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ABSTRACT

We study the classical and parameterized complexity of computing the positive
non-clashing teaching dimension of a set of concepts, that is, the smallest number
of examples per concept required to successfully teach an intelligent learner un-
der the considered, previously established model. For any class of concepts, it is
known that this problem can be effortlessly transferred to the setting of balls in a
graph G. We establish (1) the NP-hardness of the problem even when restricted to
instances with positive non-clashing teaching dimension k = 2 and where all balls
in the graph are present, (2) near-tight running time upper and lower bounds for
the problem on general graphs, (3) fixed-parameter tractability when parameter-
ized by the vertex integrity of G, and (4) a lower bound excluding fixed-parameter
tractability when parameterized by the feedback vertex number and pathwidth of
G, even when combined with k. Our results provide a nearly complete understand-
ing of the complexity landscape of computing the positive non-clashing teaching
dimension and answer open questions from the literature.

1 INTRODUCTION

While typical machine learning models task a learner with finding a concept C from a concept
class C based on an—often randomly drawn—sample, in machine teaching (specifically in its com-
monly considered batch variant) the learner is provided a set of examples by a teacher; crucially,
here the examples can be selected in a way which allows the concept to be reconstructed from as
few examples as possible. Machine teaching is a core topic in computational learning theory and has
found applications in a variety of areas including robotics (Thomaz & Cakmak, 2009; Akgun et al.,
2012), trustworthy AI (Mei & Zhu, 2015; Zhang et al., 2018), inverse reinforcement learning (Ho
et al., 2016; Brown & Niekum, 2019), and education (Zhu, 2015; Chen et al., 2018; Zhu et al., 2018).
While numerous models of machine teaching have been investigated to date (Shinohara & Miyano,
1991; Goldman & Kearns, 1995; Goldman & Mathias, 1996; Zilles et al., 2011; Gao et al., 2017;
Mansouri et al., 2019; Telle et al., 2019), in this article we focus on the recently developed positive
non-clashing teaching model (Kirkpatrick et al., 2019; Fallat et al., 2023).

In non-clashing teaching, given a finite binary concept class C, for each pair C1, C2 of distinct con-
cepts in C, at least one example provided for at least one of C1 or C2 must not be consistent with
the other concept. A key feature of non-clashing teaching is that it is the most efficient model (in
terms of the number of required examples) satisfying the Goldman-Mathias collusion-avoidance cri-
terion (Goldman & Mathias, 1996)—the “gold standard” for ensuring that the learner cannot cheat,
e.g., via a hidden communication channel with the teacher. Moreover, a teaching model is positive if
the examples provided for each concept C are required to be positively labeled for C. The restriction
of teaching models to the positive setting is common and well-motivated from applications in, e.g.,
recommendation systems (Schwab et al., 2000), computational biology (Wang et al., 2006; Yousef
et al., 2008), and grammatical inference (Stolcke & Omohundro, 1994; Denis, 2001); see also the
early works of Angluin (Angluin, 1980a;b). Non-clashing teaching has been proposed and studied
in the positive setting not only within the initial papers introducing the concept (Kirkpatrick et al.,
2019; Fallat et al., 2023), but also in subsequent works (e.g., (Simon, 2023; Chalopin et al., 2024)).

While positive non-clashing teaching has the potential to be highly efficient, realizing this potential
requires us to solve the computational task of actually constructing a small set of examples for the
given concepts. More precisely, one aims at computing (a witness for) the teaching dimension of a
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given concept class, i.e., the minimum integer k such that each concept is provided with at most k
examples that satisfy the conditions of the model. On the positive side, instead of considering
various different types of concepts and examples, we can restrict our attention to the setting where
each concept is a ball in some input-specified graph G, and the possible examples are vertices of G.
Indeed, it is known that any finite binary concept class C ⊆ 2V can be represented by a set B of balls
in a graph G as follows: V (G) = V ∪ {xC | C ∈ C}, xC is adjacent to xC′ for all C,C ′ ∈ C, xC is
adjacent to v ∈ V if and only if v ∈ C, and B = {B1(xC) | C ∈ C} (Chalopin et al., 2023; 2024).

On the negative side, the problem is computationally intractable, and remains so even in the re-
stricted setting where every possible concept (i.e., every ball in G) is present; to distinguish this case
from the general one where not all concepts need to be present, we refer to it as strict. In particular,
Chalopin, Chepoi, Mc Inerney, and Ratel (2024) recently carried out an initial complexity-theoretic
investigation of computing the positive non-clashing teaching dimension in the strict setting. There,
they established the NP-hardness of the problem for instances with large teaching dimension (even
when restricted to the highly restricted class of split graphs), obtained runtime upper and lower
bounds under the Exponential Time Hypothesis (Impagliazzo et al., 2001), and designed a so-called
fixed-parameter algorithm for the problem when parameterized by the size of the vertex cover of G.

In this article, we significantly improve over each of these results, answer two open questions posed
by the authors of the aforementioned work (Chalopin et al., 2024), and obtain a nearly complete
understanding of the computational complexity of computing the positive non-clashing teaching
dimension (in both the strict and non-strict settings).

Contributions. Let us refer to the problems of computing the positive non-clashing teaching di-
mension in the strict and non-strict settings as STRICT NON-CLASH and NON-CLASH, respectively.
Formal definitions complementing the informal descriptions given above are provided in Section 2.

Our first result concerns the complexity of STRICT NON-CLASH on instances with constant pos-
itive non-clashing teaching dimension. The reductions of Chalopin, Chepoi, Mc Inerney, and
Ratel (2024) only establish the NP-hardness of the problem for instances with large (i.e., input-
dependent) positive non-clashing teaching dimension k. In fact, as their first open question, the
authors ask whether STRICT NON-CLASH is NP-hard or polynomial-time solvable when the sought-
after dimension k is a fixed constant; the question is not only theoretically interesting, but also highly
relevant as instances of small teaching dimension are precisely the candidates for efficient teaching.
We settle this by a highly non-trivial reduction (Theorem 1) which establishes that determining
whether the positive non-clashing teaching dimension is at most 2 is NP-hard—and remains so even
when restricted to the same class of split graphs where STRICT NON-CLASH was previously shown
to be NP-hard (for large k) (Chalopin et al., 2024). We note that this result is, in a sense, best possi-
ble: determining whether an instance of STRICT NON-CLASH has a positive non-clashing teaching
dimension of 1 is trivial as it is equivalent to testing whether G is edgeless (Chalopin et al., 2024).

Next, we proceed to the running time bounds for solving the problem. Typically, the running time
upper bounds are given by an exact algorithm, while the lower bounds are obtained from a suitable
“tight” reduction under the Exponential Time Hypothesis (Impagliazzo et al., 2001). In the preced-
ing work, Chalopin, Chepoi, Mc Inerney, and Ratel (2024) obtained algorithmic lower and upper
bounds of 2o(n·d) and 2O(n2·d), where n and d are the number of vertices and the diameter of G, re-
spectively. From our reduction and a more careful algorithmic analysis, we obtain a lower bound of
2o(n·d·k) and an upper bound of 2O(n·d·k·logn) (Theorem 4 and Proposition 5)—making the bounds
almost tight, with just a logarithmic factor in the exponent separating the two.

While the aforementioned bounds apply to the problem in general, often one may only need
to solve the problem on “well-structured” graphs. The more refined parameterized complexity
paradigm (Downey & Fellows, 2013; Cygan et al., 2015) offers the perfect tools to analyze and
identify precisely which structural properties of input graphs—usually captured by a suitable in-
teger parameter k—allow us to circumvent its general intractability. The analog to the complex-
ity class P in the parameterized setting is FPT (“fixed-parameter tractable”), which characterizes
parameterized problems solvable in f(k) · nO(1) time; intuitively, this means that the problem is
solvable in uniformly polynomial time for each constant value of k. Parameterized complexity is
well-established and has been successfully applied for non-clashing teaching (Chalopin et al., 2024)
as well as in a variety of related subfields of learning theory (Downey et al., 1993; Li & Liang, 2018;
Ganian & Korchemna, 2021; Ordyniak & Szeider, 2021; Brand et al., 2023; Eiben et al., 2023a;b).
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In their previous work, Chalopin, Chepoi, Mc Inerney, and Ratel (2024) established the fixed-
parameter tractability of STRICT NON-CLASH when parameterized by the vertex cover number
of the input graph G—or, equivalently, the vertex deletion distance to a graph consisting only of
isolated vertices. The drawback of that result is that the vertex cover number is a highly “restrictive”
parameter, in the sense that it achieves low values only on rather simple graphs. This is also re-
flected in the open question posed in that article, which asked about the problem’s complexity under
other parameterizations. As our third contribution, we establish (in Theorem 17) the fixed-parameter
tractability of NON-CLASH—i.e., the more general task of computing the non-clashing teaching di-
mension when not all concepts (i.e., balls) need to be present—parameterized by the vertex integrity
of G. Vertex integrity is a well-studied graph parameter (Drange et al., 2016; Gima et al., 2022;
Gima & Otachi, 2024; Hanaka et al., 2024) that essentially captures the vertex deletion distance to a
graph consisting only of small connected components; it is known (and easily observed) to be a less
restrictive parameterization than the vertex cover number (cf. Section 2), meaning that our result
significantly pushes the boundaries of tractability even for the simpler strict variant of the problem.

The proof of Theorem 17 is highly non-trivial. In particular, while the algorithm itself is simple and
merely uses a data reduction technique (“kernelization” (Cygan et al., 2015)) that iteratively removes
certain parts of the instance, the crucial correctness proof underlying the result is very involved and
relies on identifying a carefully defined set of “canonical” examples for our instances. The algorithm
is also constructive, meaning that it can output a set of examples for the concepts as a witness.

As our final contribution, in Theorem 18 we complement Theorem 17 with a complexity-theoretic
lower bound excluding fixed-parameter tractability under many other graph parameters previously
considered in the literature, including pathwidth, treewidth, and the feedback vertex number—the
latter two of which were explicitly mentioned in the aforementioned open question (Chalopin et al.,
2024). We do so through a complex W[1]-hardness reduction (which can be seen as a parameterized
analog to classical reductions used to establish NP-hardness) that excludes, under well-established
complexity assumptions, NON-CLASH from being in FPT even when combining all the parameter-
izations mentioned in the previous sentence with the positive non-clashing teaching dimension k.

Related Work. It is known that NON-CLASH is significantly more challenging than the special
case captured by STRICT NON-CLASH. For instance, the reduction of Kirkpatrick, Simon, and
Zilles (2019, Subsection 7.1) establishes that NON-CLASH is NP-hard even if the task is to deter-
mine whether the positive non-clashing teaching dimension of the instance is 1; on the other hand,
the analogous question for STRICT NON-CLASH is trivial as it simply requires determining whether
the input graph is edgeless or not (Chalopin et al., 2024). In fact, unless P = NP, that reduction
also rules out a polynomial-time 1.999-approximation algorithm. For clarity, note that while that re-
duction does not consider concepts that are balls in a graph, as mentioned earlier every finite binary
concept class can be easily transformed into a class of balls in a graph (Chalopin et al., 2023; 2024).

Apart from the computational questions resolved in this work, another prominent open question is
whether the non-clashing teaching dimension is upper-bounded by the VC-dimension (Kirkpatrick
et al., 2019; Fallat et al., 2023; Simon, 2023). It is known that the non-clashing teaching dimension
(where one allows negative examples) can be significantly smaller than the positive variant, e.g.,
balls in cycles have a non-clashing teaching dimension of 2, but their positive non-clashing teaching
dimension is not bounded by any constant (Chalopin et al., 2024). It was also pointed out that balls
in cacti or planar graphs could be good candidates for concept classes negatively answering this
question (Chalopin et al., 2024). Further, Simon (2023) recently explored the relationship between
non-clashing teaching and recursive teaching and identified the precise gap between the two notions.

Concept classes consisting of balls in a graph are a discrete analog of the geometric concept classes
of balls in a Euclidean space which have been investigated in PAC-learning, e.g., as part of the more
general Dudley concept classes (Floyd, 1989; Ben-David & Litman, 1998). Apart from non-clashing
teaching, they have also been explored for the closely related and well-studied sample compression
schemes (Chalopin et al., 2023) introduced by Littlestone and Warmuth (1986). As discussed in
prior works (Kirkpatrick et al., 2019; Fallat et al., 2023; Chalopin et al., 2024), non-clashing teach-
ing maps can be viewed as signed variants of representation maps for concept classes, a notion intro-
duced to design unlabeled sample compression schemes for maximum concept classes (Kuzmin &
Warmuth, 2007) (and subsequently the more general ample concept classes (Chalopin et al., 2022)).

Due to space constraints, formal proofs are deferred to the full version of the paper in the appendix.
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2 PRELIMINARIES

We assume familiarity with graph terminology (Diestel, 2024). We only consider simple, finite, and
undirected graphs. For an integer n ≥ 1, we set [n] := {1, . . . , n}. As we only consider finite
binary concept classes which can be represented as balls in graphs (Chalopin et al., 2023; 2024), we
introduce the terminology for positive non-clashing teaching directly in the setting of graphs.

POSITIVE NON-CLASHING TEACHING IN GRAPHS. Let G be a graph. For an integer r ≥ 0 and
a vertex v ∈ V (G), the ball Br(v) is the set of all vertices at distance at most r from its center v.
Let B be a set of balls of G. A positive teaching map T for B is a mapping which assigns to each
ball B ∈ B a teaching set T (B) ⊆ B, i.e., a subset of the vertices of B. The dimension of T is
maxB∈B |T (B)|—in other words, the largest image of T . A positive teaching map T is called non-
clashing for B if for each pair of distinct balls B1, B2 ∈ B, there exists a vertex w ∈ T (B1)∪T (B2)
such that w ̸∈ B1 ∩ B2. Note that w must lie in B1 ∪ B2 by definition, and hence, this condition
ensures that one of the balls has a teaching set which is not contained in the other ball. We say that
w distinguishes B1 and B2, or distinguishes B1 from B2 (or vice versa). If a teaching map is not
non-clashing, we say that there is a conflict between any two balls for which there is no element
distinguishing them. We now define our problems of interest:1

STRICT NON-CLASH
Input: A graph G and an integer k.
Question: Is there a positive non-clashing teaching map for the set of all balls of G with

dimension at most k?

NON-CLASH
Input: A graph G, a set B of balls of G, and an integer k.
Question: Is there a positive non-clashing teaching map for B with dimension at most k?

We call a teaching map satisfying the conditions of the respective problem statement a solution. To
avoid any confusion, we remark that the above definitions—as well as every result obtained in this
article—concerns non-clashing teaching in the previously studied positive setting.

