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ABSTRACT

Outlier detection (OD), distinguishing inliers and outliers in completely unlabeled
datasets, plays a vital role in science and engineering. Although there have been
many insightful OD methods, most of them require troublesome hyperparameter
tuning (a challenge in unsupervised learning) and costly model training for every
task or dataset. In this work, we propose UniOD, a universal OD framework that
leverages labeled datasets to train a single model capable of detecting outliers of
datasets with different feature dimensions and heterogeneous feature spaces from
diverse domains. Specifically, UniOD extracts uniform and comparable features
across different datasets by constructing and factorizing multi-scale point-wise sim-
ilarity matrices. It then employs graph neural networks to capture comprehensive
within-dataset and between-dataset information simultaneously, and formulates
outlier detection tasks as node classification tasks. As a result, once the training is
complete, UniOD can identify outliers in datasets from diverse domains without
any further model/hyperparameter selection and parameter optimization, which
greatly improves convenience and accuracy in real applications. More importantly,
we provide theoretical guarantees for the effectiveness of UniOD, consistent with
our numerical results. We evaluate UniOD on 30 benchmark OD datasets against
17 baselines, demonstrating its effectiveness and superiority.

1 INTRODUCTION

Outliers are observations that deviate substan-
tially from other normal data in a dataset, indi-

cating they likely arise from a distinct genera- Conventional OD / — —

tive process. In data-driven applications, detect- [Dataset Specific MOdeh}—» — -

ing and removing outliers is vital, since their \

presence can severely degrade the accuracy and - @ -

robustness of downstream analyses. The prob- Fit & Infer

lem of identifying such anomalies—commonly OD Tasks

termed outlier detection (OD) (Hodge & Austin), OmioD

2004; |Chandola et al., 2009; Ruff et al., [2021), —’T@D I?_'
ramn niter

anomaly detection (Pang et al., 2021]), or novelty Inliers —
detection (Pimentel et al.| 2014)—has attracted Qutliers = o I‘agizs"gi‘iset

extensive research. OD techniques serve a va-

riety of purposes (Singh & Upadhyaya, 2012; Figure 1: Pipeline comparison between UniOD
Ahmed et al.,2016; Breier & BraniSova, 2017), and conventional OD methods. These approaches
including preprocessing for supervised learning  train a separate model per dataset, while UniOD
to eliminate aberrant samples, healthcare diag- Jeverages a collection of historical labeled datasets
nostics and monitoring, fraud detection in finan- g train a single universal model.

cial transactions and cybersecurity, and beyond.

In the past few decades, many OD methods have been proposed. Basically, we can divide them into
two categories: traditional methods and deep-learning (neural network) based methods. Traditional
methods often employ kernel functions (Parzen, |1962; |Scholkopt et al., [2001), nearest neighbors
(Ramaswamy et al.,|2000), and decision trees (Liu et al., 2008)), among others, to build their models.
For instance, local outlier factor (LOF) (Breunig et al.,[2000) compares the local density of an obser-
vation to the local densities of its neighbors and identifies observations that have a substantially lower
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Figure 2: Examples of the performance sensitivity of OD methods to their hyperparameters.

density than their neighbors as outliers. Isolation Forest 2008) assumes that outliers are
more susceptible to isolation than normal observations and uses random decision trees recursively to
partition the feature space, where outliers tend to be separated into leaf nodes in far fewer splits. Deep
learning based OD methods use neural networks for feature extraction, dimensionality reduction,
or other purposes. For instance, DeepSVDD (Ruff et all, 2018b) uses a neural network to project
samples into a hypersphere and uses the distance to the center of the hypersphere as an outlier score.
NeutralAD [2021) uses augmentations on data and map the augmented data and original
data into a space where the embedding of the augmented data remains similar to that of the original
data. There are more deep learning based methods, which will not be detailed here (Shenkar & Wolf]
[2022}, [Cai & Fanl, [2022}; [Livernoche et al., 2023a}; [Xu et al, 2023}, [Fu et al.| [2024).

The OD methods mentioned above, especially those based on deep learning, are dataset-specific as
shown in Figurem That means, for a new dataset, especially when it is from a different domain, we
have to train an OD model from scratch, which has the following limitations:

* High effort on model selection and hyperparameter tuning Particularly, for deep
learning based OD methods, we need to determine the network depth, width, learning rate,
and method-specific hyperparameters. As shown in Figure[2] the optimal hyperparameter
combinations vary considerably across different datasets, leading to considerable challenges.

* High computational cost and waiting time before deployment The training or fitting
process is often time-consuming, especially when the model and data sizes are large.

* Waste of knowledge from historical datasets Historical datasets often contain useful and
transferable knowledge about inlier and outlier patterns, which cannot be effectively used by
the conventional OD methods.

In this work, we aim to address the three limitations above by constructing a universal outlier detec-
tion model, called UniOD. The main idea is to use labeled historical datasets (widely available) to
train a universal model capable of detecting outliers for all other tabular datasets without retraining.
Specifically, we extract uniformly dimensioned features for different datasets by building and factor-
izing multi-scale similarity matrices. We then use graph neural networks to capture comprehensive
within-dataset and between-dataset information simultaneously, and formulate outlier detection tasks
as node classification tasks, so as to distinguish inliers from outliers. After training, UniOD can be
applied to any newly unseen tabular datasets without further hyperparameter tuning and parameter
optimization. An overview of UniOD is shown in Figure[3] Our contributions are as follows.

* We propose a novel outlier detection method UniOD, that is able to leverage knowledge
from historical datasets and directly classify outliers inside a newly unseen dataset without
training.
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* UniOD has much lower model complexity compared to other deep learning based methods
since outlier detection on all datasets can be done using a single model. Additionally, UniOD
is computationally cheaper for outlier detection because it skips retraining.

* We provide theoretical guarantees for the effectiveness of UniOD, which is consistent with
the numerical verification.

* We conduct experiments on 30 datasets and compare UniOD against 17 baseline methods,
where UniOD outperforms most of them.

2 RELATED WORK

OD Methods without Model Training Several nonparametric OD methods, e.g. k-nearest neighbor
(kNN) (Ramaswamy et al., [2000), avoid explicit training. For instance, kernel density estimation
(KDE) (Parzen, [1962) detects low-density data. Local outlier factor (LOF) (Breunig et al., [2000)
estimates the local density of each sample and compares local density to that of its neighbors. More
recently, ECOD (Li et al., 2022) leverages empirical cumulative distribution functions to capture tail
probabilities, highlighting samples that are extreme along one or more feature dimensions.

Model/Hyperparameter Selection for OD OD methods are often sensitive to hyperparameter
changes (Goldstein & Uchidal 2016} Ding et al.,|2022). To address this, recent approaches leverage
prior knowledge from historical datasets for automated hyperparameter or model selection. For exam-
ple, MetaOD (Zhao et al.|2020) and HPOD (Zhao & Akoglul [2022)) exploit past performance records
for prediction, while ROBOD (Ding et al.,|2022)) ensembles models with different configurations to
bypass manual tuning. ELECT (Zhao et al., 2022) incorporates dataset similarity. PyOD2 (Chen et al.|
2024) and MetaOOD (Qin et al.| [2024) employ large language models to reason about models and
datasets. Despite their effectiveness, these methods typically require exhaustive evaluation of hyper-
parameter combinations on historical datasets, leading to substantial computational cost—especially
for deep OD models. |[Dai & Fan|(2025)) proposed an inductive anomaly detection approach, which
does not apply to the transductive OD setting.

