
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DACOMP: BENCHMARKING DATA AGENTS ACROSS
THE FULL DATA INTELLIGENCE LIFECYCLE

Anonymous authors
Paper under double-blind review

ABSTRACT

Real-world enterprise data intelligence workflows encompass data engineering
that turns raw sources into analytical-ready tables and data analysis that convert
those tables into decision-oriented insights. We introduce DAComp, a benchmark
of 236 tasks that mirrors these complex workflows. Data engineering (DE) tasks
require repository-level engineering on industrial schemas, including designing
and building multi-stage SQL pipelines from scratch and evolving existing sys-
tems under evolving requirements. Data analysis (DA) tasks pose open-ended
business problems that demand strategic planning, exploratory analysis through
iterative coding, interpretation of intermediate results, and the synthesis of action-
able recommendations. Engineering tasks are scored through execution-based,
multi-metric evaluation. Open-ended tasks are assessed by a reliable, experimen-
tally validated LLM-judge, which is guided by hierarchical, meticulously crafted
rubrics. Our experiments reveal that even state-of-the-art agents falter on DA-
Comp. Performance on DE tasks is particularly low, with success rates under
20%, exposing a critical bottleneck in holistic pipeline orchestration, not merely
code generation. Scores on DA tasks also average below 40%, highlighting pro-
found deficiencies in open-ended reasoning and demonstrating that engineering
and analysis are distinct capabilities. By clearly diagnosing these limitations, DA-
Comp provides a rigorous and realistic testbed to drive the development of truly
capable autonomous data agents for enterprise settings. Our data and code are
available at https://anonymous.4open.science/r/DAComp-397A.

1 INTRODUCTION

Data intelligence, the process of transforming raw and fragmented data into actionable insights, has
become a cornerstone of modern enterprises. The remarkable reasoning and code generation capa-
bilities of Large Language Models (LLMs) (OpenAI, 2025; Anthropic, 2025; Gemini, 2025) have
opened new avenues for automating data intelligence tasks. LLM-based agents have demonstrated
considerable promise across a wide range of applications, including text-to-SQL (Yu et al., 2018;
Li et al., 2024b; Lei et al., 2024), software engineering (Jimenez et al., 2023; Chan et al., 2024),
and general computer control (Zhou et al., 2024; Xie et al., 2024; Wei et al., 2025). However, the
advancement of these agents into enterprise data intelligence remains constrained by the absence of
benchmarks that faithfully reflect real-world complexity.

This gap between existing benchmarks and real enterprise practice calls for a benchmark that evalu-
ates agents along two distinct axes: Hard (engineering realism) and Soft (analytical openness). The
Hard axis reflects the capacity for systematic large-scale code implementation, similar to the respon-
sibilities of data engineers. For example, this means not only generating a single SQL query but also
orchestrating and evolving complex data workflows under changing requirements. The Soft axis
reflects the capacity for strategic reasoning, aligning more closely with the role of data analysts. For
example, this involves facing an open-ended business question, planning multi-step analytical work-
flows, synthesizing insights across analytical results, and crafting decision-oriented reports. Most
benchmarks fail to capture these two key dimensions. They reduce complex engineering to isolated
code snippet generation, missing the Hard axis, and reduce open-ended analysis to deterministic
answers, missing the Soft axis.

1

https://anonymous.4open.science/r/DAComp-397A

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table #12
 - name: fct_opportunity_health
 - description: Scores each opportunity's health to identify
'zombie' deals based on sales engagement.
 - source_tables:
 [int_opportunities_with_age, int_activities_per_deal]
 - columns:
 - name: opportunity_health_score
 - description: Prioritized Rules for Health Score [0-100]
 1. High Engagement (>=5 activities in 30d) => 90
 2. Stale Deal (no activity > 30d) => 10
 3. Stuck Deal (in stage > 90d) => 25
 4. default => 60

Table #11
 - name: int_activity_summary
 …
+n tables

❶ DE: Architecture
Write the design document

Design Specifications

❷ DE: Implementation
Write SQLs to build DE-DAG

❸ DE: Evolution
Write SQLs to fix/update DE-DAG

❹ DA: Insight Generation
Write Python / SQL to generate
open-ended analysis

Semantic-Layer
Data

 Open-Ended Analysis

Raw Data Sources

DBMSfct_opportunity_health

fct_opportunity_health.sql

Sales Velocity & Funnel Conversion？

 Codebase of DE-DAG

Python/ SQL
& Thinking

DE-DAG

Analytical Report
Our Q3 analysis shows that 40% of the sales
pipeline value is comprised of "unhealthy"
opportunities that have seen no sales activity in
over 30 days.

Key Insight
Stale deals are inflating the forecast, which masks
a critical slowdown in sales velocity.

Actionable Recommendation
Review all deals scoring under 30 weekly to force
a decision: re-engage or disqualify.

intermediate
int_opportunity_velocity.sql

 Fix 3 SQLs

 Add 4 SQLs

fct_funnel_conversion.sql

sqls

marts
fct_sales_velocity.sql

sqls

marts

intermediate

revenue_forecast.sql

staging

int_opportunity_pipeline.sql

stg_opportunity.sql

Please help me to identify "zombie"
opportunities in Salesforce via
engagement analysis.

Figure 1: DAComp aims to evaluate LLMs on full-lifecycle data intelligence workflows, encom-
passing repository-level data engineering (DE) and open-ended data analysis (DA).

To fill this gap, we present DAComp, benchmarking agents on full lifecycle data intelligence tasks,
as illustrated in Fig. 1. DAComp-DE is the first to introduce repository-level data engineering tasks
where agents must orchestrate multi-layered data workflows by generating a DAG on complex enter-
prise schemas. It includes three distinct task types: (1) DE-Architecture tasks focus on the high-level
planning of detailed engineering specifications. (2) DE-Implementation tasks require agents to build
multi-stage data pipelines from scratch; (3) DE-Evolution tasks challenge them to modify existing
systems in response to new requirements; and Both DE-Impl and DE-Evol tasks are demanding,
often requiring large-scale code changes that involve over 4, 000 lines of code across more than 30
files, mirroring real-world engineering workloads. DAComp-DA is the first to pioneer real-world,
open-ended data analysis. In these scenarios, agents are presented with complex questions over
downstream analytical data. Unlike prior work with deterministic answers (Jing et al., 2024; Lei
et al., 2024), the tasks resemble real analyst settings: agents must write SQL/Python to aggregate,
compute, and analyze intermediate results in order to generate insights and reports, thereby empha-
sizing both the rigor of analytical precision and the practical utility for human decision-making.

The evaluation methods of such complex tasks are non-trivial. For deterministic DE-Impl and DE-
Evol tasks, we adopt an execution-based method to systematically evaluate the repo-level code gen-
eration performance. The open-ended DA and DE-Arch tasks are assessed by an LLM judge (Li
et al., 2024a), whose evaluation is guided by our novel rubric framework. Instead of relying on a
single answer key, this framework explicitly defines and assesses multiple valid solution paths for
each open-ended problem, enabling a robust, multifaceted assessment that rewards diverse analyt-
ical strategies. The reliability of this LLM judge has been confirmed through rigorous validation
experiments, which show strong agreement with human experts.

Our experiments on DAComp underscore a significant challenge for current models: even state-of-
the-art agents falter when confronted with its enterprise-level complexity. In DE tasks, agent capa-
bilities are pushed to their limits, with average scores below 40% and strict success rates under 10%,
revealing a critical gap in real repository-level engineering capabilities. In the same vein, agents also
exhibit poor performance on open-ended problems requiring autonomous planning. Performance on
DA tasks plummets to below 50% for most models, with only a few proprietary systems demon-
strating more robust analytical skills. Ultimately, progress in data agents demands a shift from mere
code accuracy to the nuanced capabilities—planning, open-ended reasoning, and systematic synthe-
sis—required to deliver insights that are both analytically rigorous and strategically actionable. By
providing this rigorous, realistic testbed, DAComp aims to shift the focus of data agent development
from isolated skills to the integrated, full-lifecycle capabilities required in the real-world scenarios.

2 BENCHMARK CONSTRUCTION

In this section, we introduce the definition, annotation pipeline, evaluation methods and statistics.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 TASK DEFINITION

To bridge this gap, we design tasks that evaluate data agents on real-world challenges. Specifically,
we assess their ability to act as data engineers performing repository-level data engineering and as
data analysts navigating open-ended data analysis, as depicted in Fig. 1.

DAComp-DE. An agent πde is tasked with handling the full DE lifecycle including architecture,
implementation, and evolution. Formally, the process is modeled as (S, C⋆) = πde(Qde, C0,B),
where Qde is the initial high-level requirement, S denotes the engineering specification (e.g., a Data
Contract), B is the database and C⋆ is the final DE repository. This unified capability is evaluated
across three task types: (1) DE-Arch : Given a high-level requirement Qde and an initial repository
C0, this task evaluates the agent’s ability to produce the engineering specification S. (2) DE-Impl :
Given a detailed specification S and an empty repository (C0 = ∅), this task evaluates the agent’s
ability to implement the DE repository C⋆ from scratch. (3) DE-Evol : Given an existing repository
C0 and a new specification S, this task evaluates the agent’s ability to update the repository into C⋆.

DAComp-DA. Given an analysis-ready data D (semantic layer) and an open-ended question Qda,
an agent with policy πda produces analysis artifacts O = πda(Qda,D) (e.g., analytical reports, key
insights and actionable recommendations). This task is inherently open-ended, as a single question
may be approached through multiple valid analytical paths, without a fixed standard answer.

2.2 EVALUATION METRICS

Path
3.1.A

Path
3.1.C

Path
3.1.B

Max Score: 3

Path
Selection

Max Score: 6 Max Score: 5

Analytical Question

Req 3.1

Req 3
To

p
-D

o
w

n
 D

e
c

o
m

p
o

si
ti

o
n

B
o

tto
m

-U
p

 S
c

o
rin

g

Completeness Item

Precision Item

Conclusiveness Item

Req 3.2

Path
Selection

Req 2Req 1

Score = Req_Score

Figure 2: Details of hierarchical rubrics.

LLM-judge with hierarchical rubrics and GSB scor-
ing. The LLM judge evaluates outputs O along five
dimensions: Completeness, Accuracy, Insightfulness,
Readability, and Analytical depth (see App. A.3.1). The
hierarchical rubric assesses the first three, while the
Good–Same–Bad (GSB) score (Zheng et al., 2023) cov-
ers the latter two. As shown in Fig. 2, the rubric (R)
decomposes a question Q into requirements and sub-
reqirements. Each subrequirement admits multiple valid
solution paths, each path carrying its own rubric items
(colored leaf nodes). Human experts enumerate these
paths and merge equivalent solutions in a single path. For
scoring, the LLM judge selects the best-matching path for
each sub-requirement, applies only that path’s items, then
aggregates scores bottom-up. This design accommodates
diverse correct approaches without penalizing method choice. We show a detailed rubric example
for the penetration and profitability analysis in Tab. 6, with a discussion of the path enumeration
scheme provided in App.G.1. The rubric score is a normalized, weighted sum of satisfied items:
Scorerubric(O,R) =

∑N
k=1 sk∑N
k=1 wk

, sk = Λ(ck,O) ∈ [0, wk]. For the Good-Same-Bad (GSB), the LLM
judge only compares the final analytic results against five pre-provided baseline reports, guided
by the dedicated rubrics for these axes, yielding the score: Scoregsb(O,Obase) = max(0,|G|−|B|)

|G|+|S|+|B| .
The final score for a DA task is a weighted combination of these two components: Scoreda =
α · Scorerubric + (1 − α) · Scoregsb. The open-ended DE-Arch tasks are assessed similarly, though
they employ a standard, non-hierarchical rubric and do not incorporate the GSB component. Further
details are provided in App. A.

Execution-based evaluation for deterministic tasks. DE-Impl and DE-Evol tasks are evaluated
with three execution-based metrics of increasing strictness: (1) the partial credit Component Score
(CS), CSDE-Impl/Evol =

∑
j wjsj , which evaluates each node in isolation (using gold-standard up-

stream inputs) to measure total component-level SQL generation; (2) the Cascading Failure Score
(CFS), which evaluates nodes sequentially along the DAG and nullifies a node’s score if any up-
stream dependency is incorrect, thus measuring end-to-end data integrity; and (3) the strict Success
Rate (SR), SRDE-Impl/Evol = I[∀j : sj = 1], which requires every single component to be perfect.
This suite of metrics is crucial for diagnosing the primary bottleneck: the gap between an agent’s
component-level generation and its ability to perform holistic pipeline orchestration. Further details
are provided in App. A.1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.3 ANNOTATION PIPELINE

DAComp is constructed by 8 experts through a rigorous pipeline to ensure realism, quality, and
consistency. Further details and examples are provided in App. E.

1) Data collection. The benchmark is grounded in permissively licensed assets (e.g., Apache-
2.0, MIT). For the DE task, we collect 73 enterprise-scale SaaS schemas with data transformation
projects, averaging 400 columns each, and populate them with large-scale, relationally consistent
synthetic data (see App. E). For the DA task, we curate 100 complex databases from the Web and
supplement them with analytical modeling layers derived from DE-transformed data.