PARAMETERIZED COMPLEXITY. In parameterized complexity (Downey & Fellows, 2013; Cygan
et al., 2015), the running-times of algorithms are studied with respect to a parameter p ∈ N and input
size n. It is normally used for NP-hard problems, with the aim of finding a parameter describing a
feature of the instance such that the combinatorial explosion is confined to this parameter. A param-
eterized problem is fixed-parameter tractable (FPT) if it can be solved by an algorithm running in
time f(p) · nO(1), where f is a computable function; these are fixed-parameter algorithms. Proving
that a problem is W[1]-hard via a parameterized reduction from a W[1]-hard problem rules out the
existence of a fixed-parameter algorithm under the well-established hypothesis that W[1] ̸= FPT.

STRICT NON-CLASH is known to be fixed-parameter tractable when parameterized by the vertex
cover number of G, i.e., the minimum integer a such that there is a subset X ⊂ V (G) of at most a
vertices where G −X is an edgeless graph. In this article, we consider three parameters which are
upper-bounded by the vertex cover number (or, more precisely, the vertex cover number plus one):

• the vertex integrity of G, which is the minimum integer b such that there is a vertex subset
X ⊂ V (G) where for every connected component H of G−X , |V (H) ∪X| ≤ b;

• the feedback vertex number of G (denoted by fvs(G)), which is the minimum integer c
such that there is a vertex subset X ⊂ V (G) where G−X is acyclic;

• the pathwidth of G (denoted by pw(G)), which has a more involved definition based on the
notion of path decompositions. However, for the purposes of this article it is sufficient to
note the well-known facts (Downey & Fellows, 2013; Cygan et al., 2015) that deleting one
vertex from each connected component of G will decrease the pathwidth by at most one,
and that a graph consisting of a disjoint union of paths and subdivided caterpillars (i.e.,
graphs consisting of a central path with pendent paths attached to it) has pathwidth 2.

1To provide more concise complexity-theoretic statements, our problems are formalized in their decision
variants. All algorithms obtained in this article are constructive and can also output a teaching map as a witness.
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3 INTRACTABILITY AND RUNNING TIME LOWER BOUNDS

In this section, we establish that STRICT NON-CLASH is NP-hard even when k = 2, and thus, that
it cannot be 1.499-approximated in polynomial time unless P = NP. Recall that the former result is
tight in the sense that STRICT NON-CLASH is trivial when k = 1 (Chalopin et al., 2024).
Theorem 1. STRICT NON-CLASH is NP-hard even when restricted to split graphs with k = 2.

We prove Theorem 1 via a polynomial-time reduction that, given an instance of 3-SAT, constructs
an equivalent instance (G, k) of STRICT NON-CLASH, where G is a split graph and k = 2.

3-SAT
Input: A CNF formula over a set of clauses C = {c1, . . . , cm} containing variables from X =
{x1, . . . , xn}, where each clause has exactly 3 literals.
Question: Is there a variable assignment τ : X → {True,False} satisfying each clause in C?

The Reduction. Given an instance ϕ = (C,X ) of 3-SAT, we construct the graph G as follows; a
schematic illustration is provided in Figure 1b.

v′

v′′

v∗

v∗∗

v∗∗∗

(a) The force-gadget.
The dotted edge cor-
responds to the ab-
sence of that edge.

s′k

s′′k

s∗k

s∗∗k

s∗∗∗k

s′l

s′′l

s∗l

s∗∗l

s∗∗∗l

r′i

r′′i

r∗i

r∗∗i

r∗∗∗i

r′j

r′′j

r∗j

r∗∗j

r∗∗∗j

r′q

r′′q

r∗q

r∗∗q

r∗∗∗q

r′p

r′′p

r∗p

r∗∗p

r∗∗∗p

ti

fi

tj

fj

tq

fq

tp

fp

s′0

r′0

S′

R′

AS∗

R∗
a

(b) An example of the graph G obtained by applying our reduction on the 3-SAT
instance with X = {xi, xj , xq, xp} and C = {(xi ∨ xj ∨ xq), (xj ∨ xq ∨ xp)}.
Vertices in ovals form independent sets, while cliques are depicted by rectangles.
Blue edges denote the existence of all possible edges between the two sets.

• First, for each i ∈ [n], we create a pair of vertices {ti, fi}. We set A := {ti, fi}i∈[n].

• For each i ∈ [n], we introduce a variable force-gadget, which consists of a set of vertices
{r∗i , r∗∗i , r∗∗∗i , r′i, r

′′
i } and edges as depicted in Figure 1a.

• For each i ∈ [n], we attach the variable force-gadget to the pair {ti, fi} as shown in
Figure 1b, by making both r∗i and r∗∗∗i adjacent to both ti and fi. This gadget will
guarantee that the corresponding assignment of the ith variable is well-defined. We set
R∗ := {r∗i , r∗∗i , r∗∗∗i }i∈[n] and R′ := {r′0} ∪ {r′i, r′′i }i∈[n], where r′0 is a new vertex.
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• Similarly, for each k ∈ [m], we introduce a clause force-gadget on the set of new vertices
{s∗k, s∗∗k , s∗∗∗k , s′k, s

′′
k} (as depicted in Figure 1a). This gadget corresponds to the clause ck

of the instance ϕ. We add adjacencies according to the appearance of literals in ck, i.e., if
xi ∈ ck for some i ∈ [n], then we connect both s∗k and s∗∗∗k to fi; and if xi ∈ ck, then we
connect both s∗k and s∗∗∗j to ti. Intuitively, we connect the gadget to those vertices whose
underlying assignments (True or False for ti and fi, resp.) do not satisfy cj , while
the opposite assignments would (see Figure 1b). We set S∗ := {s∗k, s∗∗k , s∗∗∗k }k∈[m] and
S′ := {s′0} ∪ {s′k, s′′k}k∈[m], where s′0 is a new vertex.

• We add all possible edges between (a) S∗ and R∗; (b) R∗ and S′; (c) S∗ and R′.
• We add all possible edges within S∗, and within R∗.
• Lastly, we add a special vertex a and make it adjacent to all the other vertices of the graph.

This concludes the construction of G; given the aforementioned instance ϕ = (C,X ) of 3-SAT, the
reduction outputs the STRICT NON-CLASH instance (G, 2). It now remains to establish correctness,
which is handled by the following two lemmas.
Lemma 2. If ϕ is a YES-instance of 3-SAT, then (G, 2) is a YES-instance of STRICT NON-CLASH.
Lemma 3. If (G, 2) is a YES-instance of STRICT NON-CLASH, then ϕ is a YES-instance of 3-SAT.

The proof of Theorem 1 then follows from Lemma 2 and Lemma 3. In particular, they prove that
there is a polynomial-time reduction which transforms any instance of 3-SAT with n variables and
m clauses into an equivalent instance (G, 2) of STRICT NON-CLASH where |V (G)| = O(n +m)
and G is a split graph of diameter 2. The properties of this reduction also allow us to infer more
precise algorithmic lower bounds. In particular, since an algorithm solving STRICT NON-CLASH in
2o(|V (G)|·d·k) time would allow us to solve 3-SAT in 2o(n+m) time:
Theorem 4. Unless the Exponential Time Hypothesis fails, there is no algorithm solving STRICT
NON-CLASH in time 2o(|V (G)|·d·k), where d and k are the diameter of G and the target positive
non-clashing teaching dimension of the instance, respectively.

We complement this lower bound with a refined upper bound for the more general NON-CLASH:

Proposition 5. NON-CLASH can be solved in 2O(|V (G)|·d·k·log |V (G)|) time.

4 FIXED-PARAMETER TRACTABILITY VIA VERTEX INTEGRITY

Given that NON-CLASH is NP-hard, it is natural to ask whether the problem can be solved efficiently
on inputs exhibiting some well-defined structural properties. In this section, we establish the fixed-
parameter tractability of NON-CLASH when parameterized by the vertex integrity of the input graph.

Consider an instance (G,B, k) of NON-CLASH and let p be the vertex integrity of G. As the
first step, we invoke the known algorithm to compute a “witness” for the vertex integrity in time
pO(p)|V (G)| (Fellows & Stueckle, 1989), i.e., a set X ⊂ V (G) such that |V (H) ∪ X| ≤ p for
each connected component H of G−X . Let H denote the set of connected components of G−X .
To make use of the vertex integrity of G, we will partition the components of H into a parameter-
bounded number of equivalence classes such that the elements belonging to the same class share
some structural properties that will allow us to consider them, to some extent, interchangeable.
Definition 1. Two subgraphs H,H ′ ∈ H are twin-blocks with respect to B, denoted H ∼B H ′, if
there exists an isomorphism αH,H′ from H to H ′ with the following properties:

• for each u ∈ V (H) and v ∈ X , uv ∈ E(G) if and only if αH,H′(u)v ∈ E(G), and

• for each u ∈ V (H) and r ∈ N, Br(u) ∈ B if and only if Br(αH,H′(u)) ∈ B.

Intuitively, H ∼B H ′ if and only if there is a bijection αH,H′ between the vertices of the two
subgraphs which preserves (1) edges inside H and H ′, (2) edges to X , and (3) the existence of balls
in B centered at the vertices of H and H ′. We refer to αH,H′ as the canonical isomorphism between
the two twin-blocks at hand, and if multiple choices of α exist, we choose and fix one arbitrarily; we
drop the indices of α when the subgraphs are clear from the context. Observe that for any choice of
H and H ′, H ∼B H ′ can be tested in time at most pO(p) by enumerating all possible choices of α.
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Clearly, ∼B is an equivalence relation and we denote by [H]∼B the equivalence class containing H .
For u ∈ V (H), we further define [u]∼B = {αH,H′(u) |H ′ ∈ [H]∼B}, and similarly for Br(u) ∈ B,
[Br(u)]∼B = {Br(u

′) ∈ B | u′ ∈ [u]∼B}; intuitively, these refer to the sets of counterparts of u
and Br(u) in the equivalence class, respectively. For brevity, we overload the notation ∼B and use
v ∼B w (or Br(v) ∼B Br(w)) to express that v ∈ [w]∼B (or Br(v) ∈ [Br(w)]∼B , respectively).

Observation 6. The number of equivalence classes on H defined by ∼B is at most 2O(p3).

While the equivalence relation ∼B is defined based on the input (in particular, G and B), our proof
requires also considering a more refined equivalence relation based on the structure of a hypothetical
positive non-clashing teaching map. Toward this, we use the following notion to capture how a
hypothetical teaching set interacts with the balls centered in the components of H.
Definition 2. The blueprint S of a teaching set T (B) for a ball B = Br(u) centered in H ∈ H is a
tuple (SX , SH , Sf ) composed of:

1. the set SX = T (B) ∩X ,

2. the set SH = T (B) ∩ V (H),

3. the set Sf = {fH0
|H0 ∈ H} of functions, where for each H0 the function fH0

: V (H0) →
{0, 1, 2} specifies whether for a vertex v ∈ V (H0), the set ([v]∼B ∩ T (B)) \ V (H) of
counterparts of v outside of H has size 0, 1 or at least 2.

Intuitively, the blueprint specifies how the teaching set for B interacts with (1) the set X and (2) the
vertices inside H itself; for the rest of the graph, the blueprint also counts how many “equivalent”
vertices it contains from each equivalence class of H, but only up to 2. At this point, it may not be
clear why we do not differentiate between any size greater than 2; the reason is that if the actual size
is 3 or more, there are superfluous elements in the teaching set, as we prove below. In fact, we prove
a more general statement which holds regardless of whether vertices in H are counted or not.
Lemma 7. Let u ∈ V (G), B = Br(u) ∈ B, and T any positive non-clashing teaching map for B.
Suppose there exist H0 ∈ H and v ∈ V (H0) such that |[v]∼B ∩ T (B)| ≥ 3. Then, there exists z in
[v]∼B ∩ T (B) such that removing z from T (B) yields a positive non-clashing teaching map for B.

As a corollary of Lemma 7, we can obtain an upper bound on the positive non-clashing teaching
dimension of our instance. This bound will, in fact, be useful later in this section.
Corollary 8. Let G be a graph with vertex integrity p and B an arbitrary set of balls of G. Then,
the positive non-clashing teaching dimension of B is upper-bounded by a function s(p) = 2O(p3).

Returning to the notion of blueprints defined earlier, we can now formalize a refined notion of
equivalence that also takes into account the behavior of a hypothetical solution.
Definition 3. Given B = Br(u) centered in H , and H ′ ∼B H , we say that B and B′ = B(α(u), r)
share the same blueprint if, for (SX , SH , (fH0)H0∈H) and (S′

X , S′
H , (f ′

H0
)H0∈H) the respective

blueprints of B and B′, the following hold: (1) SX = S′
X , (2) ∀v ∈ V (H), v ∈ SH ⇔ α(v) ∈ S′

H ,
and (3) ∀H0 ∈ H, fH0

= f ′
H0

.
Definition 4. Given a positive non-clashing teaching map T for B, we say that two components
H,H ′ ∈ H are perfectly-equivalent twin-blocks (or simply perfectly equivalent) with respect to T
on B, denoted H ≡T

B H ′, if H ∼B H ′ and for all u ∈ V (H), r ∈ N, and Br(u) ∈ B, it holds that
Br(u) and Br(α(u)) share the same blueprint. Note that ≡T

B is an equivalence relation.

Crucially, we can also bound the number of equivalence classes for this refined equivalence defined
w.r.t. a hypothetical teaching map. We denote the equivalence class of H by [H]≡T

B
.

Observation 9. The number of equivalence classes on H defined by ≡T
B is at most 22

O(p3)

.

With this refined equivalence in hand, we proceed to the second milestone required for our algorithm:
a structural result establishing the existence of “well-behaved teaching maps”. Roughly speaking,
by “well-behaved” we mean teaching maps which only use examples (i.e., vertices) from X and a
bounded number of “core” components in H, with some controlled exceptions. Toward formalizing
this, let us fix an arbitrary total ordering ≺ on the components in H.
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Definition 5. For B ∈ B and x ∈ T (B)∩V (H) for some H ∈ H, the (B, x)-core K(B,x) contains
the first s(p) + 1 elements w.r.t. ≺ of {H ′ ∈ [H]∼B | ∃B′ ∈ [B]≡T

B
, α(x) ∈ T (B′) ∩ V (H ′)}. The

B-core is the union of the (B, x)-cores for all such x, and the core K is the union for all B ∈ B of
the B-cores.
Definition 6. A component H ∈ H is in the 1-extended core K1 if H ∈ K or there exists B ∈ B
and x ∈ V (H) such that (1) B is centered in K or in X , and (2) x ∈ T (B). Going one step further,
a component H ∈ H is in the 2-extended core K2 if H ∈ K1 or there exists B ∈ B and x ∈ V (H)
such that (1) B is centered in K1 or in X , and (2) x ∈ T (B).

For A ∈ {K,K1,K2}, note that A is a subset of H, but by slight abuse of notation we will write
x ∈ V (A) for x ∈ V (G) to denote ∃H ∈ A with x ∈ V (H) when not leading to any ambiguity. It
is not difficult to see that the definitions yield the following.

Observation 10. The number of components in K2 is upper-bounded by c(p) = 22
O(p3)

.

We can now formalize the notion of “well-behaved” teaching maps via the property of compactness.
Definition 7. A teaching map T is compact if for any H ∈ H \ K2 and any x ∈ V (H), each ball
whose teaching set contains x is centered in H .