Transfer Learning for OD Transfer learning (Van Haaren et al., 2015} Weiss et al.l 2016) has
been explored in outlier and anomaly detection to alleviate the scarcity of labeled data by reusing
knowledge across related tasks (Andrews et al.,2016; Vercruyssen et al.,|2017; | Vincent et al., 2020).
For instance, LOCIT (Vincent et al.| [2020) transfers labeled instances from source to target tasks, and
detects anomalies using both unlabeled target and transferred labeled source instances. Although
effective in some cases, these methods face two major limitations: (1) they require strong similarity
between source and target domains, which is often unmet in practice, especially for heterogeneous
tabular data; and (2) they require matched feature spaces, excluding the use of source datasets with
differing dimensionalities or semantics.

3 METHODOLOGY

3.1 PROBLEM STATEMENT

Formally, let T; denote "task ¢", and let Dy, = {x(l) e 7x("T )} be a set of dr,-dimensional

data and assume that it can be partitioned into two subsets Dm“er and D"“ther where \D“‘her| >
|D"““‘°’\ and the data points in D‘“"er are drawn from an unknown dlstrlbutlon w1th a density function
Dintier SUCh that pipjier(X) > pmher( ") holds for any x € D‘““er and x’' € D"““‘er The primary task

of outlier detection (OD) is to identify D"“‘her from Dr,. Notably, suppose there are B datasets,
Dr,,Dry, ..., Dry, from B different domams corresponding to B independent OD tasks, existing
OD methods tram one model on each dataset independently, which implies B times of hyperparameter
tuning and model training or fitting. In addition, the knowledge from datasets across different domains
is overlooked. For a new dataset D, we need to train an OD model from scratch.

3.2 PROPOSED METHOD

To tackle the challenges faced by previously proposed OD methods, we propose UniOD, which
is able to use labeled historical datasets from different domains, easily available in this big data
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Figure 3: Framework of UniOD. UniOD utilizes multiple labeled datasets to train a universal GNN-
based classifier that generalizes across data dimensions and domains for OD.

era, to train a general model that can detect outliers in a dataset from any unseen domain without
conducting any retraining. Specifically, let g = {Dy,, Dp,, - .., Du,, } be a set of M historical
labeled datasets, which means:
1) (1 2) (2 nm, nm, )
Da, = { (i) i) i i) os Gy ™)}, i =12, M

x{) e R,y @ € 1(0,1),(1,0)}, j=1.2,....np,

i

ey

where ny, and dy, denotes the number and dimension of data in historical dataset Dy, respectively.

yg) = (0, 1) indicates that the sample is an outlier. Also, let 7 = {Dr,,Dr,, ..., D, } be a set
of B unlabeled test datasets. The primary goal of UniOD is to train a universal deep-learning based
model using these historical datasets 2y, which can directly detect outliers in these test datasets Y
without any further training or tuning.

3.2.1 MULTI-SCALE SIMILARITY-BASED DATA UNIFICATION OF UNIOD

Considering that datasets often differ in dimensionality, feature semantics, and sample size, we first
apply preprocessing to harmonize their feature spaces—standardizing both the number of dimensions
and the semantic interpretation of each feature. Our key idea is to represent the datasets as point-wise
similarity matrix (graph), since a well-designed graph can capture the local and global structures
of a dataset, and graph-based methods, such as spectral clustering, provide promising performance
in solving various machine learning problems. Specifically, for each dataset Dyy,, we calculate a
similarity matrix Ay, ,, which induces a weighted graph, using a Gaussian kernel function with
hyperparameter o, i.e.,

202

Here, we encounter two problems. The first one is how to select an appropriate o for (2). The

other is that converting a whole dataset into one single similarity matrix will result in too much loss

of information. To solve the two problems, we choose K different o, denoted as o1,09,...,0xk,

and each is determined by o), = 85, where (), takes a value around 1 and & is set as the average
. . . . _ —2 ~

distance between the data points in Dy, i.e., 7 = ny; ZXGDHi cheDHi ||lx — %x||. Consequently,

a b
Alad) _ —[lx) — %12 )
@) _oxp (MBI vabe 1,2, 0} )

we generate multiple similarity matrices Ay, = {Ap, o, }sz1 for each dataset. For each similarity
matrix A g, o, , we use singular value decomposition (SVD) to generate uniformly dimensioned
features across different datasets:
: T
An, o =, ug, .y, Jdiag(A, Ay oo Ay ) [V Ve Vi
. 1/2 1/2 1/2 ©)

XH, 0r =[ur,ug,...,uqldiag(A;" ", A", . A7)

where 0 < d < ng, is the unified feature dimension. For convenience, we write X g, 5, =

&, & LRy € Rrao<d, which s the uniformly dimensioned feature matrix of sim-

ilarity matrices A, -, k= 1,2,..., K. As aresult, for the whole Yy = {Dy,,Pu,,--.,Du,, }»
we obtain _ _ _
2 ={Xu,, Xuys -, Xy “4)
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where Xz, = X0y, > Xi,0p) € RUXKd Similarly, for the whole 2p =
{DT17DT2) ce ,DTB}, we have

%T:{XTlaX'Ib?"')XTB} (5)

The role of converting each dataset into multiple similarity matrices and extracting SVD-based
features is twofold. First, constructing similarity matrices and applying SVD embeddings removes
dependence on the original feature dimensionality and semantics, thereby enabling a unified rep-
resentation across heterogeneous datasets. Second, by applying a simple subsampling technique
(introduced later) to each historical dataset, we can generate a diverse collection of training data for
UniOD, which substantially enhances its generalization capability.

3.2.2 MODEL DESIGN OF UNIOD

After generating uniformly dimensioned features 2y, one straightforward option is to train a classifier
with an MLP to detect outliers in Z;. However, this approach discards valuable information contained
in the similarity matrices A g, »,. To fully exploit such point-wise similarity information, we treat
each dataset as a collection of graph-structured data, where the adjacency matrices {A g, », }szl
define the graph structure and {X g, o, }le define the corresponding node features. In this way, the
outlier detection tasks for the historical datasets 2y are reformulated as binary node classifications
over graph-structured data. To deal with graph-structured data, we use K graph isomorphism
networks (GINs) (Xu et al.,|2018)) and K graph transformers (GTs) to build our model, where each
GIN is composed of L; layers and each GT is composed of Lo layers. Specifically, we let

ZSN = KGINg, (Xp,, An,), i=1,2..., M (6)
Z§F =KGTo, (X)), i=1,2,....M (7

where 61 and 6, denote the parameters of the GINs and GTs, respectively. The details are provided in
Appendix [C] Then the final embedding is the following concatenation

Zi, = 2§, 258 | e Rrmixd @®)

where d is the dimension of final embedding. Then we apply an Ls-layer MLP with parameters 63
followed by a softmax function to predict the labels:

Yy, = softmax (MLPy, (Zy,)), i=1,2,...,M )

where MLPy, : R4 — R2. Then, we minimize cross entropy loss £(6) to train our proposed UniOD:

M nm, A ‘
£6) =~ ) (v log 7)) (10)
=1 )=

where 6 = {01, 65,03} denote all parameters of our model.

After training, for each specific testing dataset Dy, € Zp, we can use (2) and (3) to construct multiple
graph-structured data and obtain X, Ar,, and then we can input these graphs into our trained GINs
and GTs to obtain Zr,, and finally use the trained classifier MLng to obtain the outlier score for
each data point:

Outlier Score (X%)) = [y(T{)]
where [y% )] denotes the second element of a vector y% ). In UniOD, a larger outlier score indicates
a higher probability for a data point to be an outlier.

