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Abstract
Large Language Models (LLMs) are evolving001
at an unprecedented pace and have exhibited002
considerable capability in the realm of natural003
language processing (NLP) with world knowl-004
edge. Benefiting from ultra-large-scale training005
corpora, a single LLM can manage typical NLP006
tasks competently. However, its performance007
in executing complex tasks is still confined by008
the limitations of its internal representation. To009
push this boundary further, we introduce Corex ,010
a suite of novel general-purpose strategies that011
transform LLMs into autonomous agents, pi-012
oneering multi-model collaborations for task-013
solving. Inspired by human behaviors, Corex is014
constituted by diverse collaboration paradigms015
including Discuss, Review, and Retrieve modes,016
which collectively work towards enhancing the017
reasoning process. These paradigms foster018
task-agnostic approaches that enable LLMs to019
“think outside the box,” thereby overcoming020
common errors and providing better solutions.021
Through extensive experiments across four dif-022
ferent types of reasoning tasks, we demonstrate023
that orchestrating multiple LLMs to work in024
concert yields better results compared to exist-025
ing strong methods. Further analysis reveals026
the cost-effectiveness of our method, while also027
exploring synergies between models of various028

scales and promoting annotation efficiency.1029

1 Introduction030

Large Language Models (LLMs) have succeeded in031

advancing the state-of-the-arts for a series of Natu-032

ral Language Processing (NLP) tasks (Brown et al.,033

2020; Chowdhery et al., 2022; OpenAI, 2023; Tou-034

vron et al., 2023; Roziere et al., 2023; Zhao et al.,035

2023a, inter alia). Recent research (Wei et al.,036

2022a) indicates that scaling up models (Kaplan037

et al., 2020) can yield improvements in both perfor-038

mance and sample efficiency across a broad spec-039

trum of downstream tasks. Notwithstanding their040

1Our code and data are available at https://
anonymous.4open.science/r/Corex.

remarkable proficiency in language understanding 041

and instruction following (Ouyang et al., 2022), the 042

reasoning abilities of LLMs, often seen as a hall- 043

mark for assessing their potential, still present chal- 044

lenges (Huang and Chang, 2023). Concurrently, 045

there is a prevailing view that merely increasing 046

model size might not adequately address their in- 047

herent limitations in reasoning (Rae et al., 2022). 048

In response, Wei et al. (2022b) put forth chain- 049

of-thought (CoT) prompting that an LLM gener- 050

ates intermediate steps toward a final answer, con- 051

trasting the use of “answer-only” prompts. Subse- 052

quently, various approaches have been put forward, 053

such as self-consistency decoding (Wang et al., 054

2023d) which utilizes a majority voting mechanism 055

to determine the final answer, and program-aided 056

language models (PAL; Gao et al., 2022; Chen 057

et al., 2023b) that leverage code generation to facil- 058

itate computations. Nevertheless, these approaches 059

are confined within a static black box (Yao et al., 060

2023b), wherein the LLM relies exclusively on 061

its internal representation for generating responses 062

and is prone to yielding unreliable answers (Ji et al., 063

2023; Yin et al., 2023b). These shortcomings un- 064

derscore that relying solely on crafting decoding 065

strategies and prompts may not serve as a silver bul- 066

let for addressing complex reasoning tasks (Qiao 067

et al., 2023). Moreover, recent studies (Huang 068

et al., 2023; Valmeekam et al., 2023; Stechly et al., 069

2023) reveal that LLMs struggle to reach better 070

responses through self-correction. Alternatively, 071

enabling models to expand their mindset emerges 072

as a promising yet underexplored pathway. 073

Within the realm of well-established sociologi- 074

cal concepts, multiple cognitive processes interact 075

and cooperate will produce a combined effect that 076

is greater than the sum of their individual contribu- 077

tions (Luppi et al., 2022). This principle is echoed 078

within artificial intelligence (Li et al., 2023a). Al- 079

though the study of intelligent agents has been 080

explored for decades (Minsky, 1988, 2007), the 081
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Figure 1: An intuitive illustration of Corex, employs LLMs as agents to collaboratively solve a problem. The
strategies encompass the Discuss, Review, and Retrieve modes, leveraging both the reasoning process and code
synthesis. This framework facilitates interactions between models that foster a collaborative environment for the
derivation of a well-reasoned answer.

advent of LLMs has rejuvenated interest and intro-082

duced novel challenges in this domain. An emerg-083

ing perspective is that encouraging collaboration084

and communication between models could poten-085

tially pave the way for a new stage for enhancing086

complex reasoning capabilities.087

In this study, we propose Corex, a suite of088

human-inspired strategies that leveraging multi-089

model collaboration to elicit reasoning for complex090

task-solving. To facilitate synergies between mod-091

els, we first assign distinct personas to different092

models, followed by the design of various collab-093

orative paradigms. This collective intelligence-094

based method aims to conquer prevalent obstacles095

in the current landscape of reasoning. It also en-096

deavors to mitigate issues observed in majority097

voting-based methods, where accurate responses098

might be overwhelmed by incorrect ones and ex-099

orbitant costs. To be specific, Corex configures100

LLMs as a group of autonomous agents, adopting101

the paradigms shown in Figure 1 for multi-model102

collaboration: (1) Discuss, utilizing group-based103

discussions among models to effectively enhance104

factuality and diversity of rationales, thereby re-105

ducing fallacies and hallucinations; (2) Review, en-106

abling models to scrutinize reasoning chains or107

synthesized codes from their counterparts to ensure108

the correctness of generated contents, coupled with109

potential refinements; (3) Retrieve, aiming to en-110

able the model to identify the most faithful option111

from a pool of candidate chains by ranking, facil-112

itates a higher degree of alignment with the final113

response. Together, Discuss’s critical analysis, Re-114

view’s focus on reliability, and Retrieve’s alignment115

with faithful response - create a comprehensive ap-116

proach to complex reasoning tasks.117

We conduct extensive experiments with both118

commercial and open-source LLMs across four119

types of tasks: mathematical reasoning, symbolic120

reasoning, commonsense reasoning, and semi- 121

structured reasoning. The results illustrate that 122

our method achieves substantial performance gains 123

over previous strong baselines. Moreover, each 124

mode distinctly excels in different categories of 125

tasks, showcasing its specific strengths. Further 126

analysis indicates that, in comparison to prevailing 127

methods, Corex (1) substantially reduces the rea- 128

soning overhead, (2) ignites collaboration among 129

heterogeneous models, and (3) achieves both cost- 130

effectiveness and annotation efficiency. 131

2 Related works 132

Chain-of-Thought Prompting Elicits LLM Rea- 133

soning. Chain-of-Thought (CoT; Wei et al., 134

2022b) prompting, as one of the celebrated capa- 135

bilities of recent LLMs, is a pivotal breakthrough 136

for performing complex multi-step reasoning when 137

provided with limited examples. Further variants 138

show that CoT can be improved by adding certain 139

“magic phrases” (Kojima et al., 2022), automated 140

demonstrations construction (Zhang et al., 2023a), 141

reasoning in different modalities (Zhang et al., 142

2023b; Yang et al., 2023; Yao et al., 2023c), and ap- 143

plying modular approaches (Khot et al., 2023). For 144

robustness, researchers transform problems into 145

interleaved reasoning chains (Zhou et al., 2023; 146

Lyu et al., 2023) or adopt ensembling (Wang et al., 147

2022). Notably, self-consistency methods (Wang 148

et al., 2023d) select answers from multiple reason- 149

ing paths by majority voting, have greatly elevated 150

the performance of LLMs in complex reasoning. 151

This approach has been further optimized by uti- 152

lizing prompts with higher complexity (Fu et al., 153

2023c). Lately, Yao et al. (2023a) employ heuristic- 154

guided search on “trees” constructed from thoughts 155

to assist LLMs in navigating the problem space. 156
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Tool Utilization for LLM Reasoning. Integrat-157

ing external tools into language models presents a158

promising approach to enhance their reasoning ca-159

pabilities, especially in numerical contexts (Mialon160

et al., 2023). A key example is the program-aided161

Language model (PAL; Gao et al., 2022; Chen162

et al., 2023b), which interprets natural language163

problems and generates programs for execution164

by external Python interpreters, effectively trans-165

forming reasoning tasks into a natural language to166

code (NL2Code) challenge. This method shows167

particular strength in handling complex numerical168

problems. Additionally, beyond mere program syn-169

thesis, approaches like integrating computational170

physics engines into the modeling process (Liu171

et al., 2023a), and combining LLMs with diverse172

tools and resources (Lu et al., 2023a), are expand-173

ing the scope of language model reasoning.174

Multi-Model Synergy for Task Solving. Utiliz-175

ing multiple LLMs collectively to solve problems176

is still in its preliminary stages, with a wealth of177

opportunities awaiting exploration. The corner-178

stone of collaboration is constructing a human-179

like reasoning architecture (Zhu et al., 2023) for180

LLMs under different environments (Liu et al.,181

2023c). Fu et al. (2023b) investigate whether mul-182

tiple LLMs can autonomously enhance their per-183

formance through mutual interactions. Du et al.184

(2023) and Liang et al. (2023) explore enhanc-185

ing the factuality of specific tasks, e.g., translation186

and arithmetic reasoning, by facilitating “debates”187

among multiple models. LLMs’ collaboration has188

also been applied to software development (Qian189

et al., 2023) and text evaluation (Chan et al., 2023)190

by assigning identities to models to simulate the191

development process. Furthermore, from the per-192

spective of social intelligence, inducing cognitive193

synergy and having them take on different char-194

acters (Wang et al., 2023e; Yin et al., 2023a) dur-195

ing task execution has been proven to have signif-196

icant potential (Sclar et al., 2023). Recently, the197

nascent exploration into artificial societies (Park198

et al., 2023) also seeks to harness collective intel-199

ligence to emulate the efficiency of human social200

structures (Li et al., 2023a; Webb et al., 2023).201

3 Corex202

We propose Corex , a suite of collaborative reason-203

ing approaches inspired by human social interac-204

tions. Three main components: Discuss, Review,205

and Retrieve modes are introduced in the following206

sections. Let us assume a set of LLM-based agents 207

{A1, A2, . . . , An} participating in multi-model col- 208

laboration. Each agent Ai generates the corre- 209

sponding reasoning chain ci and its prediction pi 210

when facing a query q. 211

3.1 Discuss 212

Information exchange between models contributes 213

to enhanced factuality (Wang et al., 2023a). In Dis- 214

cuss mode, our agents are divided randomly into 215

two groups, the Red Team and the Blue Team, with 216

one reserved as a judge denoted as Aj . The discus- 217

sion within one team involves several rounds, lim- 218

ited to a maximum of T rounds of communications. 219

In each round t (t = 1, 2, . . . , T ), the agents engage 220

in iterative discussions2 to refine their reasoning 221

chains and predictions. This dynamic interaction 222

allows for the continual modification of viewpoints 223

for q, as expressed by c
t
i and predictions pti. 224

Question: Vincent bought 10 books 
about animals, 1 book about outer 
space, and 3 books about trains. Each 
book cost $16. How much did Vincent 
spend on the books?