2) Task design. At this stage, we generate the DAComp questions. For DA , annotators first draft
8 open-ended analytical questions per analysis-ready table. Five annotators then vote based on
realism and difficulty, and the top 2 are retained. For DE-Evol , practicing data engineers author new
business requirements aligned with enterprise scenarios and professional standards. For DE-Impl ,
we reverse engineer selected SaaS transformation projects into a single data contract.yaml,
capturing the full DAG and semantics. For DE-Arch , starting from the analytics layer of DE-Impl
and DE-Evol examples, DA annotators propose 5 candidate business requirements per project, from
which a data engineer selects 1 feasible yet challenging requirement.

3) Evaluation construction. We design evaluation protocols for each task. For DA, annotators build
hierarchical rubrics as described in §2.2, with at least 3 annotators annotate each question, followed
by alignment discussion to resolve discrepancies. For the GSB protocol, experienced data analysts
author shared scoring criteria, and baseline reports are created by combining outputs from multiple
LLMs. A critical aspect of this rubric design is the enumeration of valid solution Paths, a pro-
cess governed by three key principles: (i) ensuring Paths represent distinct, methodologically-sound
strategies, not incremental steps; (ii) validating deterministic outputs against programmatically cal-
culated and verifiable anchor values; and (iii) utilizing methodology-based soft constraints to fairly
evaluate valid but unenumerated solution paths. (see examples in App.C.4, discussion in App.G.1).
To ensure the comprehensiveness of our rubric, we perform a validation step: we sample outputs
from five diverse LLMs and confirm that our enumerated paths can account for all observed solu-
tion strategies, which minimizes the risk of false negatives by ensuring that valid but unanticipated
solutions are not unfairly penalized. For DE-Impl and DE-Evol , solutions are deterministic: we
implement execution scripts to automatically validate outputs against gold repositories, assigning
partial credit at the node/layer level to capture step-wise correctness.

Table 1: Comparison of DAComp with other agent benchmarks, highlighting key differences in task
scope, task paradigm, and evalution method.

Benchmark Field # Tasks Repo-
Level

Cols/
Schema

Code
Scale (LOC)

Primary
Output

Open-
ended

Evaluation
Method

Agentic Benchmarks
SWE-Bench (Jimenez et al., 2023) Software Engineering 2,294 ✓ N/A 32.8 Code Patch ✗ Execution-based
WebArena (Zhou et al., 2024) Web Navigation 812 ✓ N/A N/A Actions ✗ Execution-based
OSWorld (Xie et al., 2024) Computer Control 369 ✓ N/A N/A Actions ✗ Execution-based
BrowserComp (Wei et al., 2025) Deep Research 2,000 ✓ N/A N/A Answer ✓ Objective

Data Agent Benchmarks
DS-1000 (Lai et al., 2023) Data Science 1,000 ✗ N/A 3.6 1 Script ✗ Execution-based
BIRD (Li et al., 2024b) Text-to-SQL 12,751 ✗ 54 23.5 1 SQL ✗ Execution-based
Spider 2.0 (Lei et al., 2024) Text-to-SQL 632 ✗ 320 104.6 1 SQL ✗ Execution-based
BIRD-CRITIC (Li et al., 2025) SQL Debugging 1,100 ✗ 54 50∼70 1 SQL ✗ Execution-based
DA-Code (Huang et al., 2024) Data Science 500 ✗ 50 ∼ 100 85 1 Script ✗ Objective
DSBench (Jing et al., 2024) Data Science 540 ✗ 27 10∼20 N Scripts ✗ Objective
KramaBench (Lai et al., 2025) Data Science Pipelines 104 ✗ 13 50∼100 N Scripts ✓ LLM-judge
BLADE (Gu et al., 2024) Data Analysis 259 ✗ 10 ∼ 12 70∼80 Report ✓ LLM-judge
DABStep (Egg et al., 2025) Data Analysis 450 ✗ 10 ∼ 12 100 Answer ✗ Objective

DAComp (Ours) Data Engineering &
Data Analysis 236 ✓ 412 ∼2,000 Doc + Report

N SQL/Script Both Execution-based &
LLM-judge(rubrics)

2.4 DATASET STATISTICS

We present a statistical analysis of DAComp, highlighting its main features in comparison with prior
datasets in Tab. 1, and providing more detailed characteristics in Tab. 2.

DAComp-DE quantifies enterprise-scale engineering complexity. The statistics for DAComp-
DE underscore its large scale and complexity—defined by its repo-level paradigm, schemas averag-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

ing 412 columns, and solutions requiring over 2,000 lines of code—setting it apart from prior data
agent benchmarks. Unlike benchmarks that focus on generating isolated scripts, DAComp intro-
duces tasks on industrial schemas with an average of 32 tables and 412 columns. The engineering
effort required is substantial. Implementation tasks involve building entire pipelines from scratch,
averaging 4,612 lines of code across 43 distinct files. Similarly, Evolution tasks simulate realistic
maintenance with edits averaging 1,718 LOC across 13 files, agents need to manage data transfor-
mation across a multi-layered data model (e.g., staging, core, and mart).

Table 2: Key statistics for DAComp. All metrics are per-example averages, except #Total tasks.

Metric Value Metric Value

Overall (DE-Arch/DE-Impl/DE-Evol/DA) DAComp-DE
#Total tasks 24 / 36 / 76 / 100 DE-Impl raw data (#Tab. / #Col.) 31.9 / 450.7
#Question Tokens 262 / 5,792 / 606 / 72 #LOC code scale (Impl / Evol) 4,612 / 1,718
DAComp-DA #Change files (Impl / Evol) 42.7 / 13.1
Columns / Tables 71.8 / 5.1 #Change columns (Impl / Evol) 751.3 / 257.0
LOC 347 #DE-Arch rubric 18.5
Rubrics (Reqs / Sub-reqs / Paths / Items) 3.1 / 5.7 / 12.7 / 22.4 DE-Impl layer (#Staging / #Core / #Mart) 18.56 / 9.4 / 11.8
Completeness / Accuracy / Insightfulness 14% / 66% / 20% DE-Evol table change types (#create / #edit) 4.34 / 7.97

DAComp-DA measures analytical depth and methodological diversity. The design of
DAComp-DA moves beyond simple question-answering to assess deep analytical reasoning.
Uniquely, DAComp evaluates both deterministic engineering and open-ended analysis, a distinction
from prior benchmarks that typically focus on only one paradigm. Its open-ended nature is quantified
by our hierarchical rubrics, which decompose each of the 100 DA tasks into an average of 3.1 re-
quirements and 5.7 sub-requirements, accommodating roughly 13 valid solution paths. This method-
ological diversity is evaluated with a multi-faceted rubric where scoring items are weighted toward
Accuracy (66%) but also reward Completeness (14%) and Insightfulness (20%). While the analyt-
ical schemas are more focused than in DE tasks (averaging 5 tables and 72 columns), the required
reasoning is still complex, reflected in an average solution length of 347 lines of code—significantly
longer than typical text-to-SQL or single-script data science tasks.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We evaluate a suite of state-of-the-art LLMs, including open-source models like Qwen3 (Yang et al.,
2025), DeepSeek-V3.1 (Liu et al., 2024), and Kimi-K2 (Team et al., 2025), as well as proprietary
ones such as the Gemini (Team et al., 2023), Claude (Anthropic, 2024), and GPT (OpenAI, 2023)
families. To provide context, we compare them against two baselines: a data agent baseline using
Bash and file system operations, with the ability to execute Python and SQL, and the widely used
OpenHands (CodeAct-Agent) framework (Wang et al., 2024). The performance of each agent is
measured using the metrics detailed in §2.2. We also report two aggregate scores: the DE Score,
which is the mean score across all DE tasks (using CFS for Implementation/Evolution), and the
Overall Score, representing the mean across the entire benchmark. For the DA score, we use α = 0.8
to aggregate the rubric and GSB scores, with Gemini-2.5-Flash serving as the LLM judge. Further
details on the experimental setup and additional results are provided in App. B.

3.2 MAIN RESULTS

Strong LLMs deliver robust performance across frameworks. As shown in Tab. 3, large proprietary
models such as GPT-5 and o3 consistently achieve the highest scores across both DAComp-DE
and DAComp-DA, clearly outperforming other systems. Claude-4-Sonnet also delivers competitive
results, while models like Gemini-2.5-Pro and DeepSeek-V3.1 occupy the middle tier. In contrast,
smaller open-source agents such as Qwen3-8B and Qwen3-235B-A22B lag significantly behind,
often failing to surpass 20% overall. These patterns underscore that raw model capacity remains the
dominant factor in determining benchmark performance. Nevertheless, framework design still plays
a modulatory role: strong LLMs perform well regardless of orchestration, but their relative margins
can shift depending on interaction stability and error-handling, and weaker models are especially
sensitive to these system-level choices. This suggests that future improvements will require advances
both in underlying model capability and in the frameworks that govern agent behavior.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 3: Performance score (%) for various agent systems on DAComp. DE performance is
measured by a suite of metrics with escalating difficulty: Success Rate(SR), Cascading Failure
Score(CFS), and Component Score(CS) (§2.2). More models in Tab.9.

Method
DAComp-DE

DAComp-DA Overall
ScoreArchitecture Implementation Evolution Total

SR CFS CS SR CFS CS
OpenHands Framework
GPT-5 66.44 22.22 51.38 79.08 14.47 28.87 53.90 41.46 52.06 45.95
o3 64.55 38.89 50.17 80.43 13.16 30.78 41.88 41.87 48.78 44.80
Claude-4-Sonnet 63.7 19.44 48.02 68.74 11.84 28.34 41.9 39.79 51.33 44.68
Gemini-2.5-Pro 55.82 11.11 41.85 63.66 9.21 26.67 43.70 35.83 40.74 37.91
DeepSeek-V3.1 58.05 2.78 23.35 38.74 5.26 24.04 33.03 29.86 45.79 36.61
Qwen3-Coder 55.31 5.56 31.76 50.66 6.25 28.65 43.17 34.18 41.88 37.44
Qwen3-235B-A22B 49.66 2.78 6.57 6.61 5.26 18.61 21.72 20.90 31.29 25.30
Qwen3-8B 47.16 2.78 4.29 4.29 2.63 13.49 23.15 17.00 17.15 17.06

Agentic Baseline
GPT-5 67.47 27.78 51.50 77.96 15.7 27.94 46.08 41.15 56.03 47.46
o3 67.98 38.89 40.58 61.83 10.5 24.05 43.1 36.18 47.53 40.99
Claude-4-Sonnet 60.96 22.22 47.24 75.77 13.2 25.36 45.76 37.43 51.98 43.60
Gemini-2.5-Pro 58.22 11.11 42.43 73.87 7.8 22.07 23.41 33.84 40.47 36.65
DeepSeek-V3.1 60.45 5.55 33.03 50.35 6.5 20.78 38.1 31.02 45.81 38.14
Qwen3-Coder 53.25 8.33 30.09 47.2 9.2 18.05 26.7 27.45 35.28 30.77
Qwen3-235B-A22B 47.38 8.33 14.48 23.38 3.9 16.44 23.62 21.38 40.1 29.31
Qwen3-8B 44.6 2.78 3.49 4.02 3.9 6.7 9.6 12.54 18.7 15.15

The results in Tab. 3 underscore the profound challenge of DAComp, with even the top overall
scores barely reaching 50%. More crucially, the data reveals that the skills for engineering and
analysis are distinct, as model rankings are inconsistent across the two domains. This divergence is
clearly visible among open-source models. For instance, in the OpenHands framework, the code-
specialized Qwen3-Coder achieves a respectable DE score of 34.18, outperforming DeepSeek-V3.1
(29.86). However, in the open-ended DA task, the roles are reversed: DeepSeek-V3.1’s score of
45.79 is significantly higher than that of Qwen3-Coder (41.88). This inversion in rankings—where
a model proficient in engineering is not necessarily the leader in analysis—provides strong empirical
evidence that repository-level coding and open-ended reasoning are distinct capabilities.

3.3 ANALYSIS OF REPOSITORY-LEVEL DATA ENGINEERING

Holistic orchestration is the core bottleneck in data engineering. Across DE tasks, models
plan well but struggle to execute end-to-end. Architecture scores are relatively high (e.g., GPT-5:
66 ∼ 67%), yet strict SR for Implementation and Evolution are much lower (typically < 30%).
The drop from CS to CFS and then to SR is pronounced for strong models, revealing a pipeline-
level orchestration bottleneck beyond single-file correctness; for example, GPT-5 (OpenHands) in
Implementation falls from CS 79.08 to CFS 51.38 and SR 22.22, and in Evolution from CS 53.90 to
CFS 28.87 and SR 14.47. By contrast, weaker open-source models (e.g., Qwen3-8B) exhibit very
low CS (Implementation 4.29), indicating deficits already at the component level; orchestration then
compounds failure but is not the sole cause. The uniformly low SR across models confirms that
coordinating dependencies in a live repository—rather than generating isolated correct code—is the
dominant challenge in DAComp-DE.

Edit
<5 lines

Edit
5-10 lines

Edit
>10 lines

Create
<20 lines

Create
20-150 lines

Create
>150 lines

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Co
m

po
ne

nt
 S

co
re

Edit Tasks Create Tasks

GPT-5 Claude-4 Gemini-2.5-pro Qwen3

Figure 3: Component-level performance analysis.