) (1)

In summary, for each historical dataset (), we construct multiple graph-structured representations
via (2) and (3), and reformulate the outlier-detection problem as a node-classification task. These
graphs are then used to train our GNN-based classifier and[9) using (I0). After training, any new
dataset is processed through the same graph-construction pipeline and fed into the pretrained model
to assign outlier scores according to (L)), thereby identifying outliers in the newly unseen datasets.
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3.2.3 ALGORITHM AND IMPLEMENTATION OF UNIOD

We provide a detailed algorithm including both the training and testing stages of UniOD in Algorithm
which is in Appendix |C|due to space limitations. Note that to enhance the generalization capability
of UniOD, we create 5 synthetic datasets by randomly subsampling 60% samples from each Dy,
where the outlier (anomaly) ratio remains unchanged from the original dataset. This operation is
denoted as Subsampling(Dy,) in Algorithm

4 THEORETICAL ANALYSIS

4.1 TIME COMPLEXITY ANALYSIS

We compare the time complexity of detecting outliers in

a new dataset D (with n samples) between the proposed Table 1: Time complexity comparison
UniOD and other deep-learning methods. To simplify  (partial)

the comparison, all neural networks are assumed to share
the same maximum hidden dimension d. For the deep- \ Time Complexity
learning baselines (excluding UniOD), we fix the number  ppap (9<Qng( Ld+ n))
of training epochs to @ and the MLP depth to L. For ICL O( Qnd LJ?)
UniOD, we denote its total MLP layers by L and its atten- —

tion layers by L’. Table[l|shows the comparison among  UniOD ‘ (9(n2(d + Kd) + ndL + n%j;j/)
UniOD, ICL, and DPAD, while the complete comparison
for all deep learning methods is in Appendix [D}

Previously proposed deep learning OD methods require training for each specific dataset, resulting
in an increasing training time as the number of datasets grows. In contrast, UniOD uses only one
model for all datasets, and its training phase is entirely decoupled from D, eliminating any need for
per-dataset retraining. This decoupling enables UniOD to perform online outlier detection, yielding
greater efficiency compared to methods that require both training and testing stages for each dataset.

Also, we compare the number of hyperparameters of different deep learning methods in Appendix [E}

4.2 GENERALIZATION ABILITY ANALYSIS

In this section, we provide a theoretical guarantee for the effectiveness of the proposed model.
Particularly, we analyze that once the model is well-trained, it is able to provide high detection
accuracy on unseen datasets. This is nontrivial due to the following challenges:

* Given that we are training a universal model for outlier detection across diverse domains,
the training data is not a single dataset. Instead, it is composed of multiple different datasets,
which makes the analysis more complex than the traditional analysis on a single dataset.

* Because of the graph construction and SVD embedding (see (2) and (3)), in each dataset,
the data points are no longer mutually independent, which makes some classical tools in
learning theory inapplicable.

* The model consists of K GINs, K GTs, and one MLP, making it a very complex structure,
which complicates the theoretical analysis.

For convenience, we use W to denote the set of all weight matrices of our deep learning model f,
and use || - || g, || - ||2, and || - ||2,1 to denote the Frobenius norm, spectral norm (largest signular value),
and /5 ; norm (sum of ¢, norms of columns) of matrix, respectively. To simplify the notation and
analysis, without loss of generality, we let: 1) np, = ng, = -+ - nr,, = n;2) All GINs and all GTs
have a common layer number L, all MLPs (including those in GINs and GTs and the one following
their concatenation) have a common depth L', and every multi-heads attentions in the GTs have H
heads; 3) In GTs, the layer normalization and residual connection are omitted since they have tiny
impact on the derivation and result; 4) d is the maximum of the widths of all layers in f. Although in
@]) we used the cross-entropy loss, other loss functions, such as mean square error, mean absolute
error, and hinge loss, are also applicable. Therefore, for theoretical analysis, we consider a general
loss function denoted as £(y,y). Then the average training error (empirical risk) on the M historical

datasets is denoted as £(f) := i Zﬁl i ;”:1 14 (ygl), ygj) The expected test error (true risk) is
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denoted as L(f) := E[ﬁ Z‘J‘V:'l £(y),y\))], where |y| denotes the number of samples in y. We

are going to analyze the gap between £(f) and £(f). Note that if we let £ be 1(y # §), 1 — L(f)
will be the expected detection accuracy on test datasets.

Theorem 4.1. Let by = max;; ||An, ol cx = maxp /Y 1 Xuonlls bw =
maxwew ||[Wll2, by, = maxwew ||W]l2,1. Suppose all activation functions are 1-Lipschitz,
and ¢ is p-Lipschitz and bounded by 3. Then, with probability at least 1 — § over the randomness of
Dy, the following inequality holds

5 88v/n + 24V K by (Cam + Cor) In(M) In (2/4)
< —~ 1 7
£0) < £() + T pagy M2 )
where Caiv = bﬁchI%VLng’mL'?’/Q(b@V/bW)\/ln(QJZ), Cor =

chHL/2b€V(HL/) M2, sV /In (2d?), and s~V = b%,[,bgfl)di_l/2 + v/n. Particularly,
assuming n-Lipschitz for self-attentions yields Cgr = dexbF H L/2pL., ) In(2d?).

The proof of the theorem is in Appendix |A| Note that b(szl) is too complex and is detailed in the
proof. The assumptions made in the theorem are mild. For example, regarding the loss functions,
ReLU, Sigmoid, and Tanh are all 1-Lipschitz continuous. The theorem has the following important
implications:

* When there are more training datasets, namely, M is larger, the bound is tighter. This is
consistent with our numerical result shown by Figure fa]

* Due to the v/K in the bound, increasing the number K of parallelized GINs and GTs has a

tiny impact on the gap between £(f) and £(f) but it can reduce the training error, thereby
increasing the testing accuracy. This is consistent with the results shown by Figure [4b]

* When the layer numbers L and L’ are too large, the generalization ability of UniOD is weak,
especially when the spectral norms of the weight matrices are larger than 1. However, we
can use spectral normalization to ensure the small by in real applications.

5 NUMERICAL RESULTS

5.1 EXPERIMENTAL SETTINGS

Datasets Our experiments are conducted on ADBench (Han et al.| [2022), which is a popular
benchmark in outlier (anomaly) detection, containing widely used real-world datasets in multiple
domains, including healthcare, audio, language processing, and finance. Detailed descriptions and
statistical information about these datasets are provided in the Appendix [F

Baselines and Hyperparameter Settings UniOD is compared with 17 widely-used baseline methods,
including traditional methods: KDE(Parzen, |1962), kNN(Ramaswamy et al.,|2000), LOF (Breunig
et al.,[2000), OC-SVM(Scholkopf et al., 2001)), IF(Liu et al., 2008), LODA (Pevny, [2016)), ECOD(Li
et al., 2022), deep-learning based methods: AE (Hinton & Salakhutdinov, |2006), DSVDD(Ruff
et al.,[2018a)), NeutralAD(Qiu et al.| 2021), ICL (Shenkar & Wolf] [2022), SLAD(Xu et al., [2023)),
DTE-NP(Livernoche et al.,[2023b), DPAD(Fu et al., [2024)), KPCA+MLP, MLP+TF, and one model
selection method: MetaOD (Zhao et al.,[2020). It is noteworthy that methods such as ELECT (Zhao
et al.}[2022) and HPOD (Zhao & Akoglul [2022)) are not included, since their meta-feature construction
processes are not publicly available. MetaOOD (Qin et al.| 2024) is designed for out-of-distribution
detection, and AutoUAD (Dai & Fan, [2025)) is limited to inductive anomaly detection. For DTE-NP,
DPAD, SLAD, ICL, and Neutral AD, we use the code provided by the authors. As for other methods,
we use the code from the Python library PyOD (Zhao et al., 2019). For both traditional and deep
methods, we use grid search to obtain the best-performing set of hyperparameters in the historical
datasets which is then used in our experiments. The detailed hyperparameter configuration for
grid search and MetaOD is provided in Appendix |G| KPCA+MLP and MLP+TF are two baseline
methods that uses historical labeled datasets for training. More details are provided in Appendix