Agent 3: 224
Agent 4: 224

Agent 1: 224
Agent 2: 164

Agent 3: 224
Agent 4: 224

Agent 1: 224
Agent 2: 224

Agent 5 (Judge)

Answer: 224 Answer: 224

R1

R2

Figure 2: Illustration of 2 rounds of discussion, reason-
ing chains between agents omitted.

Each team then presents their refined predictions 225

p
t
red and p

t
blue at the end of each round. If both 226

teams consistently agree throughout the interac- 227

tions, i.e., ptred = p
t
blue, the discussion concludes 228

smoothly. However, in the instance of a discrep- 229

ancy between the teams’ predictions, every output 230

from each round is presented to Aj . The judge 231

employs a decision-making process h to evaluate 232

the quality of the reasoning chains and predictions 233

from each round of the discussion. The conclusion 234

is determined by h(ctred, p
t
red, c

t
blue, p

t
blue) across all 235

rounds, ensuring a comprehensive assessment and 236

a more informed final decision. 237

2Due to the context length limit of GPT-3.5-Turbo,
only information from the previous round is stored during the
discussion.
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Diverging from previous works (Du et al., 2023;238

Liang et al., 2023; Xiong et al., 2023) employing239

“debates” among LLMs, our approach adopts the240

concept of group discussions. We opt not to facili-241

tate models in jointly exchanging their reasoning242

processes to converge on a single common answer243

for several reasons: (1) The limited context length244

inhibits the ability to hold the communication pro-245

cess, (2) Single final answers are not always correct246

due to erroneous consensus or biases (Wang et al.,247

2023c), (3) Given the performance gaps among248

various LLMs, there is a risk of strong models249

“monopolizing” the collaborations, thereby over-250

shadowing the insights from others. Therefore, we251

aim to preserve both the factuality and the diversity252

of thoughts among agents.253

3.2 Review254

Both mainstream CoT and PAL methods are prone255

to errors in reasoning. Recent studies suggest that256

LLMs may have limited abilities in self-correcting257

capabilities (Huang et al., 2023; Valmeekam et al.,258

2023; Stechly et al., 2023). Specifically, CoT-based259

methods face two main issues: (1) Cumulative er-260

rors, where mistakes tend to amplify and propa-261

gate throughout the reasoning chain; and (2) A262

plateau in text quality that cannot be substantially263

improved through prompting (Xu et al., 2022; Li264

et al., 2023b). Alternatively, while PAL ensures265

computational accuracy (Zhao et al., 2023b), it also266

faces its challenges: (1) LLMs might misinterpret267

questions, which inadvertently results in techni-268

cally correct yet misguided programs; and (2) Gen-269

erated codes are not always error-free: LLMs may270

potentially write buggy codes, such as referenc-271

ing undefined variables or engaging in “Division272

by Zero” operations. Inspired by recent efforts of273

LLMs peer-rating (Zheng et al., 2023) and collabo-274

rative coding practices prevalent in software engi-275

neering, we introduce the Review mode to address276

the aforementioned issues through collaboration.277

To be specific, a single agent Ap is randomly278

selected to act as the primary agent. Initially,279

Ap takes the responsibility of formulating corre-280

sponding reasoning chains for q along with the281

prediction, and crafting codes if required. This282

initial collection of solutions is represented as283

S
(0)
p = {ap, cp,mp}, where ap, cp, and mp signify284

the answer, reasoning chain, and codes respectively.285

S
(0)
p is then subjected to iterative reviews by the286

other agents that function as reviewers sequentially,287

Question: While building the house, Charlie 
noticed that they were running out of nails so he 
told his father he's going to buy some. If they still 
have 9 nails left and Charlie bought 2 boxes of 
nails, the big one containing 55 nails and the small 
one containing 31, how many nails will they have?
Agent1:
# Python code by Agent1
def solution():

current = 9
big_box = 55
small_box = 31
total_nails = current + (2 * 

(big_box + small_box))
return total

Agent2: total_nails = current + (2 * 
(big_box + small_box))is wrong, which is 
currently doubling both the big and small boxes of 
nails. It is incorrect based on the problem 
statement. Here’s the corrected code:
…
total_nails = current + big_box + 
small_box
…
>>> Python Interpreter >>> 95

Figure 3: Illustration of reviewing erroneous code gen-
erated by other agents (first round).

rigorously scrutinizing both the reasoning chain 288

and the code formulated by Ap or modified by pre- 289

ceding reviewers. It is crucial to highlight that each 290

reviewer receives input from its predecessors, sig- 291

nifying that each subsequent review is grounded on 292

the outcomes and feedback of the preceding ones, 293

fostering a progressively refined solution. 294

The reviewing process is formalized as S(i+1)
p = 295

Ri(S(i)
p , Fi), where Ri encapsulates the review 296

outcome at the i
th iteration and Fi represents the 297

feedback received. In essence, the solution set 298

S
(i+1)
p results from an enhancement of its preced- 299

ing version S
(i)
p , informed by the feedback Fi. Fol- 300

lowing the completion of all review iterations, the 301

outcome is determined by the final iteration of the 302

solution set S(n−1)
p . Specifically, the final predic- 303

tion a
(n−1)
p is chosen as the answer for q, and in 304

instances where code is involved, the last revised 305

version m
(n−1)
p is executed by a Python interpreter 306

to produce the outcome. 307

3.3 Retrieve 308

In the final thread of work, we delve into the 309

Retrieve mode to identify the most faithful an- 310

swer through collaborations. While previous strate- 311

gies based on majority voting mechanism (Wang 312

et al., 2023d; Fu et al., 2023c) can mitigate the 313

low-diversity issue of techniques such as beam- 314

search (Li and Jurafsky, 2016), they still present 315

4



the following two significant challenges: (1) Cor-316

rect answers risk being swayed by incorrect ones.317

(2) Despite facilitating a notable enhancement in318

performance, it exponentially escalates the compu-319

tational burden and tends to reach a performance320

“saturation point” as the sampled chains increase.321

We attribute these drawbacks to the limited scope322

of majority voting that prioritizes the prediction323

while overlooking the value of reasoning chains (Li324

et al., 2023c). In response, we propose the Retrieve325

mode, which is specifically engineered to evaluate326

whether the answer can be expressed by the content327

(explanation) generated during reasoning (Jacovi328

and Goldberg, 2020; Lanham et al., 2023).329

Question: Which describes the composition of 
carbohydrates?
(A) lipids bonding to form phospholipids 
(B) monomers bonding to form polymers 
(C) amino acids bonding to form polypeptides 
(D) saccharides bonding to form polysaccharides
Agent1: The composition of carbohydrates involves 
saccharides bonding to form polysaccharides. So the 
answer is (D).
Agent2: The composition of carbohydrates is described 
by option (C), amino bonding to form polysaccharides. 
So the answer is (C).
Agent3: The correct answer is (D) saccharides bonding 
to form polysaccharides. Carbohydrates are composed 
of monosaccharides that can join together through a 
process called dehydration synthesis to form larger 
polysaccharides. So the answer is (D).
Agent4: Option (C), saccharides bonding to form 
polypeptides, describes the composition of 
carbohydrates. So the answer is (C).
Agent5(Retriever): The confidence scores are: [0.9, 0.2, 
0.9, 0.1]. Agents 2, 4 made errors in their descriptions. 
Specifically, Agent 2 confused amino acids with 
saccharides, while Agent 4 incorrectly stated that 
saccharides bond to form polypeptides. In reality, 
saccharides bond to form polysaccharides. Thus, they
are not faithful in responses. Agents 1 and 3 are correct.

Figure 4: Illustration of retrieving chains with answers.

