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ABSTRACT

Addressing climate change requires global coordination, yet rational economic
actors often prioritize immediate gains over collective welfare, resulting in social
dilemmas. InvestESG is a recently proposed multi-agent simulation that captures
the dynamic interplay between investors and companies under climate risk. We pro-
vide a formal characterization of the conditions under which InvestESG exhibits an
intertemporal social dilemma, deriving theoretical thresholds at which individual
incentives diverge from collective welfare. Building on this, we apply Advan-
tage Alignment, a scalable opponent shaping algorithm shown to be effective in
general-sum games, to influence agent learning in InvestESG. We offer theoretical
insights into why Advantage Alignment systematically favors socially beneficial
equilibria by biasing learning dynamics toward cooperative outcomes. Our results
demonstrate that strategically shaping the learning processes of economic agents
can result in better outcomes that could inform policy mechanisms to better align
market incentives with long-term sustainability goals.

1 INTRODUCTION

Climate change is one of the defining challenges of our time, which demands immediate, coordinated
global action to mitigate catastrophic environmental and economic consequences (Pörtner et al.,
2022). Despite international agreements such as the Paris Agreement, nations continually grapple
with aligning individual economic incentives with collective environmental goals. This misalignment
can be effectively modeled as a social dilemma: a scenario in which players, acting independently
and rationally according to their own interest, produce a suboptimal collective outcome (Rapoport
and Chammah, 1965). In climate negotiations, nations often prefer short-term economic benefits over
the collective welfare of aggressive mitigation strategies, leading to Pareto-suboptimal equilibria.

Previous advances in reinforcement learning (RL) have demonstrated remarkable capabilities in
optimizing agent behaviors in various complex tasks (Mnih et al., 2013; Schulman et al., 2017).
However, when confronted with general-sum games such as climate change negotiations, traditional
RL methods consistently converge to selfish strategies that maximize immediate individual rewards
but result in globally suboptimal outcomes (Sandholm and Crites, 1996; Foerster et al., 2018). These
greedy equilibria do not realize the potential gains achievable through cooperation, underscoring the
critical need for methods that inherently incentivize collaborative behavior among rational players.

To address this fundamental limitation, opponent shaping (Foerster et al., 2018) has emerged as
a promising approach, allowing players to strategically influence the learning dynamics of other
participants. Advantage Alignment, a recent advancement within opponent shaping algorithms
(Duque et al., 2025), operates by aligning the advantages of interacting players. Unlike earlier
opponent shaping methods that rely on computationally expensive imagined parameter updates
(Foerster et al., 2018; Willi et al., 2022), Advantage Alignment modifies policy gradients directly,
promoting actions that benefit both individual and collective outcomes efficiently.

Conventional MARL methods (IPPO (Yu et al., 2022)) optimize myopic returns, while recent
opponent-shaping approaches (LOLA (Foerster et al., 2018), M-FOS (Lu et al., 2022), BRS Agha-
johari et al. (2024a)) scale poorly beyond simple games or are limited to discrete action spaces
(LOQA (Aghajohari et al., 2024b)). In this paper, we apply Advantage Alignment in the context of
sustainable investment policies in the InvestESG environment (Hou et al., 2025), a realistic simulation
of corporate and investor interactions under climate risk. Specifically, our contributions are as follows.
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• We formally prove for a simplified InvestESG that the parameter α (the climate responsive-
ness to mitigation) is critical for making the game a social dilemma in the stochastic setting
(see Appendix C), and empirically show that the full game becomes a dilemma with α = 70.

• We adapt Advantage Alignment to handle the complex dynamics characteristic of the original
InvestESG simulation, without any simplifying assumptions, demonstrating its scalability
and effectiveness compared to IPPO and MAPPO baselines (Yu et al., 2022).

• We provide a theoretical argument for why Advantage Alignment finds better equilibria than
other baselines (including PPO with incentives and PPO summing the rewards).

• We provide insights into the policies discovered by Advantage Alignment, which contribute
to mitigation more effectively than other algorithms.

2 BACKGROUND

2.1 MARKOV GAMES

We consider the formalism of n-player, fully observable, general-sum Markov Games (Shapley,
1953) which are represented by a tuple: M = (N,S,A, P,R, γ). Here, the state space is denoted S .
The joint action space for all players in the game is written as A := A1 × . . .×An. The transition
function, P : S × A → ∆(S), maps from every state and joint action to a distribution over states.
The reward structure is given by R = {r1, . . . , rn}, where each ri : S ×A → R specifies the reward
received by player i. The discount factor, γ ∈ [0, 1], determines the relative importance of future
rewards.

2.2 REINFORCEMENT LEARNING

Consider n players interacting in an environment with policies πi, with i ∈ [1, . . . , n], each parame-
terized by θi. Here, the result for each player is determined not only by their own actions but also by
those of other players (von Neumann and Morgenstern, 1944). Following the convention of Agarwal
et al. (2021), we can write the probability of a trajectory τ under the policies of all players as follows:
Prπ

i,π−i

µ (τ) = µ(s0) ·
∏n

i=1 π
i(ai0|s0) ·P (s1|s0,a0) . . . Where µ denotes the initial distribution over

states, and P (·|s,a) is the transition distribution over states, which depends on the current state, s,
and the joint action profile of all players, a. In reinforcement learning the goal is to maximize the
expected sum of future discounted reward, i.e. the value function:

V i(µ) ≡ E
τ∼Prπ

i,π−i
µ

[
Ri(τ)

]
= E

τ∼Prπ
i,π−i

µ

[ ∞∑
t=0

γtri(st,at)

]
. (1)

We also define the action-value function, also known as the Q-value, to define the advantage function:

Qi(s,a) = E
τ∼Prπ

i,π−i
µ

[
Ri(τ)|s0 = s,a0 = a

]
, Ai(s,a) = Qi(s,a)− V i(s). (2)

To optimize the value function, policy gradient methods perform gradient ascent on the policy
parameters following a REINFORCE estimator (Williams, 1992) of the form:

∇θiV i(µ) = E
τ∼Prπ

i,π−i
µ

[ ∞∑
t=0

γtAi(st,at)∇θi log πi(ait|st)

]
. (3)

The most popular variant of policy gradient algorithms, Proximal Policy Optimization (PPO) (Schul-
man et al., 2017), makes conservative updates to the policy using a clipping heuristic:

E
τ∼Prπ

i,π−i
µ

[
min

{
πi(ait|st; θi)
πi(ait|st; θil)

Ai(st,at), clip
(
πi(ait|st; θi)
πi(ait|st; θil)

; 1− ϵ, 1 + ϵ

)
Ai(st,at)

}]
, (4)

Where θil denotes the policy parameters of player i after l gradient updates. Intuitively, PPO attempts
to keep the updated policy close to the original policy in terms of total variation distance.
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2.3 SOCIAL DILEMMAS

Social dilemmas, as introduced by Rapoport and Chammah (1965), describe multi-player scenarios
in which individual rational play leads to an outcome with less utility than that which would have
occurred if all players had cooperated. Formally, consider a normal-form game with n players, where
each player i selects an action ai from their action space Ai, and receives utility ri(a1, . . . , an). Let
aC = (a1C, . . . , a

n
C) denote a joint cooperative strategy profile that maximizes the total social welfare.