Our next aim is to prove in Lemma 13 that we can safely restrict our attention to computing compact
teaching maps only. Before we can establish that result, we first prove two auxiliary statements.
Lemma 11. Let T be a positive non-clashing teaching map for B. Let B ∈ B be centered in
HB ∈ H \ K1 with x ∈ T (B) ∩ V (H) for some H ∈ H and Hi ∈ K(B,x). By definition,
there exists xi ∈ [x]∼B ∩ V (Hi). If replacing x by xi in T (B) creates a conflict, then there exists
zi ∈ T (B) ∩ V (Hi).
Lemma 12. Let T be an optimal positive non-clashing teaching map for B. Let B ∈ B be centered
in HB ∈ H \ K1. For x ∈ T (B) ∩ V (H) for some H ∈ H, there exists Hi ∈ K(B,x) and
xi ∈ [x]∼B ∩ V (Hi) such that replacing x by xi in T (B) does not create a conflict.
Lemma 13. If B has positive non-clashing teaching dimension k, then it also admits a compact
positive non-clashing teaching map of dimension k.

We now proceed to the crux of our algorithm: the proof that one can reduce the size of the instance
(G,B) without changing its positive non-clashing teaching dimension (formalized in Lemma 15).
Toward this, it will be useful to focus on how the balls in B interact with certain subgraphs of G.
Definition 8. Let G′ be an induced subgraph of G. Then, B induces the set B′ of vertex sets w.r.t. G′

where B′ = {Br(u) ∩ V (G′) | Br(u) ∈ B ∧ u ∈ V (G′)}.

We note that the set of B′ need not necessarily be a set of balls in G′ itself: for instance, it may well
happen that for some B ∈ B′ the vertex set B ∩V (G′) is not even connected. However, under some
conditions on G′ that we will be able to guarantee, B′ is, in fact, a set of balls of G′.
Lemma 14. Let G be a graph, B a set of balls on G, and G′ an induced subgraph of G. If V (G′)
contains X and, for every H ∈ H, either (1) V (H) ⊆ V (G′) or (2) V (H)∩V (G′) = ∅∧∃H ′, H ′′ ∈
[H]∼B , H ̸= H ′′, V (H ′) ∪ V (H ′′) ⊆ V (G′) holds, then the set B′ induced by B w.r.t. G′ is a set of
balls on G′. Moreover, there is a bijection between balls in B′ and balls in B centered in G′.

Let us now define the reduced graph G′ of G as the graph obtained from G by removing all but

f(p) = c(p) +
(
p·c(p)+p

s(p)

)b(p)
+ 1 twin-blocks from each large class of ∼B. Additionally, we set B′

to be the set induced by B on G′ according to Definition 8, and note that Lemma 14 implies that it
is a set of balls on G′. The size of G′ is bounded by g(p) = p + f(p) · 2O(p3) = 22

O(p3)

, and B′ is
hence also of bounded size: in particular, an optimal positive non-clashing teaching map for B′ can
be computed, e.g., by brute force in time that depends only on p. We now aim at proving that B′ is
equivalent to B, i.e., that the optimal positive non-clashing teaching dimension is the same for both.
Lemma 15. Suppose that there is a solution for (G,B, k). Then, there exists a solution T ′ for the
reduced instance (G′,B′, k).

The following lemma establishes that a solution for the reduced instance can be lifted to one for the
original instance; note this also ensures that our algorithm will be constructive.
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Lemma 16. Let k ∈ N and T ′ be a compact solution for the instance (G′,B′, k). We can construct

a compact solution T for (G,B, k) in time 22
O(p3) · |V (G)|O(1).

Finally, we obtain our main parameterized tractability result by combining the previous ingredients.
In particular, in the proof we construct (G′,B′, k), solve the problem there and argue correctness.
Theorem 17. NON-CLASH is fixed-parameter tractable when parameterized by the vertex integrity
of the input graph G.

5 HARDNESS FOR CLASSICAL STRUCTURAL PARAMETERIZATIONS

In this section, we prove that NON-CLASH is intractable for many of the structural graph parameters
that have been studied in the literature. We prove the result for the feedback vertex number and
pathwidth; by extension, intractability then follows also for well-known generalizations of these
measures such as treewidth and clique-width.
Theorem 18. NON-CLASH is W[1]-hard parameterized by fvs(G) + pw(G) + k.

We establish Theorem 18 by describing a parameterized reduction below and proving its correct-
ness in Lemma 19. We reduce from a problem called NAE-INTEGER-3-SAT, which is W[1]-hard
parameterized by the number of variables (Bringmann et al., 2016), and is defined as follows.

NAE-INTEGER-3-SAT
Input: A set of clauses C over variables X , and an integer d. Any clause c ∈ C has the form
x ≤ cx, y ≤ cy , and z ≤ cz , where cx, cy, cz ∈ {1, . . . , d}.
Question: Is there a variable assignment X → {1, . . . , d} such that for each clause, either 1 or
2 of its three inequalities are satisfied?

The Reduction. Given an instance ϕ of NAE-INTEGER-3-SAT, we construct an instance (G,B, k)
of NON-CLASH in polynomial time as follows, starting with the graph G.

• For each variable x ∈ X , make a (variable) path P x := (x1, . . . , xd) of order d.
• For each clause c ∈ C, make two vertices c and c′ and, w.l.o.g., suppose that the clause c

contains the variables x, y, and z, and that cx ≤ cy ≤ cz . Connect the vertex c to xd, yd,
and zd by three distinct paths of lengths 4d, 4d+ cy − cx, and 4d+ cz − cx, respectively.2
These long paths ensure that there are no unwanted shortcuts in G and that, for rc =
5d − cx − 1, the ball Brc(c) contains all of P x, P y , and P z except for their first cx, cy ,
and cz vertices (whose respective indices correspond to the respective variable values that
satisfy the clause c), respectively. Similarly, connect the vertex c′ to x1, y1, and z1 by three
distinct paths of lengths 4d+ cz − cx, 4d+ cz − cy , and 4d, respectively. Analogously, this
ensures that, for r′c′ = 4d+cz−1, the ball Br′

c′
(c′) contains the opposite vertices to Brc(c)

in P x, P y , and P z (whose respective indices correspond to the respective variable values
that do not satisfy the clause c), while ensuring that no unwanted shortcuts exist in G.

• For each clause c ∈ C and each variable q ∈ X such that c does not contain q, in G, connect
the vertices c and c′ to q1 by distinct paths of length 3d. These paths ensure that the balls
Brc(c) and Br′

c′
(c′) described above contain every other variable path completely, while

ensuring that no unwanted shortcuts exist in G.
• Let S be the set of all the vertices that currently exist in G. For each x ∈ X , in G, make

a vertex fx and connect it to each vertex in S except those in P x via a distinct path of
length 6d. Finally, for all x, y ∈ X , make fx adjacent to fy . This ensures that, for each
x ∈ X , the ball B6d(fx) contains every vertex in G except for those in P x, while ensuring
that no unwanted shortcuts exist in G. This completes the construction of G (see Figure 2).

Set k := |X | and B to contain V (G), B6d(fx) for all x ∈ X , and Brc(c) and Br′
c′
(c′) for all c ∈ C.

Correctness of the Reduction. Suppose, given an instance ϕ of NAE-INTEGER-3-SAT, that the
reduction from the subsection above returns (G,B, k) as an instance of NON-CLASH.

2“Connect two vertices u, v by a path of length p” means to make u and v the endpoints of a path of length p.
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··
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c
z −
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Figure 2: Colorful edges denote paths of the depicted lengths. Two black curves separate the clique
from the rest of the graph. Each dotted edge shows that a vertex of the clique is adjacent to all the
vertices of the graph below the separating curves except those in the adjacent rectangle. The gray
curve gives an intuition of which vertices of Px, Py , and Pz are contained in Brc(c) and Br′

c′
(c′).

Lemma 19. ϕ is a YES-instance of NAE-INTEGER-3-SAT if and only if (G,B, k) is a YES-instance
of NON-CLASH.

Proof of Theorem 18. Lemma 19 establishes the correctness of the polynomial-time reduction from
the beginning of Section 5. To complete the proof, it remains to show that fvs(G) + pw(G) + k is
bounded above by a function of |X |. This clearly holds for k which is, by definition, |X |. Deleting
from G the vertices x1, xd, and fx for all x ∈ X results in an acyclic graph G′; in particular G has
a feedback vertex set of size 3|X |. To establish a bound on pw(G), it now suffices to show that G′

also has bounded pathwidth. Note that G′ consists of a set of connected components, each of which
is either a subdivided caterpillar (this is what remains of each component containing a variable path)
or a vertex (of the form c or c′) with multiple pendent subdivided caterpillars and (simple) paths.
Since deleting one further vertex from each connected component may only reduce the pathwidth
by 1 and we need a single such deletion operation to reach a graph class of constant pathwidth (see
Section 2), we also obtain that pw(G) is bounded by a function of |X |.

6 CONCLUDING REMARKS

Our computational upper and lower bounds provide a near-comprehensive understanding of the com-
plexity of computing the positive non-clashing teaching dimension. Apart from our contributions to
the previously studied strict setting, we consider it notable that our work is the first to also tackle the
complexity of non-clashing teaching in the non-strict setting—i.e., the more general (and arguably
more natural) case where not all possible concepts are present. One open question highlighted by
our work concerns the tiny remaining gap between the algorithmic lower and upper bounds obtained
in Theorem 4 and Proposition 5. More general directions for future work are to perform a similar
complexity analysis in the non-positive setting and to consider approximation algorithms.
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Pål Grønås Drange, Markus S. Dregi, and Pim van ’t Hof. On the computational complexity of
vertex integrity and component order connectivity. Algorithmica, 76(4):1181–1202, 2016.

Eduard Eiben, Robert Ganian, Iyad A. Kanj, Sebastian Ordyniak, and Stefan Szeider. The computa-
tional complexity of concise hypersphere classification. In Proc. of the International Conference
on Machine Learning (ICML 2023), volume 202 of Proceedings of Machine Learning Research,
pp. 9060–9070, 2023a.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Eduard Eiben, Sebastian Ordyniak, Giacomo Paesani, and Stefan Szeider. Learning small deci-
sion trees with large domain. In Proc. of the 32nd International Joint Conference on Artificial
Intelligence (IJCAI 2023), pp. 3184–3192, 2023b.

Shaun Fallat, David Kirkpatrick, Hans U. Simon, Abolghasem Soltani, and Sandra Zilles. On batch
teaching without collusion. Journal of Machine Learning Research, 24:40:1–40:33, 2023.

Michael R Fellows and Sam Stueckle. The immersion order, forbidden subgraphs and the complex-
ity of network integrity. J. Combin. Math. Combin. Comput, 6(1):23–32, 1989.

S. Floyd. Space-bounded learning and the Vapnik-Chervonenkis dimension. PhD thesis, U.C.
Berkeley, 1989.

Robert Ganian and Viktoriia Korchemna. The complexity of Bayesian network learning: Revisit-
ing the superstructure. In Advances in Neural Information Processing Systems (NeurIPS 2021),
volume 34, pp. 430–442, 2021.

Ziyuan Gao, Christoph Ries, Hans U. Simon, and Sandra Zilles. Preference-based teaching. Journal
of Machine Learning Research, 18:1–32, 2017.

Tatsuya Gima and Yota Otachi. Extended MSO model checking via small vertex integrity. Algorith-
mica, 86(1):147–170, 2024.

Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, and Yota Otachi. Exploring the
gap between treedepth and vertex cover through vertex integrity. Theoretical Computer Science,
918:60–76, 2022.

Sally A. Goldman and Michael J. Kearns. On the complexity of teaching. Journal of Computer and
System Sciences, 50(1):20–31, 1995.

Sally A. Goldman and H. David Mathias. Teaching a smarter learner. Journal of Computer and
System Sciences, 52(2):255–267, 1996.

Tesshu Hanaka, Michael Lampis, Manolis Vasilakis, and Kanae Yoshiwatari. Parameterized vertex
integrity revisited. In Proc. of the 49th International Symposium on Mathematical Foundations
of Computer Science (MFCS 2024), volume 306 of LIPIcs, pp. 58:1–58:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2024.

Mark K. Ho, Michael Littman, James MacGlashan, Fiery Cushman, and Joseph L. Austerweil.
Showing versus doing: Teaching by demonstration. In Advances in Neural Information Process-
ing Systems (NeurIPS 2016), volume 33, pp. 3027–3035, 2016.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly expo-
nential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

David Kirkpatrick, Hans U. Simon, and Sandra Zilles. Optimal collusion-free teaching. In Proc.
of the 30th International Conference on Algorithmic Learning Theory (ALT 2019), volume 98 of
Proceedings of Machine Learning Research, pp. 506–528, 2019.

Dima Kuzmin and Manfred K. Warmuth. Unlabelled compression schemes for maximum classes.
Journal of Machine Learning Research, 8:2047–2081, 2007.

Yuanzhi Li and Yingyu Liang. Learning mixtures of linear regressions with nearly optimal complex-
ity. In Proc. of the 31st Conference on Learning Theory (COLT 2018), volume 75 of Proceedings
of Machine Learning Research, pp. 1125–1144, 2018.

N. Littlestone and M. K. Warmuth. Relating data compression and learnability. Unpublished, 1986.

Farnam Mansouri, Yuxin Chen, Ara Vartanian, Jerry Zhu, and Adish Singla. Preference-based batch
and sequential teaching: Towards a unified view of models. In Advances in Neural Information
Processing Systems (NeurIPS 2019), volume 32, pp. 9195–9205, 2019.

Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-set attacks on
machine learners. In Proc. of the 29th AAAI Conference on Artificial Intelligence (AAAI 2015),
volume 29, pp. 2871–2877, 2015.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sebastian Ordyniak and Stefan Szeider. Parameterized complexity of small decision tree learning. In
Proc. of the 35th AAAI Conference on Artificial Intelligence (AAAI 2021), pp. 6454–6462, 2021.

Ingo Schwab, Wolfgang Pohl, and Ivan Koychev. Learning to recommend from positive evidence. In
Proc. of the 5th International Conference on Intelligent User Interfaces (IUI 2000), pp. 241–247,
2000.

Ayumi Shinohara and Satoru Miyano. Teachability in computational learning. New Generation
Computing, 8:337–347, 1991.

Hans U. Simon. Tournaments, johnson graphs, and NC-teaching. In Proc. of the 34th International
Conference on Algorithmic Learning Theory (ALT 2023), volume 201 of Proceedings of Machine
Learning Research, pp. 1411–1428, 2023.

Andreas Stolcke and Stephen Omohundro. Inducing probabilistic grammars by Bayesian model
merging. In Proc. of the 2nd International Colloquium on Grammatical Inference (ICGI 1994),
pp. 106–118, 1994.

Jan Arne Telle, José Hernández-Orallo, and Cèsar Ferri. The teaching size: computable teachers
and learners for universal languages. Machine Learning, 108(8-9):1653–1675, 2019.