Implementation In our experiments, we consider 30 datasets and partition them into two equal
groups (Group I and Group II). We use Group II as the historical datasets to train UniOD and use
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Group I as the testing datasets. We also exchange the roles of the two sets. More implementation
details are provided in Appendix[H.2]

Performance Metrics We use two metrics to evaluate the performance of UniOD and other baseline
methods: Area Under the Receiver Operating Characteristic Curve (AUROC) and the Area Under the
Precision-Recall Curve (AUPRC), following (Xu et al., 2023} [Livernoche et al., [2023b; |[Kim et al.,
2024). The two metrics are threshold-free and hence can avoid the uncertainty and unfairness in
determining the thresholds for the OD methods.

Table 2: Average AUROC (%) and AUPRC (%) of each method over 5 runs, including both training
and testing, on Group I datasets. The best and second-best results are highlighted in red and ,
respectively.

KDE kNN AE DSVDD  Newraiap ECOD  ICL SLAD DPAD DTE-NP KPCA MLP MetaOD | UniOD
AUROC (1962)  (2000) (2006)  (2018) (2021)  (2022) (2022) (2023) (2024) (2024) +MLP +TF (2021) Ours
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AUPRC
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pendigits 12.11 13.66 6.70 14.47 5.14 26.56 1.63 2.75 5.68 8.05 2.89 7.02 6.00
Pima 52.64 4543 46.13 41.15 46.42 3563 34.64 4546 52.07 46.80  50.01 57.18 52.90
satellite 59.28  54.40 51.63 40.74 52.61 4385 4881 47.16 54.72 4156 5599  50.22 79.20
satimage-2 | 31.80 28.47 78.87 2.85 65.97 1.59 37.66 8.42 40.75 43.99  86.93 29.83 95.70
SpamBase 3829 4136 4191 4323 38.63 51.83 2672 40.66  38.82 40.38 4041 39.71 42.50
thyroid 28.60 4022 3572 26.02 422 46.78 2.16 27.23 1458 3236 50.68 4081 44.30
‘Waveform 11.44 4.25 4.61 33.56 4.05 6.19 2.41 422 11.35 5.78 3.79 4.84 9.60
WDBC 2549 5381 16.87 5335 2.02 50.53 9.73 8.61 47.17 48.51 2288 31.99 57.80
Average | 36.34 32,99 38.79 26.55 4326 2335 2970 28.03 38.16 34.67 3857 3871 | 4543

5.2 RESULTS OF OD

The average AUROC and AUPRC performance on 15 datasets from Group I is shown in Table[2] In
AUROC and AUPRC, UniOD achieves the best average performance, which is 3% higher than the
second-best method-kNN. Compared with KPCA+MLP and MLP+TF, which also use historical
datasets, UniOD significantly outperforms them.

Another interesting phenomenon is that simple traditional methods, such as kNN and KDE, out-
perform most deep learning methods in various datasets. One reason is that in tabular data with
low-dimensional features, even a simple Euclidean distance reflects semantic differences between
different samples. However, as the dimension of datasets increases, deep-learning based methods
will be more powerful since methods like KNN and KDE provide implicit prediction results for
high-dimensional datasets as discussed in (Jiang| 2017} |Gu et al.,[2019).

To mitigate the influence of specific historical datasets, we conduct cross-validation experiments. In
this setting, the 15 datasets in Group I are treated as historical datasets, and evaluation is performed on
datasets from Group II. For datasets containing more than 6,000 samples, we subsample them to 6,000
while preserving the original anomaly ratio, due to computational resource constraints. As reported in
Table 3] the superior performance of UniOD demonstrates its robustness and effectiveness, indicating
that its performance does not depend on specific historical datasets. Meanwhile, we provide TSNE
visualization results of the learned representations Zr, on several datasets in Figure [5|and observe
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Table 3: Average AUROC (%) and AUPRC (%) of each method over 5 runs, including both training
and testing, on Group II datasets. The best and second-best results are highlighted in red and ,
respectively.

KDE kNN AE DSVDD  Newraiap ECOD  ICL SLAD DPAD DTE-NP KPCA MLP MetaOD | UniOD
AUROC (1962)  (2000) (2006)  (2018) (2021)  (2022) (2022) (2023) (2024) (2024) +MLP +TF (2021) Ours

ALOI 5335 53,57 55.00 54.85 51.60 5211 5273 49.36 56.72 52.86 50.82  48.38 54.39
campaign | 74.19 7421  71.54 67.28 69.06 76.24 7141 7022  49.79 74.28 46.46  36.08 73.23
cardio 8390  90.99  89.81 88.94 47.68 2699 47.82 7323 74.34 66.37  79.59  56.44 93.77
celeba 74.70 73.67 67.28 54.49 7525 6490 66.13  51.73 74.60 5834 3947  69.73 81.21
cover 87.00 9140 89.32 89.45 73.72 89.64 5404 66.15 69.82 6269 7159  88.82 93.52
wilt 34.02 4440 4498 31.93 52.72 3940 5757 59.83  51.08 57.32 32.03 51.72 52.61
http 99.57  99.57  99.87 99.70 91.71 98.27  35.05 51.61 12.54 99.90  65.70  99.95 100.00
magic_g. 70.00 72.80 67.59 65.63 6478 6582 6391  55.39 80.60 7348  63.95 70.99 70.10
mammog. | 87.17  84.92  76.52 86.95 62.21 89.68 5647 59.06 61.99 84.60 79.12 85.23 84.77

shuttle 99.37  92.06  99.05 99.26 73.58 5221 9427  56.66 79.58 80.61 9585  49.17 99.51
skin 51.25  76.04  49.55 59.51 48.86  33.57 8312  64.64 71.43 57.39  62.75 65.19 76.12
speech 52.02  47.83 4749 45.70 4697 4322 5241 5098 49.99 4830 4596  54.88 46.97
smtp 100.00  99.98 100.00 99.69  100.00 99.94 100.00 74.25 100.00  99.99  78.85 97.81 100.00
letter 87.60 7444  63.10 57.46 57.23  73.05 8840 5820 88.16 5551 5435 90.09 64.05
vowels 82.91 9123 76.25 41.54 97.64 59.29 8217 93.65 72.66 7029 61.56  94.99 85.01
Average 75.80 73.93 70.50 70.99 72.67 5790 7318 5943 72.92 6724 6199 7328 | 78.52
AUPRC