Definition 1 (Nash Equilibrium (Nash, 1950)). Consider an n-player game where each player
i ∈ {1, . . . , n} has an action space Ai and a payoff function ri : A1 × · · · × An → R. A strategy
profile aN = (a1N , . . . , anN ) is a Nash equilibrium if for all players i:

ri(aiN ,a−i
N ) ≥ ri(ai,a−i

N ), ∀ai ∈ Ai. (5)

Here, a−i
N denotes the strategies chosen by all players other than player i.

Definition 2 (Social Dilemma). Let aN be a Nash equilibrium of the game. A game is said to be a
social dilemma if it satisfies both of the following conditions:

1. Collective Inefficiency: The socially optimal outcome yields strictly higher total utility than the
Nash equilibrium:

n∑
i=1

ri(aC) >

n∑
i=1

ri(aN ). (6)

2. Individual Incentive to Defect: For each player i, there exists some joint strategy a−i such that
deviating from the cooperative strategy is individually beneficial:

ri(aiD,a
−i
C ) > ri(aiC,a

−i
C ), (7)

where aiD is a defection action and a−i
C denotes the cooperative actions of all other players.

These two conditions capture the tension at the heart of social dilemmas: cooperation is globally
optimal, but locally unstable due to unilateral incentives to defect (Capraro and Halpern, 2015).
However, this definition makes strong assumptions that may not hold in the real world (e.g. uniqueness
of Nash). For analyzing social dilemmas in Markov games, we define the price of anarchy (Nisan
et al., 2007).
Definition 3 (Price of Anarchy in Markov Games). Let M be an n-player Markov game. Denote by
Π the set of joint policies and by N ⊆ Π the subset that are Nash (Definition 1). For a joint policy
π∈Π let W(π;µ) :=

∑
i

V i
π(µ) be the social welfare function. The price of anarchy is

Pa =
max
π∈Π

W(π;µ)

min
π∈N

W(π;µ)
. (8)

A Markov game exhibits a social dilemma whenever Pa > 1, i.e. the worst equilibrium achieves
strictly lower total return than some feasible, W-maximizing, joint policy. Intuitively, the price of
anarchy is the ratio between the welfare of coordinated and individual rational play.

2.4 OPPONENT SHAPING

Opponent shaping, as introduced by Foerster et al. (2018), changes the paradigm of reinforcement
learning: instead of assuming stationarity of the environment, opponent shaping algorithms assume
that other players are learning agents. By making assumptions about the learning algorithms (Foerster
et al., 2018) or modeling the problem as a meta-game (Lu et al., 2022), opponent shaping algorithms
attempt to influence the learning dynamics of other players. Duque et al. (2025), proved that
controlling other players via the Q-values is equivalent to doing policy gradient with the following
modified advantage:

A∗,i(st,at) =

Ai(st,at) + βγ ·
∑
j ̸=i

(∑
k<t

γt−kAi(sk,ak)

)
Aj(st,at)

 . (9)
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This Advantage Alignment formula can be plugged into the PPO formulation for a scalable Opponent
Shaping algorithm (Proximal Advantage Alignment) that works in complicated multi-agent settings
with high dimensional state representations, continuous action spaces, partial observability and
multiple (more than 2) agents.

3 INVESTESG

InvestESG (Hou et al., 2025) is a multi-agent reinforcement learning (MARL) environment designed
to study the long-term impact of corporate climate investments and ESG (Environmental, Social, and
Governance) disclosure mandates in an intertemporal economy under climate risk. The environment
simulates interactions between company agents (who allocate capital across mitigation, resilience,
and greenwashing strategies) and investor agents (who reallocate capital across companies based on
profitability and ESG scores). Climate risk evolves over a 100-year horizon, shaped by cumulative
mitigation efforts, and materializes through climate events that inflict economic losses on companies.
By default, InvestESG uses 5 companies, 3 investors and doesn’t allow for resilience or greenwashing
strategies, although these parameters can be modified. The main limitations of this simulator, as a
result of this parameterization, are clearly stated in the InvestESG paper (Hou et al., 2025).

3.1 ECONOMIC AND ENVIRONMENTAL DYNAMICS

For notational convenience, we use the index i ∈ [1, . . . ,M ] to refer to companies and index
j ∈ [1, . . . , N ] to refer to investors. In InvestESG, each investor’s state is represented by their cash
level Cj

t and investment portfolio Sj
t = (Hj

t,1, . . . ,H
j
t,M ), where Hj

t,i denotes the investment that
investor j holds in company i at timestep t. At each timestep, investors pick a binary portfolio vector
ajt = [ajt,1, . . . , a

j
t,M ] representing which companies to invest in and companies choose to mitigate a

percentage of its capital, ui
t∈ [0, ū]. The interim capital of each company at time t+ 1 is given by:

Ki
t+1,interim = Ki

t −
N∑
j=1

Hj
t,i︸ ︷︷ ︸

cash returned to investors

+

N∑
j=1

ajt,i
Kj

t

||ajt ||1︸ ︷︷ ︸
new equity investments

, (10)

Where Ki
t denotes the capital of company i and Kj

t the capital of investor j at time t. The reward
at each timestep for company i is given by the profit margin, rit = Ki

t+1 − Ki
t+1,interim. Climate

dynamics, namely the risk that a particular type of harmful climate event occurs P e
t (where e can

be either an extreme heat, h, heavy precipitation, p, or drought, d, event) grows linearly w.r.t. initial
event probability P e

0 following:

P e
t =

µet

1 + λeUt
+ P e

0 , λe = α× λ̃e, (11)

Where µe, λ̂e, are calibration constants set to ensure that an annual mitigation investment of 2.3
trillion is required to achieve IPCC’s 1.5◦C scenario (Hou et al., 2025). We add an additional
calibration constant, α, that scales the λ̂ parameters in order to make InvestESG a social dilemma
(for details see section 4). The total risk is Pt = 1− (1− Ph

t )(1− P p
t )(1− P d

t ), and the cumulative
mitigation Ut is:

Ut = Ut−1 +

M∑
i=1

ui
tK

i
t+1,interim. (12)

Finally, the capital of company i is updated as follows:

Ki
t+1 = (1 + ρit)K

i
t+1,interim, ρit = (1− ui

t)(1 + γ)(1−XtLi)− 1. (13)

Where, ρit is the profit margin of company i. Each type of harmful climate event (extreme heat, heavy
precipitation or drought) is modeled independently by Bernoulli(P e

t ), where Xt ∈ {0, 1, 2, 3} is the
total number of climate events realized at time t. Li above denotes the loss coefficient of company i
and γ (which differs from the discount factor) is the market performance baseline.