Medium-scale code edits are the most
difficult to perform. To gain a more
granular understanding, we delve into a
node-level analysis, studying the scores
for individual SQL file modifications
(Fig. 3). We classify these modifications
into two types—editing an existing file or
creating a new file, and group them by the
required number of lines. For create tasks,
models like GPT-5 and Claude-4 have a
clear “sweet spot” on medium-scale cre-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

ations (20− 150 lines), while all models struggle with very large files (> 150 lines). In In contrast,
edit tasks exhibit a non-linear difficulty trend. Contrary to intuition, medium-scale edits prove to be
the most challenging. This is because minor edits are often trivial, while very large edits frequently
involve repetitive, boilerplate transformations with clear logic. In contrast, medium-scale edits tend
to contain the most complex and nuanced changes to business logic, aggregations, and calculations,
thus posing the greatest reasoning challenge.

Staging Core Marts0%

10%

20%

30%

40%

50%

60%

Pe
rc

en
ta

ge
 o

f A
ll

Er
ro

rs
 (%

)

(a) Distribution of Local Errors (by 'CS')
GPT-5
Claude-4-Sonnet
Qwen3-Coder
O3
Gemini-2.5-Pro
DeepSeek_V3.1

Start After Staging After Core After Marts0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f T
as

ks
 R

em
ai

ni
ng

 (%
)

(b) Pipeline Survival Rate (by 'CFS')

GPT-5
Claude-4-Sonnet
Qwen3-Coder
O3
Gemini-2.5-Pro
DeepSeek_V3.1

Figure 4: Contrasting local error distribution (left) with
pipeline survival rate (right).

Analytical complexity and failure
rates escalate in higher pipeline layers.
Fig. 4 reveals that the difficulty of data
engineering tasks escalates significantly
as agents move from the initial data inges-
tion layer to the more complex analytical
layers. The staging layer, focused on basic
cleaning, consistently has the fewest local
errors and the highest task survival rate.
The challenge intensifies dramatically
in the intermediate (core) layer. This is
where the most complex business logic
and entity integration occurs, and as
Panel (a) shows, it is where the largest share of local errors originates. The severe impact of this
difficulty is evident in Panel (b), which shows the sharpest drop in pipeline survival occurring after
this stage. Finally, the marts layer remains highly challenging. Failures in this final stage are often
a direct consequence of inheriting upstream errors from the core layer, with fewer than 20% of
the initial tasks surviving to completion. Together, these results demonstrate a clear hierarchy of
difficulty, with the analytical complexity of the core and marts layers posing a substantially greater
challenge than the initial staging layer.

GPT
5-b

ase
line

Gem
ini-

2.5
-ba

sel
ine

Clau
de

-4-
ba

sel
ine

Qwen
3-b

ase
line

GPT
5-o

pe
nh

an
ds

Gem
ini-

2.5
-op

en
ha

nd
s

Clau
de

-4-
op

en
ha

nd
s

Qwen
3-o

pe
nh

an
ds

20

40

60

80

100

120

#T
ur

ns

DE-Implementation #Turn

GPT
5-b

ase
line

Gem
ini-

2.5
-ba

sel
ine

Clau
de

-4-
ba

sel
ine

Qwen
3-b

ase
line

GPT
5-o

pe
nh

an
ds

Gem
ini-

2.5
-op

en
ha

nd
s

Clau
de

-4-
op

en
ha

nd
s

Qwen
3-o

pe
nh

an
ds

20

40

60

80

100

#T
ur

ns

DE-Evolution #Turn

Figure 5: Turn counts on DE tasks.

Top-performing agents exhibit stable
and task-aligned interaction patterns.
Fig. 5 shows the distribution of interac-
tion turns in DE tasks. High-performing
models such as GPT-5 maintain moderate
turn counts with compact variance across
both Implementation and Evolution set-
tings, reflecting efficient yet sufficiently
thorough reasoning. In contrast, weaker
models like Qwen3 either generate ex-
cessively long and volatile traces in Im-
plementation or display unusually short
traces in Evolution, where premature ter-
mination often corresponds to incorrect or
incomplete outputs. These patterns indi-
cate that stable and centered turn distribu-
tions are more characteristic of effective
agents than simply minimizing the number of turns.

Error analysis. Failures in DAComp occur at two levels. Single-File-Level Failures (Fig. 12) are
typically not syntactic but rather semantic, where executable code implements flawed business logic
(e.g., incorrect join keys or metric definitions). More critical are Pipeline-Level Failures(Figs. 13
and 14), which demand holistic, cross-file reasoning. These include Dependency Graph Breakage,
Interface Contract Violations where changes fail to propagate downstream, and cascading Data
Integrity Errors. Success thus requires orchestrating a correct and consistent data repository, not
just generating isolated code snippets. Details are shown in App.D.

3.4 ANALYSIS OF OPEN-ENDED DATA ANALYSIS TASKS

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Readability

Accuracy

CompletenessInsightfulness

Analytical
Depth

40 60

GPT-5
Claude-4-Sonnet
Gemini-2.5-Pro

Qwen3-Max
DeepSeek-V3.1

Figure 6: DA performance com-
parison across five dimensions.

Performance across dimensions. Our analysis of model ca-
pabilities across five analytical dimensions, defined by our
rubrics and visualized in Fig. 6, reveals distinct performance
profiles. The results show GPT-5 consistently outperforms
other models across all axes. While Claude and DeepSeek
perform strongly on foundational dimensions like Complete-
ness and Accuracy, Qwen3 unexpectedly achieves the high-
est Readability. Notably, GPT-5 leads all models by a large
margin in Analytical Depth, and proprietary models generally
demonstrate stronger Insightfulness than open-source counter-
parts. This dimension-wise characterization allows for a pre-
cise analysis of each model’s unique strengths and weaknesses.

Performance across analytical objectives. To investigate
how performance correlates with the nature of the analytical
task, we manually classify each DA task into five categories
based on its primary objective: Descriptive, Diagnostic, Strate-
gic, Pattern Recognition, and Profiling (see App. C.4 for definitions). As shown in Fig. 7, this clas-
sification reveals a distinct performance hierarchy. Agents excel at concrete Descriptive tasks (what
happened?), but their scores drop sharply on more abstract Diagnostic (why did it happen?) and
Strategic (what should we do?) tasks. This confirms that these more complex objectives are not only
more challenging but also serve as better differentiators of advanced model capabilities.

Descriptive Diagnostic Strategic Pattern Rec. Profiling10

20

30

40

50

60

DA
 S

co
re

 (%
)

GPT-5
Claude-4-Sonnet
o3-high

DeepSeek-V3.1
Gemini-2.5-pro

0

10

20

30

40

50

60

70

Ty
pe

 R
at

io
 (%

)

38%

20%

58%

68%

52%

Figure 7: DA performance across five analytical objectives.

41.0%

32.4%

26.6%

Claude-4-Sonnet

41.1%

41.9%

16.9%

GPT-5

47.3%

30.2%

22.5%

Gemini-2.5-Pro

44.8%

36.6%

18.6%

DeepSeek_V3.1

Planning & Preparation Failures
Execution & Calculation Failures
Interpretation & Synthesis Failures

Figure 8: DA error distribution.

Error analysis. As shown in Fig. 8. To analyze DA failures, we classify errors into three stages:
Planning (Tab. 11), Execution (Tab. 12), and Interpretation (Tab. 13). The dominant failure mode dif-
fers significantly across models. For instance, Gemini-2.5-Pro and DeepSeek-V3.1 are most prone
to Planning failures, suggesting difficulty in understanding initial requirements. In contrast, GPT-5’s
primary weakness is in Execution, where its robust plans are undermined by flawed technical imple-
mentation. Claude-4-Sonnet shows a more balanced distribution of errors with no single bottleneck.
For all models, Interpretation is the least common failure, indicating the primary challenges lie in
either forming a correct plan or executing it flawlessly.

3.5 VALIDATION OF LLM-JUDGE METHOD

Systematic human-LLM agreement validation. To validate our LLM-as-Judge method, we
conduct a systematic analysis across multiple levels of granularity. First, we collected
responses from various models on the DA tasks and had our human annotators manu-
ally score each submission against all rubrics and GSB documents. We then established
a reliable ground truth by measuring inter-rater agreement—that is, the degree of consis-
tency among our human experts—which confirmed substantial consistency across all eval-
uation criteria (Tab. 4). With this human baseline, we benchmarked several candidate
judges (e.g., Gemini 2.5 Flash, O4-Mini, GPT-4.1) at two primary levels of agreement:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Comprehensive inter-rater
agreement for DA tasks.

Metric Rubric GSB
Evaluation scale summary

Examples 50 50
Cases 1120 250

Case-level (Pearson’s r for Rubric, weighted κ for GSB)
Inter-Rater 80.4 65.0
o4-mini 79.7 78.6
GPT-4.1 68.4 69.6
Gemini 2.5 Flash 79.4 75.9

Model-level (Pearson’s r) Overall Score
o4-mini 97.9
GPT-4.1 98.2
Gemini 2.5 Flash 99.6

(i) case-level agreement, which measures how consis-
tently the judge scores a single task compared to hu-
man experts; and (ii) model-level agreement, which val-
idates whether the judge’s final ranking of all models
matches the human-derived leaderboard. As shown in
Tab. 4, across all levels of this comparison, both Gemini-
2.5-Flash and O4-Mini demonstrate high and consistent
alignment with human judgments. Given that O4-Mini’s
cost is ten times that of the former, we select Gemini
2.5 Flash as our standard judge model for its optimal
balance of performance and cost-effectiveness. Further-
more, the Pearson correlation indicates that our LLM
judge achieves a higher correlation with the human con-
sensus than the average inter-rater correlation among hu-
mans, validating the soundness of our method.

Table 5: Variability of sub-task
scores across 8 runs. Scores are per-
centages (mean ± std).

Model DE-Arch DA
GPT-5 62.5 ± 0.18 56.7 ± 0.16
DeepSeek-V3.1 51.2 ± 0.25 41.1 ± 0.22
Gemini 2.5 Pro 45.3 ± 0.21 32.1 ± 0.22
Claude-4 Sonnet 35.8 ± 0.19 43.8 ± 0.20
Qwen3-Max 18.1 ± 0.31 40.5 ± 0.29

Benchmarking stability. We assess the end-to-end sta-
bility of our evaluation pipeline. We quantify the total
variability, arising from both the agent’s stochasticity and
the judge’s grading, by repeating the entire evaluation 8
times. The results in Tab. 5 show that the standard devi-
ations of the final scores are consistently small, demon-
strating that our evaluation protocol yields statistically
stable and replicable results.

4 RELATED WORK

Agentic benchmarks. As LLM-based agents mature, benchmarks span tool use (Yao et al., 2024),
software engineering (Jimenez et al., 2023; Zan et al., 2025), mobile interaction (Rawles et al.,
2024), web navigation (Deng et al., 2023; Zhou et al., 2024), computer use (Xie et al., 2024), scien-
tific discovery (Chen et al., 2024), and deep research (Phan et al., 2025; Wei et al., 2025), collectively
advancing the field. In parallel, evaluation has moved beyond fixed-answer grading toward open-
ended assessment (Li et al., 2024a; Wu et al., 2025; Du et al., 2025; Arora et al., 2025). DAComp is,
to our knowledge, the first benchmark to cover the data-intelligence workflow, evaluating end-to-end
data agents on both repository-level data engineering and open-ended data analysis, with the aim of
advancing autonomous engineering and analytical capability.

Benchmarks for Data Agents. A data agent is an LLM-driven autonomous system that plans and
executes end-to-end workflows, acquiring, transforming, and analyzing data via tool use and code
execution to achieve user-defined objectives. Early work emphasizes single-shot tasks such as text-
to-SQL (Yu et al., 2018; Li et al., 2024b) and code generation (Lai et al., 2023; Yin et al., 2023); more
recent efforts push toward realistic SQL generation over real scenarios (Lei et al., 2024; Li et al.,
2025), multi-turn data-science code generation (Hu et al., 2024; Huang et al., 2024; Jing et al., 2024)
with iterative execution, and data analysis in business settings (Gu et al., 2024; Egg et al., 2025;
Lai et al., 2025). DAComp goes beyond these efforts by introducing the first benchmark spanning
enterprise data-intelligence workflows, encompassing repository-level engineering and open-ended
analysis, and offering a rigorous testbed for advancing autonomous agents.

5 CONCLUSION

We introduce DAComp, a benchmark that uniquely models real-world enterprise data intelligence.
It establishes the first testbed for repository-level data engineering, posing a formidable challenge
to the code generation field. Simultaneously, it introduces the first evaluation framework for open-
ended data analysis, guiding development beyond technical accuracy toward human-centric, action-
able insights. Our experiments confirm its difficulty: even top agents post success rates below 20%
on DE tasks and average scores under 40% on DA tasks. By providing this rigorous, holistic chal-
lenge, DAComp aims to steer research beyond isolated code generation and drive the evolution of
truly capable autonomous data agents for the enterprise.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Introducing Claude 4. https://www.anthropic.com/news/claude-4, 2025.

AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 1:1, 2024.

Rahul K Arora, Jason Wei, Rebecca Soskin Hicks, Preston Bowman, Joaquin Quiñonero-Candela,
Foivos Tsimpourlas, Michael Sharman, Meghan Shah, Andrea Vallone, Alex Beutel, et al. Health-
bench: Evaluating large language models towards improved human health. arXiv preprint
arXiv:2505.08775, 2025.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learn-
ing agents on machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi Liao,
Chen Wei, Zitong Lu, et al. Scienceagentbench: Toward rigorous assessment of language agents
for data-driven scientific discovery. In The Thirteenth International Conference on Learning
Representations, 2024.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091–28114, 2023.

Mingxuan Du, Benfeng Xu, Chiwei Zhu, Xiaorui Wang, and Zhendong Mao. Deepresearch bench:
A comprehensive benchmark for deep research agents. arXiv preprint arXiv:2506.11763, 2025.

Alex Egg, Martin Iglesias Goyanes, Friso Kingma, Andreu Mora, Leandro von Werra, and Thomas
Wolf. Dabstep: Data agent benchmark for multi-step reasoning. arXiv preprint arXiv:2506.23719,
2025.

Gemini. Gemini 2.5: Our most intelligent AI model. https://blog.google/technology/
google-deepmind/gemini-model-thinking-updates-march-2025/, 2025.

Ken Gu, Ruoxi Shang, Ruien Jiang, Keying Kuang, Richard-John Lin, Donghe Lyu, Yue Mao,
Youran Pan, Teng Wu, Jiaqian Yu, et al. Blade: Benchmarking language model agents for data-
driven science. In Findings of the Association for Computational Linguistics: EMNLP 2024, pp.
13936–13971, 2024.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli Ma, Guoyin Wang, Xuwu Wang, Jing Su,
Jingjing Xu, Ming Zhu, et al. Infiagent-dabench: Evaluating agents on data analysis tasks. In
Forty-first International Conference on Machine Learning, 2024.

Yiming Huang, Jianwen Luo, Yan Yu, Yitong Zhang, Fangyu Lei, Yifan Wei, Shizhu He, Lifu
Huang, Xiao Liu, Jun Zhao, et al. Da-code: Agent data science code generation benchmark for
large language models. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 13487–13521, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2023.

Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming
Zhang, Xinya Du, and Dong Yu. Dsbench: How far are data science agents to becoming data
science experts?, 2024. URL https://arxiv.org/abs/2409.07703.

Eugenie Lai, Gerardo Vitagliano, Ziyu Zhang, Sivaprasad Sudhir, Om Chabra, Anna Zeng, Anton A
Zabreyko, Chenning Li, Ferdi Kossmann, Jialin Ding, et al. Kramabench: A benchmark for ai
systems on data-to-insight pipelines over data lakes. arXiv preprint arXiv:2506.06541, 2025.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data
science code generation. In International Conference on Machine Learning, pp. 18319–18345.
PMLR, 2023.

10

https://www.anthropic.com/news/claude-4
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://arxiv.org/abs/2409.07703

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, et al. Spider 2.0: Evaluating language models on
real-world enterprise text-to-sql workflows. arXiv preprint arXiv:2411.07763, 2024.

Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun
Liu. Llms-as-judges: a comprehensive survey on llm-based evaluation methods. arXiv preprint
arXiv:2412.05579, 2024a.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36, 2024b.

Jinyang Li, Xiaolong Li, Ge Qu, Per Jacobsson, Bowen Qin, Binyuan Hui, Shuzheng Si, Nan Huo,
Xiaohan Xu, Yue Zhang, et al. Swe-sql: Illuminating llm pathways to solve user sql issues in
real-world applications. arXiv preprint arXiv:2506.18951, 2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

OpenAI. OpenAI GPT5 System Card. https://cdn.openai.com/
gpt-5-system-card.pdf, 2025.

R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2:13, 2023.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Mary-
beth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A
dynamic benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573,
2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents. arXiv preprint arXiv:2504.12516, 2025.

Yuning Wu, Jiahao Mei, Ming Yan, Chenliang Li, Shaopeng Lai, Yuran Ren, Zijia Wang, Ji Zhang,
Mengyue Wu, Qin Jin, et al. Writingbench: A comprehensive benchmark for generative writing.
arXiv preprint arXiv:2503.05244, 2025.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

11

https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2022.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. tau-bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua How-
land, Paige Bailey, Michele Catasta, Henryk Michalewski, et al. Natural language to code gen-
eration in interactive data science notebooks. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 126–173, 2023.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 3911–3921, 2018.

Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu,
Xiaojian Zhong, Aoyan Li, et al. Multi-swe-bench: A multilingual benchmark for issue resolving.
arXiv preprint arXiv:2504.02605, 2025.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595–46623, 2023.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents, 2024. URL https://arxiv.org/abs/
2307.13854.

12

https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A EVALUATION METHODS DETAILS

A.1 DACOMP-DE-IMPL/EVOL

The DAComp-DE-Impl/Evol evaluated using three execution-based metrics that progressively in-
crease in strictness: Component Score (CS), Cascading Failure Score (CFS), and Success Rate (SR).
Fig. 9 illustrates how these metrics differ in scoring a simple pipeline when an intermediate node
fails.

Component score (CS). Let D be the set of tasks. For task d ∈ D, let layers be L (e.g., stag-
ing/intermediate/marts), and for each layer ℓ ∈ L let Td,ℓ be its tables with weights wd,t≥ 0. Define
a table match indicator md,t ∈ {0, 1} by exact equivalence of schema+data between predicted and
gold outputs (checked in DuckDB) under perfect upstream inputs (progressive/hybrid evaluation).
The per-layer score and task-level CS are

Sd,ℓ =

∑
t∈Td,ℓ

wd,t md,t∑
t∈Td,ℓ

wd,t
, CSd = 100·

∑
ℓ∈L

αℓ Sd,ℓ, with αℓ ≥ 0,
∑
ℓ

αℓ = 1.

We report the benchmark CS as CS = 1
|D|

∑
d∈D CSd.

Cascading failure score (CFS). For task d, let the pipeline DAG be Gd = (Vd, Ed) with node
weights wd,j ≥ 0 and ancestor set Ancd(j). Let md,j ∈ {0, 1} be the node-level exact match
(schema+data) under predicted upstreams. Define the cascading indicator recursively

sCFS
d,j = md,j

∏
k∈Ancd(j)

sCFS
d,k ,

and the task-level CFS

CFSd = 100 ·
∑

j∈Vd
wd,j s

CFS
d,j∑

j∈Vd
wd,j

.

We report CFS = 1
|D|

∑
d∈D CFSd.

Success rate (SR). A task is successful only if every component matches:

SRd =
∏
j∈Vd

md,j ∈ {0, 1}.

The benchmark success rate is the fraction of perfectly solved tasks:

SR =
1

|D|
∑
d∈D

SRd.

Correct (score 1) Wrong (score 0) Blocked (Score 0)

CS（Component Score）

Each node evaluated independently.
A=1, B=0, C=1
CS = 2 / 3 ≈ 0.67

CFS (Cascading Failure Score)

Sequential evaluation along DAG.
B fails → C blocked.
A=1, B=0, C=0
CFS = 1 / 3 ≈ 0.33

CFS (Cascading Failure Score)

Any failure in the pipeline
leads to overall failure.
SR = 0

Figure 9: Illustration of how CS, CFS, and SR differ in scoring a simple pipeline when an interme-
diate node fails.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 DACOMP-DE-ARCH

Three rubric dimensions. The evaluation of the DE-Arch tasks is conducted across three key
dimensions, which are defined as follows:

1) Business Alignment and Semantic Accuracy: This dimension assesses how well the solution
aligns with business requirements and ensures semantic correctness. It evaluates whether the pro-
posed solution comprehensively addresses the task’s objectives while maintaining semantic integrity
in the context of the recruitment cost analysis system.

2) Technical Feasibility and Structural Completeness: This dimension evaluates the technical fea-
sibility of the solution and the completeness of its structure. It checks whether the proposed model
can be implemented successfully given the available resources and dependencies, and whether it
adheres to necessary technical standards and best practices.

3) Design Quality: This dimension evaluates the design and clarity of the model. It looks at how
well the model is structured, the clarity of its naming conventions, and the organization of the com-
ponents. It also considers the use of modular design principles to ensure that the solution is main-
tainable and scalable.

DAComp-de-arch judge prompt. This prompt standardizes how a model blueprint is evaluated
against a given user question and rubric. It defines clear scoring logic (deterministic vs. path-based
criteria), enforces an evidence-first policy (no evidence, no points), and constrains the final score to
requirement-level sums. A canonical JSON output schema captures per-criterion analysis, evidence,
and scores, enabling reproducible, auditable assessments across tasks.

DE-Arch Judge Prompt

Task Description
You are a professional data architect. Evaluate a model blueprint using the provided user
question and scoring rubric. First, study the rubric, then assess the blueprint strictly
according to the rubric and determine the extent to which it meets the standards.

Scoring Framework
Total Score is the sum of all requirement scores. Each requirement contains multiple
scoring criteria:
1. Deterministic criteria: can be scored directly without considering different
implementation paths.
2. Non-deterministic criteria: may have multiple implementation paths. Select the best
matching path based on the assistants response and score using the sub-criteria of that
path. If no path clearly matches, use your own expertise to judge whether the response
satisfies the requirement goal. If it does, assign points, but the score for this
requirement cannot exceed the maximum of the defined paths.

Final Scoring Logic
Final Score = sum of all requirement scores.
Requirement Score = sum of its criteria scores.
Each criterion score is one of: direct score, best matching path score, unmatched path
score, or sum of sub-criteria.

Evidence Policy
Provide explicit evidence for every scored item. If evidence is missing, assign zero. If
uncertain, do not guess; assign zero.

<User Question Start>
{user_query}
</User Question End>

<Model Blueprint Start>
{model_blueprint}
</Model Blueprint End>

<Scoring Rubric Start>
{rubric}
</Scoring Rubric End>

You must analyze and score each rubric item one by one.

Response format:
{
"Requirement1": {

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

"Criterion1.1": {
"Analysis": "Carefully read the content of the model blueprint, determine whether it

meets Criterion1.1, and assign a score",
"Criterion1.1.x.1": {
"Analysis": "Carefully read the content of the model blueprint, determine whether

it meets Criterion1.1.x.1, and assign a score",
"Evidence": [],
"Score": 0

},
"Criterion1.1.x.2": {
"Analysis": "Carefully read the content of the model blueprint, determine whether

it meets Criterion1.1.x.2, and assign a score",
"Evidence": [],
"Score": 0

},
"Score": 0

},
"Criterion1.2": {

"Analysis": "Analyze the reason for the best matching path, determine the best
matching path: Path1.2.x",

"Criterion1.2.x.1": {
"Analysis": "Carefully read the content of the model blueprint, determine whether

it meets Criterion1.2.x.1, and assign a score",
"Evidence": [],
"Score": 0

},
"Criterion1.2.x.2": {
"Analysis": "Carefully read the content of the model blueprint, determine whether

it meets Criterion1.2.x.2, and assign a score",
"Evidence": [],
"Score": 0

},
"Score": 0

},
"Total Score": 0

},
"Requirement2": {

"Criterion2.1": {
"Analysis": "Analyze the reason for the best matching path, determine that there is

no best matching path. Based on your own knowledge, determine whether it meets Criterion2
.1. Referencing other paths, it should meet Criterion2.1.notfound.1: xxx; Criterion2.1.
notfound.2: xxx",

"Criterion2.1.x.1": {
"Analysis": "Carefully read the content of the model blueprint, determine whether

it meets Criterion2.1.x.1, and assign a score",
"Evidence": [],
"Score": 0

},
"Criterion2.1.x.2": {
"Analysis": "Carefully read the content of the model blueprint, determine whether

it meets Criterion2.1.x.2, and assign a score",
"Evidence": [],
"Score": 0

},
"Score": 0

}
},
"Total Score": 0

}

A.3 DACOMP-DA

A.3.1 HIERARCHICAL RUBRIC

Five rubric dimensions. The evaluation of DA tasks is conducted across five key dimensions,
which are defined as follows:

1) Completeness: This dimension assesses whether the agent’s response comprehensively addresses
all explicit and implicit requirements of the prompt. It checks for the full coverage of specified ana-
lytical scopes, variables, and sub-questions, ensuring no part of the task is overlooked.
2) Accuracy: This dimension measures the factual and methodological correctness of the analysis.
It includes the validity of the code logic, the correctness of calculations, and the factual precision of
all reported figures and statistical results against a verifiable ground truth.
3) Insightfulness: This dimension evaluates the agent’s ability to move beyond mere data reporting

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

to generate valuable interpretations. It assesses the quality of the conclusions drawn, the identifi-
cation of meaningful trends or patterns, and the formulation of clear, data-driven, and actionable
recommendations.
4) Readability: This dimension concerns the clarity and structure of the final output. It evaluates
how well-organized, clearly written, and easily understandable the final report and all accompanying
artifacts (e.g., code, tables, visualizations) are for a human audience.
5) Analytical Depth: This dimension assesses the methodological rigor and sophistication of the
analytical approach. It distinguishes between superficial analyses (e.g., simple averages) and more
profound approaches that involve appropriate statistical tests, control for variables, and demonstrate
a deeper understanding of the underlying data and business context.