Concretely, given a query q, we randomly se-330

lect an agent Ar from the pool of n agents331

to act as the retriever. The remaining agents332

{A1, A2, . . . , An−1} independently perform CoT333

reasoning about q. Each of these agents derives334

its own reasoning chains ci and corresponding pre-335

dictions pi. Together, they form a candidate pool,336

denoted by P = {(ci, pi)}n−1i=1337

The retriever Ar then scrutinizes the candidates338

in P . For (ci, pi), Ar evaluates the faithfulness339

between ci and pi. Based on this assessment, the340

retriever assigns a confidence score si in the range341

[0, 1], which is denoted as: si = fr(ci, pi) where342

fr indicates the retriever’s evaluation process. Af-343

ter that, the most faithful response to the question 344

q is then determined by the highest confidence: 345

(c∗, p∗) = argmax
(ci,pi)∈P

si 346

Here, (c∗, p∗) denotes the chain-prediction pair 347

that the retriever considers most faithful, which 348

will serve as the final answer for the query q. 349

Retrieve mode enables the selection of the most 350

aligned combination of reasoning chains and an- 351

swers from a diversified candidate pool. Distinct 352

from previous text quality assessment methods, 353

which rely on the log probability (Adiwardana 354

et al., 2020) that is computationally inefficient and 355

often unavailable for commercial LLMs, our ap- 356

proach is predicated on model-to-model interac- 357

tions (Chen et al., 2023c) and is reference-free. 358

4 Experiment 359

4.1 Experimental Setup 360

Tasks and Datasets. We evaluate the effective- 361

ness of Corex across four types of reasoning tasks: 362

(1) Arithmetic reasoning over eight mathemati- 363

cal problems, which includes GSM8K (Cobbe 364

et al., 2021), MultiArith (Roy and Roth, 2015), Sin- 365

gleOP/SingleEQ (Koncel-Kedziorski et al., 2016), 366

AddSub (Hosseini et al., 2014), AQuA (Ling et al., 367

2017), SVAMP (Patel et al., 2021) and GSM- 368

Hard (Gao et al., 2022). (2) Commonsense rea- 369

soning covering four datasets, including Strat- 370

egyQA (Geva et al., 2021), CommonsenseQA 371

(CSQA; Talmor et al., 2019), BoolQ (Clark 372

et al., 2019) and AI2 Reasoning Challenge (ARC- 373

c) (Clark et al., 2018). (3) Symbolic reasoning 374

incorporating four tasks from BigBench (bench au- 375

thors, 2023; Suzgun et al., 2023), including Date 376

Understanding, Penguins in a Table, Colored Ob- 377

jects, and Repeat Copy. (4) Semi-structured un- 378

derstanding, with a focus on FinQA (Chen et al., 379

2021b), ConvFinQA (Chen et al., 2022) and TAT- 380

QA (Zhu et al., 2021). Detailed descriptions and 381

statistics of tasks are listed in Appendix E. 382

Baselines. We compare our method with sev- 383

eral widely used strong baselines. (1) Chain-of- 384

Thought prompting (CoT; Wei et al., 2022b). (2) 385

Self-Consistency (CoT-SC; Wang et al., 2023d), 386

which employs a majority voting mechanism to 387

select the most consistent answer from several rea- 388

soning chains as the final answer. (3) Complexity- 389

based consistency (ComplexCoT; Fu et al., 2023c) 390

that selects the majority answer from the candidates 391
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GSM8K SVAMP MultiArith SingleOP SingleEQ AddSub GSM-Hard FinQA ConvFinQA

CoT 74.5 78.9 98.5 94.1 93.3 87.8 39.0 46.1 50.4
ComplexCoT 79.7 80.7 97.3 94.3 92.3 86.8 39.7 - -
CoT-SC(10) 82.8 84.5 99.8 95.4 95.1 89.6 45.2 52.7 57.2
PAL 76.0 83.4 96.7 90.7 95.8 87.6 62.1 54.3 50.8

Corex-Discuss 76.2 82.6 98.7 94.8 93.7 89.7 45.9 50.2 56.7
Corex-ReviewNL 80.3 83.2 99.5 95.0 94.3 89.4 50.8 52.5 52.3
Corex-ReviewCode 79.2 85.8 98.3 93.6 96.9 89.6 63.6 55.9 54.2
Corex-Retrieve 82.5 85.6 99.8 96.1 96.6 90.9 53.0 55.4 57.7

Table 1: Comparison of accuracy on various mathematical reasoning and semi-structured understanding datasets
using Corex modes and strong baselines.

with higher reasoning complexity. (4) Program-392

aided language model (PAL; Gao et al., 2022; Chen393

et al., 2023b) that uses LLMs to generate programs394

as intermediate reasoning steps, while offloading395

the computation to a Python interpreter.396

For simplicity and ease of understanding, we397

denote CoT-SC(x) and ComplexCoT(x) in our ex-398

periments and analysis to represent cases utilizing399

different reasoning paths, where “x” indicates the400

number of output chains. For all baseline methods,401

we adhere to the few-shot exemplars to ensure fair402

comparisons. Details can be found in Appendix A.403

Implementation Details. We access OpenAI404

and Anthropic models through their respec-405

tive APIs for main evaluations. Specifically,406

we employ GPT-3.5-Turbo-0613 for eval-407

uating both Corex and baseline methods in408

the main experiments. Moreover, in further409

experiments and analysis involving different410

LLMs for collaboration, we also incorporate the411

use of GPT-4-0613, Claude-Instant-1.2,412

and LLaMA-2-Chat(7B/13B). The details of413

prompts and hyperparameter settings for both base-414

lines and Corex are in Appendix G.415

4.2 Main Results416

We report the results of Corex over four categories417

of tasks. For each kind of task, the best results418

are highlighted in bold and the second best results419

are marked with underline. For Review mode, we420

use Corex-ReviewNL and Corex-ReviewCode to de-421

scribe the scenarios that use CoT or PAL respec-422

tively. All modes within Corex are configured to423

operate with 5 LLM-based agents, ensuring favor-424

able cost-effectiveness. For Corex-Discuss, the425

upper bound of discuss rounds is set to 5.426

Mathematical & Semi-structured Reasoning.427

Table 1 shows the results across tasks with vary-428

ing difficulties. Our method achieves notable429

performance improvements on most benchmarks.430

Broadly, we surpass CoT-SC(10) when only 5 431

agents are involved. Moreover, given the task- 432

agnostic nature of Corex, it can tackle highly 433

complex computational challenges like GSM-Hard 434

through code synthesis. For problems of relatively 435

lower complexity, the Retrieve mode can identify 436

answers superior to those from majority voting. 437

We also demonstrate the results on FinQA and 438

ConvFinQA. It can be observed that for these 439

two challenging tasks which require understand- 440

ing heterogeneous information and performing 441

calculations simultaneously (Lu et al., 2023b), 442

methods such as CoT-SC offer limited gains. 443

However, through various cooperative paradigms, 444

significant performance improvements can be 445

achieved. Due to the context length restriction of 446

GPT-3.5-Turbo, our experiments on TAT-QA 447

utilized GPT-3.5-Turbo-16k, with the respec- 448

tive results being detailed in Appendix B.1, along- 449

side the evaluations of the other tasks. 450

Commonsense Reasoning. Table 2 showcases 451

the performance of Corex in commonsense and fac- 452

tual reasoning tasks3. We can observe that various 453

modes contribute to performance enhancements. 454

Strategy CSQA OpenBook BoolQ ARC

CoT 65.3 76.7 82.6 65.1 84.2
ComplexCoT 63.1 77.5 - - -
CoT-SC(10) 67.1 78.1 85.2 66.6 85.7

Corex-Discuss 68.4 78.9 83.4 66.9 86.3
Corex-ReviewNL 66.9 77.4 84.8 66.9 86.0
Corex-Retrieve 69.3 77.7 87.6 68.0 85.5

Table 2: Comparison of performance on commonsense
& factual reasoning between various Corex modes and
strong baselines.

Notably, our approach surpasses ComplexCoT 455

(over 6% on StrategyQA), achieving a significant 456

improvement without resorting to intricate prompt 457

design and example selection. 458
3Due to the nature of commonsense reasoning tasks, the

Review mode only utilizes NL reasoning chains.
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Symbolic Reasoning. We report the results for459

symbolic reasoning in Table 3. Empirical evidence460

substantiates that adopting multi-model collabora-461

tion can notably outperform most previous base-462

lines on Big-Bench tasks. It is noteworthy that463

(1) CoT-SC struggles to ensure consistent outputs464

on the Repeat Copy. Conversely, through the in-465

tegration of PAL-based collaboration, we manage466

to attain a remarkably high level of accuracy. (2)467

Compared to majority voting, both the Review and468

Retrieve modes enable more judicious answer se-469

lection in counting tasks.470

Date Penguin C.Objects R.Copy

CoT 82.0 81.5 88.0 43.8
CoT-SC(10) 87.9 86.2 94.8 53.1
PAL 81.2 91.3 86.8 93.8

Corex-Discuss 83.2 85.9 91.2 62.5
Corex-ReviewNL 84.0 92.0 92.4 59.4
Corex-ReviewCode 82.7 93.3 91.6 96.9
Corex-Retrieve 84.6 92.6 95.6 68.8

Table 3: Comparison of accuracy on five symbolic rea-
soning datasets from Big-Bench (bench authors, 2023;
Suzgun et al., 2023) using various Corex modes and
other strong baselines.

