In TnT dataset, we follow previous work to use 6 high-quality scenes from the Training Data split
that provides publicly accessible ground truth for evaluation. The camera poses and scene boundary
are translated by the script provided by Neuralangelo [38] E} For Mip-NeRF 360, we use all 9 scenes
for evaluation. The images are downsampled 2x or 4 x following [32] for indoor scenes ("bonsai",
"counter", "kitchen", "room") and outdoor scenes ("bicycle", "garden", "flowers", "stump", "treehill").
The camera poses are provided along with the dataset.

D.2 Baselines

In experiments, our baselines mainly involve: 1) implicit SDF-based methods: NeuS [60], Neuralan-
geo [38]], Geo-NeusS [20], MonoSDF [78], and 2) explicit methods: 2DGS [28]], GOF [79], GS2Mesh
[63], VCR-GausS [14], PGSR [L1]]), MonoGSDF [36]] and SVRaster [56]]. In the latter, SVRaster is
based on sparse voxels and others are based on 3DGS, while MonoGSDF also uses a hybrid SDF.

Baselines Involving Geometry Models. Among them, MonoSDF [78]], GSurfel [[15], VCR-GauS
[14], GS2Mesh [63], and MonoGSDF (named G2SDF in the earlier |’ [36] take external geometry
cues from pre-trained depth and/or normal models for regularization. Specifically, MonoSDF uses pre-
trained Omnidata [[17] models to estimate monocular depth and normal, and GSurfel uses normal from
Omnidata for supervision. GS2Mesh takes a pre-trained stereo model [81] to extract surfaces from
a well-trained 3DGS model directly from the synthesized views. VCR-GausS leverages monocular
normal [2] and conducts a multi-view check to estimate the estimation confidence of the normal maps
for better regularization. MonoGSDF takes monocular depth from DepthAnythingV?2 [70]], which is
the same as we use, to supervise the rendered depth with some learnable adjustment terms.

Source of Results. For qualitative results, we report the official scores from the published or up-to-
date arXiv papers if available. For Geo-NeuS that does not have an official score on TnT dataset, we
take the results reported by Neuralangelo for comparison. For qualitative results, we prioritize using
the officially provided checkpoints or results if available. Otherwise, we use the official codebase to
reproduce the results following the corresponding scripts on the same processed datasets as used for
our method, which does not contain error poses like the processed TnT from 2DGS and GOF, for
fairness. The reported training time is from the corresponding papers. And since MonoGSDF has not
reported the training time on DTU nor open-sourced their code, we marked it as "hrs" through an
approximated estimation from the provided training time of TnT.

D.3 Metrics

Following prevailing settings [[72, 60l 38} 28| /9], we use Champer distance to measure the accuracy
for DTU dataset, and F1-Score for the overall quality for TnT. Especially, we take the off-the-shelf
evaluation toolkits|'||°| with the corresponding version of dependencies (e.g., Open3D 0.9.0 for TnT)
in measurement for fairness. For Mip-NeRF 360 dataset, we inherit the metrics with implementations
used in 3DGS [32] to keep aligned with previous works [[79} 28 [14} [11]].

E Inference Speed

Besides delivering high-quality surface reconstruction, Table 8: Average Rendering Speed.
GeoSVR also retains high efficiency. While the training
times are reported in the main paper, we list the rendering ~ Dataset | 360 [3] DTU [31] TnT [34]
speed on different datasets in the experiments in Table[§] ~ gps | 831 143.8 142.0

It’s shown that our method achieves a fast inference speed,
inheriting from SVRaster [56] by keeping its concise representation without introducing any heavy
modules at inference. The typical time of mesh extraction is within minutes, depending on the
required scale. Overall, GeoSVR achieves a top-tier efficiency competitive with GS-based methods.

*https://huggingface.co/datasets/dylanebert/2DGS
https://github.com/NVlabs/neuralangelo/blob/main/DATA_PROCESSING.md
Shttps://arxiv.org/abs/2411.16898v1
"https://github.com/isl-org/TanksAndTemples/tree/master/python_toolbox/evaluation
%https://github.com/hbbl/2d-gaussian-splatting/tree/main/scripts/eval_dtu
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Figure 11: Visualization of Reconstructed Meshes on TnT [34] Dataset.
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Figure 12: Visualization of Reconstructed Meshes on Mip-NeRF 360 [3]] Dataset.
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Figure 13: Visualization of Reconstructed Meshes on DTU Dataset.
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Figure 14: Visualization of Reconstructed Meshes with Vertex Color on DTU [31]] Dataset.