ALOI 4.26 3.97 4.26 3.96 3.30 3.69 3.79 3.03 4.76 3.41 3.09 2.79 3.62
campaign | 28.03 2849  25.03 24.55 20.93 2288 2395 11.35 28.82 10.89  12.64 36.70 28.47
cardio 3647 51.18  43.13 46.35 11.93 6.14 19.69  30.85 35.49 23.86 38.04 18.95 57.63
celeba 5.86 9.27 5.59 6.24 2.31 4.99 5.29 2.37 6.34 3.63 421 5.37 11.71
cover 5.17 7.71 11.16 15.60 3.85 1.04 1.46 3.07 9.59 3.94 1.94 9.64 5.89
wilt 3.67 4.34 4.42 3.61 13.01 4.17 6.05 5.93 573 6.01 3.58 4.98 3.67
http 4432 4432 70.08 59.04 3.88 15.95 0.61 86.79 1.80 1.13 79.31 1.02 100.00
magic_g. 63.52 64.36 56.21 50.11 5450 5526 5245 40.51 73.46 64.26 52.87  62.54 62.48
mammog. | 2098 1598  12.14 21.19 3.05 41.16 3.95 4.10 6.07 16.69 10.41 21.87 19.50
shuttle 3451 79.74 91.32 14.77 91.10 8.29 39.86 1299 19.76 16.82  54.14 8.88 96.18
skin 19.08  31.60  19.47 24.43 18.24 1492  46.87  24.57 28.48 2399 3542 2453 31.65
speech 1.77 1.88 1.84 1.99 2.28 1.96 1.39 2.08 2.01 1.47 1.96 3.87 1.84
smtp 100.00 5833 100.00 27.63  100.00 61.11 100.00 14.09 100.00 8333  0.22 1.12 100.00
letter 35.42 1530  11.30 9.44 7.67 1796  36.87 8.99 30.41 6.64 9.32 52.40 10.54
vowels 23.17 3029 2148 4.02 56.95 8.14 27.68 3396  18.11 5.81 6.44 35.61 17.23
Average | 2992 28.82 31.20 19.41 30.66 1573 3092 1239 27.92 2399 1569 2572 | 36.69

Table 4: Time costs (seconds) comparison of different deep methods on 15 datasets.

AE DSVDD NeutralAD ICL  SLAD DPAD | UniOD
(2006)  (2018) (2021) (2022) (2023) (2024) Ours

384 511 664 1391 485 788 | 240

that most outliers tend to gather into a small, dense cluster while a smaller portion of outliers appear
as isolated nodes.

Also, we compare the time costs of different deep learning OD methods in detecting the outliers on
the 15 datasets from Group I, the results are shown in Table ] Note that the reported results exclude
hyperparameter tuning time. UniOD achieves a lower time cost than those dataset-specific deep OD
methods.

5.3 ABLATION STUDIES

In this subsection, we conduct experiments to investigate how each component of our proposed
UniOD affects its outlier detection performance. We first evaluate the performance of UniOD with
1,3,5,10, 15 training historical datasets (with sub-sampling augmentation) shown in Figure[@a] It is
obvious that as the number of historical datasets expands, its generalization performance improves
correspondingly. In Figure b we analyze how the number of bandwidths K affects the performance
of UniOD. A larger K results in less information loss, which improves the generalization ability.
These results are consistent with Theorem 4.1} For more detailed results, please refer to Appendix [H]

6 CONCLUSION

This work proposed a novel and efficient outlier detection method called UniOD. The core idea of
UniOD is to leverage historical datasets to train a deep universal model that can detect outliers in
newly unseen datasets from diverse domains without retraining. By converting each dataset into
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Figure 4: Ablation study: (a) Average performance using different numbers of historical datasets; (b)
Average performance using different number of bandwidths for similarity matrices.

graph-structured data and generating uniformly dimensioned node features, UniOD enables a single
model to handle heterogeneous datasets. We provide both theoretical analysis and empirical results to
demonstrate its effectiveness and efficiency. Although UniOD is primarily designed for transductive
anomaly detection, it can also be applied to inductive anomaly detection by converting the training
set and each test point into graph-structured data and computing their outlier scores.
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A PROOF FOR THEOREM (.1

Recall that our model f € F is composed of K GINs and K GTs followed by an MLP. For
convenience, in the main paper, we have let each GIN have L layers and each layer has an MLP
of depth L’. The GTs have the same sizes. The depth of the MLP following the concatenation of
GINs and GTs is also L’. We have also let by = max; i, [|A g, o, |2, cx = maxg /D, | X, 00 (|5
by = maxwew |[W/||2, bl = maxwew [[W]|2,1. Suppose all activation functions are 1-Lipschitz,
and / is p-Lipschitz and bounded by 3.

The main idea of our analysis is composed of the following steps: 1) derive the covering number
bound of F; 2) derive the Rademacher complexity bound of the loss function; 3) establish the
generalization bound of f.

First, we analyze the complexity of the input data X;, € RM"*4 which is composed of {X g, », } 4,
k=1,2,..., K. We show the following lemma (Lemma 3.2 in (Bartlett et al.,2017)).

Lemma A.1. Let conjugate exponents (p, q) and (v, s) be given with p < 2, as well as positive reals
(a, b, €) and positive integer m. Let matrix X € R"*? be given with | X||, < b. Then

a2b2m2/T

A ({XA: A €RY™ Al <a},e - r) < | |0 (2m)

For convenience, we drop the index of X. Denote X := {X : | X||r < ¢x}. According to the
lemma, letting A be an identity matrix, and letting p = ¢ = 2,s = 1,r = 0o, we have

2 72

d
N (X6, |- 1) < S5 In (20%) (13)

The Lipschitz constant 7gt of one GT is given by the following lemma (proved in Section [B.T).
Lemma A.2. Suppose in the GT, the layer normalization is p-Lipschitz. Let Z,_ be the input of

layer p, |Zp—1]|2 < b(ZZFl), and ||Zp—1||r < c(ZZFI). Then the Lipschitz constant of the GT is
L .
ror=]] (ub(Z’*” + v) (14)
i=1
s+ / i i i
where u = % and v = pbk, (1 + VHbw+/m) and b(Z V< c(Z D < TGTFIC(Z D Kall
self-attentions are n-Lipschitz, then
, L
a1 = b phorn (1+ VD) (15)

According to Lemma([A.3|(a well-known result), we can bound the covering numbers of the GT:

R

N (For,e, |- lIr) < =3 (16)
where Rgr = ¢4 d*7é; In (2d?).

Lemma A.3. Suppose ¢ is a x-Lipschitz function, then In N (e,v o F, p) < InN(e/k, F, p).

The following lemma (proved in Section [B.2)) provides an upper bound for the covering number of a
GIN model:

Lemma A.4. Consider the L-layer GIN, where each layer has an MLP of L' layers. For any € > 0,
it has
Reiy

N (e, Fa,p) < =3

where Roiy = b2E A 02EL L3L (bly, Jbw )2 In(2d2).

Since our model is a concatenation of K independent GINs and K independent GTs, the covering
number bound of their combination is

K (R + Rar)

InN (Fr,e | ||r) < 2

(a7

€

14
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The K-GINs and K-GTs are followed by an MLP with L’ layers, and the Lipschitz constant of the
MLP is myrp = bﬁ;. Consequently,

2
WA (Fye, | - ) < X naean + Ror) (18)

) ) — 62
Since the overall loss is £(f) := i ZZ 15 E(yg), y;)) the loss on one dataset is é(y,y) =

% S =1 £(y;, ;). Suppose £ is pu-Lipschitz w1th respect to y. Then according to Lemma e is
%-Lipschitz. Then the covering number of our model with loss is bounded as

K2 p(Ran + Rar)
ne?

InN (Lo F,e | -|lr) <

(19)

The Dudley entropy integral bound used by |Bartlett et al.|(2017) is shown below.