4
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Figure 1: Comparison of final environment metrics at different α (introduced in equation 11) values, for
10 seeds of PPO agents: With the default scaling (α = 1), the differences in market total wealth and final
mitigation amount are negligible between agents with different ESG incentives. Status Quo refers to PPO agents
trained without incentives. Increasing the scaling factor (α = 70) results in higher market total wealth for
ESG-conscious investors, and higher price of anarchy. The whiskers indicate a 1-standard deviation confidence
interval. It should be noted that the ESG score is a multiplicative parameter, ESG = 10 represents an immense
prosocial reward: the investors in that scenario effectively do not care at all about their own profits. These
experiments were run with the full complexity allowed by InvestESG, without simplifications.

4 A FORMAL ANALYSIS OF INVESTESG AS A SOCIAL DILEMMA

The InvestESG environment was originally introduced as a scenario capturing essential features of
social dilemmas in sustainable investing. We study InvestESG in the stochastic setting where the
environmental dynamics are not seeded and observe that the empirical price of anarchy (Definition 3)
is close to 1 (Figure 5). The observed equilibrium does not change even when adding extremely
strong ESG incentives such that investors effectively only care about ESG (the ESG=10 case in the
figure). In a social dilemma, we would expect to see that adding prosocial incentives changes the
final behavior of agents, yet this is not what we see empirically.

In this section, we derive conditions under which a simplified InvestESG explicitly meets
the definition of a social dilemma, clarifying theoretically when this environment manifests the
characteristic tensions between individual rationality and collective welfare. We then validate our
theoretical results empirically in the full version of InvestESG without simplifications (See Figure
5). We find that the effectiveness of mitigation actions λ, namely how much each dollar invested in
mitigation affects the climate event probability, is the critical parameter which makes InvestESG a
social dilemma. We scale the mitigation effectiveness by multiplying the original parameter λ by a
scaling factor α (equation 11). Identifying this regime is essential, because it mirrors the real-world
climate-mitigation problem in which near-term incentives myopically outweigh the long-term
benefits of coordinated action for self-interested agents (Barrett, 1994). We look at three metrics:
(1) Market Total Wealth is the combined value of all companies’ capital and investors’ cash at
the end of the simulation; (2) Final Mitigation Investment is the total amount all companies have
cumulatively spent on mitigation by that point; and (3) Final Climate Risk is the model-estimated
probability that at least one damaging climate event occurs at the final timestep.

4.1 SET-UP AND NOTATION

Consider the amount of mitigation that company i invests at time t, denoted ui
t. Intuitively, a company

cares about the marginal effect, or benefit, that this mitigation amount will have at the next time-step
on their capital, Ki

t+1. Since Ki
t+1 is a random variable that depends on the realized number of

climate events Xt, we take the marginal effect to be the partial derivative of the mitigation amount
w.r.t. the expected value of the capital at the next time-step. See Appendix A for details.
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Figure 2: Final mitigation amount of 3 seeds of PPO agents trained in a single company and single investor
environment for different values of α. Here the public and private gradients are the same and we clearly see a
threshold α ≈ 30 at which the final mitigation amount significantly increases. This threshold empirically marks
the change of sign of the gradient. The whiskers indicate a 1-standard deviation confidence interval.

Definition 4 (Private Marginal Gradient). Let ui
t be the mitigation amount of company i at time t,

then the private marginal gradient is

d

dui
t

E
[
Ki

t+1

]
= −

E[Ki
t+1]

1− ui
t

+ E
[

(Ki
t+1)

2

(1−XtLi)2(1− ui
t)(1 + γ)

∑
e

λeµet

(1 + λeUt)2

]
(14)

namely, the marginal effect in the capital of company i by investing in mitigation at time-step t.

This gradient indicates whether a company has a selfish, myopic incentive to invest in mitigation:
if the gradient is positive, then the capital at the next time-step increases for each dollar invested
mitigating. Similarly, we define the social marginal gradient.
Definition 5 (Social Marginal Gradient). Let ui

t be the mitigation amount of company i at time t,
then the social marginal gradient is

d

dui
t

E
[∑

k

Kk
t+1

]
= −

E[Ki
t+1]

1− ui
t

+
∑
k

E
[

(Kk
t+1)

2

(1−XtLk)2(1− uk
t )(1 + γ)

∑
e

λeµet

(1 + λeUt)2

]
(15)

namely, the marginal increase in the capital of all companies by company i investing in mitigation at
the next time-step.

Our argument builds from the intuition that a social dilemma arises if there is a fundamental tension
between these two gradients: the social marginal gradient pushes companies to mitigate, whereas the
private gradient does not. The final proof, however, is more involved, as we analyze the effect of all
previous mitigation actions on the final private and social capitals.

4.2 WHEN IS INVESTESG A SOCIAL DILEMMA?

The full stochastic dynamics of InvestESG are too complicated for exact analytic analysis so we
simplify the environment. To isolate the social-dilemma component of climate-mitigation decisions,
we work under the following assumptions for the remainder of this section.

Assumption 1. (Static Investor Portfolios). Investor holdings are time–invariant. Formally, Hj
t,i =

Hj
0,i ∀ t ≥ 0, i ∈ [M ], j ∈ [N ]. Thus investors never rebalance their capital allocations.

Assumption 2. (Single-Company Allocation). Each investor supplies capital to exactly one firm.

Assumption 3. (No Historical Mitigation). Prior to the period of interest, firms have undertaken no
mitigation expenditure: ui

s = 0 ∀ s < t, i ∈ [M ].

We are interested in computing the incentives on companies to start mitigating climate change in a
world where no one has ever mitigated before and where the investor dynamics are simplified. These
assumptions are not used in the experimental section. In this simplified world, we show that the
existence of a social dilemma critically depends on the parameter λe of the simulation, which is the
responsiveness of climate change to mitigation investment. We give here an outline of the argument,
the full derivation is in Appendix A:
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Figure 3: Training curves of PPO agents with different ESG values and Advantage Alignment (AdAlign) with
α = 70 for different metrics: Advantage Alignment agents achieve highest market total wealth by being more
strategic about their mitigation investments compared to PPO agents. With significant lower final mitigation
investment, AdAlign agents are able to achieve the same final climate risk and increase their capital returns. The
shaded areas indicate a 1-standard deviation confidence interval. We note that 0.48 is the best achievable climate
risk in the environment, as it corresponds to 1−

∏
e(1− P e

0 ), the floor of the probabilities of each event.

1. There exists λlow > 0 small enough such that in both the individual and social case, none of
the derivatives dE[Ki

t+1]/du
i
t−k are positive.

2. In the individual case, there exists λ such that at least some of the derivatives are positive,
i.e. that it is possible to mitigate for self-interested reasons.

3. By intermediate-value theorem there is a λcritical where at least one of dE[Ki
t+1]/du

i
t−k is 0.