Andrea L. Thomaz and Maya Cakmak. Learning about objects with human teachers. In Proc. of the
4th ACM/IEEE International Conference on Human-Robot Interaction (HRI 2009), pp. 15–22,
2009.

Chunlin Wang, Chris Ding, Richard F. Meraz, and Stephen R. Holbrook. PSoL: a positive sample
only learning algorithm for finding non-coding RNA genes. Bioinformatics, 22(21):2590–2596,
2006.

Malik Yousef, Segun Jung, Louise C. Showe, and Michael K. Showe. Learning from positive ex-
amples when the negative class is undetermined - microRNA gene identification. Algorithms for
Molecular Biology, 3(2), 2008.

Xuezhou Zhang, Xaiojin Zhu, and Stephen Wright. Training set debugging using trusted items. In
Proc. of the 32nd AAAI Conference on Artificial Intelligence (AAAI 2018), pp. 4482–4489, 2018.

Xiaojin Zhu. Machine teaching: An inverse problem to machine learning and an approach toward
optimal education. In Proc. of the 29th AAAI Conference on Artificial Intelligence (AAAI 2015),
volume 29, pp. 4083–4087, 2015.

Xiaojin Zhu, Adish Singla, Sandra Zilles, and Anna N. Rafferty. An overview of machine teaching.
Arxiv:1801.05927, 2018. URL https://arxiv.org/abs/1801.05927.

Sandra Zilles, Steffen Lange, Robert Holte, and Martin Zinkevich. Models of cooperative teaching
and learning. Journal of Machine Learning Research, 12:349–384, 2011.

13

https://arxiv.org/abs/1801.05927


000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THE COMPUTATIONAL COMPLEXITY OF POSITIVE
NON-CLASHING TEACHING IN GRAPHS
(APPENDIX: FULL VERSION)

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the classical and parameterized complexity of computing the positive
non-clashing teaching dimension of a set of concepts, that is, the smallest number
of examples per concept required to successfully teach an intelligent learner un-
der the considered, previously established model. For any class of concepts, it is
known that this problem can be effortlessly transferred to the setting of balls in a
graph G. We establish (1) the NP-hardness of the problem even when restricted to
instances with positive non-clashing teaching dimension k = 2 and where all balls
in the graph are present, (2) near-tight running time upper and lower bounds for
the problem on general graphs, (3) fixed-parameter tractability when parameter-
ized by the vertex integrity of G, and (4) a lower bound excluding fixed-parameter
tractability when parameterized by the feedback vertex number and pathwidth of
G, even when combined with k. Our results provide a nearly complete understand-
ing of the complexity landscape of computing the positive non-clashing teaching
dimension and answer open questions from the literature.

1 INTRODUCTION

While typical machine learning models task a learner with finding a concept C from a concept
class C based on an—often randomly drawn—sample, in machine teaching (specifically in its com-
monly considered batch variant) the learner is provided a set of examples by a teacher; crucially,
here the examples can be selected in a way which allows the concept to be reconstructed from as
few examples as possible. Machine teaching is a core topic in computational learning theory and has
found applications in a variety of areas including robotics (Thomaz & Cakmak, 2009; Akgun et al.,
2012), trustworthy AI (Mei & Zhu, 2015; Zhang et al., 2018), inverse reinforcement learning (Ho
et al., 2016; Brown & Niekum, 2019), and education (Zhu, 2015; Chen et al., 2018; Zhu et al., 2018).
While numerous models of machine teaching have been investigated to date (Shinohara & Miyano,
1991; Goldman & Kearns, 1995; Goldman & Mathias, 1996; Zilles et al., 2011; Gao et al., 2017;
Mansouri et al., 2019; Telle et al., 2019), in this article we focus on the recently developed positive
non-clashing teaching model (Kirkpatrick et al., 2019; Fallat et al., 2023).

In non-clashing teaching, given a finite binary concept class C, for each pair C1, C2 of distinct con-
cepts in C, at least one example provided for at least one of C1 or C2 must not be consistent with
the other concept. A key feature of non-clashing teaching is that it is the most efficient model (in
terms of the number of required examples) satisfying the Goldman-Mathias collusion-avoidance cri-
terion (Goldman & Mathias, 1996)—the “gold standard” for ensuring that the learner cannot cheat,
e.g., via a hidden communication channel with the teacher. Moreover, a teaching model is positive if
the examples provided for each concept C are required to be positively labeled for C. The restriction
of teaching models to the positive setting is common and well-motivated from applications in, e.g.,
recommendation systems (Schwab et al., 2000), computational biology (Wang et al., 2006; Yousef
et al., 2008), and grammatical inference (Stolcke & Omohundro, 1994; Denis, 2001); see also the
early works of Angluin (Angluin, 1980a;b). Non-clashing teaching has been proposed and studied
in the positive setting not only within the initial papers introducing the concept (Kirkpatrick et al.,
2019; Fallat et al., 2023), but also in subsequent works (e.g., (Simon, 2023; Chalopin et al., 2024)).
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While positive non-clashing teaching has the potential to be highly efficient, realizing this potential
requires us to solve the computational task of actually constructing a small set of examples for the
given concepts. More precisely, one aims at computing (a witness for) the teaching dimension of a
given concept class, i.e., the minimum integer k such that each concept is provided with at most k
examples that satisfy the conditions of the model. On the positive side, instead of considering
various different types of concepts and examples, we can restrict our attention to the setting where
each concept is a ball in some input-specified graph G, and the possible examples are vertices of G.
Indeed, it is known that any finite binary concept class C ⊆ 2V can be represented by a set B of balls
in a graph G as follows: V (G) = V ∪ {xC | C ∈ C}, xC is adjacent to xC′ for all C,C ′ ∈ C, xC is
adjacent to v ∈ V if and only if v ∈ C, and B = {B1(xC) | C ∈ C} (Chalopin et al., 2023; 2024).

On the negative side, the problem is computationally intractable, and remains so even in the re-
stricted setting where every possible concept (i.e., every ball in G) is present; to distinguish this case
from the general one where not all concepts need to be present, we refer to it as strict. In particular,
Chalopin, Chepoi, Mc Inerney, and Ratel (2024) recently carried out an initial complexity-theoretic
investigation of computing the positive non-clashing teaching dimension in the strict setting. There,
they established the NP-hardness of the problem for instances with large teaching dimension (even
when restricted to the highly restricted class of split graphs), obtained runtime upper and lower
bounds under the Exponential Time Hypothesis (Impagliazzo et al., 2001), and designed a so-called
fixed-parameter algorithm for the problem when parameterized by the size of the vertex cover of G.

In this article, we significantly improve over each of these results, answer two open questions posed
by the authors of the aforementioned work (Chalopin et al., 2024), and obtain a nearly complete
understanding of the computational complexity of computing the positive non-clashing teaching
dimension (in both the strict and non-strict settings).

Contributions. Let us refer to the problems of computing the positive non-clashing teaching di-
mension in the strict and non-strict settings as STRICT NON-CLASH and NON-CLASH, respectively.
Formal definitions complementing the informal descriptions given above are provided in Section 2.

Our first result concerns the complexity of STRICT NON-CLASH on instances with constant pos-
itive non-clashing teaching dimension. The reductions of Chalopin, Chepoi, Mc Inerney, and
Ratel (2024) only establish the NP-hardness of the problem for instances with large (i.e., input-
dependent) positive non-clashing teaching dimension k. In fact, as their first open question, the
authors ask whether STRICT NON-CLASH is NP-hard or polynomial-time solvable when the sought-
after dimension k is a fixed constant; the question is not only theoretically interesting, but also highly
relevant as instances of small teaching dimension are precisely the candidates for efficient teaching.
We settle this by a highly non-trivial reduction (Theorem 1) which establishes that determining
whether the positive non-clashing teaching dimension is at most 2 is NP-hard—and remains so even
when restricted to the same class of split graphs where STRICT NON-CLASH was previously shown
to be NP-hard (for large k) (Chalopin et al., 2024). We note that this result is, in a sense, best possi-
ble: determining whether an instance of STRICT NON-CLASH has a positive non-clashing teaching
dimension of 1 is trivial as it is equivalent to testing whether G is edgeless (Chalopin et al., 2024).

Next, we proceed to the running time bounds for solving the problem. Typically, the running time
upper bounds are given by an exact algorithm, while the lower bounds are obtained from a suitable
“tight” reduction under the Exponential Time Hypothesis (Impagliazzo et al., 2001). In the preced-
ing work, Chalopin, Chepoi, Mc Inerney, and Ratel (2024) obtained algorithmic lower and upper
bounds of 2o(n·d) and 2O(n2·d), where n and d are the number of vertices and the diameter of G, re-
spectively. From our reduction and a more careful algorithmic analysis, we obtain a lower bound of
2o(n·d·k) and an upper bound of 2O(n·d·k·logn) (Theorem 4 and Proposition 5)—making the bounds
almost tight, with just a logarithmic factor in the exponent separating the two.

While the aforementioned bounds apply to the problem in general, often one may only need
to solve the problem on “well-structured” graphs. The more refined parameterized complexity
paradigm (Downey & Fellows, 2013; Cygan et al., 2015) offers the perfect tools to analyze and
identify precisely which structural properties of input graphs—usually captured by a suitable in-
teger parameter k—allow us to circumvent its general intractability. The analog to the complex-
ity class P in the parameterized setting is FPT (“fixed-parameter tractable”), which characterizes
parameterized problems solvable in f(k) · nO(1) time; intuitively, this means that the problem is
solvable in uniformly polynomial time for each constant value of k. Parameterized complexity is
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well-established and has been successfully applied for non-clashing teaching (Chalopin et al., 2024)
as well as in a variety of related subfields of learning theory (Downey et al., 1993; Li & Liang, 2018;
Ganian & Korchemna, 2021; Ordyniak & Szeider, 2021; Brand et al., 2023; Eiben et al., 2023a;b).

In their previous work, Chalopin, Chepoi, Mc Inerney, and Ratel (2024) established the fixed-
parameter tractability of STRICT NON-CLASH when parameterized by the vertex cover number
of the input graph G—or, equivalently, the vertex deletion distance to a graph consisting only of
isolated vertices. The drawback of that result is that the vertex cover number is a highly “restrictive”
parameter, in the sense that it achieves low values only on rather simple graphs. This is also re-
flected in the open question posed in that article, which asked about the problem’s complexity under
other parameterizations. As our third contribution, we establish (in Theorem 18) the fixed-parameter
tractability of NON-CLASH—i.e., the more general task of computing the non-clashing teaching di-
mension when not all concepts (i.e., balls) need to be present—parameterized by the vertex integrity
of G. Vertex integrity is a well-studied graph parameter (Drange et al., 2016; Gima et al., 2022;
Gima & Otachi, 2024; Hanaka et al., 2024) that essentially captures the vertex deletion distance to a
graph consisting only of small connected components; it is known (and easily observed) to be a less
restrictive parameterization than the vertex cover number (cf. Section 2), meaning that our result
significantly pushes the boundaries of tractability even for the simpler strict variant of the problem.

The proof of Theorem 18 is highly non-trivial. In particular, while the algorithm itself is simple and
merely uses a data reduction technique (“kernelization” (Cygan et al., 2015)) that iteratively removes
certain parts of the instance, the crucial correctness proof underlying the result is very involved and
relies on identifying a carefully defined set of “canonical” examples for our instances. The algorithm
is also constructive, meaning that it can output a set of examples for the concepts as a witness.

As our final contribution, in Theorem 19 we complement Theorem 18 with a complexity-theoretic
lower bound excluding fixed-parameter tractability under many other graph parameters previously
considered in the literature, including pathwidth, treewidth, and the feedback vertex number—the
latter two of which were explicitly mentioned in the aforementioned open question (Chalopin et al.,
2024). We do so through a complex W[1]-hardness reduction (which can be seen as a parameterized
analog to classical reductions used to establish NP-hardness) that excludes, under well-established
complexity assumptions, NON-CLASH from being in FPT even when combining all the parameter-
izations mentioned in the previous sentence with the positive non-clashing teaching dimension k.

Related Work. It is known that NON-CLASH is significantly more challenging than the special
case captured by STRICT NON-CLASH. For instance, the reduction of Kirkpatrick, Simon, and
Zilles (2019, Subsection 7.1) establishes that NON-CLASH is NP-hard even if the task is to deter-
mine whether the positive non-clashing teaching dimension of the instance is 1; on the other hand,
the analogous question for STRICT NON-CLASH is trivial as it simply requires determining whether
the input graph is edgeless or not (Chalopin et al., 2024). In fact, unless P = NP, that reduction
also rules out a polynomial-time 1.999-approximation algorithm. For clarity, note that while that re-
duction does not consider concepts that are balls in a graph, as mentioned earlier every finite binary
concept class can be easily transformed into a class of balls in a graph (Chalopin et al., 2023; 2024).

Apart from the computational questions resolved in this work, another prominent open question is
whether the non-clashing teaching dimension is upper-bounded by the VC-dimension (Kirkpatrick
et al., 2019; Fallat et al., 2023; Simon, 2023). It is known that the non-clashing teaching dimension
(where one allows negative examples) can be significantly smaller than the positive variant, e.g.,
balls in cycles have a non-clashing teaching dimension of 2, but their positive non-clashing teaching
dimension is not bounded by any constant (Chalopin et al., 2024). It was also pointed out that balls
in cacti or planar graphs could be good candidates for concept classes negatively answering this
question (Chalopin et al., 2024). Further, Simon (2023) recently explored the relationship between
non-clashing teaching and recursive teaching and identified the precise gap between the two notions.

Concept classes consisting of balls in a graph are a discrete analog of the geometric concept classes
of balls in a Euclidean space which have been investigated in PAC-learning, e.g., as part of the more
general Dudley concept classes (Floyd, 1989; Ben-David & Litman, 1998). Apart from non-clashing
teaching, they have also been explored for the closely related and well-studied sample compression
schemes (Chalopin et al., 2023) introduced by Littlestone and Warmuth (1986). As discussed in
prior works (Kirkpatrick et al., 2019; Fallat et al., 2023; Chalopin et al., 2024), non-clashing teach-
ing maps can be viewed as signed variants of representation maps for concept classes, a notion intro-
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duced to design unlabeled sample compression schemes for maximum concept classes (Kuzmin &
Warmuth, 2007) (and subsequently the more general ample concept classes (Chalopin et al., 2022)).

2 PRELIMINARIES

We assume familiarity with graph terminology (Diestel, 2024). We only consider simple, finite, and
undirected graphs. For an integer n ≥ 1, we set [n] := {1, . . . , n}. As we only consider finite
binary concept classes which can be represented as balls in graphs (Chalopin et al., 2023; 2024), we
introduce the terminology for positive non-clashing teaching directly in the setting of graphs.