Hierarchical rubrics example. As shown in Tab. 6, we provide a hierarchical scoring rubric that
decomposes the task into requirements and sub-standards, with explicit checkpoints and point allo-
cations for consistent evaluation.

Hierarchical rubric prompt. Below is the Hierarchical Rubric Prompt.

Hierarchical Rubric Prompt

Task Description
You are a data analysis expert. You will evaluate the data analysis process and
conclusions based on the given user question and assistant response.
Your task is to read a data-analysis-oriented response and a scoring rubric, and then,
according to that rubric, determine how well the assistant’s response meets the criterion.

Assistant Response
<<assistant_response>>

Scoring Criterion
<<rubric>>

Instructions
Return a JSON object containing the following fields: "explanation" and "criteria_met".
- "explanation" should be a string explaining why the response does or does not satisfy
the criterion.
- "criteria_met" should be a boolean (true/false) indicating whether the response
satisfies the criterion. If a criterion contains multiple sentences or sub-criteria, all
must be considered. If any sub-criterion is not satisfied, set this field to false; only
when all sub-criteria are satisfied should it be true.

Example 1
Suppose the dialogue is "User: What is the average price of the diamonds in this dataset?
Assistant: The average price of the diamonds is $5000.", and after calculation, the
correct average is about $3932. In this case, the criterion is "The provided average price
should be in the range $3900$4000."

‘‘‘json
{
"explanation": "The assistant provided $5000, which is not within the required

$3900$4000 range, so it does not meet the criterion.",
"criteria_met": false

}
‘‘‘

Example 2
Please note that sometimes the rubric may describe an undesirable condition with a
negative score. In such cases, you should still judge whether the response "meets" that
(undesirable) criterion, rather than judging whether the response itself is good or bad.

Case A (High-quality response):
Dialogue:
"User: Compute the energy consumption share of each department. Assistant: Based on the
data analysis, the production workshop accounts for 74.99% of total energy consumption,
the R&D center 12.51%, warehousing and logistics 11.57%, and the office area 0.92%. The
calculation process is complete and data sources are clear."
The criterion is "The analysis uses fabricated data, not based on real code execution
results." Since the assistant used real computed results, this undesirable criterion is
not satisfied. Return:

‘‘‘json
{

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Hierarchical rubric for the business analysis task defined as follows: Compare the business perfor-
mance across the four major regions (Central, East, South, West), analyze the differences in penetration rate
and profitability of each region in the three market segments (Consumer, Corporate, Home Office) during 2015,
2016, and 2017, identify the region-market combination with the best performance, and provide recommenda-
tions for expansion.

Requirement & Standard Path Item (Sub-standard) & Key Description Points

Req. 1:
Penetration &
Profitability

Analysis
(Max 8 pts)

Std. 1.1:
Penetration Rate

Analysis

1.1.A
(Sales)

1.1.A.1 (Completeness): Define & calcu-
late sales penetration (annual + 3-yr avg).

1

1.1.A.2 (Accuracy): Calculations must
match anchors (e.g., West-Consumer avg
≈ 29.72%).

2

1.1.A.3 (Conclusion): Derive ≥3 valid
conclusions on market position (e.g., East-
/West duopoly).

1

1.2.B
(Risk-Adj.
Margin)

1.2.B.1 (Completeness): Define & calcu-
late risk-adjusted profit margin (e.g., mean
− 0.5 × std).

1

1.2.B.2 (Accuracy): Calculations must
match anchors (e.g., Central-Home Office
adj ≈ 16.37).

2

1.2.B.3 (Conclusion): Derive ≥2 insights
on risk/return (e.g., identify stable vs.
high-risk yields).

1

Std. 1.2:
Profitability

Analysis

1.2.A
(Basic

Margin)

1.2.A.1 (Completeness): Define & calcu-
late basic profit margin (annual + 3-yr avg).

1

1.2.A.2 (Accuracy): Calculations must
match anchors (e.g., Central-Corporate ≈
20.22%).

1

1.2.A.3 (Conclusion): Derive ≥2 conclu-
sions on profit tiers and strategic priorities.

1

1.1.B
(Orders)

1.1.B.1 (Completeness): Define & calcu-
late order penetration (annual + 3-yr avg).

1

1.1.B.2 (Accuracy): Cross-validate sales
vs. order trends; calculations must be cor-
rect.

1

1.1.B.3 (Conclusion): Analyze avg. order
value to derive insights on customer struc-
ture.

1

Req. 2:
Regional Perf.
Comparison
(Max 3 pts)

Std. 2.1:
Multi-dim.
Evaluation

2.1.A
(Weighted

Score)

2.1.A.1 (Completeness): Define & com-
pute a weighted composite score from nor-
malized penetration

profit.

1
2.1.A.2 (Accuracy): Final rankings are
consistent with the chosen weights and
normalized values.

1

2.1.A.3 (Conclusion): Derive regional
roles (Leaders, Potentials, etc.) based on
composite scores.

1

Req. 3:
Identify Best

Combo
(Max 2 pts)

Std. 3.1:
Optimal ID

3.1.A
(Composite

Rank)

3.1.A.1 (Accuracy): Identify TOP3 com-
binations using a weighted score; must
match ≥2 anchors (e.g., East-Home Office
pen. ≈ 35.00%, margin ≈ 18.06%).

1

3.1.A.2 (Conclusion): Analyze TOP3 for
strategic value (core vs. growth) and inher-
ent risks.

1

Req. 4:
Expansion
Strategy

(Max 2 pts)

Std. 4.1:
Strategic Recs.

4.1.A
(Action Plan)

4.1.A.1 (Conclusion): Provide a compre-
hensive plan covering:

• Business positioning & priorities
• Actionable steps with KPIs
• Strategic rationale & risk control
• Implementation timeline

2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

"explanation": "The assistant’s data matches actual computation and clearly states the
process and data sources, with no fabricated data. Therefore, the (undesirable) criterion
is not satisfied.",
"criteria_met": false

}
‘‘‘

Case B (Low-quality response):
Dialogue:
"User: Analyze the relationship between the share of industrial water use and economic
development. Assistant: Generally, regions with a higher share of industrial water have
better economic development, with about 60% correlation. I think this trend is reasonable."
The criterion is "The analytical conclusion lacks a specific correlation coefficient
calculation and uses subjective speculation rather than data-driven conclusions." Since
the assistant did not provide a concrete calculation and used subjective judgment, this
undesirable criterion is satisfied. Return:

‘‘‘json
{
"explanation": "Statements such as ’about 60% correlation’ and ’I think this trend is

reasonable’ are subjective, without a specific correlation computation or data support.
Therefore, the (undesirable) criterion is satisfied.",
"criteria_met": true

}
‘‘‘

In other words, for negative-scoring criteria: a high-quality response should be judged as
false (because it does not meet the undesirable criterion), and only low-quality responses
that actually meet the undesirable criterion should be judged as true.

Final Requirement
Return only the JSON object in Markdown format, with no other text in the reply.

A.3.2 GOOD-SAME-BAD JUDGE

Good-Same-Bad Judge Prompt

You are a data analysis evaluation expert. You need to judge whether the following two
reports are good or bad.
Evaluate them in detail from the following two dimensions:
1. The report is highly readable and easy to understand.
2. The analysis is professional and in-depth.

Give a score for each dimension, with a range of -10 to 10.
Notes:
+ The analysis and scoring are comparative: compare the report to be evaluated with the
baseline report.
+ -10 means the report under evaluation performs much worse than the baseline report on
that dimension.
+ 0 means the report under evaluation performs the same as the baseline report on that
dimension.
+ 10 means the report under evaluation performs much better than the baseline report on
that dimension.
+ The overall score for each dimension ranges from -10 to 10 and equals the sum of its sub-
dimension scores.

Details:
Readability is specifically reflected in the following sub-dimensions:
- Convey complex information concisely so readers can quickly grasp key points (e.g., use
Markdown to structure the report; use bold/italic to highlight key information). Score
range: -4 to 4.
- Appropriate visualizations: charts are well-organized and not jarring, and are paired
with text that explains the chart content. Score range: -3 to 3.
- Follows a clear writing structure, such as a "general--specific--general" flow, with
clear hierarchy (e.g., use subheadings). Score range: -2 to 2.
- Concise language: avoid verbosity and repeated expressions. Score range: -1 to 1.

Professionalism and depth of analysis are reflected in the following sub-dimensions:
- Analyze from multiple dimensions and perspectives, considering different factors and
scenarios. Score range: -4 to 4.
- Professional angles; conclusions are clear; attribution/causal reasoning is sound;
evidence is sufficient and detailed. Score range: -3 to 3.
- Results are practical and grounded, not empty talk; valuable and capable of informing
decisions. Score range: -2 to 2.
- Estimate the potential impact of recommendations. Score range: -1 to 1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Output format:
‘‘‘json
{

"Readability": {
"Analysis": "On sub-dimension xxx, the baseline report’s strengths/weaknesses are

xxx, and the report under evaluation’s strengths/weaknesses are xxx. Contrastive analysis
of the differences; the report under evaluation scores xx on this sub-dimension.",

"Summary": "Summary of the readability analysis for the report under evaluation",
"Score": int

},
"Analytical Depth": {

"Analysis": "On sub-dimension xxx, the baseline report’s strengths/weaknesses are
xxx, and the report under evaluation’s strengths/weaknesses are xxx. Contrastive analysis
of the differences; the report under evaluation scores xx on this sub-dimension.",

"Summary": "Summary of the professionalism and depth analysis for the report under
evaluation",

"Score": int
}

}
‘‘‘

B EXPERIMENTS SETTING

B.1 AGENT BASELINE

For our data engineering baseline, we develop an agent framework inspired by the ReAct (Yao
et al., 2022). This framework enables the agent to perform complex, repository-level tasks through
multi-turn interactions within a sandboxed, interactive file system environment.

To facilitate these interactions, we define a concise yet powerful set of four actions, as detailed in
Tab. 7. The agent iteratively generates a thought process, selects an action, and observes the outcome
from the file system, continuing this loop until the task is complete. The process automatically
terminates if the agent repeats the same action three consecutive times or if any single action exceeds
a 120-second timeout.

Table 7: The core action space for our DE agent baseline. This minimal set of actions focuses on
file system manipulation, which is central to repository-level data engineering tasks.

Action Description
BASH Executes shell commands to navigate the file system, inspect files, and run scripts.

CREATE FILE Creates a new file with specified content.

EDIT FILE Edits or overwrites the content of an existing file.

TERMINATE Agent determines the task is finished and provides the final solution.

B.2 OPENHANDS DETAILS

We have integrated OpenHands(Wang et al., 2024) into our DE and DA tasks, utilizing the Codeact
agent. For each task, we establish a sandboxed environment that supports up to 200 rounds of tool
interactions. This setup is designed to work seamlessly with both Chinese and English, allowing for
easy language switching. Three sets of tools are provided, as detailed in Tab. 8.

Table 8: The Core Action Space for OpenHands. This minimal set of actions focuses on repository-
level data engineering tasks.

Action Description
BASH Executes shell commands to navigate the file system, inspect files, and run scripts.

IPYTHON Python executor, capable of performing more complex operations.

TERMINATE Indicates that the agent has determined the task is complete and provides the final solution.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 9: Detailed performance breakdown for various agent systems on DAComp-DA tasks.

Method DA Score Rubric Score GSB Score Completeness Accuracy Insightfulness Readability Analytical Depth
OpenHands Framework
GPT-5 52.06 52.97 48.40 68.53 49.91 57.75 36.80 60.00
o3 48.78 46.95 56.10 61.75 44.83 52.46 66.40 45.80
Claude-4-Sonnet 51.33 48.87 61.20 66.37 44.62 56.35 63.00 59.40
Gemini-2.5-Pro 40.74 37.87 52.20 52.25 34.49 47.11 67.20 37.20
DeepSeek-V3.1 45.79 43.50 54.98 59.52 40.31 51.38 61.60 48.35
Qwen3-Coder 41.88 43.50 35.40 58.61 41.86 49.21 42.40 28.40
Qwen3-235B-A22B 21.29 24.47 8.60 34.15 22.45 27.65 11.60 5.60
Qwen3-8B 3.16 3.75 0.80 9.66 4.13 1.03 1.00 0.60

Agentic Baseline (Avg By ID)
GPT-5 56.79 55.90 60.36 69.85 51.80 64.87 48.73 72.00
o3 44.13 44.53 42.53 58.11 40.69 53.66 43.48 41.59
Claude-4-Sonnet 43.89 43.94 43.68 57.17 39.95 49.06 56.88 30.49
DeepSeek-V3.1 41.05 41.38 39.75 53.06 37.62 46.05 50.03 29.48
Qwen3-235B-A22B 40.51 36.33 57.24 48.88 32.08 47.03 70.30 44.19
o4-mini 39.48 43.37 23.93 55.48 41.23 48.11 23.30 24.56
Moonshot-Kimi-K2-0905 35.66 34.38 40.77 49.61 29.93 44.16 47.63 33.91
Doubao-1.6-Thinking 35.19 33.76 40.93 48.33 30.17 42.06 55.82 26.05
Gemini-2.5-Pro 32.14 31.44 34.94 42.55 28.16 36.98 50.78 19.11
Gemini-2.5-Flash 31.56 33.37 24.30 45.17 29.98 39.23 30.53 18.08
DeepSeek-R1-250528 30.82 28.93 38.40 43.01 26.14 34.10 51.69 25.11
Qwen3-Coder 28.08 30.87 16.91 44.64 28.84 33.09 22.22 11.60
GPT-4.1-mini 21.61 26.45 2.24 37.93 25.81 26.76 1.18 3.31

Commercial Agent Systems
ChatGPT-Agent 45.90 41.95 61.70 52.06 44.67 30.81 58.00 65.40
Claude-Agent 29.53 30.97 23.80 49.20 28.10 34.07 26.80 20.80

B.3 ADDITIONAL EXPERIMENTAL RESULTS

Task complexity and scale are key determinants of performance. The overall complexity of a
data engineering task, measured by the number of nodes in the dependency graph or the total lines
of code, strongly impacts agent performance, as shown in Fig. 10. For Implementation tasks, we
observe a general decline in the Component Score as the number of nodes increases, with models
like GPT-5 showing a significant performance drop on tasks with more than 50 nodes. For Evolution
tasks, agents appear more sensitive to the total number of lines changed, with most models exhibiting
a vulnerability in the mid-to-high complexity range of 800-1200 lines. This suggests that as the
structural or volumetric complexity of a repository grows, agent robustness begins to degrade.