Following our extensive experiments across 18471

tasks, it emerges that the Discuss mode is com-472

petent for tasks utilizing factual knowledge. For473

mathematical and counting tasks, the Review mode474

serves to effectively mitigate errors within the rea-475

soning chains and repair flawed code. Across vari-476

ous tasks, the Retrieve mode consistently facilitates477

performance improvements to varying degrees.478

More experiments for open-source LLMs (Touvron479

et al., 2023) are presented in Appendix C.480

5 Analysis481

In this section, we first aim to make the collabo-482

ration process transparent by delving into models’483

internal behaviors. Then, the influence of different484

backbones is examined to observe how model capa-485

bility affects performance. Further, we assess the486

efficiency of Corex.487

5.1 In-Depth Analysis of Corex Strategies488

Analysis of Interaction Rounds in Discuss Mode.489

We study the number of rounds of communication490

in the Discuss mode of Corex on five tasks, as491

depicted in Figure 5. Consensus can be reached492

swiftly for the majority of problems by each team.493

However, Corex enables LLMs to engage in more494

exhaustive discussions for problems that are chal-495

lenging to reach a consensus on (e.g., over 10% 496

of ConvFinQA problems requiring more than 3 497

rounds), a small proportion of problems require 498

more interactions. Through observation, we also 499

notice that the Discuss mode exhibits favorable con- 500

vergence properties, wherein the interactive process 501

serves as a basis for the judge’s decision-making. 502
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Figure 5: Distribution of the number of discuss rounds
required to reach consensus.
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Figure 6: Perf. gains across multiple rounds of review

Performance Enhancement per Review. We ex- 503

plore the incremental performance gains achieved 504

in specific tasks with each review cycle in the Re- 505

view mode. As is demonstrated in Figure 6, we 506

conduct analyses for Repeat Copy and GSM8K 507

with ReviewCode, as long as BoolQ and Penguin 508

with ReviewNL. The findings indicate that each 509

review contributes to performance enhancement in 510

general, yet occasional deviations leading to per- 511

formance oscillations are also observed. 512

Further analysis of error types and gains from 513

collaborations is presented in Appendix D. 514

5.2 Synergies between Different LLMs 515

Performance Variability with Diverse LLMs as 516

Judges. The backbone LLMs of our agents can 517

be diverse. In this part, we discuss the perfor- 518

mance when employing different LLMs during 519

the discussion. As shown in Figure 7, we de- 520

ploy GPT-3.5-Turbo as players and examine 521

the dynamics when different LLMs take the role 522

of judges. The observations indicate that the capa- 523
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in Discuss mode.
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Figure 8: Comparison of using different LLMs as re-
trievers in Retrieve mode.

bility of the judge positively correlates with task524

performance, with this relationship being evident525

as the complexity of tasks escalates. Empirically,526

This can be attributed to the judge’s role, which527

requires understanding both the question and the528

reasoning process of both parties.529

Utilizing Different LLMs as Retrievers. In Re-530

trieve Mode, the role of the retriever can be played531

by various LLMs. Based on the candidate answers532

from GPT-3.5-Turbo agents, we here explore533

the impact of model selection on the performance,534

as depicted in Figure 8. Unlike the Discuss mode,535

our analysis reveals that the model capabilities ex-536

ert a modest effect on the performance. Given that537

the performance upper bound is determined by the538

candidates’ capabilities, the outcomes using differ-539

ent LLMs as retrievers show minimal variance on540

tasks like ARC-c. Notably, our findings indicate541

that without the need for especially potent models542

as retrievers, we can still achieve favorable results.543

5.3 Cost-Effectiveness Analysis544

By encouraging collaboration between LLMs, we545

manage to reduce the costs associated with rea-546

soning tasks while achieving comparable or even547

superior performance. Based on our analysis con- 548

ducted on AddSub illustrated in Figure 9, it reveals 549

that all three modes of Corex consistently match or 550

surpass the prowess of other strong baselines. Sig- 551

nificantly, the computational cost of our approach 552

are substantially diminished in comparison to meth- 553

ods using majority voting. In achieving equivalent 554

performance, the resource consumption of Corex is 555

confined to a mere 5-10% of that expended by other 556

strategies. To substantiate the generality, we’ve 557

provided additional experiments in Appendix B.2, 558

which further demonstrate a similar trend. 559

4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50
Tokens Consumption in log10 Scale

87

88

89

90

91

Ac
cu

ra
cy
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)
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PAL CoT-SC(5)

CoT-SC(10)CoT-SC(20)

CoT-SC(40)CoT-SC(80)

ComplexCoT ComplexCoT(10)

ComplexCoT(20)

ComplexCoT(40)

Discuss

Review
Retrieve

Figure 9: Cost-effectiveness analysis. the x-axis rep-
resents the computational costs, calculated in terms of
input/output tokens, while the size of each dot is propor-
tional to the avg. number of inferences by each method.

Beyond the efficiency of computational costs, 560

another advantage of Corex is its annotation ef- 561

ficiency, which reduces the reliance on curated 562

demonstrations. Further experiments with vary- 563

ing numbers of demonstrations on this aspect can 564

be found in Appendix B.3. 565

6 Conclusion 566

We introduce Corex in this paper, a suite of human- 567

inspired strategies that transform LLMs into au- 568

tonomous agents, thereby leveraging multi-model 569

collaboration for complex reasoning. This offers a 570

preliminary exploration into the LLM-based multi- 571

model ecosystems. Through unlocking the syn- 572

ergies among LLMs, Corex empowers reasoning 573

with external insights through various collabora- 574

tion paradigms. We conduct extensive evaluations 575

across 18 tasks within 4 categories, and the re- 576

sults demonstrate superior performance compared 577

to previous solutions. Moreover, our methods also 578

exhibit multiple notable advantages including be- 579

ing task-agnostic, cost-effective, and annotation- 580

efficient. We hope that this work may serve as 581

a foundation for further research, offering novel 582

perspectives in complex reasoning, collective intel- 583

ligence, and autonomous agents. 584
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Limitations585

In this section, we discuss the limitations and586

broader impacts of our work.587

Model Selections. Considering the limitations in588

handling long context, open-source models were589

only incorporated in Review mode (in Appendix C)590

in our study. However, we hold the view that the591

collaboration of several relatively weaker open-592

source models (Zhang et al., 2022; Touvron et al.,593

2023) might enable them to conquer more scenarios594

that only stronger commercial models (Bai et al.,595

2022; OpenAI, 2023) could previously accomplish.596

Since we have empirically demonstrated that model597

collaboration can help reduce redundant computa-598

tions and resource usage, it is foreseeable that the599

efficiency can be further accentuated when inte-600

grating open-source models into the collaboration601

framework, making the development of general ar-602

tificial intelligence more sustainable (Hessenthaler603

et al., 2022). Also, this may enhance the diversity604

to address the issues of biases and misconceptions605

inherent to a single model (Sun et al., 2022; Shaikh606

et al., 2023) can be mitigated, promoting the fair-607

ness of future AI systems (Hendrycks et al., 2021).608

System Stability. In the experiments of this609

study, multi-model collaboration demonstrated sta-610

ble performance across multiple runs. However,611

recent work has pointed out issues of instability612

with mixed strategies (Yin et al., 2023a; Liu et al.,613

2023b). Therefore, when considering scaling up614

the number of participants, there may be an ob-615

served emergence of instability in integrating the616

functions of multiple LLMs. This highlights the617

need for more effective strategies to manage inter-618

actions among models with distinct attributes and619

capabilities (Parsons and McBurney, 2003; Dorri620

et al., 2018), which we identified as a pivotal direc-621

tion for future research.622
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A Implementation Details 1167

LLMs Settings and Prompts. We access Ope- 1168

nAI and Anthropic models through their re- 1169

spective paid APIs. Specifically, we uti- 1170

lize two versions of the OpenAI4 models: 1171

GPT-3.5-Turbo-0613 and GPT-4-0613, 1172

as well as Claude-Instant-1.2 from An- 1173

thropic5. Following the settings of previous works, 1174

the temperature is set as 0 during the generation 1175

process. For LLaMA-2-Chat model from Meta, 1176

the beam size is set to 2. 1177

As for the prompts, we maintain the same num- 1178

ber of exemplars per task as established by previous 1179

studies. The details and examples of prompts are 1180

listed in Appendix G. Regarding the complexity- 1181

based prompting baseline, we directly utilize the 1182

prompts provided by Fu et al. (2023a). 1183

For experiments involving APIs, our main exper- 1184

iments (Section 4.2 and Appendix B.1), analysis 1185

(Section 5, Appendix B.2 and Appendix B.3) and 1186

Case Studies (Appendix F) were completed be- 1187

tween August and September 2023. Experiments 1188

involving interactions between commercial and 1189

open-source models (Appendix C), were conducted 1190

between November and December 2023. 1191

Evaluation. We use accuracy to evaluate the 1192

tasks of arithmetic reasoning, commonsense rea- 1193

soning, and Symbolic reasoning. For semi- 1194

structured understanding, we employ the official 1195

evaluation scripts released along with the liter- 1196

ature for FinQA (Chen et al., 2021b) and Con- 1197

vFinQA (Chen et al., 2022), as well as employing 1198

the same test split as in Chen et al. (2023b). For 1199

TAT-QA (Zhu et al., 2021), we utilize the arith- 1200

metic part to enable the simultaneous use of both 1201

CoT-based methods and PAL. Among all the evalu- 1202

ations involve Corex-Discuss , the upper bound of 1203

rounds is set as 5. 1204

In the analysis part, due to the rate limits im- 1205

posed and a restricted budget, we set an upper limit 1206

for our sample size. Consequently, each analysis is 1207

based on a maximum of 500 samples per run. 1208

We draw upon the design of the self-consistency 1209

baseline as delineated by Wu et al. (2023), and 1210

partially refer to the benchmarking provided by 1211

Wang et al. (2023b) (Apache-2.0 license). 1212

4https://openai.com/blog/openai-api
5https://docs.anthropic.com/claude/

reference
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PAL Details. We use Python 3.9.12 to exe-1213

cute the generated program by PAL in Review1214

mode, following the similar settings from Gao1215

et al. (2022) and Chen et al. (2023b). Unlike1216

Code-davinci-002 (Chen et al., 2021a) em-1217

ployed in these works, GPT-3.5-Turbo and1218

LLaMA-2-Chat are not optimized for generating1219

programs, so we might anticipate a compromise1220

in performance when using them as the backbone1221

model.1222

B Extended Results and Analysis1223

B.1 Evaluations on Semi-structured1224

Reasoning1225

As is mentioned in section 4.2, due to the constraint1226

of context length, we conduct experiments on1227

the TAT-QA dataset with GPT-3.5-Turbo-16k1228

along with the other two tasks.1229

FinQA ConvFinQA TAT-QA Avg.

CoT 48.0 51.8 69.6 56.5
CoT-SC(10) 51.5 56.5 76.6 61.5
PAL 54.9 51.1 73.4 59.8

Corex-Discuss 50.5 55.8 72.6 59.6
Corex-ReviewCode 56.0 52.7 75.2 61.3
Corex-Retrieve 55.1 57.9 73.7 62.2

Table 4: Evaluation of Corex on semi-structured un-
derstanding tasks with GPT-3.5-Turbo-16k among
three tasks.