POSITIVE NON-CLASHING TEACHING IN GRAPHS. Let G be a graph. For an integer r ≥ 0 and
a vertex v ∈ V (G), the ball Br(v) is the set of all vertices at distance at most r from its center v.
Let B be a set of balls of G. A positive teaching map T for B is a mapping which assigns to each
ball B ∈ B a teaching set T (B) ⊆ B, i.e., a subset of the vertices of B. The dimension of T is
maxB∈B |T (B)|—in other words, the largest image of T . A positive teaching map T is called non-
clashing for B if for each pair of distinct balls B1, B2 ∈ B, there exists a vertex w ∈ T (B1)∪T (B2)
such that w ̸∈ B1 ∩ B2. Note that w must lie in B1 ∪ B2 by definition, and hence, this condition
ensures that one of the balls has a teaching set which is not contained in the other ball. We say that
w distinguishes B1 and B2, or distinguishes B1 from B2 (or vice versa). If a teaching map is not
non-clashing, we say that there is a conflict between any two balls for which there is no element
distinguishing them. We now define our problems of interest:1

STRICT NON-CLASH
Input: A graph G and an integer k.
Question: Is there a positive non-clashing teaching map for the set of all balls of G with

dimension at most k?

NON-CLASH
Input: A graph G, a set B of balls of G, and an integer k.
Question: Is there a positive non-clashing teaching map for B with dimension at most k?

We call a teaching map satisfying the conditions of the respective problem statement a solution. To
avoid any confusion, we remark that the above definitions—as well as every result obtained in this
article—concerns non-clashing teaching in the previously studied positive setting.

PARAMETERIZED COMPLEXITY. In parameterized complexity (Downey & Fellows, 2013; Cygan
et al., 2015), the running-times of algorithms are studied with respect to a parameter p ∈ N and input
size n. It is normally used for NP-hard problems, with the aim of finding a parameter describing a
feature of the instance such that the combinatorial explosion is confined to this parameter. A param-
eterized problem is fixed-parameter tractable (FPT) if it can be solved by an algorithm running in
time f(p) · nO(1), where f is a computable function; these are fixed-parameter algorithms.

Proving that a problem is W[1]-hard via a parameterized reduction from a W[1]-hard problem P
rules out the existence of a fixed-parameter algorithm under the well-established hypothesis that
W[1] ̸= FPT. A parameterized reduction from P to a parameterized problem Q is a function:

• which maps YES-instances to YES-instances and NO-instances to NO-instances,

• is computable in time f(p) · nO(1), where f is a computable function, and
• where the parameter of the output instance can be upper-bounded by some function of the

parameter of the input instance.

STRICT NON-CLASH is known to be fixed-parameter tractable when parameterized by the vertex
cover number of G, i.e., the minimum integer a such that there is a subset X ⊂ V (G) of at most a
vertices where G −X is an edgeless graph. In this article, we consider three parameters which are
upper-bounded by the vertex cover number (or, more precisely, the vertex cover number plus one):

1To provide more concise complexity-theoretic statements, our problems are formalized in their decision
variants. All algorithms obtained in this article are constructive and can also output a teaching map as a witness.
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• the vertex integrity of G, which is the minimum integer b such that there is a vertex subset
X ⊂ V (G) where for every connected component H of G−X , |V (H) ∪X| ≤ b;

• the feedback vertex number of G (denoted by fvs(G)), which is the minimum integer c
such that there is a vertex subset X ⊂ V (G) where G−X is acyclic;

• the pathwidth of G (denoted by pw(G)), which has a more involved definition based on the
notion of path decompositions. However, for the purposes of this article it is sufficient to
note the well-known facts (Downey & Fellows, 2013; Cygan et al., 2015) that deleting one
vertex from each connected component of G will decrease the pathwidth by at most one,
and that a graph consisting of a disjoint union of paths and subdivided caterpillars (i.e.,
graphs consisting of a central path with pendent paths attached to it) has pathwidth 2.

3 INTRACTABILITY AND RUNNING TIME LOWER BOUNDS

In this section, we establish the NP-hardness of STRICT NON-CLASH when k = 2, and thus, that
it cannot be 1.499-approximated in polynomial time unless P = NP; in fact, our results hold even
when the graphs belong to the class of split graphs, i.e., graphs which can be partitioned into an
independent set and a clique. Recall that the former result is tight in the sense that STRICT NON-
CLASH is trivial when k = 1 (Chalopin et al., 2024). We formalize the result below.
Theorem 1. STRICT NON-CLASH is NP-hard even when restricted to split graphs with k = 2.

We prove Theorem 1 via a polynomial-time reduction that, given an instance of 3-SAT, constructs
an equivalent instance (G, k) of STRICT NON-CLASH, where G is a split graph and k = 2.

3-SAT
Input: A CNF formula over a set of clauses C = {c1, . . . , cm} containing variables from X =
{x1, . . . , xn}, where each clause has exactly 3 literals.
Question: Is there a variable assignment τ : X → {True,False} satisfying each clause in C?

The Reduction. Given an instance ϕ = (C,X ) of 3-SAT, we construct the graph G as follows; a
schematic illustration is provided in Figure 1b.

• First, for each i ∈ [n], we create a pair of vertices {ti, fi}. We set A := {ti, fi}i∈[n].

• For each i ∈ [n], we introduce a variable force-gadget, which consists of a set of vertices
{r∗i , r∗∗i , r∗∗∗i , r′i, r

′′
i } and edges as depicted in Figure 1a.

• For each i ∈ [n], we attach the variable force-gadget to the pair {ti, fi} as shown in
Figure 1b, by making both r∗i and r∗∗∗i adjacent to both ti and fi. This gadget will
guarantee that the corresponding assignment of the ith variable is well-defined. We set
R∗ := {r∗i , r∗∗i , r∗∗∗i }i∈[n] and R′ := {r′0} ∪ {r′i, r′′i }i∈[n], where r′0 is a new vertex.

• Similarly, for each k ∈ [m], we introduce a clause force-gadget on the set of new vertices
{s∗k, s∗∗k , s∗∗∗k , s′k, s

′′
k} (as depicted in Figure 1a). This gadget corresponds to the clause ck

of the instance ϕ. We add adjacencies according to the appearance of literals in ck, i.e., if
xi ∈ ck for some i ∈ [n], then we connect both s∗k and s∗∗∗k to fi; and if xi ∈ ck, then we
connect both s∗k and s∗∗∗j to ti. Intuitively, we connect the gadget to those vertices whose
underlying assignments (True or False for ti and fi, resp.) do not satisfy cj , while
the opposite assignments would (see Figure 1b). We set S∗ := {s∗k, s∗∗k , s∗∗∗k }k∈[m] and
S′ := {s′0} ∪ {s′k, s′′k}k∈[m], where s′0 is a new vertex.

• We add all possible edges between (a) S∗ and R∗; (b) R∗ and S′; (c) S∗ and R′.
• We add all possible edges within S∗, and within R∗.
• Lastly, we add a special vertex a and make it adjacent to all the other vertices of the graph.

This concludes the construction of G; given the aforementioned instance ϕ = (C,X ) of 3-SAT, the
reduction outputs the STRICT NON-CLASH instance (G, 2). It now remains to establish correctness,
which is handled by the following two lemmas.
Lemma 2. If ϕ is a YES-instance of 3-SAT, then (G, 2) is a YES-instance of STRICT NON-CLASH.
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v′

v′′

v∗

v∗∗

v∗∗∗

(a) The force-gadget.
The dotted edge cor-
responds to the ab-
sence of that edge.

s′k

s′′k

s∗k

s∗∗k

s∗∗∗k

s′l

s′′l

s∗l

s∗∗l

s∗∗∗l

r′i

r′′i

r∗i

r∗∗i

r∗∗∗i

r′j

r′′j

r∗j

r∗∗j

r∗∗∗j

r′q

r′′q

r∗q

r∗∗q

r∗∗∗q

r′p

r′′p

r∗p

r∗∗p

r∗∗∗p

ti

fi

tj

fj

tq

fq

tp

fp

s′0

r′0

S′

R′

AS∗

R∗
a

(b) An example of the graph G obtained by applying our reduction on the 3-SAT
instance with X = {xi, xj , xq, xp} and C = {(xi ∨ xj ∨ xq), (xj ∨ xq ∨ xp)}.
Vertices in ovals form independent sets, while cliques are depicted by rectangles.
Blue edges denote the existence of all possible edges between the two sets.

for k ∈ [m] T (B1(s
∗
k)) = {s′k, v} and ck is satisfied by τ(xi) for some i ∈ [n], where

if τ(xi) = True, then v = fi (fi ∈ B1(s
∗
k) ∩A since xi ∈ ck)

if τ(xi) = False, then v = ti (ti ∈ B1(s
∗
k) ∩A since xi ∈ ck)

T (B1(s
∗∗
k )) = {s′k, r′0} T (B1(s

∗∗∗
k )) = {s′′k , r′0}

T (B1(s
′
k)) = {s′k, s∗∗k } T (B1(s

′′
k)) = {s′′k , s∗∗∗k } T (B1(s

′
0)) = {s′0, a}

for i ∈ [n] T (B1(r
∗
i )) = {r′i, v}, where

if τ(xi) = True, then v = ti
if τ(fi) = False, then v = fi

T (B1(r
∗∗
i )) = {r′i, s′0} T (B1(r

∗∗∗
i )) = {r′′i , s′0}

T (B1(r
′
i)) = {r′i, r∗∗i } T (B1(r

′′
i )) = {r′′i , r∗∗∗i } T (B1(r

′
0)) = {r′0, a}

for i ∈ [n] T (B1(ti)) = {ti, a} T (B1(fi)) = {fi, a}
T (V (G)) = T (B1(a)) = {ti, tj}, for i, j ∈ [n], i ̸= j such that there is no
k ∈ [m] where both xi and xj appear in ck.a

Table 1: Positive teaching map for B.

aWe can assume the existence of such a pair i, j, because introducing an artificial variable and a unique
clause in which it occurs gives an equivalent instance. Indeed, the artificial variable appears only once and its
assignment can be chosen so that the added clause is satisfied without the rest of the formula being affected.

Proof. As G contains a universal vertex a, its diameter is 2, and thus, any ball of radius at least 2
contains V (G). Hence, it is sufficient to consider balls of radius at most 2. Let τ : X →
{True,False} be an assignment of the variables satisfying the given 3-SAT formula ϕ. Let us
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define a positive teaching map T of dimension 2 for the set B of all the balls in G as shown in
Table 1. It remains to prove that T is non-clashing for B.

To this end, we will refer to Table 2 which intuitively describes which vertices are used to distinguish
each pair of balls of radius 1. For any pair u, z ∈ V (G), the corresponding entry in the table
contains either v or a given vertex w ∈ V (G). If it contains a vertex w ∈ V (G), observe that
w ∈ T (B1(u)) ∪ T (B1(z)) by Table 1, and w /∈ B1(u) ∩ B1(z). In the remaining cases, i.e.,
(1) s∗k, r

∗
i ; (2) s∗k, s

∗∗
k ; (3) s∗k, s

′
k; (4) s∗k, s

′′
k , we need to explicit which vertex v stands for. For pairs

(2) s∗k, s
∗∗
k ; (3) s∗k, s

′
k; (4) s∗k, s

′′
k , v can be any vertex in N(s∗k)∩A (by construction, there are 3 such

vertices) since the neighborhoods of each of s∗∗k , s′k, and s′′k do not intersect A.

For the last type of pair (1), we will use the fact that τ is a satisfying assignment. For k ∈ [m] and
i ∈ [n], assume w.l.o.g. that ck is satisfied by the assignment τ(xi) = True. Then, T (B1(s

∗
k)) =

{s′k, fi} and T (B1(r
∗
i )) = {r′i, ti}. With such an assignment of teaching sets, for any pair of type

s∗k, r
∗
i we have that ti ∈ T (B1(s

∗
k)) ∪ T (B1(r

∗
i )) = {s′k, fi} ∪ {r′i, ti}, and ti /∈ B1(s

∗
k) ∩B1(r

∗
i ).

s∗k s∗∗k s∗∗∗k s′k s′′k s′0 ti fi
r∗i v r′0 r′0 r′i r′i r′i r′i r′i
r∗∗i s′0 r′0 r′0 s′0 s′0 r′i r′i r′i
r∗∗∗i s′0 r′0 r′0 s′0 s′0 r′′i r′′i r′′i
r′i s′k r′0 r′0 r′i r′i r′i r′i r′i
r′′i s′k r′0 r′0 r′′i r′′i r′′i r′′i r′′i
r′0 s′k s′k s′′k s′k s′′k r′0 r′0 r′0
tj s′k s′k s′′k s′k s′′k s′0 ti fi
fj s′k s′k s′′k s′k s′′k s′0 ti fi

(a) Here i, j ∈ [n], k ∈ [m], and v ∈ {ti, fi} \ N(s∗k).
According to Table 1, {ti, fi} \ N(s∗k) = ti if xi = True
satisfies ck; and {ti, fi} \N(s∗k) = fi if xi = False satis-
fies ck.

s∗k s∗∗k s∗∗∗k s′k s′′k
s∗l s′k v s′k v v

s∗∗l s′k s′k s′k r′0 r′0
s∗∗∗l s′k s′k s′′k r′0 r′0
s′l s′k s′k s′′k s′k s′k
s′′l s′k s′k s′′k s′k s′′k
s′0 s′0 s′0 s′0 s′0 s′0

(b) Here, k, l ∈ [m]; filled cells corre-
spond to the case k = l, and the others
to k ̸= l. The vertex v here is any vertex
in N(s∗l )∩A. The table for vertices of the
variable force-gadgets is defined similarly,
interverting all s and r symbols.

Table 2: For each u, z ∈ V (G), in a cell at the intersection of the corresponding row and column, we
place a vertex w ∈ V (G) such that w ∈ T (B1(u))∪ T (B1(z)) and w /∈ B1(u)∪B1(z) (according
to the teaching map defined by Table 1).

Finally, we check that the teaching set for T (V (G)) distinguishes V (G) from all the other balls in
G. According to Table 1, for i, j ∈ [n] and i ̸= j, T (V (G)) = {ti, tj} and there is no k ∈ [m] such
that both xi and xj appear in ck. The last condition guarantees us that, for any u ∈ V (G)\{a}, there
is a vertex (either ti or tj) that is in T (V (G)) but not in B1(u) as there is no clause force-gadget
that would be attached to both ti and tj .

Thus, we showed that for any pair of balls in B, both necessary conditions for the defined teaching
sets hold. Hence, the defined positive teaching map is non-clashing for B.

Lemma 3. If (G, 2) is a YES-instance of STRICT NON-CLASH, then ϕ is a YES-instance of 3-SAT.

Proof. Let T be a positive non-clashing teaching map of dimension 2 for the set B of all balls in G.
By definition, for each pair of distinct balls B1, B2 ∈ B, there is w ∈ T (B1) ∪ T (B2) such that
w /∈ B1 ∩ B2. For each i ∈ [n], let us consider a pair of vertices r∗i and r∗∗∗i . By the construction,
B1(r

∗∗∗
i ) ⊂ B1(r

∗
i ) and r′i is the unique vertex in B1(r

∗
i ) that is not in B1(r

∗∗∗
i ) ∩ B1(r

∗
i ). Thus,

since T is a positive non-clashing teaching map for B, r′i has to be in T (B1(r
∗
i )). Now, let us

consider a pair of vertices r∗i and r∗∗i . Similarly, B1(r
∗∗
i ) ⊂ B1(r

∗
i ) and {ti, fi} = B1(r

∗
i )\B1(r

∗∗
i ).