4. For the social case, the derivatives are strictly greater than those in the individual case i.e.
company i’s mitigation efforts on all other companies is positive.

5. Therefore, there exists a λ such that self-interested agents will not mitigate despite mitigation
being beneficial for social welfare, thus we have a social dilemma.

This suffices to establish the existence of 3 zones in parameter space, defined by the two parameters
λlow and λcritical. For λ < λlow, there is no dilemma because there is agreement between the signs of the
individual and social gradients: mitigation is always net negative. If λlow ≤ λ ≤ λcritical,the gradient
signs of the individual and social returns disagree, and we have a social dilemma. If λ > λcritical,
then there is again no strong dilemma and self-interested agents start mitigating myopically. For
proofs and formal theorems for each of the steps in the outline see Appendix A. We empirically
validate that this threshold exists by conducting an experiment in which we train three seeds of PPO
agents, keeping the number of companies and investors fixed to one, but sweeping over the scaling
parameter α (Figure 2). We find the threshold to be α = 70, after running sweeping experiments with
the default parameters (see Appendix D.1). When α increases beyond this threshold, PPO agents
with different ESG incentives start to show different behaviors (Figure 5). We refer to this specific
parameterization of InvestESG, with α = 70, as α-InvestESG.

5 APPLYING OPPONENT SHAPING TO INVESTESG

We apply Advantage Alignment (Duque et al., 2025) without ESG incentives to α-InvestESG (found
empirically in the previous section), in a centralized training decentralized execution manner (CDTE).
Note that α-InvestESG does not have the simplifying assumptions of the theoretical analysis and has
the full complexity of the original simulator. Crucially, our Advantage Alignment implementation
differs from the PPO implementation in two aspects. First, we substitute the advantage in the policy
gradient with the Advantage Alignment expression (equation 9). Second, following the original paper
we use self-play: one set of parameters for the company and another set of parameters for investor
players. We found that self-play makes training more stable for Advantage Alignment (AdAlign)
agents but hurts PPO agents, thus we compare the best version of each in Figure 3 (AdAlign with
self-play, PPO without). Advantage Alignment agents outperform all PPO agents, even those with
ESG incentives, while simultaneously having the lowest amount of final mitigation investment. For
details about the policy parameterization and hyper-parameters used for these experiments refer to
the Appendix C.
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Figure 4: (a) Final market total wealth of 10 seeds of Advantage Alignment without ESG incentives, and
PPO agents trained using summed rewards in InvestESG (α = 70). On the x-axis we increase the number
of companies and investors (1 company and 1 investor, 2 companies and 2 investors, etc.) while keeping the
initial capital the same. Sum rewards is unable to find the action profile that maximizes social welfare once the
number of players grows beyond a threshold (> 2), whereas Advantage Alignment consistently finds the same
solution once the number of agents is large enough (> 1) going up to 10 agents. (b) Gini coefficient measuring
inequality among company investments for different algorithms. Lower Gini indicates lower inequality and
better distribution of resources. The shaded areas indicate a 1-standard deviation confidence interval.

5.1 COMPARISON WITH OTHER BASELINES

Intuitively if we care about social welfare, then we should try to maximize it explicitly. However,
this does not yield good results in practice. We run experiments with summed rewards with the
default InvestESG settings (5 companies, 3 investors), however the IPPO and MAPPO (Yu et al.,
2022) agents always converged to sub-optimal equilibria. Our rationale for the baseline selection is
discussed in the appendix C.3. Figure 4 (a) shows that naively summing the rewards scales poorly in
the multi-agent setting. We run 10 seeds of IPPO and MAPPO agents that sum their rewards, scaling
the number of agents in the environment, and plot the final market total wealth with initial fixed
capital. Beyond 2 companies and 2 investors (4 agents total), PPO players summing the rewards are
unable to find policies that maximize the social welfare. We hypothesize that the credit assignment
problem becomes more difficult as the number of agents increases, giving noisy temporal difference
signals to centralized critic methods like MAPPO. In contrast, Advantage Alignment maintains high
social welfare across all experiments. We analyze the reasons why this happens in section 6.

5.2 INTERPRETING ADVANTAGE ALIGNMENT POLICIES

To assess how opponent shaping alters investment behaviors in the social-dilemma setting, we run
simulations of Advantage Alignment (AA) and the standard PPO baseline with ESG score = 0,
which means that there is no external incentive to mitigate. The policies obtained are summarized
in Fig. 7. Three patterns emerge. (i) AA learns to mitigate just enough and only at the critical
moments when climate risk increases, whereas PPO invests excessively. (ii) The capital allocations
show that AA maintains an approximately uniform investment distribution across companies, while
PPO concentrates wealth, replicating the disparities reported by Hou et al. (2025) (Figure 4(b)). (iii)
AA agents learn to coordinate themselves to share mitigation costs, in contrast to PPO agents whose
independent updates yield uncoordinated, non-cooperative mitigation investments.

6 ON THE EFFECTIVENESS OF ADVANTAGE ALIGNMENT

Advantage Alignment is particularly effective at finding social welfare maximizing strategies in social
dilemmas at least in part because it has a strong initial bias towards cooperative strategies. When
advantages are estimated with Generalized Advantage Estimation (GAE; Schulman et al., 2018),
Advantage Alignment nudges agents toward cooperation. For agent i the transformed advantage is

A∗,i
t = Ai

t + βγ
∑
j ̸=i

(∑
k<t

γt−kAi
k

)
Aj

t , (16)

8
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with Ai
t := Ai(st,at). Define the on-policy mean bi := E

[∑
k<t γ

t−kAi
k

]
. Decomposing the

expectation gives

A∗,i
t = Ai

t + βγbi
∑
j ̸=i

Aj
t︸ ︷︷ ︸

cooperative bias

+ βγ
∑
j ̸=i

(∑
k<t

γt−kAi
k − bi

)
︸ ︷︷ ︸

zero-mean

Aj
t . (17)

The first term favors joint gains; if βγbi = 1, the cooperative term is exactly that encountered in
summed-reward learning. With perfect critics, bi = 0, this bias vanishes. However, during actor-critic
training, the critic lags the improving policy, so the one-step TD error

δt = rt + γVϕ(st+1)− Vϕ(st), (18)
is positively biased (see Kearns and Singh (2000)) for a formal argument based on contraction
mappings): E[δt] > 0 =⇒ E[AGAE

t ] > 0 =⇒ bi > 0. Hence early training amplifies cooperative
updates. As the critic catches up and TD errors become unbiased, bi→0 and the cooperative bias
fades. This initial bias prevents the algorithm from falling into defective equilibria early in training.