B.2 Further Cost-effectiveness Analysis1230

For all computations related to cost-effectiveness,1231

we define cost as the sum of: tokens of few-shot ex-1232

emplars, query tokens, and output tokens. Here we1233

conduct additional cost-effectiveness analysis on1234

the ARC-c dataset and Penguins dataset, as shown1235

in Figure 10 and Figure 11. The x-axis represents1236

the computational costs, calculated in terms of in-1237

put/output tokens, while the size of each dot is1238

proportional to the avg. number of inferences by1239

each method.1240

B.3 Annotation Efficiency Analysis1241

Due to the scarcity and instability of curated1242

prompts (Ye and Durrett, 2022), we aim to mitigate1243

reliance on them through multi-model collabora-1244

tion. We conduct experiments in scenarios with1245

varying numbers of demonstrations to assess the1246

effectiveness of our approach.1247
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Figure 10: Cost-effectiveness analysis for ARC-c
dataset.
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Figure 12: Few-shot performance of Review mode.
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Figure 13: Few-shot performance of Retrieve mode.

As depicted in Figure 12 and Figure 13, we 1248
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demonstrate the performance of the Review mode1249

and Retrieve mode under different shots. The re-1250

sults reveal a marginal impact of the number of1251

few-shot examples on performance, underscoring1252

the annotation efficiency of our approach.1253

C Collaborations among Open-Source1254

LLMs1255

In this part, we explore the synergies be-1256

tween commercial and open-source LLMs.1257

We select LLaMA-2-Chat(7B/13B) in1258

conjunction with GPT-3.5-Turbo and1259

Claude-Instant-1.2 for review mode.1260

During the collaboration process, LLaMA models1261

assume the role of the primary agent, while the1262

other models function as reviewers.1263

The performance using ReviewNL is depicted in1264

Figure 14 and Figure 15, while the performance1265

utilizing ReviewCode is illustrated in Figure 16 and1266

Figure 17.1267
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Figure 14: Collaboration with LLaMA-2-Chat(7B) in
ReviewNL.
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Figure 15: Collaboration with LLaMA-2-Chat(13B) in
ReviewNL.

In evaluations, it can be observed that although1268

open-source LLMs exhibit weaker performance1269

when operating independently, through collabora-1270

tion with other models, they can achieve perfor-1271

mance comparable to or even surpass that of CoT-1272

SC(10) by commercial models.1273
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Figure 16: Collaboration with LLaMA-2-Chat(7B) in
ReviewCode.
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Figure 17: Collaboration with LLaMA-2-Chat(13B) in
ReviewCode.

In the ReviewCode, although LLaMA’s capability 1274

in code generation and task delegation is limited on 1275

its own, its collaboration with other models yields 1276

non-trivial results. Based on this, we have reason to 1277

believe that employing smaller models first to gen- 1278

erate a “draft” for the desired content (Chen et al., 1279

2023a) is beneficial in achieving better solutions, 1280

even though there is a significant gap between the 1281

capabilities of LLMs. 1282

D Analysis of Error with Different Types 1283

In section 5.1, we analyze the performance changes 1284

brought about by each review cycle. Here, we fur- 1285

ther delve into an analysis of the errors made by the 1286

models and how collaborations help in mitigating 1287

these errors on GSM8K and GSM-Hard datasets. 1288

Our analysis focuses on the ReviewCode mode. 1289

The types of errors in this mode, as discussed in 1290

section 3.2, can be categorized into (1) Bugs, where 1291

generated codes are not always error-free, and (2) 1292

Problem misinterpretation, where models produce 1293

technically correct yet misguided programs. 1294

As depicted in Figure 18, following the review 1295

process, there is a noticeable reduction in both 1296

types of errors committed by LLMs on GSM8K. 1297

Moreover, as illustrated in Figure 19, it can be 1298

observed that in more challenging problems from 1299

GSM-Hard, collaboration leads to the elimination 1300
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Figure 18: Error Types Analysis on GSM8K: Pre- and
Post-collaboration.

of a greater number of errors caused by incorrect1301

problem understanding.1302
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Figure 19: Error Types Analysis on GSM-Hard: Pre-
and Post-collaboration.

E Statistics and Details of Datasets1303

The detailed information of each dataset is shown1304

in the follow:1305

Arithmetic reasoning1306

• Grade School Math (GSM8K; Cobbe et al.,1307

2021): Linguistically diverse grade school1308

math word problems created by human prob-1309

lem writers. The problems take between 21310

and 8 steps to solve and involve elementary1311

calculations using basic arithmetic operations.1312

• AddSub (Hosseini et al., 2014): A set of sim-1313

ple arithmetic word problems.1314

• SVAMP (Patel et al., 2021): A challenge set1315

for elementary-level Math Word Problems.1316

• SingleOP, SingleEQ and MultiArith (Koncel-1317

Kedziorski et al., 2016): Grade-school math1318

dataset that aims at solving multi-sentence1319

algebraic word problems.1320

• GSM-Hard (Gao et al., 2022): A harder ver-1321

sion of the GSM8K dataset, constructed by1322

replacing the numbers in the questions of1323

GSM8K with larger numbers.1324

Commonsense & Factual reasoning 1325

• CommonsenseQA (CSQA; Talmor et al., 1326

2019): CSQA is a multiple-choice question 1327

answering task. It requires complex seman- 1328

tic reasoning based on prior commonsense 1329

knowledge to answer the questions. 1330

• StrategyQA (Geva et al., 2021): It is a com- 1331

monsense QA task with Yes or No answer 1332

format that requires models to perform multi- 1333

hop reasoning to answer the questions. We 1334

use the open-domain setting (question-only 1335

set) from bench authors (2023). 1336

• OpenBookQA (Mihaylov et al., 2018): It is 1337

a multi-choice QA task to evaluate common- 1338

sense knowledge and promote reasoning over 1339

a fixed collection of knowledge. 1340

• ARC-c (Clark et al., 2018): A subset of the 1341

AI2 Reasoning Challenge, consisting of chal- 1342

lenging science questions that require rea- 1343

soning and a wide breadth of knowledge 1344

to answer the multiple-choice problems cor- 1345

rectly. The original dataset is from https: 1346

//allenai.org/data/arc. 1347

• BoolQ (Clark et al., 2019): It is a knowledge- 1348

intensive task and the format is “Yes” or “No”. 1349

Problems are extracted from real-world inter- 1350

net queries, aiming to foster models capable 1351

of contextual understanding to provide binary 1352

answers. 1353

Symbolic Reasoning We select the follow- 1354

ing tasks from BIG-Bench (bench authors, 1355

2023) and BIG-Bench Hard (BBH) (Suz- 1356

gun et al., 2023), with Apache License 1357

v.2: https://github.com/google/ 1358

BIG-bench/blob/main/LICENSE. 1359

• Date Understanding: A temporal reasoning 1360

task. Given a set of sentences about a par- 1361

ticular date, answer the provided question in 1362

MM/DD/YYYY format. 1363

• Object Counting: Given a collection of pos- 1364

sessions that a person has along with their 1365

quantities (e.g., three pianos, two strawberries, 1366

one table, and two watermelons), determine 1367

the number of a certain object/item class (e.g., 1368

fruits). 1369
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Dataset N Example

GSM8K (Cobbe et al., 2021) 1,319 A robe takes 2 bolts of blue fiber and half
that much white fiber. How many bolts in
total does it take?

GSM-Hard (Gao et al., 2022) 1,319 A robe takes 2287720 bolts of blue fiber
and half that much white fiber. How many
bolts in total does it take?

SVAMP (Patel et al., 2021) 1,000 Each pack of dvds costs 76 dollars. If there
is a discount of 25 dollars on each pack.
How much do you have to pay to buy each
pack?

SINGLEOP (Koncel-Kedziorski et al., 2016) 562 If there are 7 bottle caps in a box and Linda
puts 7 more bottle caps inside, how many
bottle caps are in the box?

SINGLEEQ (Koncel-Kedziorski et al., 2016) 508 Benny bought a soft drink for 2 dollars and
5 candy bars. He spent a total of 27 dollars.
How much did each candy bar cost?

AddSub (Hosseini et al., 2014) 395 There were 6 roses in the vase. Mary cut
some roses from her flower garden. There
are now 16 roses in the vase. How many
roses did she cut?

MultiArith (Roy and Roth, 2015) 600 The school cafeteria ordered 42 red apples
and 7 green apples for students lunches.
But, if only 9 students wanted fruit, how
many extra did the cafeteria end up with?

Table 5: Examples from mathematical reasoning datasets used in this work.

• Penguins in a Table: Given a unique table of1370

penguins (and sometimes some new informa-1371

tion), answer a question about the attributes1372

of the penguins.1373

• Reasoning about Colored Objects: Given a1374

context, answer a simple question about the1375

color of an object on a surface.1376

• Repeat Copy: Evaluate LLMs’ capability1377

to follow basic natural-language instructions1378

nested within each example’s input.1379

Semi-structured Understanding1380

• FinQA (Chen et al., 2021b): Question-1381

Answering pairs over financial reports written1382

by experts, which includes financial QA pairs.1383

• ConvFinQA (Chen et al., 2022): A financial-1384

related dataset designed to study the chain of1385

numerical reasoning in conversational QA.1386

• TAT-QA (Zhu et al., 2021): A QA dataset1387

aiming to stimulate the progress of research1388

over more complex and realistic tabular and 1389

textual data. 1390

F Case Studies 1391

We have prepared case studies to provide a more 1392

intuitive understanding of the three collaboration 1393

paradigms. The cases are presented in Table 9, 1394

Table 10, and Table 11, each corresponding to a 1395

specific collaboration paradigm. 1396

G Prompts 1397

Owing to space constraints and in an effort to main- 1398

tain a reasonable length for this paper, we present 1399

one exemplar of the prompts for each task in this 1400

section, as well as the system messages for collab- 1401

oration. Our full prompts and formulations can be 1402

accessed in our attached code repository. 1403
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Dataset N Example

StrategyQA (Cobbe et al., 2021) 2,290 Hydrogen’s atomic number squared ex-
ceeds number of Spice Girls?