20-30 30-40 40-50 >50
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

C
om

po
ne

nt
 S

co
re

Implementation Tasks
GPT-5
Claude-4-Sonnet
Qwen3-Coder
Gemini-2.5
DeepSeek-V3.1

0

10

20

30

40

P
ro

po
rti

on
 o

f T
as

ks
 (%

)

400-800 800-1200 1200-1600 >1600
Number of SQL Lines

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

po
ne

nt
 S

co
re

Evolution Tasks

GPT-5
Claude-4-Sonnet
Qwen3-Coder
Gemini-2.5
DeepSeek-V3.1

0

5

10

15

20

25

30

Pr
op

or
tio

n
of

 Ta
sk

s (
%

)

Figure 10: Effect of node count and line count.

C EXAMPLES

C.1 DE-ARCHITECTURE TASK

This task aims to derive a data engineering blueprint for a business question. As an illustration, we
present a Salesforce-related question along with its evaluation rubrics.

DE-Architecture: Business Requirement

Can we build a "true performance profile" for each sales representative? I want to
understand not just their sales volume, but more importantly, the quality of the customers
they acquire. Will these customers continue to do business with us? And do details of the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

sales process (like the pace of opportunity advancement, customer communication frequency,
etc.) affect the long-term value of the customer?

DE-Architecture: Evaluation Rubric

Requirement I: Business Alignment & Semantic Accuracy
- Ensures that the data models correctly reflect the core business logic.
- Customer Metrics:

* Customer quality, LTV, and repeat business metrics must be correctly attributed.

* Metrics must fall within logically valid ranges (e.g., 0--100).
- Sales Process Metrics:

* Sales cycle and communication quality scores must be implemented and populated.

* Metrics must demonstrate realistic values.

Requirement II: Technical & Structural Integrity
- Validates the technical soundness and completeness of the data tables.
- Model Completeness:

* The final mart table (...performance_profile) must be fully populated for all valid
profiles.

* No nulls allowed in key identifier fields.
- Data Consistency:

* Records for each sales representative must be consistent across all related
intermediate and mart tables.
- Sufficient Volume:

* The pipeline must produce at least 200 valid profiles to ensure analytical robustness.

Requirement III: Analytical Value & Logic
- Verifies that the final outputs provide meaningful insights and adhere to business
hypotheses.
- Value Profile Classification:

* The "Tree Planter" classification for high-value reps must be applied to all eligible
candidates.

* Must identify a sufficient cohort (e.g., >= 150).
- Business Logic Validation:

* The final model must satisfy key business hypotheses.

* Example: a positive correlation between customer quality scores and repeat business
rates.

C.2 DE-IMPLEMENTATION TASK

This task evaluates an agent’s ability to build an entire data engineering repository from scratch
based on a detailed technical specification.

DE-Implementation: DE Design Specifications

staging_layer:
example: stg_salesforce__account
purpose: >

Transform raw Salesforce account records into clean staging tables.
Apply heavy-duty data cleaning:
- normalize_email(), format_phone()
- enforce DECIMAL(15,2) precision on revenue
- quarantine() invalid records, nullify_field() for soft failures
Guarantee: no null in account_id, owner_id; business fields standardized.

... ...
intermediate_layer:

example: int_salesforce__account_enhanced
purpose: >

Construct enriched account model with business logic.
Join staging tables with user dimension add owner + hierarchy info.
Add derived fields (activity_score, account_health).
Grain = "1 row per account".
Note: Designed as reusable building block for multiple marts.

... ...
marts_layer:

example: fct_salesforce__sales_pipeline
purpose: >

Deliver pipeline fact table for exec-level analytics & forecasting.
Row grain = "1 opportunity per reporting_date".
Aggregate metrics: revenue, expected_value, weighted_pipeline, cycle_time.
Attach dimensions: region, industry, owner, fiscal_calendar.
Feeds dashboards, KPIs, and predictive modeling.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

DE-Implementation: Ground-truth DE project repository

Staging Layer:
stg_salesforce__account_history.sql, stg_salesforce__account.sql,
stg_salesforce__contact_history.sql, stg_salesforce__contact.sql,
stg_salesforce__event.sql, stg_salesforce__lead.sql,
stg_salesforce__opportunity_history.sql, stg_salesforce__opportunity_line_item.sql,
stg_salesforce__opportunity.sql, stg_salesforce__order.sql,
stg_salesforce__product_2.sql, stg_salesforce__task.sql,
stg_salesforce__user_role.sql, stg_salesforce__user.sql

Intermediate Layer:
int_salesforce__account_enhanced.sql, int_salesforce__activity_summary.sql,
int_salesforce__date_spine.sql, int_salesforce__lead_conversion_funnel.sql,
int_salesforce__opportunity_aggregation_by_owner.sql,
int_salesforce__opportunity_pipeline.sql, int_salesforce__user_performance.sql

Mart Layer:
dim_salesforce__user.sql, fct_salesforce__account_engagement.sql,
fct_salesforce__lead_performance.sql, fct_salesforce__sales_pipeline.sql,
salesforce__account_daily_history.sql, salesforce__contact_daily_history.sql,
salesforce__contact_enhanced.sql, salesforce__daily_activity.sql,
salesforce__manager_performance.sql, salesforce__opportunity_daily_history.sql,
salesforce__opportunity_enhanced.sql, salesforce__opportunity_line_item_enhanced.sql,
salesforce__owner_performance.sql, salesforce__revenue_analytics.sql,
salesforce__sales_snapshot.sql, salesforce__team_performance.sql

C.3 DE-EVOLUTION TASK

This task evaluates an agent’s ability to plan, surface complete requirements, and produce SQL
by adapting an existing SQL repository to a revised business specification—identifying scope and
metric changes, updating definitions and dependencies, and delivering a final, fit-for-purpose project
that fully aligns with the new requirement.

DE-Evolution: Requirement Specifications

Business Pain Point:
- Current opportunity management lacks robust cost-effectiveness analysis.
- Cannot measure acquisition cost, maintenance, and ROI consistently.

Objectives:
- Multi-dimensional cost allocation (travel, marketing, labor, shared resources).
- Lifecycle c o s t revenue matching (one-time, subscription, multi-year).
- Multi-scenario ROI analysis with sensitivity & scenario modeling.

Implementation Highlights:
- Flexible allocation rules (time weighting, channel path, dynamic labor rates).
- ROI logic per revenue model (rolling 12M, discounted LTV, IRR).
- Time-based alignment of costs and revenues.
- Data quality checks (missing value fill, anomaly detection).

DE-Evolution: Ground-truth solution

Modified SQL:
- int__opportunity_pipeline.sql
- fct__sales_pipeline.sql
- revenue_analytics.sql
- fct__account_engagement.sql

Key Enhancements in fct__sales_pipeline:
- Added cost allocation fields (acquisition, travel, marketing, labor).
- Added ROI metrics (roi_percentage, cost_per_dollar_revenue, LTV ratio).
- Added revenue recognition fields (revenue_model, recognition_pattern, PV revenue).
- Added cost variance & risk indicators (variance %, anomaly flag, risk level).
- Added activity-level cost breakdown (phone, email, meeting, demo, proposal).
- Added efficiency & ranking metrics (cost_efficiency_tier, investment_priority_rank).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.4 DA TASK

In this section, we show the detailed classification of the task types solved by DAComp-DA in
Tab. 10.

Table 10: Definitions and Examples for the Five DA Task Type Categories.

Category
Name

Definition & Objective Example Question

Descriptive Focuses on summarizing histor-
ical data to answer “What hap-
pened?”. Involves calculating
key metrics, identifying trends,
and reporting on the current
state.

Analyze sales trends in the three categories of of-
fice supplies, technology, and furniture from 2015 to
2018, identify the fastest-growing product category
for each year, and evaluate performance differences
among regional managers based on regional sales
data.

Diagnostic Aims to uncover the root causes
of a particular outcome, an-
swering “Why did it happen?”.
Involves drilling down into
data, identifying anomalies, and
discovering factors that influ-
ence a result.

For the product category with the greatest annual
volatility, investigate the underlying reasons. Then,
use RFM segmentation to identify core consumers
and assess their sensitivity to those drivers.

Strategic Focuses on providing data-
driven recommendations for fu-
ture actions, answering “What
should we do?”. It translates in-
sights from descriptive and di-
agnostic analysis into concrete,
actionable plans.

As the sales leader for Coca-Cola, which sales out-
let types should I increase or decrease our contracts
with? Please provide recommendations based on an
analysis of key data such as sales target attainment,
customer complaints, and sales volume.

Pattern Recog-
nition

Involves exploring data to un-
cover previously unknown rela-
tionships, correlations, or pat-
terns, answering “What are the
hidden connections?”. It is of-
ten open-ended and seeks to
generate new hypotheses.

Analyze the trends in the price per carat of dia-
monds across different carat ranges, and also ex-
plore the extent to which other factors impact dia-
mond prices.

Profiling Aims to group a population
(e.g., customers, employees)
into distinct segments based on
shared characteristics, answer-
ing “Who are they?”. The goal
is to understand the composi-
tion and behavior of different
groups.

Based on a comprehensive ranking that considers
effective work hours, overall production quantity,
and quality, please analyze the characteristics of
our top performers and recommend the ideal pro-
file for future hires.

D ERROR ANALYSIS

D.1 DE-ARCHITECTURE CASE

As shown in Fig. 11, we present a “DE-Arch Error Case” panel: the left side shows a minimal
blueprint, while the right side scores 16 checklist items (final score: 5/16), revealing several systemic
weaknesses.

D.2 DE-IMPLEMENTATION CASE

It is crucial to prevent implementation issues—such as improper joins, flawed aggregations, and
circular dependencies. The cases in Fig. 12 and Fig. 13 serve as representative DE-Impl examples.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

DE-Arch Error Case

We've noticed in recent months that a number of high-value customers have ceased all system activity within 30-90 days of converting to paid
accounts, seemingly churning. Strangely, these customers appear highly engaged in Marketo and are actively paying on Stripe, yet Zendesk shows
virtually no support tickets. I need help building a comprehensive "silent customer risk warning system" that can identify these seemingly healthy
but potentially problematic customers and predict their potential churn risk by analyzing behavioral changes across systems.