Lemma A.5 (Lemma A.5 of Bartlett et al.| (2017)). Let F be a real-valued function class taking
values in [0, 1], and assume that 0 € F. Then

o 12
< .
Rop(F) _ér;fo (\ﬁ i \/ln./\f (e, F,p de)

In our method, |¢| < . We let F = ¢ o F, where ¢(z) = %x, then F is a real-valued function class
taking values in [0, 1]. Using Lemma|A.3] we obtain

_ 1 /
RD(I)gng<a / 1n/\/ fp ;)

o 4 12 BVM €
= lnf (\/M + W o lnM </87¢Of,p) dE) (20)

4o 12 [BYM

< inf (\/7 T e Vln/\/l(e,]-',p)de)

a>0

Multiplying both side by g yields

i
Rp(F) < inf <\;’f i), Mln/\f(e,]ﬂp)de). 1)

a>0

, it follows that

a4 1 2

Letting v = K¢ mue(RontFor)
n

a>0 \ /M In «Q
B 12,/0In(M)
M M

where we have chosen o = 1/v/ M.

Then, using the following lemma (a standard tool in Rademacher complexity (Mohri et al.||2018))),
the generalization bound of our UniOD can be derived.

Lemma A.6. Given hypothesis function space F and loss function {g bounded by 3 > 0, define
Fp:={(Z,y) — Ls(f(Z),y) : f € F}. Then, with probability at least 1 — § over a sample D of

size M, every f € F satisfies Lg(f) < Ls(f) + 2Rp(Fs) + 38 %.
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Specifically, we have

L) <E() + 85\/ﬁ+24\/?m;;%M1n(M) 33 12(}2\;5)
i) BV 24\/I?ubév’]\(4\/?+ VEer)In(M) ¢ 12(}2\45)
where Rain = bAECAB2EL DAL (b /bw)? n(2d?), Ror = c&d?répIn(2d?), mor =
T2, (w0 o). u = 25T o b1 4 Vb /), and B < 7Y <

TGTi71€g72) < H;jl (ub(Zj) + v) cx. Dropping the terms related to the residual connections

and layer normalizations in the GTs, we complete the proof.

, L
If we assume that all self-attentions are 7-Lipschitz, then 7o = b&E pL (1 +VvH n) .

B LEMMAS AND PROOFS

B.1 PROOF FOR LEMMA [A2]

Proof. We denote f; the i-th layer of a GT. It is composed of multi-head self-attention, residual
connection, layer normalization, and MLP. To analyze the covering number bound of a single GT, we
first present the following lemma for the Lipschitz continuity of self-attention.

Lemma B.1. Consider the following self-attention mechanism

f(Z) = Softmax (ZVVQ(Z\/;VK)T> ZWy

where Z € R™ % and W, Wi, Wy € R¥* Suppose max{||Wqll2, [Wkll2, [Wy |2} <
batt, then for any Z and 7 satisfying ||Z||2 < b, and ||Z'||2 < b, it holds that

\£(Z) - £(@)]| < ( b +bmf) 1z 7|, 4)

Then, according to the concatenation Lipschitz lemma (Lemma [B.4), the Lipschitz constant of the
multi-head (H heads) attention is

Linultiat = x/ﬁ( b, + batev/n ) (25)

\/‘ att

Assume that the Lipschitz constant of the layer normalization is py,orm, and the feedforward network
has L’ layers. Then the Lipschitz constant of the transformer layer i is

LGT{, :bﬁ/l'pnorm (1 + \/> ( bitt o + batf\f))

:ubgfl) +v

Vd (26)

where u — Y0ulsen T and v = bl puorm (1 + VEbary/m). As |Zill2 < b and |Zi]l; <
| Z;|| 7, we bound ||Z;||  instead, where ||Zo||z = || X||z < cx. That means, we let b~! be the
upper bound of ||Z;_1 || . It follows that

bt < Ler, b2 27)

We have L layers in the GIN. Therefore,

L

Lor = [J(ub{™Y 4 v) (28)
=1
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If all self-attentions are n-Lipschitz, i.e.,

1£(Z) = FZ)I <nlZ -2/ p

then the Lipschitz constant of the transformer layer ¢ is

LGTi :bil//[;pnorm (1 + \/ﬁn)

which makes

, L
Lgr :bll/i/L pﬁm’m (1 + \/ﬁn)

B.2 PROOF FOR LEMMA [A 4]

(29)

(30)

€1y

Since the lemma is a simple variant of Lemma E.8 in (Wang & Fan| [2024)), we will not detail the

proof here. For convenience, we show the original lemma (with modified notations) below:

Lemma B.2 (Covering number bound of GIN). Ler ¢ = ||Al|y and d = max;, dgl). Given an

L-layer GIN message passing network F¢, for any € > 0

- 2\ 3
where Rg = || X% In(24%) (Hlel Ii%) (Zlel (71)3) and K;

D 2/3 3/2

i %

In the lemma, let r = L/, ¢ = by, b — byy» and O by, we obtain Lemma

B.3 PROOF FOR LEMMA [B.3]

LemmaB.3. Lere(y) = [+ Z?zl 0(y5;:Yij))i- Suppose € is p-Lipschitz, then € is

Proof. 1t can be proved by the following derivations:

le(y) — el
27;1([(9%72/13‘) - g(?ﬁja yij))
:1 ijl(ﬁ(y§j7 y2j) - é(y%, yéj))
S (N ung) — LY Ung))
22:1 plyy — yi;|
LI D251 mly2s — vyl
<= j=1 J 27
n e
n
> j—1 HlYN; — Yl
Vvnlyr — yjlll
A Vrllyz — ol
Villyn =yl
=y v
Jn

17
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B.4 PROOF FOR LEMMA [B.1]

Proof. Letg(Z) = w. We calculate

1£(2) — F(Z)) ] = |Softmax(g(Z))ZWy — Softmax(g(Z'))Z'W ||
<[[Wy |, [|Softmax(g(2))Z — Softmax((Z')Z'|
< [Wvll, (ISoftmax(g(Z))Z — Softmax(g(Z'))Z]| + Softmax(g(Z'))Z — Softmax(¢(2))Z| )
< IWyll, ( Softmax(4(2)) — Softmax(g(Z) | . | ZIl, + |2 — Z'| | Sofmax(g(z))]], )

T1 T2

(33)
For T3, we have

T g% lo(Z) — o(2')]

7 |ZWQ(ZWk) T — ZWQ(ZWk) ||,

N)

gi (|[ZWoW L ZT — z'WQW}ZTHF + | ZWEWLZT —ZWoWLZ'T| )

2Vd
1
SW (I1Z =2 p IWall, Wkl 1ZI, + 11Z = Z'[[  [Wall, Wkl 12]1,)
_f (Ltfb ||Z Z/HF (34)
For T5, we have
T, <||Softmax(g(Z"))|
< Z ||Softmax (t;)]|2
(35)
< Z ||Softmax(t;)||?
=v/m
where t; denotes g;(Z). Combining the results above, we obtain
1£(Z) = F(Z)llp < <\f 2tz +bamf) 1Z = 2| (36)
O

B.5 PROOF FOR LEMMA B4
Lemma B.4 (Concatenation Lipschitz). For K matrix functions with the same input X, suppose

each of them has a Lipschitz constant Ly. Then the concatenation of these functions has a Lipschitz
constant maxy, L/ K with respect to X.