CommonsenseQA (CSQA; Talmor et al., 2019) 1,221 A robe takes 2 bolts of blue fiber and
half that much white fiber. How many
bolts in total does it take?

OpenBookQA (Mihaylov et al., 2018) 500 In which location would a groundhog
hide from a wolf?

ARC-c (Clark et al., 2018) 1,172 An astronomer observes that a planet
rotates faster after a meteorite impact.
Which is the most likely effect of this
increase in rotation?

BoolQ (Clark et al., 2019) 3,270 Wherever a gene exists on a DNA
molecule, one strand is the coding
strand (or sense strand), and the other
is the noncoding strand (also called
the antisense strand, anticoding strand,
template strand or transcribed strand).
Question: does it matter which DNA
strand is transcribed?

Table 6: Examples from commonsense & factual reasoning datasets used in this work.

Dataset N Example

Date Understanding 250 Yesterday was April 30, 2021. What is the
date today in MM/DD/YYYY?

Object Counting 250 I have an apple, three bananas, a strawberry,
a peach, three oranges, a plum, a raspberry,
two grapes, a nectarine, and a blackberry.
How many fruits do I have?

Penguins in a Table 146 A Here is a table where the first line is a
header and each subsequent line is a pen-
guin: name, age, height (cm), weight (kg)
Louis, 7, 50, 11 Bernard, 5, 80, 13 Vincent,
9, 60, 11 Gwen, 8, 70, 15 For example: the
age of Louis is 7, the weight of Gwen is 15
kg, the height of Bernard is 80 cm. How
many penguins are more than 5 years old?

Colored Objects 250 On the desk, you see a bunch of items ar-
ranged in a row: a gold textbook, a purple
puzzle, a teal necklace, and a silver pencil.
How many non-gold items do you see to
the right of the pencil?

Repeat Copy 32 Repeat the word cat four times. After the
second time, also say the word meow.

Table 7: Examples from symbolic reasoning datasets used in this work.
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Dataset N Example

FinQA (Chen et al., 2021b) 1,147 Question: what percentage of total facilities as
measured in square feet are leased? Text: unre-
solved staff comments not applicable. properties
as of december 26 , 2015 , our major facilities
consisted of : ( square feet in millions ) united
states countries total owned facilities. 30.7 17.2
47.9 leased facilities ... Table: ( square feet in
millions ) | unitedstates | othercountries | total
owned facilities1 | 30.7 | 17.2 | 47.9 leased facil-
ities2 | 2.1 | 6.0 | 8.1 total facilities | 32.8 | 23.2 |
56.0",

ConvFinQA (Chen et al., 2022) 421 Question: what were the total accumulated other
comprehensive losses in 2015? Text: accumu-
lated other comprehensive losses : pmi’s ac-
cumulated other comprehensive losses , net of
taxes , consisted of the following: reclassifica-
tions from other comprehensive earnings the
movements in accumulated other comprehen-
sive losses and the related tax impact , for each
of the components above ... Table: ( losses )
earnings ( in millions ) | ( losses ) earnings 2015
| ( losses ) earnings 2014 | 2013 currency trans-
lation adjustments | $ -6129 ( 6129 ) | $ -3929 (
3929 ) | $ -2207 ( 2207 ) pension and other ben-
efits | -3332 ( 3332 ) | -3020 ( 3020 ) | -2046 (
2046 ) derivatives accounted for as hedges | 59 |
123 | 63 total accumulated other comprehensive
losses | $ -9402 ( 9402 ) | $ -6826 ( 6826 ) | $
-4190 ( 4190 )

TAT-QA (Zhu et al., 2021) 718 Question: What is the change in Other in 2019
from 2018? Text: Sales by Contract Type: Sub-
stantially all of our contracts are fixed-price type
contracts. Sales included in Other contract types
represent cost plus and time and material type
contracts. On a fixed-price type contract, we
agree to perform the contractual statement of
work for a predetermined sales price ... Table:
2014 | 2014 | Years Ended September 30, | 2014
2014 | 2019 | 2018 | 2017 Fixed Price | $ 1,452.4
| $ 1,146.2 | $ 1,036.9 Other | 44.1 | 56.7 | 70.8
Total sales | $1,496.5 | $1,202.9 | $1,107.7

Table 8: Examples from semi-structured reasoning datasets used in this work.
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Q: Mark took a test yesterday that consisted of 75 questions. He completed the test at
a rate of 5 questions per hour. Today, he took another test of 100 questions at the same
rate. If Mark had 8 hours to complete the first test and 6 hours to complete the second
one, how many questions did he leave incomplete?

Mark completed the first test at a rate of 5 questions per hour with a total of 8
hours, so he completed 5 * 8 = 40 questions on the first test.He completed the second
test at the same rate of 5 questions per hour with a total of 6 hours, so he completed
5 * 6 = 30 questions on the second test. Therefore, Mark completed a total of 40 +
30 = 70 questions from both tests.Since the first test consisted of 75 questions and
Mark completed 40 questions, he left 75 - 40 = 35 questions incomplete in the first
test. Similarly, the second test consisted of 100 questions and Mark completed 30
questions, so he left 100 - 30 = 70 questions incomplete in the second test. Therefore,
Mark left a total of 35 + 70 = 105 questions incomplete.

Mark completed the first test at a rate of 5 questions per hour, and he had 8 hours to
complete it. So he completed 8 * 5 = 40 questions. He completed the second test at the
same rate, 5 questions per hour, and he had 6 hours to complete it. So he completed
6 * 5 = 30 questions. Therefore, Mark completed a total of 40 + 30 = 70 questions.
Since the first test had 75 questions and Mark completed 70 questions, he left 75 - 70
= 5 questions incomplete. Therefore, Mark left 5 questions incomplete.

Jerry’s analysis is mostly correct, but there is a small mistake in the final calculation.
Let’s break down the solution step by step: From the given information: Mark
completed the first test at a rate of 5 questions per hour, and he had 8 hours to
complete it. So he completed 8 * 5 = 40 questions on the first test. He completed the
second test at the same rate, 5 questions per hour, and he had 6 hours to complete it.
So he completed 6 * 5 = 30 questions on the second test. Therefore, Mark completed
a total of 40 + 30 = 70 questions. However, the mistake was made in the next step:
Since the first test had 75 questions and Mark completed 40 questions, the number of
questions he left incomplete on the first test is 75 - 40 = 35 questions. Similarly, the
second test had 100 questions and Mark completed 30 questions, so he left 100 - 30 =
70 questions incomplete on the second test. To find the total number of questions left
incomplete, we need to add the number of questions left incomplete on both tests: 35
+ 70 = 105. So, the answer is Mark left 105 questions incomplete.

You are correct, Tom. I apologize for the mistake in my previous calculation.
Thank you for pointing it out and providing the correct solution. To recap: Mark
completed 8 * 5 = 40 questions on the first test. He completed 6 * 5 = 30 questions
on the second test. Therefore, Mark completed a total of 40 + 30 = 70 questions.
Since the first test had 75 questions and Mark completed 40 questions, the number of
questions he left incomplete on the first test is 75 - 40 = 35 questions. Similarly, the
second test had 100 questions and Mark completed 30 questions, so he left 100 - 30 =
70 questions incomplete on the second test. To find the total number of questions left
incomplete, we need to add the number of questions left incomplete on both tests: 35
+ 70 = 105. So the answer is Mark left 105 questions incomplete.

The discussion ends when both two players reach an agreement: answer=105. Tom
and Jerry got the correct answer of 105 instead of Jerry’s incorrect answer of 5.

Table 9: An illustrative example of the discussion process of Corex with a group between Tom and Jerry over
a mathematical problem from GSM8K.
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Q: Uriah’s book bag is getting too heavy for him. He needs to remove 15 pounds from
it. His comic books weigh 1/4 pound each and his toys weigh 1/2 pound each. If he
removes 8717992 comic books, how many toys does he need to remove?

def solution():
"""Uriah's book bag is getting too heavy for him. He needs to

remove 15 pounds from it. His comic books weigh 1/4 pound
each and his toys weigh 1/2 pound each. If he removes
8717992 comic books, how many toys does he need to
remove?"""

↪

↪

↪

↪

weight_to_remove = 15
comic_book_weight = 1/4
toy_weight = 1/2
comic_books_removed = 8717992
total_weight_removed = comic_books_removed * comic_book_weight
toys_removed = total_weight_removed / toy_weight
result = toys_removed
return result

The code provided for the question is incorrect. The code erroneously calculates
the number of toys Uriah needs to remove by dividing the total weight of the removed
comic books by each toy’s weight, neglecting the total 15 pounds Uriah aims to
remove. It overlooks the weight left to be removed after the comic books are out,
leading to an incorrect answer. Here’s the corrected code:

def solution():
"""Uriah's book bag is getting too heavy for him. He needs to

remove 15 pounds from it. His comic books weigh 1/4 pound
each and his toys weigh 1/2 pound each. If he removes
8717992 comic books, how many toys does he need to
remove?"""

↪

↪

↪

↪

weight_to_remove = 15
comic_book_weight = 1/4
toy_weight = 1/2
comic_books_removed = 8717992
comic_book_weight_removed = comic_book_weight *

comic_books_removed↪

weight_remaining = weight_to_remove - comic_book_weight_removed
toys_removed = weight_remaining / toy_weight
return toys_removed

Table 10: An illustrative example of the Review mode (one round) of Corex among two agents over a mathematical
problem from GSM-Hard.
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Q: Melanie is selling 4 gumballs for eight cents each. How much money can Melanie
get from selling the gumballs?