27



F Efficiency Analysis

In Table [0} we report the efficiency metrics corresponding to the ablation study Table 4. From the
results, it can be observed that all of the components maintain high efficiency in all aspects, including
inference FPS, memory, and the required number of voxels, except the multi-view regularization
that contributes most to the increasing training time consumption. According to our analysis, this is
mainly caused by the less efficient code implementation, which we plan to solve in the future.

In terms of GPU consumption, it can be observed that our proposed components exhibit superior effi-
cienc, which seldom increases GPU memory occupancy under a similar number of voxels. Especially,
this achievement is contributed by our efficiency-focused designs in constraint selection, restrained
voxel-level regularizations, and combined with the efficient coding implementation. Moreover, while
our proposed techniques effectively enforce a correct geometry to be learned, the artifacts, redun-
dant voxels, and distorted surfaces can be removed or well corrected, therefore, the GPU memory
requirement could even decrease along with the number of used voxels reduced.

Table 9: Efficiency Analysis of the Ablation Study.

Items | Settings | # Voxels M) | FPSt Peak GPUMem | Fl1-Score? Training Time |
A. | Base (SVRaster) | 9.3 132.9 12.3 GB 0.397 23.8 min
B. | A.+ Patch-wise Depth | 9.1 138.2 10.5 GB 0.449 24.2 min
B. + Multi-view Reg. 9.1 138.7 11.4GB 0.538 65.1 min
C. B. + Multi-view Reg. + Voxel Dropout 9.1 137.3 11.5 GB 0.546 68.3 min
C. + Surface Rectif. 8.8 146.4 11.1 GB 0.549 64.4 min
D. C. + Surface Rectif. + Scaling Penalty 9.0 142.4 11.2GB 0.552 67.3 min
E. \ D. + Voxel-Uncertainty Depth (Ours) \ 8.8 142.0 11.2GB 0.560 67.5 min

G Additional Visualization Results

Here we show the additional visualization of the reconstructed meshes on the three datasets. In Figure
[[T]and[I2] we show the reconstructed scenes in the TnT and Mip-NeRF 360 datasets. Our proposed
GeoSVR reconstructs high-quality meshes in these complex and intricate scenes. In Figure[I3] we
reported the reconstructed objects in DTU datasets, and additionally show the colored rendering in
Figure These results prove the capability of GeoSVR to reconstruct vivid objects with accurate
detail, which further proves its practical value in real-world applications. For intuitive comparison,
we additionally provide a supplementary video and kindly invite the reader to watch.

H Societal Impacts

Our proposed method provides high-quality surface reconstruction from images. So far, we have not
discovered the direct negative societal impact, but it’s notable that the accurate 3D reconstructions
may be used maliciously. And the accurate reconstructions from real-world data may raise potential
privacy concerns. During use, these societal impacts should be treated with caution.

I Discussion

In this work, we represent GeoSVR to achieve high-quality surface reconstruction with state-of-the-art
accuracy, completeness, and detail preservation. Moreover, our investigation goes a further step for
the possibility of recovering accurate geometry via the voxel-based representation, and also reveals a
potential to better utilize the growingly important and well-established geometric foundation models
[69, 70, 12,162, 130, 4] besides the Gaussian Splatting-based approaches [58 136, 14, [35} [15]].

Nevertheless, the limitations still exist, mainly in 1) regions with serious reflections, 2) textureless
areas, and 3) transparent surfaces. Due to the heavy misleading of the photometric inconsistency and
the limited representation capability for ray tracing, these regions often cause suboptimal geometry.

Typically, it’s a common phenomenon that the rendering quality slightly drops when the model is
forced to learn the accurate geometry. This mainly lies in that the captured multi-view images from
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the real world do not always retain an ideal photometric multi-view consistency that matches the
correct geometry, such as the reflective regions and transparent materials, especially the current
radiance fields for surface reconstruction seldom consider complex ray tracing, but mostly only once
forward. In that situation, a distorted geometry in a local minimum may be better than the correct one
to express an approximately accurate appearance.

In the future, introducing more efficient ray tracing techniques [23} 45, 64} 24} [7]], improved voxel
globality, and solutions for transparency [37,29] could be of help to solve these challenging issues.
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