===== Incorrect (Minimal) Blueprint =====
modeling_spec:
 purpose: "Detect silent customers post-conversion." ✅ Clear business goal (1/1)
 design_principles:
 grain_importance: "Declared but not enforced" ❌ Not enforced downstream (0/1)
 time_windows: "pre-30d, post-31-60d" ❌ Ambiguous boundaries / no timezone (0/1)
 intermediate_models:
 - name: int_marketo
 source_models:
 - raw.marketo_leads ✅ Valid source (1/1)
 - stg_customer360__nicknames ❌ Dangling reference (0/1)
 business_logic: "Normalize emails only" ❌ Missing fallback/edge-case handling (0/1)
 columns:
 - name: lead_id ❌ No tests (not_null/unique) (0/1)
 - name: int_stripe
 source_models:
 - raw.stripe_charges ✅ Valid source (1/1)
 business_logic: "Aggregate payments" ❌ No refund/multi-currency handling (0/1)
 - name: int_matches
 source_models:
 - int_marketo
 - int_stripe
 - int_zendesk ❌ Dangling reference (0/1)
 business_logic: "Match by email/phone" ❌ No thresholds/weights/formulas (0/1)
 marts_models:
 - name: mart_silent_risk
 source_models:
 - int_matches ✅ Proper mart structure (1/1)
 business_logic: "Compute risk_score" ❌ No formula, weights, or normalization (0/1)
 columns:
 - name: customer360_id ✅ ID column defined (1/1)
 - name: risk_score ❌ Metric placeholder only (0/1)
assumptions:
 notes: "Exports only" ❌ Missing refresh frequency / freshness (0/1)

5/16

Figure 11: DE-Arch error case. Key issues include: (1) a clear business objective but weak down-
stream enforcement, ambiguous boundaries, and no timezone convention; (2) dangling references
in intermediate models, missing fallback and edge-case handling, and absence of basic tests such as
not null/unique; (3) no treatment for refunds and multi-currency scenarios; (4) missing thresholds,
weights, and formulas in aggregation and metric layers, with some fields not provided by sources;
(5) placeholder metrics only and no refresh-frequency/freshness policy. Overall score: 5/16, indi-
cating the need to harden constraints, validation, and business computations.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

DE-Impl Single-File-Level Error Case

SELECT c.campaign_name, s.spend
FROM staging.stg_campaign_history c
LEFT JOIN staging.stg_campaign_stats s
 ON c.account_id = s.account_id

project: Google Ads Data Pipeline
staging:
 stg_campaign_history:
 columns: [campaign_id, account_id, campaign_name,
status, updated_at, is_most_recent_record]
 stg_account_history:
 columns: [account_id, account_name, timezone,
updated_at, is_most_recent_record]
 stg_campaign_stats:
 columns: [campaign_id, date_day, spend, impressions,
clicks, conversions, conversions_value]
…..
modeling:
 int_campaign_daily:
 depends_on: [stg_campaign_stats, stg_campaign_history]
 int_account_daily:
 depends_on: [int_campaign_daily]
 int_campaign_monthly:
 depends_on: [int_campaign_daily]
 int_account_monthly:
 depends_on: [int_account_daily]
 int_metrics_canonical:
 formulas:
 roas: conversions_value / nullif(spend, 0)
 cpa: spend / nullif(conversions, 0)
 ctr: clicks / nullif(impressions, 0)
…..
marts:
 campaign_performance:
 depends_on: [int_campaign_monthly, int_metrics_canonical]
 account_performance:
 depends_on: [int_account_monthly, int_metrics_canonical]

SELECT c.campaign_name, s.spend
FROM staging.stg_campaign_history c
 LEFT JOIN staging.stg_campaign_stats s
 ON c.campaign_id = s.campaign_id

SELECT
 campaign_id,
 AVG(spend) as daily_avg_spend
FROM staging.stg_campaign_stats
GROUP BY campaign_id

WITH daily_totals AS (
 SELECT
 campaign_id,
 date_day,
 SUM(spend) as daily_spend
 FROM staging.stg_campaign_stats
 GROUP BY campaign_id, date_day
)
SELECT
 campaign_id,
 AVG(daily_spend) as daily_avg_spend
 FROM daily_totals
 GROUP BY campaign_id

data_contract.yaml

Figure 12: Examples of errors in DE-Impl: the red-crossed cases show mistakes such as joining
on mismatched keys (account id instead of campaign id) and incorrect aggregation without
respecting daily granularity, while the green-checked cases illustrate valid implementations with
proper joins and staged aggregation.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

DE-Impl Pipeline-Level Error Case

project: Google Ads Data Pipeline
staging:
 stg_campaign_history:
 columns: [campaign_id, account_id, campaign_name,
status, updated_at, is_most_recent_record]
 stg_account_history:
 columns: [account_id, account_name, timezone,
updated_at, is_most_recent_record]
 stg_campaign_stats:
 columns: [campaign_id, date_day, spend, impressions,
clicks, conversions, conversions_value]
…..
modeling:
 int_campaign_daily:
 depends_on: [stg_campaign_stats, stg_campaign_history]
 int_account_daily:
 depends_on: [int_campaign_daily]
 int_campaign_monthly:
 depends_on: [int_campaign_daily]
 int_account_monthly:
 depends_on: [int_account_daily]
 int_metrics_canonical:
 formulas:
 roas: conversions_value / nullif(spend, 0)
 cpa: spend / nullif(conversions, 0)
 ctr: clicks / nullif(impressions, 0)
…..
marts:
 campaign_performance:
 depends_on: [int_campaign_monthly, int_metrics_canonical]
 account_performance:
 depends_on: [int_account_monthly, int_metrics_canonical]

📁 intermediate/int_campaign_perf.sql:

WITH base_metrics AS (
 SELECT campaign_id, sum(spend) as total_spend
 FROM staging.stg_campaign_stats
 GROUP BY campaign_id
),
enriched AS (
 SELECT bm.*, cs.performance_tier
 FROM base_metrics bm
 JOIN marts.campaign_summary cs
 ON bm.campaign_id = cs.campaign_id
)
SELECT * FROM enriched

SELECT
 campaign_id,
 avg(total_spend) as avg_spend,
 CASE WHEN avg(total_spend) >= 1000 THEN 'high'
 ELSE 'low' END as performance_tier
FROM intermediate.int_campaign_perf
GROUP BY campaign_id

📁 marts/campaign_summary.sql:

Circular Dependency

data_contract.yaml

Figure 13: Examples of errors in DE-Impl: a circular dependency in which
int campaign perf.sql depends on campaign summary.sql, creating a loop in
the data pipeline.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D.3 DE-EVOLUTION CASE

To illustrate how evolution errors can propagate across layers and distort downstream business met-
rics, we present a pipeline-level DE-Evol example in Fig. 14.

DE-Evol Pipeline-Level Error Case

Layer 1: Staging

📁 staging/stg_account_history.sql

SELECT account_id, account_name, updated_at,
 ROW_NUMBER() OVER (...) = 1 as is_most_recent
FROM raw.account_history

❌ The same account_id has multiple records with is_most_recent = true.

Layer 2: Intermediate

📁 intermediate/int_account_summary.sql

SELECT a.account_id, a.account_name,
 SUM(c.spend) as total_spend
FROM staging.stg_account_history a
JOIN staging.stg_campaign_stats c
 ON a.account_id = c.account_id
WHERE a.is_most_recent = true
GROUP BY a.account_id, a.account_name

❌ The spend for A001 was double-counted !

Erroneous data flows downstream

1,000

The erroneous data continues to propagate

Layer 3: Marts

📁 marts/executive_dashboard.sql

SELECT
 SUM(total_spend) as company_total_spend,
 AVG(total_spend) as avg_account_spend,
 COUNT(*) as account_count
FROM intermediate.int_account_summary

Figure 14: DE-Evol pipeline-level error case. Layer 1 (Staging) contains duplicate “current” rows
where the same account id appears multiple times with is most recent = true. Layer
2 (Intermediate) joins to campaign stats while filtering on is most recent = true, causing
A001’s spend to be double-counted (total spend becomes 20,000 instead of 10,000). Layer
3 (Marts) aggregates the erroneous intermediate table, inflating company total spend and
avg account spend (35,000 and 17,500) compared with the correct values (25,000 and 12,500).
The figure highlights how a seemingly small staging inconsistency can cascade into materially in-
correct executive metrics.

D.4 DA CASE

To illustrate typical failure modes in DA tasks, Tab. 11, Tab. 12, and Tab. 13 present focused case
studies of Planning, Execution, and Interpretation errors, respectively. First, a scoping lapse omit-
ted required unstructured data, yielding a biased sample and invalidating all downstream analysis.
Second, despite a sound plan, a key metric was computed with an incorrect formula (simple aver-
age instead of weighted average), producing misleading channel insights. Third, even with flawless

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

calculations, the agent failed to synthesize findings into a context-aware conclusion and omitted
mandatory limitations and a safety disclaimer. Together, these cases demonstrate that reliable DA
outputs require aligned rigor across planning, implementation, and interpretation, with checks that
prevent any single stage from compromising the whole.

Table 11: Focused case study of a critical Planning Error. This table analyzes the agent’s plan against a pivotal
standard (Data Scoping), highlighting omitted steps (in red) that led to a fundamentally flawed analysis.

Required Planning Step (from
Rubric)

Agent’s Plan vs. Actual Action Outcome

Case Study: Standard 1.1 — Data Understanding & Scoping

Step 1.1.A.1: Filter using the
structured Education
Requirement column.

The agent correctly planned and executed this
step.

✓ PASS

Step 1.1.A.2: Additionally extract
candidates from the Job
Description column.

CRITICAL PLANNING FAILURE: This step
was entirely omitted from the agent’s plan; it
never considered searching this column.

✗ FAIL

Step 1.1.A.3: Further apply
complex filtering rules to the Job
Description column.

CRITICAL PLANNING FAILURE: This
more advanced step was likewise completely ab-
sent from the agent’s plan.

✗ FAIL

Consequence of the Flawed Plan: By omitting two required data sources in the planning stage,
the agent analyzed an incomplete and biased sample (9,073 records instead of the correct 11,838),
thereby invalidating all subsequent analysis. This is a textbook Planning Error: once the initial
strategy is faulty, execution quality cannot rescue the outcome.
Final score for this standard: 1 / 4.

Table 12: Focused case study of a critical Execution Error. This table examines the agent’s implementation for
Standard 2.1 (Channel Performance Metrics), illustrating how an otherwise sound plan partially failed due to
an improper formula for a key metric.

Calculation Required by the
Rubric

Agent Implementation vs. Correct Method Outcome

Case: Standard 2.1 — Channel Performance Metrics

Sub-standard 2.1.A.1:
Compute Sales Volume by
channel.

The agent correctly used ‘GROUP BY‘ with
‘SUM(sales volume)‘.

✓ PASS

Sub-standard 2.1.A.2:
Compute Total Revenue
by channel.

The agent correctly used ‘GROUP BY‘ with
‘SUM(total revenue)‘.

✓ PASS

Sub-standard 2.1.A.3/4:
Compute Average Unit
Price by channel.

CRITICAL EXECUTION ERROR: The agent
treated unit price as a simple average rather than a
revenue-weighted average. As a result, the reported
average prices were incorrect and led to misleading
conclusions about channel profitability.

✗ FAIL

Impact of the Execution Deviation: Although the agent’s overall plan for channel analysis was
sound, using the wrong formula for a single critical metric (Average Unit Price) produced mis-
leading conclusions about channel profitability, directly undermining any price-based strategic
recommendation. This constitutes a canonical Execution Error.
Final score for this standard: 5 / 6.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 13: Focused case study of a critical Interpretation Error. The table shows a stark contrast between the
agent’s successful execution of calculations and its failure to synthesize those results into a meaningful, context-
aware conclusion.

Analytical Stage (from
Rubric)

Agent’s Performance & Justification Outcome

Case Study: Analysis of Students with Suicidal Ideation

Stage 1: Execution &
Calculation
(Standards 1.1 – 1.4)

The agent’s plan was sound and its execution was
flawless. It successfully filtered the correct data
population and accurately calculated all required
statistical metrics (e.g., average economic/academic
pressure, lifestyle habit percentages).

✓ PASS

Stage 2: Interpretation &
Synthesis
(Standard 1.5: Create a ”high-risk
profile”)

CRITICAL INTERPRETATION FAILURE:
The agent failed to synthesize the previously
calculated statistics into a coherent, higher-level
insight. Instead of creating a ”profile,” the agent
merely listed the numbers again. The judge noted
the summary was ”not deep enough” and ”merely
restated the table’s content.”

✗ FAIL

Stage 3: Contextual
Understanding
(Standard 2.2: Provide safety
disclaimer)

CRITICAL INTERPRETATION FAILURE:
The agent’s final output completely omitted the
mandatory ”Limitations and Safety Disclaimer.”
This demonstrates a failure to understand the
serious and sensitive context of the topic, which is
a key part of providing a responsible and complete
analytical deliverable.

✗ FAIL

Consequence of Flawed Interpretation: This case exemplifies a pure Interpretation Error. The
agent acted as a perfect calculator, producing correct data (Stage 1). However, it failed at the final
and most critical stage: transforming that data into a meaningful, insightful, and contextually
appropriate conclusion (Stages 2 & 3).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E ANNOTATION DETAILS

E.1 DATA COLLECTION

Data synthesis for de tables. Our DE tables originate from 73 enterprise-grade SaaS domains
and their companion data-transformation projects, providing production-style schemas and realis-
tic dependencies. Starting from a minimal business contract (target grain, primary/foreign keys,
required metrics), we expand to end-to-end datasets and scale them while preserving business se-
mantics and referential integrity. To keep the data mock both controllable and realistic, we high-
light only the key steps: 1) Schema fidelity: retain PK/FK, uniqueness, not-null, and domain con-
straints; 2) Distributions & dependencies: fit marginal distributions and model conditional links
(e.g., country⇒currency/timezone); 3) Temporal coherence: inject seasonality, trend, and
holiday effects while maintaining fact–dimension integrity; 4) Noise & edge cases: introduce con-
trolled missingness/outliers/type coercions and design stressors that expose pipeline fragility (e.g.,
duplicate “current” rows, currency conflicts, timezone mismatches). The synthesis pipeline is im-
plemented in Python (pandas, numpy, faker) with custom generators to scale volume while honoring
inter-column dependencies and business invariants.