Melanie is selling 4 gumballs for eight cents each. That means each gumball costs
8/4 = 2 cents. So from selling the 4 gumballs, Melanie can get 4 x 2 = 8 cents. The
answer is 8 cents.

Melanie is selling 4 gumballs for 8 cents each. So she can get 4 x 8 = 32 cents
from selling the gumballs. The answer is 32 cents.

Melanie is selling 4 gumballs for eight cents each. So she can get 4 x 8 = 32 cents
from selling the gumballs. The answer is 32 cents.

Melanie is selling 4 gumballs for 8 cents each. So for each gumball, she can get 8 /
4 = 2 cents. Therefore, she can get a total of 2 x 4 = 8 cents from selling the gumballs.
The answer is 8 cents.

Candidates 2 and 3 are accurate in their computations, emphasizing that each
gumball costs 8 cents and that Melanie would earn a total of 32 cents from the sale of
all gumballs. In contrast, Candidates 1 and 4 mistakenly deduce the price per gumball,
thereby providing an incorrect total earning. Therefore, the most faithful answers are
provided by candidate 2 and candidate 3 with a confidence score of 1.

Table 11: An illustrative example of the retrieve process of Corex among five agents (four candidates and one
retriever) over a mathematical problem from SingleEQ.
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CSQA
Q: What do people use to absorb extra ink from a fountain pen?
Options: (A) shirt pocket (B) calligrapher’s hand (C) inkwell (D) desk drawer (E) blotter
A: The answer must be an item that can absorb ink.
Of the above choices, only blotters are used to absorb ink.
So the answer is (E).
CSQA COMPLEXITY-BASED

Q: The building could accommodate many people. The entrance hall alone was impressive,
being wide enough to admit a hundred shoulder to shoulder. But the building was owned
by a billionaire and used only for his personal entertainment. How would you describe
this place?
Answer Choices: (A) convention center (B) public building (C) large building (D) school
(E) town hall
A: The answer should be somewhere that is not for the good and convenience of the
people. Of the above choices, large building is the only neural description of a building
owned by a billionaire. So the answer is (C).

STRATEGYQA
Q: Could Brooke Shields succeed at the University of Pennsylvania?
A: Brooke Shields went to Princeton University.
Princeton University is about as academically rigorous as the University of Pennsylvania.
Thus, Brooke Shields could also succeed at the University of Pennsylvania.
So the answer is yes.
STRATEGYQA COMPLEXITY-BASED

Q: Can jackfruit be used as a weapon?
A: Jackfruit is the fruit of a species of plant called the Jacktree.
Jackfruit can weigh up to one hundred and twenty pounds.
Jackfruit is covered in little spikes.
Jackfruit can be thrown or flung at an enemy.
A weapon is a thing that is used to cause bodily harm.
Thus, Jackfruit can be used as a weapon
So the answer is yes.

Table 12: Examples of few-shot exemplars for CSQA and StrategyQA. 6-shots are adopted for CSQA and 7-shots
are adopted for StrategyQA.
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OPENBOOKQA
Q: As you look deeper into a Marbel you can see
Options: (A) the future (B) minut defects (C) colors (D) the other side
A: Marbel is not transparent, so you can not see the other side.
Marbel does not necessarily have multiple colors.
You will see minut defects.
So the answer is (B).

ARC-C
Q: George wants to warm his hands quickly by rubbing them. Which skin surface will
produce the most heat?
Options: (A) dry palms. (B) wet palms. (C) palms covered with oil. (D) palms covered
with lotion.
A: Dry surfaces will more likely cause more friction via rubbing than other smoother
surfaces,
hence dry palms will produce the most heat.
So the answer is (A).

BOOLQ
Q: is a cello and a bass the same thing?
A: The cello is played sitting down with the instrument between the knees,
whereas the double bass is played standing or sitting on a stool.
So the answer is no.

Table 13: Examples of few-shot exemplars for OpenBookQA, ARC-c, and BoolQ respectively. 4-shots are adopted
for all three tasks.
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MATHEMATICAL REASONING: NL PROMPTS
Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
A: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars.
So she has 23 - 15 dollars left.
23 - 15 is 8. So the answer is 8.

MATHEMATICAL REASONING: PAL PROMPTS
Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?

# Q: Olivia has $23. She bought five bagels for $3 each. How much money
does she have left?↪

# solution in Python:

def solution():
"""Olivia has $23. She bought five bagels for $3 each. How much money

does she have left?"""↪

money_initial = 23
bagels = 5
bagel_cost = 3
money_spent = bagels * bagel_cost
money_left = money_initial - money_spent
result = money_left
return result

MATHEMATICAL REASONING: COMPLEXITY-BASED PROMPTS
Q: Angelo and Melanie want to plan how many hours over the next week they should study
together for their test next week. They have 2 chapters of their textbook to study and 4
worksheets to memorize. They figure out that they should dedicate 3 hours to each chapter of
their textbook and 1.5 hours for each worksheet. If they plan to study no more than 4 hours each
day, how many days should they plan to study total over the next week if they take a 10-minute
break every hour, include 3 10-minute snack breaks each day, and 30 minutes for lunch each
day?
A: Let’s think step by step.
Angelo and Melanie think they should dedicate 3 hours to each of the 2 chapters, 3 hours x 2
chapters = 6 hours total.
For the worksheets they plan to dedicate 1.5 hours for each worksheet, 1.5 hours x 4 worksheets
= 6 hours total.
Angelo and Melanie need to start with planning 12 hours to study, at 4 hours a day, 12 / 4 = 3
days.
However, they need to include time for breaks and lunch. Every hour they want to include a
10-minute break, so 12 total hours x 10 minutes = 120 extra minutes for breaks.
They also want to include 3 10-minute snack breaks, 3 x 10 minutes = 30 minutes.
And they want to include 30 minutes for lunch each day, so 120 minutes for breaks + 30 minutes
for snack breaks + 30 minutes for lunch = 180 minutes, or 180 / 60 minutes per hour = 3 extra
hours.
So Angelo and Melanie want to plan 12 hours to study + 3 hours of breaks = 15 hours total.
They want to study no more than 4 hours each day, 15 hours / 4 hours each day = 3.75
They will need to plan to study 4 days to allow for all the time they need.
So the answer is 4.

Table 14: Examples of few-shot exemplars for mathematical reasoning tasks. 8-shots are adopted for all the datasets
covered in this paper when using CoT, CoT-SC, and ComplexCoT. 3-shots are adopted when using PAL.

26



DATE UNDERSTANDING: NL PROMPTS
Q: Today is Christmas Eve of 1937. What is the date 10 days ago in MM/DD/YYYY?
Options:
(A) 12/14/2026
(B) 12/14/1950
(C) 12/14/2007
(D) 12/14/1937
(E) 07/14/1938
(F) 12/14/1988
A: Let’s think step by step.
If today is Christmas Eve of 1937, then today’s date is December 24, 1937.
10 days before today is December 14, 1937, that is 12/14/1937. So the answer is (D).

DATE UNDERSTANDING: PAL PROMPTS
Q: 2015 is coming in 36 hours. What is the date one week from today in MM/DD/YYYY?

# solution using Python:
# Q: 2015 is coming in 36 hours. What is the date one week from today in

MM/DD/YYYY?↪

# If 2015 is coming in 36 hours, then today is 36 hours before.
today = datetime(2015, 1, 1) - relativedelta(hours=36)
# One week from today,
one_week_from_today = today + relativedelta(weeks=1)
# The answer formatted with %m/%d/%Y is
one_week_from_today.strftime('%m/%d/%Y')

COLORED OBJECTS: NL PROMPTS
Q: On the nightstand, there is a red pencil, a purple mug, a burgundy keychain, a fuchsia teddy
bear, a black plate, and a blue stress ball. What color is the stress ball?
Options: (A) red (B) orange (C) yellow (D) green (E) blue (F) brown (G) magenta (H) fuchsia
(I) mauve (J) teal (K) turquoise (L) burgundy (M) silver (N) gold (O) black (P) grey (Q) purple
(R) pink A: Let’s think step by step.
According to this question, the color of the stress ball is blue. So the answer is (E).

COLORED OBJECTS: PAL PROMPTS
Q: On the nightstand, there is a red pencil, a purple mug, a burgundy keychain, a fuchsia teddy
bear, a black plate, and a blue stress ball. What color is the stress ball?

# Generate Python3 Code to solve problems
# Q: On the nightstand, there is a red pencil, a purple mug, a burgundy

keychain, a fuchsia teddy bear, a black plate, and a blue stress ball.
What color is the stress ball?

↪

↪

# Put objects into a dictionary for quick look up
objects = dict()
objects['pencil'] = 'red'
objects['mug'] = 'purple'
objects['keychain'] = 'burgundy'
objects['teddy bear'] = 'fuchsia'
objects['plate'] = 'black'
objects['stress ball'] = 'blue'
# Look up the color of stress ball
stress_ball_color = objects['stress ball']
answer = stress_ball_color

Table 15: Examples of few-shot exemplars for Date Understanding and Colored Objects. For CoT, CoT-SC and
PAL, 3-shots are adopted for both tasks.
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OBJECT COUNTING: NL PROMPTS
Q: I have a blackberry, a clarinet, a nectarine, a plum, a strawberry, a banana, a flute, an orange,
and a violin. How many fruits do I have?
A: Let’s think step by step.
We first identify the fruits on the list and include their quantity in parentheses:
- blackberry (1)
- nectarine (1)
- plum (1)
- strawberry (1)
- banana (1)
- orange (1)
Now, let’s add the numbers in parentheses: 1 + 1 + 1 + 1 + 1 + 1 = 6. So the answer is 6.