So, for T to distinguish the balls B1(r
∗∗
i ) and B1(r

∗
i ), exactly one of ti and fi (since T (B1(r

∗
i ))

already contains r′i) has to be in T (B1(r
∗
i )). The same arguments work for clause force-gadgets, by

symmetry of the construction, and we obtain that, for each k ∈ [m], there is v ∈ B1(s
∗
k) ∩ A such

that T (B1(s
∗
k)) = {s′k, v}.

7
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Now, let us use the fact that for i ∈ [n] and k ∈ [m], the balls B1(r
∗
i ) and B1(s

∗
k) are distinguished

by T . If B1(s
∗
k) ∩ {ti, fi} = ∅, whichever of ti, fi that is in B1(r

∗
i ) distinguishes the two balls.

However, as we have shown before, for each k ∈ [m], |T (B1(s
∗
k))∩A| = 1. So, there exists i ∈ [n]

such that B1(s
∗
k) ∩ {ti, fi} ≠ ∅. W.l.o.g., let us assume that B1(s

∗
k) ∩ {ti, fi} = fi (which means

that T (B1(s
∗
k)) = {s′k, fi}). As a result, the only valid option for B1(r

∗
i ) to be distinguished from

B1(s
∗
k) is that T (B1(r

∗
i )) = {r′i, ti}. In the other symmetric case where B1(s

∗
k) ∩ {ti, fi} = ti, we

obtain T (B1(r
∗
i )) = {r′i, fi}.

Let us now define an assignment τ : X → {True,False} in the following way. For each i ∈ [n],
if ti ∈ T (B1(r

∗
i )), we set τ(xi) = True; otherwise fi ∈ T (B1(r

∗
i )) and we set τ(xi) = False.

Let us show that τ indeed satisfies the 3-SAT instance ϕ. As we discussed above, for each k ∈ [m],
T (B1(s

∗
k)) has an intersection with A in exactly one vertex, w.l.o.g., let it again be that T (B1(s

∗
k))∩

A = {fi}. Then, T (B1(r
∗
i )) ∩ A = {ti}. So, τ(xi) = True. By our reduction, s∗k is adjacent

to fi if assigning False to xi does not satisfy ck, while assigning True to xi would. Thus, the
assignment τ satisfies all the m clauses of the initial 3-SAT instance ϕ.

The proof of Theorem 1 then follows from Lemma 2 and Lemma 3. In particular, they prove that
there is a polynomial-time reduction which transforms any instance of 3-SAT with n variables and
m clauses into an equivalent instance (G, 2) of STRICT NON-CLASH where |V (G)| = O(n +m)
and G is a split graph of diameter 2. The properties of this reduction also allow us to infer more
precise algorithmic lower bounds. In particular, since an algorithm solving STRICT NON-CLASH in
2o(|V (G)|·d·k) time would allow us to solve 3-SAT in 2o(n+m) time:
Theorem 4. Unless the Exponential Time Hypothesis fails, there is no algorithm solving STRICT
NON-CLASH in time 2o(|V (G)|·d·k), where d and k are the diameter of G and the target positive
non-clashing teaching dimension of the instance, respectively.

We complement this lower bound with a refined upper bound for the more general NON-CLASH:

Proposition 5. NON-CLASH can be solved in 2O(|V (G)|·d·k·log |V (G)|) time.

Proof. We can assume that G is connected, as otherwise we can solve NON-CLASH independently
on each of the connected components of G. For any v ∈ V (G) and r ∈ N, there are at most(|V (G)|

k

)
= O(2k·log |V (G)|) possible choices for T (Br(v)), and there are at most O(|V (G)| · d)

unique balls in G. Due to the latter, for each possible teaching map, we can check in polynomial
time whether it is a positive teaching map that satisfies the non-clashing teaching property. Thus,
there is a brute-force algorithm running in 2O(|V (G)|·d·k·log |V (G)|) time.

4 FIXED-PARAMETER TRACTABILITY VIA VERTEX INTEGRITY

Given that NON-CLASH is NP-hard, it is natural to ask whether the problem can be solved efficiently
on inputs exhibiting some well-defined structural properties. In this section, we establish the fixed-
parameter tractability of NON-CLASH when parameterized by the vertex integrity of the input graph.

Consider an instance (G,B, k) of NON-CLASH and let p be the vertex integrity of G. As the
first step, we invoke the known algorithm to compute a “witness” for the vertex integrity in time
pO(p)|V (G)| (Fellows & Stueckle, 1989), i.e., a set X ⊂ V (G) such that |V (H) ∪ X| ≤ p for
each connected component H of G−X . Let H denote the set of connected components of G−X .
To make use of the vertex integrity of G, we will partition the components of H into a parameter-
bounded number of equivalence classes such that the elements belonging to the same class share
some structural properties that will allow us to consider them, to some extent, interchangeable.
Definition 1. Two subgraphs H,H ′ ∈ H are twin-blocks with respect to B, denoted H ∼B H ′, if
there exists an isomorphism αH,H′ from H to H ′ with the following properties:

• for each u ∈ V (H) and v ∈ X , uv ∈ E(G) if and only if αH,H′(u)v ∈ E(G), and

• for each u ∈ V (H) and r ∈ N, Br(u) ∈ B if and only if Br(αH,H′(u)) ∈ B.

Intuitively, H ∼B H ′ if and only if there is a bijection αH,H′ between the vertices of the two
subgraphs which preserves (1) edges inside H and H ′, (2) edges to X , and (3) the existence of balls

8
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in B centered at the vertices of H and H ′. We refer to αH,H′ as the canonical isomorphism between
the two twin-blocks at hand, and if multiple choices of α exist, we choose and fix one arbitrarily; we
drop the indices of α when the subgraphs are clear from the context. Observe that for any choice of
H and H ′, H ∼B H ′ can be tested in time at most pO(p) by enumerating all possible choices of α.

Clearly, ∼B is an equivalence relation and we denote by [H]∼B the equivalence class containing H .
For u ∈ V (H), we further define [u]∼B = {αH,H′(u) |H ′ ∈ [H]∼B}, and similarly for Br(u) ∈ B,
[Br(u)]∼B = {Br(u

′) ∈ B | u′ ∈ [u]∼B}; intuitively, these refer to the sets of counterparts of u
and Br(u) in the equivalence class, respectively. For brevity, we overload the notation ∼B and use
v ∼B w (or Br(v) ∼B Br(w)) to express that v ∈ [w]∼B (or Br(v) ∈ [Br(w)]∼B , respectively).

Observation 6. The number of equivalence classes on H defined by ∼B is at most 2O(p3).

Proof. All graphs in H have size at most p, which means that the number of non-isomorphic graphs
in H can be trivially upper-bounded by p · 2p2

. Since |X| < p, there are also at most p2 possible
edges between X and any H ∈ H in G. Lastly, the number of balls centered in H ∈ H is bounded
above by the number of vertices in H times the diameter of G which is p · O(p2) = O(p3). Indeed,
the diameter of a connected graph with vertex integrity p is at most O(p2), since the parameter
does not increase by taking induced subgraphs and the vertex integrity of a path of length j is
O(

√
j). Combining these elements, we can upper-bound the total number of equivalence classes by

p · 2p2 · 2p2 · 2O(p3) = 2O(p3).

While the equivalence relation ∼B is defined based on the input (in particular, G and B), our proof
requires also considering a more refined equivalence relation based on the structure of a hypothetical
positive non-clashing teaching map. Toward this, we use the following notion to capture how a
hypothetical teaching set interacts with the balls centered in the components of H.
Definition 2. The blueprint S of a teaching set T (B) for a ball B = Br(u) centered in H ∈ H is a
tuple (SX , SH , Sf ) composed of:

1. the set SX = T (B) ∩X ,

2. the set SH = T (B) ∩ V (H),

3. the set Sf = {fH0 |H0 ∈ H} of functions, where for each H0 the function fH0 : V (H0) →
{0, 1, 2} specifies whether for a vertex v ∈ V (H0), the set ([v]∼B ∩ T (B)) \ V (H) of
counterparts of v outside of H has size 0, 1 or at least 2.

Intuitively, the blueprint specifies how the teaching set for B interacts with (1) the set X and (2) the
vertices inside H itself; for the rest of the graph, the blueprint also counts how many “equivalent”
vertices it contains from each equivalence class of H, but only up to 2. At this point, it may not be
clear why we do not differentiate between any size greater than 2; the reason is that if the actual size
is 3 or more, there are superfluous elements in the teaching set, as we prove below. In fact, we prove
a more general statement which holds regardless of whether vertices in H are counted or not.
Lemma 7. Let u ∈ V (G), B = Br(u) ∈ B, and T any positive non-clashing teaching map for B.
Suppose there exist H0 ∈ H and v ∈ V (H0) such that |[v]∼B ∩ T (B)| ≥ 3. Then, there exists z in
[v]∼B ∩ T (B) such that removing z from T (B) yields a positive non-clashing teaching map for B.

Proof. Let v and H0 satisfy the premise, and let z1, z2, z3 be three distinct elements of {w ∈
T (B) | w ∈ V (H ′), H ′ ∼B H0, α(w) = v}. We denote by H1 (resp. H2, H3) the component
of H containing z1 (resp. z2, z3). These components are disjoint by definition since the vertices are
∼B-equivalent, and thus, u cannot be in more than one of H1, H2, H3 (and possibly none, i.e., u
could be in some other component or in X). Without loss of generality, we assume that u is not in
V (H3), and claim that removing z3 from T (B) results in a positive non-clashing teaching map T ′

for B.

We prove this claim as follows. Toward a contradiction, suppose there is a ball B′ = Br′(u
′) such

that T ′ does not satisfy the non-clashing condition for B and B′. Then, z3 was the only vertex in
T (B) ∪ T (B′) that was not contained in B ∩ B′, and hence, z3 /∈ B′ and z1, z2 ∈ B′. Therefore,
d(u′, z1) < d(u′, z3), which implies that u′ ∈ V (H1) since z1 ∼B z3. However, we also have that
d(u′, z2) < d(u′, z3), and so, u′ ∈ V (H2), which is a contradiction since V (H1) ∩ V (H2) = ∅.

9
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Thus, such a ball B′ does not exist, and we can safely remove z3 from T , proving the lemma.

As a corollary of Lemma 7, we can obtain an upper bound on the positive non-clashing teaching
dimension of our instance. This bound will, in fact, be useful later in this section.

Corollary 8. Let G be a graph with vertex integrity p and B an arbitrary set of balls of G. Then,
the positive non-clashing teaching dimension of B is upper-bounded by a function s(p) = 2O(p3).

Proof. For any ball B ∈ B and positive non-clashing teaching map T for B, if Lemma 7 can be
applied, then there is an unnecessary vertex in T (B) that can be removed. Thus, without loss of
generality, consider a positive non-clashing teaching map T for B for which Lemma 7 cannot be
applied for any B ∈ B. For each B ∈ B and each of the at most 2O(p3) equivalence classes (by
Observation 6) of H for ∼B, T (B) can contain at most 2p vertices from that equivalence class, as
otherwise it would contain 3 vertices that are equivalent according to ∼B. Thus, the total size of
T (B) is upper-bounded by |X|+ 2O(p3) · 2p = 2O(p3).

Returning to the notion of blueprints defined earlier, we can now formalize a refined notion of
equivalence that also takes into account the behavior of a hypothetical solution.

Definition 3. Given B = Br(u) centered in H , and H ′ ∼B H , we say that B and B′ = B(α(u), r)
share the same blueprint if, for (SX , SH , (fH0

)H0∈H) and (S′
X , S′

H , (f ′
H0

)H0∈H) the respective
blueprints of B and B′, the following hold:

• SX = S′
X ,

• ∀v ∈ V (H), v ∈ SH ⇔ α(v) ∈ S′
H , and

• ∀H0 ∈ H, fH0
= f ′

H0
.

Definition 4. Given a positive non-clashing teaching map T for B, we say that two components
H,H ′ ∈ H are perfectly-equivalent twin-blocks (or simply perfectly equivalent) with respect to T
on B, denoted H ≡T

B H ′, if H ∼B H ′ and for all u ∈ V (H), r ∈ N, and Br(u) ∈ B, it holds that
Br(u) and Br(α(u)) share the same blueprint. Note that ≡T

B is an equivalence relation.

Crucially, we can also bound the number of equivalence classes for this refined equivalence defined
w.r.t. a hypothetical teaching map. We denote the equivalence class of H by [H]≡T

B
.

Observation 9. The number of equivalence classes on H defined by ≡T
B is at most 22

O(p3)

.

Proof. By Observation 6, there are 2O(p3) possibilities for the equivalence class on H defined by ∼B.
For any ball, there are then at most 2p possibilities for the set SX , as well as at most 2p for the set SH ,
and for a given H0, at most 3p for fH0 . However, these choices for (fH0)H0∈H are not independent:

H ′ ∼B H ′′ ⇒ fH′ = fH′′ . Thus, there are in total 2p · 2p · (3p)2O(p3)

= 22
O(p3)

possible blueprints
for a given ball. There are at most O(p3) balls centered in a given H (for details, see proof of
Observation 6). Putting everything together gives us an upper bound for the number of equivalence
classes for ≡T

B of 2O(p3) · (22O(p3)

)O(p3) = 22
O(p3)

.

With this refined equivalence in hand, we proceed to the second milestone required for our algorithm:
a structural result establishing the existence of “well-behaved teaching maps”. Roughly speaking,
by “well-behaved” we mean teaching maps which only use examples (i.e., vertices) from X and a
bounded number of “core” components in H, with some controlled exceptions. Toward formalizing
this, let us fix an arbitrary total ordering ≺ on the components in H.

Definition 5. For B ∈ B and x ∈ T (B)∩V (H) for some H ∈ H, the (B, x)-core K(B,x) contains
the first s(p) + 1 (see Corollary 8) elements w.r.t. ≺ of {H ′ ∈ [H]∼B | ∃B′ ∈ [B]≡T

B
, α(x) ∈

T (B′) ∩ V (H ′)}. The B-core is the union of the (B, x)-cores for all such x, and the core K is the
union for all B ∈ B of the B-cores.

10
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Definition 6. A component H ∈ H is in the 1-extended core K1 if H ∈ K or there exists B ∈ B
and x ∈ V (H) such that (1) B is centered in K or in X , and (2) x ∈ T (B). Going one step further,
a component H ∈ H is in the 2-extended core K2 if H ∈ K1 or there exists B ∈ B and x ∈ V (H)
such that (1) B is centered in K1 or in X , and (2) x ∈ T (B).