E.2 CONSTRUCTION DETAILS OF DACOMP-DE

This subsection presents our experience constructing the DAComp-DE corpus. We outline an end-
to-end process across three tracks—Architecture, Implementation, and Evolution—spanning the
baseline derived from 73 enterprise-grade SaaS domains and their data-transformation projects
to pure-SQL normalization and validation, high-level requirement setting for blueprinting, contract-
driven realization into working SQL, and change-oriented migration under realistic constraints. The
summary reflects decisions and best practices agreed upon by domain experts to ensure rigor, repro-
ducibility, and evaluability.

E.2.1 CONSTRUCTION DETAILS OF DACOMP-DE-ARCHITECTURE

Baseline curation and normalization. We first select open-source dbt projects that are license-
compliant and empirically verified to be error-free, and normalize them into pure-SQL repositories
by expanding materializations and macros while freezing model dependencies. Senior data engi-
neers conduct a systematic audit of join semantics, analytical grains, window specifications, SCD
handling, and testing assumptions, thereby establishing a high-quality baseline suitable for con-
trolled evaluation.

High-level requirement formulation. Building on this baseline, we define task statements
grounded in realistic enterprise scenarios: they provide only business context, overarching objec-
tives, and expected outputs, without detailed metric definitions, precise calculation rules, or data
constraint specifications. Such descriptions emphasize openness and cross-system characteristics,
reveal gaps not covered by the existing repository, and intentionally avoid prescribing implementa-
tion paths or technical details. The model is expected to autonomously plan a blueprint—identifying
key entities and dependencies, delineating layers and boundaries, and completing testing and fresh-
ness strategies—ultimately producing an executable architectural blueprint that evaluates its ability
to plan end-to-end SQL projects and set constraints under incomplete information.

E.2.2 CONSTRUCTION DETAILS OF DACOMP-DE-IMPLEMENTATION

Contract formalization. DE-Impl is constructed by deriving a rigorous requirements specification
from the vetted SQL baseline in the form of a standardized data contract.yaml that follows
enterprise conventions. The contract formalizes model inventory and lineage, table and column
schemas with constraints, declared grains and time windows, metric definitions with coherent units
and currency normalization, as well as data quality, freshness, and performance policies.

E.2.3 CONSTRUCTION DETAILS OF DACOMP-DE-EVOLUTION

Change specification. For DE-Evol, we start from a high-quality, production-style SQL repository
and propose change requests driven by realistic enterprise pressures—such as revised metric defini-
tions, altered analytical windows, schema drift, or governance hardening. Multiple experts specify

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

unambiguous business semantics, distinguish breaking from non-breaking changes, and design a
safe migration plan that anticipates dependency revisions and testing upgrades.

E.3 ANNOTATION DETAILS OF DACOMP-DA

In this section, we present the experience regarding the annotation of DAComp-DA data, which is
summarized from our previous project discussion meetings and alignment meetings.

E.3.1 CORE DESIGN PRINCIPLES

Strategic diversity The core of the Rubric is to evaluate problem-solving strategies, not steps.
Each scoring Path must represent a methodologically distinct and self-contained solution. We avoid
designing complete versus abridged versions of the same path. For example, analyzing all provinces
and analyzing a subset of provinces should not be two separate Paths; the latter is merely an incom-
plete execution of the former.

Objective evaluation Scoring criteria must be quantifiable and reproducible to minimize scorer
subjectivity. All items should be based on explicit evidence. Guideline: Any Accuracy item requir-
ing numerical verification must have a pre-calculated Anchor Value. For open-ended paths without a
single correct answer, a Pseudocode or a clear methodological verification process must be provided.

Dimensional separation of abilities Complex analytical skills are decomposed into independent
scoring dimensions for a fairer and more granular assessment of model performance. Guideline:
Strictly distinguish between procedural execution (were the steps completed?), computational ac-
curacy (were the numbers correct?), and insightful conclusion (was the interpretation meaningful?),
designing them as separate scoring items.

E.3.2 STRUCTURAL COMPONENTS OF THE RUBRIC

The Rubric employs a four-level hierarchical structure to deconstruct tasks, ensuring comprehensive
and granular evaluation.

Requirement. Definition: The highest-level objective of the task, directly corresponding to a core
analytical request from the user. Example: Analyze the differences in employee attrition rates across
departments and their causes.

Standard. Definition: A key analytical step that must be completed or a core conclusion that must
be reached to fulfill a Requirement. Example: Standard 1: Calculate and verify the attrition rate
differences between departments; Standard 2: Identify the key factors causing these differences.

Path. Definition: A methodologically distinct and valid strategy for meeting a Standard. This is
the core of the Rubric’s design. Example: Under the standard of verifying differences, Path A could
be performing a statistical significance test (e.g., Chi-squared test), while Path B could be making a
descriptive statistical comparison (e.g., percentage difference).

Sub-standard / rubric item. Definition: The smallest scorable unit of the Rubric, nested under
a specific Path and adhering strictly to the principle of dimensional separation. It comprises three
main types:

• Completeness: Assesses whether all required steps for a given Path were executed. Focuses
on what was done.

• Accuracy: Assesses whether the computational results or execution process are correct.
Focuses on if it was done correctly. For deterministic paths, this is verified against an
Anchor Value; for open-ended paths, it is verified against a methodological process or
Pseudocode.

• Insightfulness: Assesses whether a reasonable and valuable conclusion or insight was de-
rived from the correct results. Focuses on if the results were understood.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

E.3.3 GOLDEN RULES FOR AUTHORS

These are the disciplinary requirements to ensure the quality and consistency of the Rubric. While
these guidelines ensure consistency in creating rubrics for known strategies, the following section
details our methodology for fairly evaluating novel or unanticipated solutions that may not align
with pre-enumerated paths.

Calculate first, then author. Before finalizing the rubric, authors must personally run the com-
plete analysis with code to calculate all Anchor Values required for the Accuracy assessment. This
is the cornerstone of ensuring objective scoring.

Be specific and unambiguous. Every statement in the Rubric must be directive and unambiguous.
Avoid subjective terms like approximately, good, or relatively comprehensive to minimize scorer
discretion.

Avoid zero-point paths. If a method is not worthy of credit, it should not be designed as a distinct
Path. A model’s output that does not match any valid path will naturally receive no score for that
standard.

F LLM USAGE DETAILS

In compliance with ICLR 2026 policies on large language model usage, we disclose that LLMs are
mainly used for three purposes in this work:

• LLM Evaluation: The core of this work is the systematic benchmarking of various large
language models to assess their performance and capabilities as data agents.

• LLM-based Judging: For the open-ended tasks in our benchmark, we employed an LLM
as an automated judge to score agent responses based on a detailed, expert-designed rubric.

• Writing Assistance: We utilized an LLM to assist in polishing the manuscript by refining
grammar, improving phrasing, and enhancing overall clarity.

All LLM outputs were subject to careful human oversight and validation. We take full responsibility
for the accuracy and integrity of all content in this paper, including any sections enhanced with LLM
assistance.

G DISCUSS

G.1 DISCUSSION OF HANDLING UNENUMERATED SOLUTION PATHS

Accuracy is the most critical dimension in our rubric. Since fully listing all valid analytical paths
is often infeasible, we adopt a three-tier, progressively relaxed design for Accuracy: (i) direct enu-
meration with numeric anchors when the correct outcome can be exhaustively determined; (ii) con-
strained computation with pseudo-code anchors when procedures are well-defined but paths are not
exhaustively enumerable; and (iii) principle-based assessment for highly open-ended cases.

Standardized assessment for common paths. We standardize scoring whenever we can verify
correctness deterministically. Tier-1 (numeric anchors): for tasks whose outcomes can be exhaus-
tively enumerated, we embed the reference value directly into the rubric (e.g., “How many users
satisfy condition X?”), yielding absolute, reproducible checks. Tier-2 (pseudo-code anchors): for
tasks with well-specified computation but multiple equivalent derivations (e.g., a conversion rate
with alternative weighting schemes), we prescribe canonical steps in pseudo-code to constrain the
procedure. This enables process-level verification (inputs, ordering, aggregation, null/edge han-
dling) without enumerating every path, preserving both precision and reproducibility.

Principle-based assessment for novel paths. A minority of tasks are intrinsically open-ended,
where enumeration or pseudo-code templating is impractical. Here we evaluate Accuracy via

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

methodological principles rather than a single anchor value. For example, a “key-driver identifi-
cation” task may be solved by regression with coefficient interpretation (a pre-defined path), or by
gradient boosting with SHAP attributions (an unenumerated path). We score such solutions on: (1)
Methodological appropriateness (the method is suitable for the stated objective and data regime);
(2) Correctness of execution (the pipeline is implemented soundly, with valid preprocessing, estima-
tion, and validation); and (3) Soundness of interpretation (claims follow from the produced evidence,
with clear caveats). This soft layer ensures valid but unconventional approaches are not penalized.

By construction, most DAComp items fall into Tiers 1–2, where numeric or pseudo-code anchors
provide deterministic checks; Tier 3 is reserved for genuinely open-ended cases to maintain fairness
without sacrificing rigor.

G.2 DISCUSSION OF AMBIGUOUS OF REQUIREMENTS

Implementation and Evolution tasks in DAComp-DE are designed as deterministic evaluations. To
balance realism with unambiguous executability, we adopt three principles:

1) Professionalism. Requirements are sourced from enterprise-style projects and vetted by senior
data engineers for cross-layer impact, metric definitions, SCD handling, and temporal semantics.
Implementation tasks emphasize canonical modeling pipelines from scratch; Evolution tasks mirror
real “change requests” (e.g., metric revision, source replacement).

2) Unambiguity. Implementation (node-first): each SQL node has atomic contracts (schema, PK/-
grain, time, nulls, joins, aggregation, SCD, idempotency). Multiple agents must converge un-
der frozen contracts; discrepancies trigger tighter specifications. Evolution (delta-first): natural-
language changes are mapped into minimal verifiable deltas (schema/logic/lineage), with explicit
impact scope and before–after anchors; agent disagreement leads to refined deltas or explicit as-
sumptions.

3) Realism. Implementation: converged nodes are composed into multi-node tasks, with con-
tracts and assumptions documented (e.g., data contract.yaml). Evolution: favors backward-
compatible evolution (added columns/views, metric versioning); destructive changes require migra-
tion notes. All assumptions are logged for reproducibility.

G.3 DISCUSSION ON THE SELECTION OF JUDGER LLM

As shown in Tab. 4, both O4-Mini and gemini-2.5-flash achieve human-level agreement, while
stronger proprietary models (e.g., gemini-2.5-pro, GPT-5) yield even higher consistency. For DA-
Comp,, we standardize on gemini-2.5-flash, as it balances (1) cost efficiency for large-scale bench-
marking, (2) stable and low-latency inference, (3) reproducibility across runsand (4) community
accessibility. Choosing a widely available model ensures that our evaluation pipeline can be easily
adopted, verified, and extended by others.

G.4 DISCUSSION ON END-TO-END EVALUATION

Current DAComp tasks span complementary stages of the data intelligence lifecycle: DE-
Architecture (high-level specification and planning), DE-Implementation (multi-layer pipeline con-
struction), DE-Evolution (safe modification under requirement changes), and DA (open-ended
analysis over downstream data). Taken together, these stages delineate a strictly end-to-end pro-
cess—from requirement articulation, through system realization and iterative evolution, to analytical
insight and decision support—covering a full loop from planning and implementation to evolution
and interpretation.

At present, we evaluate these stages modularly and in a decoupled fashion to enable controlled
measurement at each step. Our next key objective is to integrate them into a single, end-to-end
longitudinal evaluation: a single agent carries requirements through implementation and change
propagation, and ultimately completes analysis and reporting. We contend this end-to-end setup
offers substantial scientific and practical value: it stress-tests the end-to-end consistency of plan-
ning–execution–evolution–interpretation, better reflects real engineering workflows, and advances
toward a comprehensive assessment of autonomous data agents’ end-to-end capabilities.

33

	Introduction
	Benchmark Construction
	Task Definition
	Evaluation Metrics
	Annotation Pipeline
	Dataset Statistics

	Experiments
	Experimental Setup
	Main Results
	Analysis of Repository-level Data Engineering
	Analysis of Open-ended Data Analysis Tasks
	Validation of LLM-Judge Method

	Related Work
	Conclusion
	Evaluation Methods Details
	DAComp-DE-Impl/Evol
	DAComp-DE-Arch
	DAComp-DA
	Hierarchical Rubric
	Good-Same-Bad Judge

	Experiments Setting
	Agent Baseline
	Openhands Details
	Additional Experimental Results

	Examples
	DE-Architecture Task
	DE-Implementation Task
	DE-Evolution Task
	DA Task

	Error Analysis
	DE-Architecture Case
	DE-Implementation Case
	DE-Evolution Case
	DA Case

	Annotation Details
	Data Collection
	Construction details of DAComp-DE
	Construction details of DAComp-DE-Architecture
	Construction details of DAComp-DE-Implementation
	Construction details of DAComp-DE-Evolution

	Annotation details of DAComp-DA
	Core Design Principles
	Structural components of the rubric
	Golden Rules for Authors

	LLM Usage Details
	Discuss
	Discussion of Handling Unenumerated Solution Paths
	Discussion of Ambiguous of Requirements
	Discussion on the Selection of Judger LLM
	Discussion on End-to-End Evaluation