OBJECT COUNTING: PAL PROMPTS
Q: I have a peach, an onion, two garlics, a nectarine, a yam, a carrot, a potato, a head of broccoli,
a cabbage, a banana, and a stalk of celery. How many vegetables do I have?

# solution using Python:
def solution():

"""Q: I have a raspberry, a cat, a rabbit, a mouse, a pig, two snails,
a fish, two cows, a snake, a goat, and a duck. How many animals do
I have?

↪

↪

"""
# note: I'm not counting the raspberry as an animal
animals_to_count = {

'cat': 1,
'rabbit': 1,
'mouse': 1,
'pig': 1,
'snail': 2,
'fish': 1,
'cow': 2,
'snake': 1,
'goat': 1,
'duck': 1

}
num_animals = sum(animals_to_count.values())
return num_animals

REPEAT COPY: NL PROMPTS
Q: Q: say java twice and data once, and then repeat all of this three times.
A: Let’s think step by step.
java java data java java data java java data

REPEAT COPY: PAL PROMPTS
Q: say java twice and data once, and then repeat all of this three times.

# solution using Python:

def solution():
"""Q: say java twice and data once, and then repeat all of this three

times."""↪

result = []
tmp = ["java", "java", "data"]
for i in range(3):

result.extend(tmp)
return " ".join(result)

Table 16: Examples of few-shot exemplars for Object Counting and Repeat Copy. For CoT, CoT-SC and PAL,
3-shots are adopted for Object Counting and 4-shots are adopted for Repeat Copy.
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PENGUINS: NL PROMPTS
Q: Here is a table where the first line is a header and each subsequent line is a penguin: name,
age, height (cm), weight (kg) Louis, 7, 50, 11 Bernard, 5, 80, 13 Vincent, 9, 60, 11 Gwen, 8,
70, 15 For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is
80 cm. We now add a penguin to the table: James, 12, 90, 12
How many penguins are less than 8 years old?
Options: (A) 1 (B) 2 (C) 3 (D) 4 (E) 5
A: Let’s think step by step.
This question focuses on age. We know the following: Louis is 7 years old, Bernard is 5 years
old, Vincent is 9 years old, and Gwen is 8 years old. Now, we add James to this table: James is
12 years old.
The penguins that are less than 8 years old are Louis and Bernard.
There are 2 penguins less than 8 years old. So the answer is (B).

PENGUINS: PAL PROMPTS
Q: Here is a table where the first line is a header and each subsequent line is a penguin: name,
age, height (cm), weight (kg) Louis, 7, 50, 11 Bernard, 5, 80, 13 Vincent, 9, 60, 11 Gwen, 8,
70, 15 For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is
80 cm. We now add a penguin to the table: James, 12, 90, 12
How many penguins are less than 8 years old?
Options: (A) 1 (B) 2 (C) 3 (D) 4 (E) 5

"""
Q: Here is a table where the first line is a header and each subsequent

line is a penguin:↪

name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height

of Bernard is 80 cm.↪

We now add a penguin to the table:
James, 12, 90, 12
How many penguins are less than 8 years old?
"""

# Put the penguins into a list.
penguins = []
penguins.append(('Louis', 7, 50, 11))
penguins.append(('Bernard', 5, 80, 13))
penguins.append(('Vincent', 9, 60, 11))
penguins.append(('Gwen', 8, 70, 15))

# Add penguin James.
penguins.append(('James', 12, 90, 12))

# Find penguins under 8 years old.
penguins_under_8_years_old = [penguin for penguin in penguins if penguin[1]

< 8]↪

# Count number of perguins under 8.
num_penguin_under_8 = len(penguins_under_8_years_old)
answer = num_penguin_under_8

Table 17: Examples of few-shot exemplars for Penguins. 3-shots are adopted for CoT, CoT-SC, and PAL.
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FINQA: NL PROMPTS

Read the following text and table, and then answer a question:
$ in millions | year ended Dec 2014 | year ended Dec 2013 | year ended December 2012
fixed income currency and commodities client execution | $ 8461 | $ 8651 | $ 9914
equities client execution1 | 2079 | 2594 | 3171 ...
pre-tax earnings | $ 4317 | $ 3929 | $ 5634
Q: what was the percentage change in pre-tax earnings for the institutional client services
segment between 2012 and 2013?
A: The pre-tax earnings for the institutional client services segment in 2012 was $ 5634 million,
and in 2013 was $ 3929 million.
The net change in pre-tax earnings was $ 1705 million,
and the percentage change was 30.3%. So the answer is 30.3%.

FINQA: PAL PROMPTS

Q: what percentage of total cash and investments as of dec . 29 2012 was comprised of
available-for-sale investments?
Read the following text and table, and then write code to answer a question:
( in millions ) | dec 282013 | dec 292012
available-for-sale investments | 18086 | $ 14001 ...
trading assets | 8441 | 5685
total cash and investments | $ 31561 | $ 26302

#Python
available_for_sale_investments_dec_29_2012 = 14001
total_cash_and_investments_dec_29_2012 = 26302
percent_available_for_sale_investments_dec_29_2012 = available_for_sale_investments_dec_29_2012 /

total_cash_and_investments_dec_29_2012↪

ans = percent_available_for_sale_investments_dec_29_2012

TAT-QA: NL PROMPTS

Read the following text and table, and then answer a question:
The average monthly number of employees (including Executive Directors but excluding third-
party contractors) employed by the Group was as follows: — | 2019 | 2018
— | Number | Number
Customer operations | 370 | 380
... Corporate | 115 | 130
Total | 802 | 822
Q: What are the categories of employees listed in the table?
A: The answer can be found directly in the table above.
So the answer is [’Customer operations’, ’Product and technology’, ’Corporate’].

TAT-QA: PAL PROMPTS

Q: What are the categories of employees listed in the table?
Read the following text and table, and then write code to answer a question:
The average monthly number of employees (including Executive Directors but excluding third-
party contractors) employed by the Group was as follows: — | 2019 | 2018
— | Number | Number
Customer operations | 370 | 380
... Corporate | 115 | 130
Total | 802 | 822

#Python
ans = ['Customer operations', 'Product and technology', 'Corporate']

Table 18: Examples of few-shot exemplars for FinQA and TAT-QA. For CoT, CoT-SC and PAL, 4-shots are adopted
for FinQA and 8-shots are adopted for TAT-QA.
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CONVFINQA: NL PROMPTS

Read the following text and table, and then answer the last question in a series of questions:
- | shares available for awards | shares subject to outstanding awards
2009 global incentive plan | 2322450 | 2530454
2004 stock incentive plan | - | 5923147
Q: how many shares are subject to outstanding awards is under the 2009 global incentive
plan? what about under the 2004 stock incentive plan? how many total shares are subject
to outstanding awards? what about under the 2004 stock incentive plan? Question: what
proportion does this represent?
A: The share subject to outstanding awards under the 2009 global incentive plan is 2530454,
and the share subject to outstanding awards under the 2004 stock incentive plan is 5923147.
The total share subject to outstanding awards is 8453601.
The proportion is 70.1%. So the answer is 70.1%.

CONVFINQA: PAL PROMPTS

Read the following text and table, and then answer the last question in a series of questions:
- | shares available for awards | shares subject to outstanding awards
2009 global incentive plan | 2322450 | 2530454
2004 stock incentive plan | - | 5923147
Q: how many shares are subject to outstanding awards is under the 2009 global incentive
plan? what about under the 2004 stock incentive plan? how many total shares are subject to
outstanding awards? what about under the 2004 stock incentive plan? what proportion does
this represent?

#Python
shares_subject_to_outstanding_awards_2009_global_incentive_plan = 2530454
shares_subject_to_outstanding_awards_2004_stock_incentive_plan = 5923147
total_shares_subject_to_outstanding_awards =

shares_subject_to_outstanding_awards_2009_global_incentive_plan +
shares_subject_to_outstanding_awards_2004_stock_incentive_plan

↪

↪

proportion =
shares_subject_to_outstanding_awards_2009_global_incentive_plan /
total_shares_subject_to_outstanding_awards

↪

↪

ans = proportion

Table 19: Examples of few-shot exemplars for ConvFinQA. 4-shots are adopted for both CoT, CoT-SC and PAL.
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DISCUSS PROMPTS
"Tom" : "You are Tom, a middle school student renowned for exceptional math skills. Your
friends often approach you for help with their math homework due to your ability to explain
complex concepts in an easy-to-understand manner. Your task here is to meticulously consider
the example provided, and draw upon your deep understanding of mathematical concepts to
answer the subsequent question. Please explain your solution step by step, demonstrating your
thought process clearly.",
"Jerry" : "You are Jerry, a middle school student renowned for exceptional math skills. Your
teachers are always impressed with your innovative methods for solving math problems. Your
task here is to meticulously consider the example provided, and draw upon your deep under-
standing of mathematical concepts to answer the subsequent question. Please explain your
solution step by step, demonstrating your thought process clearly."

REVIEWER PROMPTS
You are a dedicated code reviewer and need to review the provided Python code snippet to see
whether it correctly reflects the problem it aims to solve.
(1) If you believe the problem solved by the code is not equivalent to the actual problem, please
modify the code so it can solve the problem correctly.
(2) If you believe the code is correct for solving the problem, you should return the original
code with annotations for readability. You should not only provide NL explanations but also
make sure to return the code.
(3) When the code for the given problem is missing, please write the code to solve it.
Here are some examples ...

RETRIEVER PROMPTS
You are an excellent mathematician. Given the following candidates: ...
Assign a confidence score between 0 and 1 for each candidate on how faithful their answer is
and identify the number(s) of the most faithful answer(s).
Please respond in the format: The confidence scores are: [score1, score2, ...]. The most faithful
answer(s) is/are provided by candidate number(s) X (and Y, Z,... if applicable). Here are some
examples ...

Table 20: Examples of prompts and system messages for collaboration.
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