7 RELATED WORK

Opponent shaping treats co-learners as adaptive parts of the environment and deliberately steers their
updates. LOLA (Foerster et al., 2018) introduced the idea by differentiating through a single naïve
policy-gradient step of other players. Follow-up methods refined the update rule (Letcher et al., 2021;
Zhao et al., 2022; Willi et al., 2022) or approximated best-response dynamics (Aghajohari et al.,
2024a; Lu et al., 2022). LOQA replaced higher-order differentiation with REINFORCE-based control
of opponents’ Q-values, enabling scalability to larger games (Aghajohari et al., 2024b). Previous work
on Advantage Alignment showed that many of these algorithms implicitly multiply agents’ advantages
and offered a simpler, computationally cheaper formulation that preserves Nash equilibria in general-
sum games (Duque et al., 2025). The present paper leverages that insight to shape investor–company
interactions in a realistic climate-finance simulator. A growing line of research embeds MARL
agents inside climate models to study emergent behavior, test policy instruments, or optimize control
strategies. RICE-N extends Nordhaus’ regional integrated assessment model into a multi-agent game
in which learning agents negotiate emission targets and investment pathways (Zhang et al., 2022).
The AI for Global Climate Cooperation competition has since used this platform to study how AI
negotiators can sustain long-run cooperation under enforcement uncertainty. Our work differs in
scope: rather than modeling inter-government bargaining, we focus on the micro-level interaction
between profit-seeking firms and ESG-motivated investors captured by InvestESG (Hou et al., 2025).
Inspired by the AI Economist (Zheng et al., 2021), Wang et al. simulate a cap-and-trade market with
enterprise and government agents; the government agent learns dynamic permit-allocation rules that
balance output, equity, and emissions (Wang et al., 2024). Our study is complementary: we assume
no central planner and instead demonstrate that shaping firm–investor learning alone can steer the
economy toward socially desirable equilibria.

8 CONCLUSION

In this paper, we presented a rigorous theoretical and empirical examination of economic simulations
under climate risk, using game theory. By formally characterizing the InvestESG environment as an
intertemporal social dilemma, we established the precise conditions under which individual incentives
diverge from collective sustainability goals. This allowed us to fine-tune InvestESG to capture the
social dilemma conditions observed in the real world. Leveraging the scalable power of Advantage
Alignment, we demonstrated that strategically shaping agent learning dynamics can effectively
mitigate selfish incentives, systematically driving the equilibrium toward socially beneficial outcomes,
even in the absence of government mandates. Our empirical results underscore the practical efficacy
of opponent-shaping algorithms in complex, high-dimensional economic scenarios, addressing a
critical gap where previous multi-agent RL methods have failed. By elucidating why Advantage
Alignment naturally improves the credit assignment problem and finds more cooperative equilibria,
we provided key insights that pave the way for robust, policy-relevant solutions capable of maximizing
the social welfare more effectively. Beyond theoretical advancements, this work signifies a tangible
step toward harnessing artificial intelligence to tackle real-world climate policy challenges and inform
government decision-making.

9
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REPRODUCIBILITY STATEMENT

We provide all details needed to replicate our results. The full set of training hyperparameters,
model architectures, optimizer choices, rollout lengths, discounting/GAE settings, clipping, and gra-
dient/entropy coefficients for all methods (IPPO and Advantage Alignment) are listed in Appendix C,
Tables 1 and 2. We also report the number of parallel environments, episode length, total environment
steps, and (where applicable) the use of self-play, as well as the number of random seeds for each
experiment in the figure captions. Upon de-anonymization, we will publicly release the complete
codebase, including experiment configs, training scripts, and plotting utilities to reproduce all figures
and tables from scratch.
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A MATHEMATICAL DERIVATIONS

In this section we prove the main result of this work, namely, that InvestESG is a social dilemma
for the correct choice of the climate mitigation effectiveness parameter λ. We begin by stating our
assumptions about the environment:

Assumption 1. (Static Investor Portfolios). Investor holdings are time–invariant. Formally, Hj
t,i =

Hj
0,i ∀ t ≥ 0, i ∈ [M ], j ∈ [N ]. Thus investors never rebalance their capital allocations.

Assumption 2. (Single-Company Allocation). Each investor supplies capital to exactly one firm.

Assumption 3. (No Historical Mitigation). Prior to the period of interest, firms have undertaken no
mitigation expenditure: ui

s = 0 ∀ s < t, i ∈ [M ].

A.1 INDIVIDUAL CASE ANALYSIS

The capital of a company is:

Ki
t+1 = (1 + ρit)K

i
t+1,interim. (19)

ρit = (1− ui
t)(1 + γ)(1−XtLi)− 1. (20)

Ki
t+1,interim = Ki

t −
N∑
j=1

Hj
t,i +

N∑
j=1

ajt,i
Kj

t

||ajt ||1
. (21)

where Kj
t is the capital of the j-th investor. In this argument we will isolate the companies’ behavior

by assuming that the investors do not change their capital allocations over time, and that each investor
invests in a single company. This means that the money returned to investors is the same as the money
investors put in at the current time-step. Giving us

Ki
t+1,interim = Ki

t , (22)

Plugging this into the equation for Ki
t+1 gives us:

Ki
t+1 =

(
(1− ui

t)(1 + γ)(1−XtLi)

)
Ki

t . (23)

Here Xt is the number of climate events at time t, it can go up to 3, if extreme heat, precipitation and
drought all happen. The probability of each of those events in Xt depends on the mitigation up to
time t, called Ut:

P e
t =

µet

1 + λeUt
+ P e

0 , λe = α× λ̃e, (24)

Let’s consider a company which has never done any mitigation in the past, so Ut−1 = 0, but is
considering doing so at this time-step, we can differentiate E[Ki

t+1] with respect to ui
t to investigate if

it has an incentive to start mitigating. If this derivative is positive, then the company has an immediate,
myopic incentive to take mitigation actions.

Lemma 1. For every time-step t, company i and scalar αi > 0, we have that the social marginal
gradient is strictly greater than the private marginal gradient.

d

dui
t

∑
j

αjE
[
Kj

t+1

]
> αi

d

dui
t

E
[
Ki

t+1

]
. (25)

Proof.

d

dui
t

E
[
Ki

t+1

]
=

d

dui
t

E
[(

(1− ui
t)(1 + γ)(1−XtLi)

)
Ki

t

]
. (26)

The only parts of this equation that depend on ui
t are the factor of (1− ui

t) and through (1−XtLi).
Now for small values of climate risk events, we can approximate Xt as a Bernoulli variable with

13
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probability Pt =
∑

e P
e
t , hence the expectation above can be written as a sum over Xt = {0, 1}, the

algebraic trick used here comes from f(x, y, z) = xyz =⇒ df/dx = yz = f(x, y, z)/x, giving us:

d

dui
t

E
[
Ki

t+1

]
= −

E[Ki
t+1]

1− ui
t

− E
[

Ki
t+1

1−XtLi

dPt

dui
t

]
. (27)

And now for dPt

dui
t
, referring back to equation 24:

dPt

dui
t

=
dUt

dui
t

d

dUt

∑
e

(
µet

1 + λeUt
+ P e

0

)
= Ki

t+1,interim

∑
e

−λeµet

(1 + λeUt)2
, (28)