For A ∈ {K,K1,K2}, note that A is a subset of H, but by slight abuse of notation we will write
x ∈ V (A) for x ∈ V (G) to denote ∃H ∈ A with x ∈ V (H) when not leading to any ambiguity. It
is not difficult to see that the definitions yield the following.

Observation 10. The number of components in K2 is upper-bounded by c(p) = 22
O(p3)

.

Proof. Any (B, x)-core K(B,x) contains s(p) + 1 components by definition. Thus, any B-core con-
tains at most O(s(p)2) components (see Corollary 8). Since two ∼B-equivalent balls from perfectly-

equivalent twin-blocks have the same B-core, we get that K has at most O(p3) ·22O(p3) ·O(s(p)2) =

22
O(p3)

components (cf. Observation 9). Adding p to this value before multiplying it by O(p3)
gives a bound on the number of balls centered in K or X , and with an additional factor s(k)
we get the maximum size of the union of their teaching sets, which is an upper bound for the
number of components in K1. We can reiterate this to obtain an upper bound for |K2| which is:

s(p) · O(p3) ·
(
k + s(p) · O(p3) · (k + 22

O(p3)

)
)
= 22

O(p3)

.

We can now formalize the notion of “well-behaved” teaching maps via the property of compactness.
Definition 7. A teaching map T is compact if for any H ∈ H \ K2 and any x ∈ V (H), each ball
whose teaching set contains x is centered in H .

Our next aim is to prove that we can safely restrict our attention to computing compact teaching
maps only; this is stated in Lemma 13 later on. Before we can establish that result, we first prove
two auxiliary statements.
Lemma 11. Let T be a positive non-clashing teaching map for B. Let B ∈ B be centered in
HB ∈ H \ K1 with x ∈ T (B) ∩ V (H) for some H ∈ H and Hi ∈ K(B,x). By definition,
there exists xi ∈ [x]∼B ∩ V (Hi). If replacing x by xi in T (B) creates a conflict, then there exists
zi ∈ T (B) ∩ V (Hi).

Proof. Let B′ be a ball creating a conflict with B when we replace x by xi in T (B). For a conflict
to happen, it means that xi ∈ B′ whereas x /∈ B′. Since xi ∈ [x]∼B , then B′ has to be centered
in Hi. Let us consider B′

0 ∈ [B′]∼B centered in H . Prior to the replacement, B′
0 has no conflict

with B, and thus, there are two possibilities:

(1) Let us first consider the case where there exists z ∈ T (B′
0) that distinguishes B′

0 from B. By
definition, z /∈ B. Since B′ ∼B B′

0 and H ′ ≡T
B H , there exists z′ ∈ T (B′), such that z′ ∈ [z]∼B .

As z′ does not distinguish B′ from B, it holds that z′ ∈ B. However, since z′ ∼B z, this means that
z′ ∈ HB , which leads to a contradiction since HB /∈ K1.

(2) Otherwise, there exists z ∈ T (B) that distinguishes B from B′
0, which means that z /∈ B′

0.
However, z ∈ B′ since there is a conflict with B′. Since B′ ∼B B′

0 and H ′ ≡T
B H , then the

facts that z /∈ B′
0 and z ∈ B′ imply that z ∈ Hi. Hence, we found the zi whose existence we

claimed.

Lemma 12. Let T be an optimal positive non-clashing teaching map for B. Let B ∈ B be centered
in HB ∈ H \ K1. For x ∈ T (B) ∩ V (H) for some H ∈ H, there exists Hi ∈ K(B,x) and
xi ∈ [x]∼B ∩ V (Hi) such that replacing x by xi in T (B) does not create a conflict.

Proof. We prove the lemma by contradiction. Suppose that for all xi ∈ [x]∼B of K(B,x), a conflict
is created. By Lemma 11, for all Hi in K(B,x), there exists zi ∈ T (B) ∩ V (Hi). However, these
Hi’s are all disjoint, and hence, |T (B)| ≥ |K(B,x)| = s(p) + 1, which contradicts the maximum
size of a teaching set established in Corollary 8. This proves that there exist such an Hi and xi.

Lemma 13. If B has positive non-clashing teaching dimension k, then it also admits a compact
positive non-clashing teaching map of dimension k.

11
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Proof. This directly follows from the repeated application of Lemma 12 to any positive non-clashing
teaching map T for B of dimension k. Let us assume that we do not yet have a compact teaching
map. By definition, there exists Hv ∈ H \ K2, v ∈ V (Hv) and Br(u) such that v ∈ T (Br(u)) and
u /∈ V (Hv), we know that Br(u) is not centered in K1. Indeed, otherwise v ∈ T (Br(u)) would
imply that Hv ∈ K2. We then can apply Lemma 12 to Br(u) and v, and replace v in T (Br(u))
with some vertex in K. This preserves the non-clashing quality of the teaching map, and cannot
increase the size of the teaching sets. Moreover, since the number of such pairs v,Br(u) strictly
decreases with each application, we eventually reach the point where there is no such occurence in
the teaching map, meaning that the obtained non-clashing teaching map is compact.

We now proceed to the crux of our algorithm: the proof that one can reduce the size of the instance
(G,B) without changing its positive non-clashing teaching dimension (formalized in Lemma 15).
Toward this, it will be useful to focus on how the balls in B interact with certain subgraphs of G.
Definition 8. Let G′ be an induced subgraph of G. Then, B induces the set B′ of vertex sets w.r.t. G′

where B′ = {Br(u) ∩ V (G′) | Br(u) ∈ B ∧ u ∈ V (G′)}.

We note that the set of B′ need not necessarily be a set of balls in G′ itself: for instance, it may well
happen that for some B ∈ B′ the vertex set B ∩V (G′) is not even connected. However, under some
conditions on G′ that we will be able to guarantee, B′ is, in fact, a set of balls of G′.
Lemma 14. Let G be a graph, B a set of balls on G, and G′ an induced subgraph of G. If V (G′)
contains X and, for every H ∈ H, either (1) V (H) ⊆ V (G′) or (2) V (H)∩V (G′) = ∅∧∃H ′, H ′′ ∈
[H]∼B , H ̸= H ′′, V (H ′) ∪ V (H ′′) ⊆ V (G′) holds, then the set B′ induced by B w.r.t. G′ is a set of
balls on G′. Moreover, there is a bijection between balls in B′ and balls in B centered in G′.

Proof. The key element of this proof is that in such a graph G′, the distance dG′(u, v) between two
vertices u and v is the same as the distance dG(u, v) between them in G. Indeed, for u, v ∈ V (G′),
suppose that the shortest path between them in G uses some vertices not present in G′. For a
consecutive set of such missing vertices on the path, since they’re missing in G′ and connected in
G, they are not in X and all in the same component H ∈ H. We know that all of H is missing
in G′, so the vertices directly before and after on the path are from X: these vertices exist because
u, v ∈ V (G′). Since there is H ′ ∈ [H]∼B such that V (H ′) ⊆ V (G′), we will replace the vertices
of H by the ∼B-equivalent vertices of H ′. The newly constructed path has the same length, is still a
path by definition of H ∼B H ′, and has strictly fewer vertices not in G′. Iterating this argument until
we obtain a path with only vertices of G′, we prove that the distance between u and v is the same in
G′ as it was in G. From now on, we will simply denote this distance d(u, v), without referring to
the graph.

We are now ready to prove that the vertex sets in B′ are indeed balls on G′. Let B′ ∈ B′. There exist
u ∈ V (G′) and Br(u) ∈ B, such that B′ = Br(u) ∩ V (G′) = {v ∈ V (G′), d(u, v) ≤ r}. Hence,
B′ is indeed a ball on G′. It remains to prove that this construction is injective. Let u, v ∈ V (G′)
and Br(u), Br′(v) ∈ B, such that {Br(u) ∩ V (G′)} = {Br′(v) ∩ V (G′)} and assume there is
w ∈ V (G) \ V (G′) such that w ∈ Br(u) and w /∈ Br′(v). Let H ∈ H such that w ∈ V (H),
and H ′, H ′′ ∈ [H]∼B the two corresponding components whose existence is required by (2), and
w′ ∈ V (H ′) ∩ [w]∼B (resp. w′′ ∈ V (H ′′) ∩ [w]∼B ). If w′ /∈ Br(u), it implies that d(u,w) <
d(u,w′) and thus u ∈ V (H), which is a contradiction since V (G′) ∩ V (H) = ∅. With the same
argument for w′′, we infer that w′, w′′ ∈ Br(u) and hence w′, w′′ ∈ Br′(v) since w′, w′′ ∈ V (G′).
However, w′ ∈ Br′(v) implies that d(v, w′) < d(v, w), which in turns imply v ∈ V (H ′). We
also obtain v ∈ V (H ′′) by the same reasoning with w′′, and this leads to a contradiction since
V (H ′) ∩ V (H ′′) = ∅. We proved that it was impossible to find two such balls, which proves the
claimed bijection between balls in B′ and balls centered in G′ in B.

Let us now define the reduced graph G′ of G as the graph obtained from G by removing all but

f(p) = c(p) +
(
p·c(p)+p

s(p)

)b(p)
+ 1 twin-blocks from each large class of ∼B. Additionally, we set B′

to be the set induced by B on G′ according to Definition 8, and note that Lemma 14 implies that it
is a set of balls on G′. The size of G′ is bounded by g(p) = p + f(p) · 2O(p3) = 22

O(p3)

, and B′ is
hence also of bounded size: in particular, an optimal positive non-clashing teaching map for B′ can
be computed, e.g., by brute force in time that depends only on p. We now aim at proving that B′ is
equivalent to B, i.e., that the optimal positive non-clashing teaching dimension is the same for both.
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Lemma 15. Suppose that there is a solution for (G,B, k). Then, there exists a solution T ′ for the
reduced instance (G′,B′, k).

Proof. Applying Lemma 13 gives us the existence of a compact solution T . Up to renaming, G′

corresponds to G in which we remove only components not in K2 for T . Let us simply define T ′

as the restriction of T to B′ –this is well-defined because each ball in B′ corresponds to exactly one
in B as per Lemma 14. It is easy to see that if two balls of B′ were in conflict, the corresponding
balls in B would be as well: the teaching sets are exactly the same, since we did not remove any
component of K2 and T is compact, and the balls themselves can only be smaller in B′, the element
used by T to distinguish between the two balls of B can be used by T ′ to distinguish between the
balls in B′.

The following lemma establishes that a solution for the reduced instance can be lifted to one for the
original instance; note this also ensures that our algorithm will be constructive.

Lemma 16. Let k ∈ N and T ′ be a compact solution for the instance (G′,B′, k). We can construct

a compact solution T for (G,B, k) in time 22
O(p3) · |V (G)|O(1).

Proof. We will iteratively add back the missing components (H0, . . . ,Hx) of H and update the
set of balls accordingly. We start by choosing an arbitrary ordering ≺ on H such that: ∀H,H ′ ∈
H, V (H) ⊆ V (G′)∧ V (H ′)∩ V (G′) = ∅ ⇒ H ≺ H ′. We then compute KT ′

2 for T ′ and ≺ on G′,
since it will be used at every step. The time necessary for it depends only on p and is O(|B′|·s(p)), as
it suffices to check for each ball which components its teaching set uses, aside from the component
where the ball itself is potentially centered. Indeed, since T ′ is compact, H being in KT ′

2 exactly
means that there is a ball not centered in H using x ∈ V (H) in its teaching set. In order to prove
the lemma, we will use the following key claim.

Claim 17. Let 0 ≤ c < x, B∗ be the set of balls induced by B on G∗ = G[V (G′)
⋃

0≤i<c V (Hi)],
and let T ∗ be a solution for (G∗,B∗, k) such that KT ′

2 is the 2-extended core for T ∗. We can

construct in 22
O(p3) · |V (G)|O(1) time a solution T+ for (G+,B+, k), where G+ = G[V (G∗) ∪

V (Hc)], B+ is induced by B on G+, and KT ′

2 is the 2-extended core for T+.

Proof. It is easy to observe that B∗ is induced by B+ on G∗. Thus, by Lemma 14, there is a bijection
between the balls in B∗ and those of B+ which are centered in G∗. We can compute B+ in time
|V (G)|O(1) · p2, since for the at most |V (G)| · p2 balls B+, a breadth-first search on G+ suffices
to compute it. Note that for any ball B∗ ∈ B∗, the corresponding ball B+ ∈ B+ is a superset of
it, and we set T+(B+) = T ∗(B∗). Note that for any two balls whose teaching set we define in
this way, there can be no conflict between them. Indeed, any element previously distinguishing their
respective equivalent balls in B′ in in V (G′) and thus will still be at the same distance from each
center, meaning it distinguishes the two balls in B+ as well.

However, not all balls in B+ are centered in G∗: we now need to define T+ for the balls centered
in Hc. Toward this end, we first need to identify some components in G∗ which will be useful to
define the teaching map in a non-clashing manner.

We know that there are at least f(p) components of [Hc]∼B in G′ by definition, and thus in G∗.

Since f(p) = c(p) +
(
p·c(p)+p

s(p)

)b(p)
+ 1, there are at least

(
p·c(p)+p

s(p)

)b(p)
+ 1 components outside

of KT ′

2 . Since all of these components are twin-blocks, they have the same balls (at most b(p) of
them), and by a pigeonhole principle, since each ball has a teaching set made of s(p) vertices of the
components of K ∪H ∪ X (which are at most p · c(p) + p), at least 2 of them have, for each pair
of ∼B-equivalent balls, the exact same teaching sets in K ∪ X as well as isomorphically identical
teaching sets in their own components. Let us denote these two components as H ′, H ′′.

Let u ∈ V (Hc), r ∈ N such that B+
r (u) ∈ B+. We will simply ”copy” the teaching set

T ∗(B∗
r (v)), where v ∈ V (H ′) ∩ [u]∼B . Formally, for α the canonical isomorphism from H ′ to

Hc, T+(B+
r (u)) = {α(w)|w ∈ T ∗(B∗

r (v)) ∩ H ′} ∪ {w|w ∈ T ∗(B∗
r (v)), w /∈ H ′}. Thus, from

the point of view of any ball centered outside of H ′ and Hc, B+
r (u) and T+(B+

r (u)) will behave
exactly as B∗

r (v) and T ∗(B∗
r (v)), and hence there are no conflicts with such balls, because they

13
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were not in conflict with B∗
r (v). Two balls centered in Hc are also now distinguished from each

other, otherwise there would be indistinguishable pairs of balls centered in H ′. The last to check is
that balls centered in Hc are distinguished from balls centered in H ′. And here, we use the fact that
the balls in H ′′ have the same teaching sets (up to isomorphism between vertices of H ′ and H ′′) as
those in H ′, and thus if there was a conflict between H ′ and Hc, there would also be one between
balls centered in H ′ and H ′′.