Proof. Given K matrix functions f1, fa, ..., fx with the same input X, the row-wise concatenation
of the output is denoted Y, given by F(X) := [f1(X); f2(X);...; fx(X)]. Suppose the Lipschitz

18
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constant of each fj is Ly, k = 1,2, ..., K. We obtain

10~ 1x)
IFX) - FxX)| =|| 7

Fie(X) = fre(X7)

K
=y 2 Ik (X) = fr(X)13
k=1
= 37)
<\ Do LRIX - X1
k=1
K
<max Liy | > [X - X7
k=1
:m]?ka\/l?HX—X’HF
O

C ALGORITHM DETAILS

C.1 KGINp, AND KGTy,

KGINp, and KGTy, are combinations of /& GINs and GTs respectively. For the k-th GIN GIN,
and GTy; parametered by 0%, 05, their outputs follows:

_ (38)
ZSTk = QTy (XHi) L i=1,... M
Then, we have ZCI;{IN and Z%T follows:
Z5 =125 2 2 <) 0 = {0, 9)
Z§ = (23,25, .. Z3."], 00 = {65 iy
C.2 GIN
The details about GIN are as follows:
Vie[1,2,...,L—1], WO = foam | L+ enU 4+ Y~ AR (40)

ueN(j)
where hU)!*1 is the output from [ + 1 GIN layer, h(/)-0 = ig) »,, 18 the input node feature, N(5)

Qs

denotes the neighbor set of node j, fgu+1) is a multi layer perceptrons (MLP) parameterized by
O+, ¢, is a learnable parameter.

C.3 DETAILED TRAINING AND TESTING ALGORITHM

The detailed training and testing procedures of UniOD is provided in Algorithm I

D DETAILED COMPLEXITY COMPARISON FOR DEEP-LEARNING BASED OD
METHODS

In this section, we analysis the time complexity on conducting outlier detection for each deep-learning
based methods. For all these methods which primarily uses MLP in the form of encoder, we assume
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Algorithm 1 Training and Testing Stages of UniOD
Training stage of UniOD:
Require: historical datasets 7y = {Dy,, Dy, , ..., Dy, }» training epoch Q, 25 = 0, oy = 0)
Output:0*
1: for each historical dataset Dy, € P do
22 {Dy1,Dy2,Dyz, Dys, Dy } = Subsapmling(Dp, )
3:  Obtain oy = o/ U {Agm}5 X=Xy U {XHm —; using (2) and i respectively.
4: end for
5: Initialize the parameters of UniOD: 6
6:
7
8

forb=1,...,Qdo
for each XHJ € Zu, .AH; € oy do
Obtain node classification prediction using (6} [71[8 and O}

9: Update parameters 6 using (10)
10:  end for
11: end for

Testing stage of UniOD:
Require: newly unseen test dataset Dr,, trained model parameters 6*

Output:{ Outlier Score(X(Tj) ) };ITl

12: Obatain graph structured data XT , AT, using 1. nd 3
13: Obtain outlier score {0utller Score(x (j) } o 11 usmg (@ IIandIEI)

that the largest hidden dimension is d, the training epoch is @ and the layer of this encoder is Ly,
for those methods using decoder as well, we assume the layer of encoder is equal to L4. The time
complexity comparison of conducting outlier detection on a new dataset D, between several deep-
learning based methods is shown in Table[5] Note that here we assume Several specific parameters
for these models are:

e SLAD: SLAD includes two hyperparamters r, ¢ which defines the repeat time for data
trnasformation and the number of sub-vectors.

* ICL: ICL includes a hyperparamter 0 < ¢ < d, which splits each data into dg, — k + 1
pairs.

* NeutralAD: Neutral AD includes a hyperparamter e which determines the number of learn-
able transformations.

* DSVDD: DSVDD requires using AE to pretrain its encoder.

Table 5: Time complexity comparison of UniOD and classical deep learning based methods in
detecting the outliers of a new dataset Dr,.

Time Complexity

SLAD @ (QnrcLui)
DPAD @] (QnJ(LJ + n))
ICL 10 (QnchP)
NeutralAD 0 (QneL4J2>
DSVDD 10) (QnL4cZ2)
AE 10 (an L4J2)
UniOD | O (n2(d + Kd) + nd®L + nzdL/)
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E HYPERPARAMETER COMPARISON OF OD METHODS

Most deep-learning based OD methods have several hyperparameters which can significantly affect
their performance. In Table [6| we compare the number of hyperparameters of different deep-
learning based methods. Notably, classical deep-learning methods require careful tuning of these
hyperparameters when applied to newly unseen datasets. In contrast, when applied to newly unseen
datasets, UniOD involves no hyperparameters to be tuned.

Table 6: The number of hyperparameters in recent deep-learning based methods and UniOD when
applied to newly unseen datasets.

Methods | Hyperparameters | Number

DTE-NP k,T 2
SLAD h,c,r, 0,7, 5
DPAD YAk 3

ICL ku, 7,7 4
Neutral AD K,m 3
UniOD | - \ 0

F STATISTICS OF DATASETS

In our experiments, we train our model using 15 historical datasets and evaluate the performance of
16 methods on 15 widely used real-world datasets spanning multiple domains, including healthcare,
audio, language processing, and finance, in a popular benchmark for anomaly detection |Han et al.
(2022)). The statistics of these datasets are shown in Table[7] These datasets encompass a range of
samples and features, from small to large, providing comprehensive metrics and evaluations for the
methods.

G HYPERPARAMETER COMBINATION OF OD METHODS

In our experiments, we perform a grid search on the historical datasets to identify the best hyper-
parameter configuration for each traditional and deep OD method, and use these configurations
in subsequent evaluations. MetaOD further leverages these hyperparameter settings in traditional
methods to train a model that predicts the optimal method—hyperparameter pair for each testing
dataset. The specific hyperparameter configurations for different methods are summarized in Table

H DETAILED EXPERIMENTAL SETTINGS AND RESULTS

In this section, we provide more detailed experimental settings and results.

H.1 INTRODUTION OF KPCA+MLP AND MLP-+TF

For KPCA+MLP, KPCA (Hoffmannl 2007) is first applied to obtain uniformly dimensioned data
across historical datasets. These transformed datasets are then used to train MLPs as classifiers.
The main difference from UniOD is that similarity matrices are not directly utilized. Inspired by
meta-learning approaches (Iwata & Kumagail [2020; 2023; Hollmann et al.| [2025)), we also introduce
another baseline, MLP+-TF. In this method, each feature is first projected into a higher dimension
using an MLP, then each sample can be represented as a sequence whose length equals the number of
features, and whose token dimension is the MLP output size. A transformer is then applied to extract
embeddings from these sequences, followed by a sum readout function to obtain a representation for
each sequence (sample), which is subsequently fed into another MLP for classification.
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Table 7: Statistics of 30 real-world datasets in ADBench.

Data # Samples | # Features | # Outlier | % Outlier Ratio Category Historical
ALOI 49534 27 1508 3.04 Image v
campaign 41188 62 4640 11.27 Finance v
cardio 1831 21 176 9.61 Healthcare v
celeba 202599 39 4547 2.24 Image v
cover 286048 10 2747 0.96 Botany v
Wilt 4819 5 257 5.33 Botany v
http 567498 3 2211 0.39 Web v
letter 1600 32 100 6.25 Image v
magic.gamma 19020 10 6688 35.16 Physical v
mammography 11183 6 260 2.32 Healthcare v
shuttle 49097 9 3511 7.15 Astronautics v
skin 245057 3 50859 20.75 Image v
smtp 95156 3 30 0.03 Web v
speech 3686 400 61 1.65 Linguistics v
vowels 1456 12 50 343 Linguistics v
breastw 683 9 239 34.99 Healthcare X
Cardiotocography 2114 21 466 22.04 Healthcare X
fault 1941 27 673 34.67 Physical X
InternetAds 1966 1555 368 18.72 Image X
landsat 6435 36 1333 20.71 Astronautics X
optdigits 5216 64 150 2.88 Image X
PageBlocks 5393 10 510 9.46 Document X
pendigits 6870 16 156 2.27 Image X
Pima 768 8 268 34.90 Healthcare X
satellite 6435 36 2036 31.64 Astronautics X
SpamBase 4207 57 1679 39.91 Document X
satimage-2 5803 36 71 1.22 Astronautics X
thyroid 3772 6 93 247 Healthcare X
Waveform 3443 21 100 2.90 Physics X
WDBC 367 30 10 2.72 Healthcare X

Table 8: Hyperparameter combinations of traditional and deep OD methods used for grid search and
MetaOD.