Where the factor of Ki
t+1,interim comes from the fact that Ut ≡

∑
s<t u

i
sK

i
s+1,interim. And finally:

d

dui
t

E
[
Ki

t+1

]
= −

E[Ki
t+1]

1− ui
t

+ E
[

Ki
t+1

1−XtLi
Ki

t+1,interim

∑
e

λeµet

(1 + λeUt)2

]
. (29)

This equation places a lower bound on how incentivized a selfish company is to invest in mitigation, it
does not include the long-term effects of mitigation at all. If λe is set high enough that this derivative
is positive, we do not have a social dilemma at all. Noticing that Ki

t+1,interim = Ki
t+1/(1 + ρit) (from

the equations at the beginning of the section), we can replace:

d

dui
t

E
[
Ki

t+1

]
= −

E[Ki
t+1]

1− ui
t

+ E
[

(Ki
t+1)

2

(1−XtLi)2(1− ui
t)(1 + γ)

∑
e

λeµet

(1 + λeUt)2

]
. (30)

We can also trivially run the same steps for d
dui

t
E
[
Kj

t+1

]
with j ̸= i, i.e. computing the derivative of

the return of agent j w.r.t. the mitigation of agent i, which will remove the first term in the previous
equation. The cumulative mitigation Ut includes terms from all agents, so the contribution of the
(1−XtLj) term to the gradient remains:

for i ̸= j :
d

dui
t

E
[
Kj

t+1

]
= E

[
Kj

t+1K
i
t+1

(1−XtLj)(1−XtLi)(1− ui
t)(1 + γ)

∑
e

λeµet

(1 + λeUt)2

]
. (31)

We notice that this is strictly non-negative, as expected (since all Ki
t are non-negative). All agents

would want someone else to mitigate for them, they get all the benefits of mitigation without any of
the costs. Together with the non-negativity of Ki

t , we get the following inequality:

∀i d

dui
t

∑
j

E
[
Kj

t+1

]
>

d

dui
t

E
[
Ki

t+1

]
, (32)

which falls straight out of equation 31 being strictly non-negative. This means that the "social
derivative" is always greater than the selfish derivative for mitigation actions ui

t. In particular, we
also get the extra inequality:

∀t∀i ∈ {0, ..., n}, ∀αi > 0
d

dui
t

∑
j

αjE
[
Kj

t+1

]
> αi

d

dui
t

E
[
Ki

t+1

]
. (33)

which we will need later.

A.2 DEPENDENCE ON ALL PREVIOUS MITIGATION ACTIONS

Lemma 2. For every previous time-step t− k, 0 < k < t, company i and scalar αi > 0, we have
that the social gradient is strictly greater than the private gradient.

d

dui
t−k

∑
l

αlE
[
Kl

t+1

]
>

d

dui
t−k

αiE
[
Ki

t+1

]
. (34)

Proof. Writing the main equation again for visibility:

Ki
t+1 =

(
(1− ui

t)(1 + γ)(1−XtLi)

)
Ki

t . (23)
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To compute the dependence of Ki
t+1 on ui

t−k for a general k ≥ 1, we note that this enters in two
ways in the equation above, first through the effect on Pi, which affects Kj

t+1 through (1− ui
t)(1 +

γ)(1−XtLi), and this will give us a factor like the second one in equation 29. The second way is
through effects on Ki

t , which were not present in the previous section:

d

dui
t−k

E
[
Ki

t+1

]
= −E

[
Ki

t+1

1−XtLi

dPt

dui
t−k

]
+

(
(1− ui

t)(1 + γ)(1− PtLi)

)
d

dui
t−k

E
[
Ki

t

]
. (35)

We have used the independence of Xt and Kt to push in the expectation values. These two variables
are independent if the past mitigation actions are kept constant, which is the case for us, since we
are analyzing the case where all companies have never invested in mitigation (by construction).
dPt/dut−k is computed as before:

dPt

dui
t−k

=
dUt

dui
t−k

d

dUt

∑
e

(
µet

1 + λeUt
+ P e

0

)
= Ki

t+1−k,interim

∑
e

−λeµet

(1 + λeUt)2
. (36)

We can now use equation 35 to induce a recurrence relation between the derivatives of all factors
d

dui
t−k

E
[
Ki

t+1

]
. All put together, the recurrence relation is

d

dui
t−k

E
[
Ki

t+1

]
= E

[
(Ki

t+1)
2

(1−XtLi)2(1− ui
t)(1 + γ)

∑
e

λeµet

(1 + λeUt)2

]
+

(
(1− ui

t)(1 + γ)(1− PtLi)

)
d

dui
t−k

E
[
Ki

t

]
. (37)

And for the derivative with a different agent l ̸= i:

d

dui
t−k

E
[
Kl

t+1

]
=E
[

Ki
t+1K

l
t+1

(1−XtLi)(1−XtLl)(1− ui
t)(1 + γ)

∑
e

λeµet

(1 + λeUt)2

]
+

(
(1− ul

t)(1 + γ)(1− PtLl)

)
d

dui
t−k

E
[
Kl

t

]
. (38)

We now wish to get the equivalent of lemma 1 for mitigations ui
t−k at any previous time-step. We

use a proof by induction on the index k from the base case of k = 0 in equation 33. Let αi > 0 be
strictly positive real numbers:

d

dui
t−k

∑
l

αlE
[
Kl

t+1

]
=

∑
l

αlE
[

Ki
t+1K

l
t+1

(1−XtLi)(1−XtLl)(1− ui
t)(1 + γ)

∑
e

λeµet

(1 + λeUt)2

]
+
∑
l

αl

(
(1− ul

t)(1 + γ)(1− PtLl)

)
d

dui
t−k

E
[
Kl

t

]
. (39)

We now invoke the induction assumption for the term in the last line, which matches the induction
case with α′

l = αl

(
(1−ul

t)(1+γ)(1−PtLl)
)
, this is why we needed the assumption with a positive

linear combination. The assumption gives us the following:∑
l

αl

(
(1− ul

t)(1 + γ)(1− PtLl)

)
d

dui
t−k

E
[
Kl

t

]
>

αi

(
(1− ui

t)(1 + γ)(1− PtLi)

)
d

dui
t−k

E
[
Ki

t

]
, (40)

But now we note that the elements in the first sum above are all positive, and so∑
l

αlE
[

Ki
t+1K

l
t+1

(1−XtLi)(1−XtLl)(1− ui
t)(1 + γ)

∑
e

λeµet

(1 + λeUt)2

]
>

αiE
[

(Ki
t+1)

2

(1−XtLi)2(1− ui
t)(1 + γ)

∑
e

λeµet

(1 + λeUt)2

]
, (41)
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This suffices to establish the desired inequality

d

dui
t−k

∑
l

αlE
[
Kl

t+1

]
>

d

dui
t−k

αiE
[
Ki

t+1

]
, (42)

Which as a special case (αl = 1 for all l) tells us that the gradient of the social welfare with respect
to the mitigation actions of any agent at any point in the past is higher than the selfish gradient.