Thus we managed to construct a teaching map T+ for B+. Since the new teaching sets are imitations
of pre-existing teaching sets in T ∗, the size constraint is satisfied, and it is easy to check that the
solution is still compact: the teaching sets of balls centered in H ′ contained only vertices of H ′ and
K2, thus those of balls centered in Hc contain by construction only vertices of Hc and K2. Hc is not
in K2 for T+: indeed, Hc /∈ K because there are already enough components ∼B equivalent to Hc

in G′, and all of them are preceding Hc in the order ≺. Moreover, no vertex of Hc has been added
to the teaching sets of the balls not centered in Hc: by definition, Hc /∈ K2. Thus, K2 = KT ′

2 .

Note that we can find H ′ and H ′′ in time f(p)2 · (c(p)+p)s(p)·O(p3) and then we construct teaching
sets for at most O(p3) balls, each of them being a simple copy of the equivalent teaching set in H ′,
which can be constructed linearly in the set size: O(s(p)). Thus the running time is f(p)2 · (c(p) +
p)s(p)·O(p3)O(s(p)) · |V (G)|O(1) = 22

O(p3) · |V (G)|O(1) and we have proven the claim.

We can now finish proving the lemma by induction using Claim 17. Since the hypothesis trivially
holds for c = 0 (by considering G∗ = G′), we prove the claimed result, and the total running time
follows from the fact that the number of components of H missing in G′ are at most |V (G)|.

Finally, we obtain our main parameterized tractability result by combining the previous ingredients.
In particular, in the proof we construct (G′,B′, k), solve the problem there and argue correctness.

Theorem 18. NON-CLASH is fixed-parameter tractable when parameterized by the vertex integrity
of the input graph G.

Proof. Let G be a graph with vertex integrity p, B a set of balls on G, and k ∈ N. We provide
an algorithm computing a positive non-clashing teaching map for B of dimension at most k, or
correctly outputing that none exists, in time q(p) · |V (G)|O(1), where q is an elementary function.
Before starting with the algorithm proper, it is useful to note that if k ≥ s(p), Corollary 8 gives that
there is always a solution. Moreover, replacing the value of k by s(p) for the rest of the algorithm
does not hurt: the solution still exists and has dimension smaller than k. Hence, we assume in the
rest of the proof that k ≤ s(p).

The first step of the actual algorithm is to compute the witness X ⊂ V (G) for the vertex integrity
and the corresponding set H of connected components. Next, we classify the elements of H with
regard to the equivalence classes defined by ∼B, see Definition 1. Since there are at most 2O(p3)

equivalence classes and since the equivalence between two components can be tested in time pO(p),
we can compute the equivalence classes in time |V (G)| · 2O(p3) · pO(p) with brute force.

We are now ready to compute the reduced graph G′ of G. We recall that to this end it suffices to
remove some arbitrary components of H whose equivalence class are bigger than f(p), which can
be done in linear time. Recalling Definition 8, the set B′ induced by B on G′ can be computed in
time |V (G′)| · O(p2) · |V (G′)| · s(p); indeed, it suffices to check for u ∈ V (G′) and r ∈ N at most
the diameter of the graph whether Br(u) exists in B, and then to compute the intersection of it with
V (G′). The size of the instance (G′,B′, k) is upper-bounded by a function of p, meaning that we
can compute a non-clashing teaching map of dimension at most k for B′ in time depending only on
p (or determine that none exists)—see Proposition 5.

Using Lemma 15, we know that if there is no such teaching map for B′, there is also none of
dimension k for B: the algorithm can safely output that no solution exists. Conversely, if we obtain
a teaching map for B′, we can use Lemma 16 to construct a non-clashing teaching map of dimension
at most k for B in time 22

O(p3) · |V (G)|O(1). This concludes the proof, and the total running time

can be upper-bounded by the same asymptotic bound of 22
O(p3) · |V (G)|O(1).
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Figure 2: Colorful edges denote paths of the depicted lengths. Two black curves separate the clique
from the rest of the graph. Each dotted edge shows that a vertex of the clique is adjacent to all the
vertices of the graph below the separating curves except those in the adjacent rectangle. The gray
curve gives an intuition of which vertices of Px, Py , and Pz are contained in Brc(c) and Br′

c′
(c′).

5 HARDNESS FOR CLASSICAL STRUCTURAL PARAMETERIZATIONS

In this section, we prove that NON-CLASH is intractable for many of the structural graph parameters
that have been studied in the literature. We prove the result for the feedback vertex number and
pathwidth; by extension, intractability then follows also for well-known generalizations of these
measures such as treewidth and clique-width.

Theorem 19. NON-CLASH is W[1]-hard parameterized by fvs(G) + pw(G) + k.

We establish Theorem 19 by describing a parameterized reduction below and proving its correct-
ness in Lemma 20. We reduce from a problem called NAE-INTEGER-3-SAT, which is W[1]-hard
parameterized by the number of variables (Bringmann et al., 2016), and is defined as follows.

NAE-INTEGER-3-SAT
Input: A set of clauses C over variables X , and an integer d. Any clause c ∈ C has the form
x ≤ cx, y ≤ cy , and z ≤ cz , where cx, cy, cz ∈ {1, . . . , d}.
Question: Is there a variable assignment X → {1, . . . , d} such that for each clause, either 1 or
2 of its three inequalities are satisfied?

The Reduction. Given an instance ϕ of NAE-INTEGER-3-SAT, we construct an instance (G,B, k)
of NON-CLASH in polynomial time as follows, starting with the graph G.

• For each variable x ∈ X , make a (variable) path P x := (x1, . . . , xd) of order d.

• For each clause c ∈ C, make two vertices c and c′ and, w.l.o.g., suppose that the clause c
contains the variables x, y, and z, and that cx ≤ cy ≤ cz . Connect the vertex c to xd, yd,

15
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and zd by three distinct paths of lengths 4d, 4d+ cy − cx, and 4d+ cz − cx, respectively.2
These long paths ensure that there are no unwanted shortcuts in G and that, for rc =
5d − cx − 1, the ball Brc(c) contains all of P x, P y , and P z except for their first cx, cy ,
and cz vertices (whose respective indices correspond to the respective variable values that
satisfy the clause c), respectively. Similarly, connect the vertex c′ to x1, y1, and z1 by three
distinct paths of lengths 4d+ cz − cx, 4d+ cz − cy , and 4d, respectively. Analogously, this
ensures that, for r′c′ = 4d+cz−1, the ball Br′

c′
(c′) contains the opposite vertices to Brc(c)

in P x, P y , and P z (whose respective indices correspond to the respective variable values
that do not satisfy the clause c), while ensuring that no unwanted shortcuts exist in G.

• For each clause c ∈ C and each variable q ∈ X such that c does not contain q, in G, connect
the vertices c and c′ to q1 by distinct paths of length 3d. These paths ensure that the balls
Brc(c) and Br′

c′
(c′) described above contain every other variable path completely, while

ensuring that no unwanted shortcuts exist in G.
• Let S be the set of all the vertices that currently exist in G. For each x ∈ X , in G, make

a vertex fx and connect it to each vertex in S except those in P x via a distinct path of
length 6d. Finally, for all x, y ∈ X , make fx adjacent to fy . This ensures that, for each
x ∈ X , the ball B6d(fx) contains every vertex in G except for those in P x, while ensuring
that no unwanted shortcuts exist in G. This completes the construction of G (see Figure 2).

Set k := |X | and B to contain V (G), B6d(fx) for all x ∈ X , and Brc(c) and Br′
c′
(c′) for all c ∈ C.

Correctness of the Reduction. Suppose, given an instance ϕ of NAE-INTEGER-3-SAT, that the
reduction from the subsection above returns (G,B, k) as an instance of NON-CLASH.
Lemma 20. ϕ is a YES-instance of NAE-INTEGER-3-SAT if and only if (G,B, k) is a YES-instance
of NON-CLASH.

Proof. First, suppose that ϕ is a YES-instance of NAE-INTEGER-3-SAT. We construct a positive
teaching map T as follows. In the NAE-satisfying variable assignment for ϕ, for each variable x ∈
X , if the integer j is assigned to x, then place xj in T (V (G)). For each c ∈ C, set T (Brc(c)) := {c}
and T (Br′

c′
(c′)) := {c′}. Lastly, for each x ∈ X , T (B6d(fx)) contains fx and one arbitrary vertex

from each of the k − 1 variable paths it contains. We prove that T is non-clashing for B.

For any two balls B1, B2 ∈ B centered at vertices of the form c or c′ for the same or different
clauses, T satisfies the non-clashing condition since T (B1) contains its center (some c or c′) while
B2 does not contain this vertex. Indeed, the radius of B2 is less than 5d, while the distance between
any two vertices of the form c or c′ is at least 6d since any shortest path between them contains a
vertex from a variable path. For any x, y ∈ X , T satisfies the non-clashing condition for B6d(fx)
and B6d(fy) since T (B6d(fx)) contains a vertex in P y while B6d(fy) does not. For any x ∈ X
and c ∈ C, T satisfies the non-clashing condition for B6d(fx) and Brc(c), as well as B6d(fx) and
Brc′ (c

′), since T (B6d(fx)) contains fx while Brc(c) and Brc′ (c
′) do not as rc, rc′ < 5d while c

and c′ are at distance 6d from fx. For any x ∈ X , T satisfies the non-clashing condition for V (G)
and B6d(fx) since T (V (G)) contains a vertex in P x while B6d(fx) does not. Finally, for any c ∈ C,
T satisfies the non-clashing condition for V (G) and Brc(c), as well as V (G) and Brc′ (c

′), since,
among the variables contained in the clause c, T (V (G)) contains at least one vertex from one of
those variable paths whose index satisfies c, and at least one vertex from one of those variable paths
whose index does not satisfy c. As can be recalled from the construction, this implies that Brc(c)
and Brc′ (c

′) do not contain the respective vertices. Thus, T satisfies the non-clashing property for
all pairs of balls in B.

Now, we prove the reverse direction, so suppose that (G,B, k) is a YES-instance of NON-CLASH
and that T is the corresponding teaching map. For all x ∈ X , in order for T to satisfy the non-
clashing condition for B6d(fx) and V (G), we have that T (V (G)) contains at least one vertex from
P x as B6d(fx) ⊂ V (G) and V (G) \B6d(fx) is restricted to the vertices in P x. Since k = |X |, we
in fact have that T (V (G)) contains exactly one vertex from P x for all x ∈ X . Extract a variable
assignment for ϕ from T (V (G)) as follows. For each x ∈ X , assign the variable x the value of
the index of the unique vertex contained in both P x and T (V (G)). We prove that this is an NAE-
satisfying variable assignment for ϕ.

2“Connect two vertices u, v by a path of length p” means to make u and v the endpoints of a path of length p.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

W.l.o.g., let c ∈ C be a clause containing the variables x, y, z ∈ X . In order for T to satisfy the non-
clashing condition for V (G) and Brc(c), T (V (G)) must contain at least one vertex in P x, P y or P z

that is not contained in Brc(c). Analogously, in order for T to satisfy the non-clashing condition for
V (G) and Br′

c′
(c′), T (V (G)) must contain at least one vertex in P x, P y or P z that is not contained

in Br′
c′
(c′). Recall that all of the vertices in P x, P y , and P z that are not contained in Brc(c)

have respective indices that correspond to the respective variable values that satisfy the clause c.
Similarly, recall that all of the vertices in P x, P y , and P z that are not contained in Brc′ (c

′) have
respective indices that correspond to the respective variable values that do not satisfy the clause c.
As these arguments hold for any clause c ∈ C, the variable assignment extracted above corresponds
to an NAE-satisfying variable assignment for ϕ.

Now, we are ready to proceed with the proof of Theorem 19.

Proof of Theorem 19. Lemma 20 establishes the correctness of the polynomial-time reduction from
the beginning of Section 5. To complete the proof, it remains to show that fvs(G) + pw(G) + k is
bounded above by a function of |X |. This clearly holds for k which is, by definition, |X |. Deleting
from G the vertices x1, xd, and fx for all x ∈ X results in an acyclic graph G′; in particular G has
a feedback vertex set of size 3|X |. To establish a bound on pw(G), it now suffices to show that G′

also has bounded pathwidth. Note that G′ consists of a set of connected components, each of which
is either a subdivided caterpillar (this is what remains of each component containing a variable path)
or a vertex (of the form c or c′) with multiple pendent subdivided caterpillars and (simple) paths.
Since deleting one further vertex from each connected component may only reduce the pathwidth
by 1 and we need a single such deletion operation to reach a graph class of constant pathwidth (see
Section 2), we also obtain that pw(G) is bounded by a function of |X |.

6 CONCLUDING REMARKS

Our computational upper and lower bounds provide a near-comprehensive understanding of the com-
plexity of computing the positive non-clashing teaching dimension. Apart from our contributions to
the previously studied strict setting, we consider it notable that our work is the first to also tackle the
complexity of non-clashing teaching in the non-strict setting—i.e., the more general (and arguably
more natural) case where not all possible concepts are present.

One open question highlighted by our work concerns the tiny remaining gap between the algorithmic
lower and upper bounds obtained in Theorem 4 and Proposition 5. In particular, is there a way to
improve the running time of the latter algorithm to 2O(|V (G)|·d·k) and make the bounds tight? More
general directions for future work are to perform a similar complexity analysis in the non-positive
setting and to consider approximation algorithms.

REFERENCES

Baris Akgun, Maya Cakmak, Jae W. Yoo, and Andrea L. Thomaz. Trajectories and keyframes
for kinesthetic teaching: A human-robot interaction perspective. In Proc. of the 7th ACM/IEEE
International Conference on Human-Robot Interaction (HRI 2012), pp. 391–398, 2012.

Dana Angluin. Inductive inference of formal languages from positive data. Information and Control,
45:117–135, 1980a.

Dana Angluin. Finding patterns common to a set of strings. Journal of Computer and System
Sciences, 21:46–62, 1980b.

Shai Ben-David and Ami Litman. Combinatorial variability of Vapnik-Chervonenkis classes with
applications to sample compression schemes. Discrete Applied Mathematics, 86:3–25, 1998.

Cornelius Brand, Robert Ganian, and Kirill Simonov. A parameterized theory of PAC learning. In
Proc. of the 37th AAAI Conference on Artificial Intelligence (AAAI 2023), pp. 6834–6841, 2023.

Karl Bringmann, Danny Hermelin, Matthias Mnich, and Erik Jan van Leeuwen. Parameterized
complexity dichotomy for steiner multicut. Journal of Computer and System Sciences, 82(6):
1020–1043, 2016.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Daniel S. Brown and Scott Niekum. Machine teaching for inverse reinforcement learning: Al-
gorithms and applications. In Proc. of the 33rd AAAI Conference on Artificial Intelligence
(AAAI 2019), volume 33, pp. 7749–7758, 2019.

Jérémie Chalopin, Victor Chepoi, Shay Moran, and Manfred K. Warmuth. Unlabeled sample com-
pression schemes and corner peelings for ample and maximum classes. Journal of Computer and
System Sciences, 127:1–28, 2022.

Jérémie Chalopin, Victor Chepoi, Fionn Mc Inerney, Sébastien Ratel, and Yann Vaxès. Sample
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