A.3 INDUCTION ARGUMENT RE-STATED

Theorem 1 (Social-mitigation). For all λ > 0 , ∀t, i, k,

d

dui
t−k

E

∑
j

Kj
t+1

 >
d

dui
t−k

E
[
Ki

t+1

]
. (43)

Proof. In order to prove theorem 1, we need to prove the following equation for all i, t, k:

d

dui
t−k

∑
l

αlE
[
Kl

t+1

]
>

d

dui
t−k

αiE
[
Ki

t+1

]
, (44)

we proceed by induction on k, using k = 0 as base case:

Induction base case k = 0. The base case is trivial from lemma 1.

Induction recursion. For the induction, we assume that equation 44 holds for all k′ < k, and
show that this implies that the equation is true for k. This is what equations 40 through 41 are showing.

By setting αl = 1 in the equation, we finish the proof.

A.4 ALL SELFISH GRADIENTS ARE NEGATIVE AT LOW ENOUGH λ

Theorem 2 (Low mitigation effectiveness). There exists λlow > 0 such that for all λ < λlow, we
have:

d

dui
t−k

E
[
Ki

t+1

]
< 0 and

d

dui
t−k

∑
j

E
[
Kj

t+1

]
< 0 ∀i, t, k. (45)

Proof. We proceed by simple recurrence to show that all gradients are negative at λe = 0. We note
that equation 30 at λe = 0 reduces to

d

dui
t

E
[
Ki

t+1

]
= −

E[Ki
t+1]

1− ui
t

, (46)

thus this gradient is negative. Using equation 37, we see that the first term vanished in the λe = 0,

giving us a term which only depends on d
dui

t−k

E
[
Ki

t

]
, which we know is negative:

d

dui
t−k

E
[
Ki

t+1

]
=

(
(1− ui

t)(1 + γ)(1− PtLi)

)
d

dui
t−k

E
[
Ki

t

]
< 0. (47)

Thus there exists a λe such that all the selfish gradients are negative, completing the proof.

A.5 SOME SELFISH GRADIENTS ARE POSITIVE

Theorem 3 (Self-interested mitigation). There exists λ > 0 such that:

∀t, i,∃k, d

dui
t−k

E
[
Ki

t+1

]
> 0. (48)
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Proof. Again from equation 30:

d

dui
t

E
[
Ki

t+1

]
= −

E[Ki
t+1]

1− ui
t

+ E
[

(Ki
t+1)

2

(1−XtLi)2(1− ui
t)(1 + γ)

∑
e

λeµet

(1 + λeUt)2

]
. (49)

We evaluate the gradient at the Ut = 0 policy, hence we can isolate the λe where the sign flips:

λsign flip
e × E

[
(Ki

t+1)
2

(1−XtLi)2(1− ui
t)(1 + γ)

∑
e

µet

]
=

E[Ki
t+1]

1− ui
t

, (50)

which implies that at λ sufficiently high, at least some selfish gradients become positive, and the
theorem is proved.

A.6 MAIN RESULT

We can now state the main social dilemma theorem, which says that there is a λ where all the
individual gradients are strictly negative, but at least some social gradients are positive.
Corollary 1 (InvestESG is a Social Dilemma). There exists some mitigation effectiveness parameter
λ > 0 such that

∀t, i, k, d

dui
t−k

E
[
Ki

t+1

]
< 0 and ∀t ∃i, k d

dui
t−k

∑
j

E
[
Kj

t+1

]
> 0. (51)

Proof. From the intermediate value theorem and theorems 2 and 3, we conclude that there ex-
ists λcritical for which ∃t, i, k d

dui
t−k

E
[
Ki

t+1

]
= 0, and from continuity of d

dui
t−k

E
[
Ki

t+1

]
with re-

spect to λ we infer that there exists ϵ > 0 such that for λcritical ≥ λ > λcritical − ϵ we have
∀t, i, k d

dui
t−k

E
[
Ki

t+1

]
< 0. Now theorem 1 applied at λcritical tells us ∃t, i, k d

dui
t−k

E
[∑

j K
j
t+1

]
>

0, and again by continuity this quantity remains positive at some smaller λcritical − ϵ∗. Thus
λ = λcritical − min(ϵ, ϵ∗) ensures that all individual gradients are negative while there exists a
social gradient which is positive.
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B ON THE COOPERATIVE BIAS OF ADVANTAGE ALIGNMENT

Advantage Alignment has a bias towards promoting cooperation between agents when the advantages
are estimated using generalized advantage estimation (GAE) (Schulman et al., 2018). The main
insight is that TD-1 errors have a positive bias for on-policy trajectories because the critic lags
behind the actor; advantages are systematically underestimated, producing a cooperation bias in the
algorithm. The advantage alignment updated advantages are:

A∗,i(st,at) =

Ai(st,at) + βγ ·
∑
j ̸=i

(∑
k<t

γt−kAi(sk,ak)

)
Aj(st,at)

 . (9)

The term
∑

k<t γ
t−kAi(sk,ak) acts as a multiplicative factor for the opponent advantages. If we let

bi = E
τ∼Prπ

i,π−i
µ

[∑
k<t γ

t−kAi(sk,ak)
]
, we can split the expression into its biased and unbiased

parts:

A∗,i
biased part(st,at) =

Ai(st,at) + bi × βγ
∑
j ̸=i

Aj(st,at)

 , (52)

A∗,i
unbiased part(st,at) = βγ ·

∑
j ̸=i

(
−bi +

∑
k<t

γt−kAi(sk,ak)

)
Aj(st,at). (53)

It is this biased part of the new advantages which produce the cooperation bias. In the extreme case
where b× βγ = 1, the learning process collapses to simply doing summed-reward training.

For advantage functions Aj(st,a) which perfectly evaluate the behavior of the policies πj ,
the terms above have bi = 0, yielding no collaborative bias for advantage alignment. However,
Generalized Advantage Estimation computes the advantages as:

δVt := rt + γVϕ(st+1)− Vϕ(st), (54)

Â
GAE(λ,γ)
t :=

∞∑
l=0

(γλ)tδVl+t, (55)

Where the value networks Vϕ are trained to evaluate policies πθ which are themselves learning and
improving. As π improves, the value networks perpetually lag behind, computing the value of slightly
time-delayed policies. This implies that Vϕ(st) will on average underestimate the next-step rewards
see Kearns and Singh (2000), and this will give us a positive bias to the TD-errors seen on-policy:

E
τ∼Prπ

i,π−i
µ

[δVt ] > 0 (56)

=⇒ E
τ∼Prπ

i,π−i
µ

[
Â

GAE(λ,γ)
t

]
> 0 (57)

=⇒ b̂i = E
τ∼Prπ

i,π−i
µ

[∑
k<t

γt−kÂi,GAE(λ,γ)(sk,ak)

]
> 0. (58)

This bias towards cooperation only manifests at the beginning of training, before the critic has fully
caught up with the actor. At convergence of the actor, the critic does catch up, and the TD-errors
become unbiased, removing the cooperative bias.
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C EXPERIMENTAL DETAILS

Throughout our experiments, we trained using the Adam optimizer (Kingma and Ba, 2017) and
trained for 70 million environment steps (approximately 20000 gradient steps), as anything beyond
that resulted in lower performance. Our experiments ran in approximately 4 hours on a NVIDIA
L40s gpu.

C.1 PPO POLICY PARAMETERIZATION AND HYPER-PARAMETERS

As in the InvestESG paper (Hou et al., 2025), we use a two-layer fully-connected MLP with hidden
size of 256 neurons and ReLU activations to parameterize the mean of a multivariate normal distribu-
tion. We use an additional parameter to parameterize the log standard deviation. For the critic, we
use the same architecture (two-layer MLP, ReLU activations, with hidden size 256) to estimate the
value directly. We swept over hyper-parameters to find the best for maximizing market total wealth.
For all PPO experiments we used:

Hyperparameter Value

Algorithm IPPO
Total Environment Steps 70M
Number of Environments 64
Episode Length 100
Discount Factor (γ) 0.99
GAE λ 0.95
Policy Learning Rate 1e-4
Value Function Learning Rate 1e-4
Entropy Coefficient 0.05
Clip Ratio (ϵ) 0.2
Value Function Clip Range 10
Number of PPO Epochs 4
Number of Minibatches 20
Gradient Clipping 10.0
MLP Hidden Size 64
MLP Hidden Layers 2
Self-Play False
Fixed Random Seed False

Table 1: Key PPO hyperparameters used for training in the InvestESG environment.

In the original InvestESG paper, the stochasticity of the environment is fixed with a single seed. We
ran our experiments in the more challenging stochastic setting, which more accurately reflects some
of the nuances of the climate problem.
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C.2 ADVANTAGE ALIGNMENT POLICY PARAMETERIZATION AND HYPER-PARAMETERS

As in theprevious section, we use a two-layer fully-connected MLP with hidden size of 256 neurons
and ReLU activations to parameterize the mean of a multivariate normal distribution. We use an
additional parameter to parameterize the log standard deviation. For the critic, we use the same
architecture (two-layer MLP, ReLU activations, with hidden size 256) to estimate the value directly.
We swept over Advantage-Alignment specific hyper-parameters (keeping the PPO hyper-parameters
fixed) to find the best for maximizing market total wealth. For all Advantage Alignment experiments
we used:

Hyperparameter Value

Algorithm AdAlign
Total Environment Steps 70M
Number of Environments 64
Episode Length 100
Discount Factor (γ) 0.99
GAE λ 0.95
Policy Learning Rate 1e-4
Value Function Learning Rate 1e-4
Entropy Coefficient 0.05
Clip Ratio (ϵ) 0.2
Value Function Clip Range 10
Number of PPO Epochs 1
Number of Minibatches 20
Gradient Clipping 10.0
Use RNN False
MLP Hidden Layers 2
Self-Play True
Advantage Alignment β 0.2
Advantage Alignment γ 0.9
Fixed Random Seed False

Table 2: Key Advantage Alignment hyperparameters used for training in the InvestESG environment.

As mentioned before, using self-play greatly improves the stability of Advantage Alignment runs
across seeds, therefore we use it for all Advantage Alignment experiments.
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C.3 BASELINE SCOPE AND RATIONALE

We focus on methods that (i) handle continuous actions and high-dimensional observations, (ii) train
under realistic compute budgets, and (iii) have been used in practice. This leads us to IPPO and
MAPPO as the main baselines, and excludes several prior opponent–shaping (OS) methods for the
full InvestESG experiments.

IPPO exposes non-stationarity and credit-assignment challenges with decentralized critics and is a
strong, commonly used baseline in general-sum MARL. MAPPO follows CTDE: actors use local
observations at train/test time while a centralized critic conditions on global context during training
to reduce variance and improve credit assignment. In our setting, MAPPO offers a scalable, fair
comparator that addresses the pathologies of IPPO without requiring execution-time communication.

Method Continuous actions Practical runtime Used at scale

LOLA ✓ ✓ ×
M-FOS ✓ × ×
BRS ✓ × ×
LOQA × ✓ ✓
AdAlign ✓ ✓ ✓

LOLA requires higher-order differentiation and has been found suboptimal even on simple discrete
games (see LOQA Aghajohari et al. (2024b)), and it is not designed for continuous control. M-FOS
has similar limitations to LOLA with reported underperformance on small discrete settings. BRS
is computationally prohibitive; reports indicate on the order of ∼48 A100 GPU-hours per seed
on Coin Game, making InvestESG-scale sweeps impractical Aghajohari et al. (2024a). LOQA
relies on normalized action probabilities, which makes it incompatible with continuous-action
parameterizations. Advantage Alignment is policy-gradient based and action-agnostic, and has been
deployed in higher-dimensional settings where prior OS methods are typically not compared for
similar scalability reasons.
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D ADDITIONAL FIGURES

D.1 ABLATION OVER THE α PARAMETER
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Figure 5: Comparison of final environment metrics at different α (introduced in equation 11) values, for 10
seeds of PPO agents. We try values of {1, 50, 70, 100} for the parameter α. The choice of 70 is the most
sensible one, as there are clear differences between all policies with different ESG incentives. The result, albeit
similar, is less apparent with a choice of α = 100.
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D.2 ADDITIONAL RESULTS IN THE DEFAULT INVESTESG CONFIGURATION

Figure 6: Schelling diagram looking at the market total wealth with a cooperator (green) or a defector (red)
varying the number of other cooperating policies on the x-axis. Cooperation here is defined as in the original
InvestESG paper, where a company spends 0.5% of their capital on mitigation.

Figure 6 empirically shows that the cooperative action profile in the original InvestESG paper (0.5%
of capital spent on mitigation) is not well calibrated. This is due to the fact that the market total
wealth achieved by the cooperative action profile (≈ 3500) is lower than the one achieved by PPO
agents (≈ 4000) in Figure 5. This contradicts both definition 2 and the intuitive construction that we
provide of a social dilemma using the price of anarchy in definition 3.
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D.3 INTERPRETING NEURAL NETWORK POLICIES

Figure 7: Policy dynamics in the ESG = 0 social dilemma. Top: Advantage Alignment (AA); bottom: PPO
baseline. (i) Mitigation over time: AA invests only at climate-risk peaks and then returns to zero, whereas PPO
agents invest erratically throughout. (ii) Company capital: AA keeps wealth roughly uniform across firms, while
PPO gradually concentrates it. (iii) Final investment matrix: AA yields an almost symmetric allocation, whereas
PPO shows fragmented, concentrated investments.
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