Method Hyperparameter 1 Hyperparameter 2 Total Methods
LOF n_neighbors: [1, 5, 10, 15, 20, 25, 50, 60, 70, 80, 90, 100] distance: ["'manhattan’, ’euclidean’, "'minkowski’] 36
kNN n_neighbors: [1, 5, 10, 15, 20, 25, 50, 60, 70, 80, 90, 100] method: ['largest’, 'mean’, "median’] 36
OCSVM nu (train error tol): [0.1,0.2,0.3,0.4,0.5,0.6, 0.7, 0.8, 0.9] | kernel: [’linear’, "poly’, 'rbf’, ’sigmoid’] 36
KDE gamma: [0.3,0.5,1,3,5] distance: ["'manhattan’, ’euclidean’, 'minkowski’] 15
IF n_estimators: [10, 20, 30, 40, 50, 75, 100, 150, 200] max_features: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 81
LODA n_bins: [10, 20, 30, 40, 50, 75, 100, 150, 200] n_random_cuts: [5, 10, 15, 20, 25, 30] 54
AE epoch_num: [10,50,100] batch_size: [256,512] 6
DSVDD 12_regularizer: [1e-2,1e-1] epoch_num: [10,50,100] 6
NeutralAD | n_trans: [5,10,15,20] temp: [0.3,0.5,0.8] 12
ICL max_negatives: [100,300,500,1000] temperature: [0.3,0.5,0.8] 12
SLAD n_slad_ensemble: [10,20,30,40] hidden_dims: [32,64,128] 12
DPAD gama: [0.01,0.1,0.5,1] lambda: [0.01,0.1,1] 12
DTE-NP K: [5,10,15,20] T: [200,500,1000,2000] 16
H.2 IMPLEMENTATION DETAILS

All of our experiments in this paper are implemented using Pytorch (Paszke et al., [2017) on a
system equipped with an NVIDIA Tesla A40 GPU and an AMD EPYC 7543 CPU. In UniOD,
we set the dimension of unified feature d = 256, the number of ¢ is determined as X = 5, with
{B2}2_, = {0.3,0.5,1,3,5}. Our KGINy, comprises L; = 4 layers with successive hidden-
dimensionalities [1024, 1024, 1024, 64]. As for KGTys, the dimension of the feedforward network
model is set to 1024 and the layer is set to Ly = 6. Classifier MLPy, is a 3-layer MLP with successive
hidden-dimensionalities [128, 64, 2]. We use AdamW (Loshchilov & Hutter, [2017) as our optimizer
with learning rate being 5 * 10~° and weight decay being 10~° to train UniOD for 50 epochs.
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H.3 EXPERIMENTAL RESULTS WITH MORE OD METHODS

The experimental results on more OD methods with hyperparameter tuning including the cross
validation experiments is shown in Table[9]and Table [T0]

Table 9: Complete average AUROC (%) and AUPRC (%) of each method on 15 tabular datasets of
ADBench. The best results are marked in bold.

LODA DSVDD NeutralAD ECOD ICL  SLAD DPAD DTE-NP KPCA MetaOD | UniOD

KDE  LOF kNN OC-SVM  AE IF
0)  (2001)  (2006) (2008) (2016)  (2018) (2021) (2022)  (2022) (2023) (2024)  (2024) +MLP  (2021) Ours

AUROC (1962)  (2000)

breastw 9843 4520 9847 9901 9512 9876 9541 8288 8492 9914 8257 8135 8629 9789 8816 9771 | 99.10
Cardiotocography | 50.27 5566 5191 6838 5555 6797 7764  71.36 3863 7853 4082 3260 3062 4923 5330  60.51 | 5120
fault 7305 5959 7146 5395 6625 5615 4156 4894 6735 4687 5529 7183 6677 7344 9055 5721 | 69.60
InternetAds 6179 6255 6236 6165 5371 6667 4662 6218 6642 6770 4273 64.66 5386 6511  S8I8  69.62 | 63.50
landsat 6246 5286 6158 4116 49.87 5278 4298 4259 6192 3678 6991 6724 5272 5920 3904 568 | 69.10
optdigits 3232 3903 3991 5178 4511 6872 5242 4074 6938 6045 5418 5529 5063 3638 5663 8722 | 73.80
PageBlocks 90.66 8505 9208 9037 9163 8952 67.94 8972 8417 9139 6234 7408 5270  89.54 7626 7599 | 8820
pendigits 89.05 4811 9023 9361 7946 9611 9198  87.87 7751 9274 3664 6011 6373 77.08 6461 7211 | 77.50
Pima 7228 6699 7253 6745 6386 67.06 6238 6321 6119 5944 5115 4775 6146 7154 6317 7089 | 7230
satellite 7603 5697 7313 6543 6852 6980 73.65  57.25 6232 5830 5907 6821 6476 6891 5530 6520 | 86.90
satimage-2 9644 6867 99.88 9955 9571 9942 9972  96.68 7971 9649 6450 9597 8122 9659 5962 9151 | 99.70
SpamBase 4952 3879 5614 5425 5599 6292 4547  56.82 5109 6556 2168 5266 47.14 5314 5339 6620 | 5630
thyroid 9583 9084 9649 9560 9627 9819 9462 9135 6025 9771 4261 8512 7353 9637 8268 9501 | 94.10
Waveform 7502 7559 7535 7018 6025 7072 63.68  64.70 6931 6035 6236 4454 5522 7389 6204  69.40 | 8430
WDBC 9501 9910 9843 9838 8437 9846 89.19  97.00 3007 9706 8633 7020 9363 9797  89.10 963 | 9840
Average Value | 7455 6300 7600 7405 7078 7755 69.68 7022 6429 7390 5548 6477 6229 7375 6613 7545 | 7893
AUPRC I

breastw 9558 3164 9564 9778 8790 9718 8939  83.10 6129 9839 7174 69.59 7945 9303 4785 9354 | 9690
Cardiotocography | 27.54 2808 3364 4132 3086 4177 4536  43.89 20017 5054 1855 2178 1669  31.00 2947 3696 | 3530
fault 5457 4022 5208 3926 4816 4134 3010 3339 47.69 3257 3929 5304 47.89 5377 8408 4277 | 49.10
InternetAds 2380 3428 2976 2947 1933 4256 2504  29.83 3468 5089 1607 2935 2L11 2939 2839 5250 | 32.80
landsat 2603 2344 2572 1775 2023 2113 1771 19.02 2833 1635 4264 2921 2214 2513 1595 2429 | 28.10
optdigits 197 224 219 2.71 243 457 279 235 5.13 337 291 293 295 209 309 1974 | 500
PageBlocks 5398 4706 5683 5074 5212 4881 2773 5198 3260 5199 3158 3685 1182 SLII 3061 2908 | 4620
pendigits 1211 385 1366 2382 670 3095 2259 1447 514 2656 163 275 568 805 289 702 | 600
Pima 5349 4727 5264 49.68 4543 4970 4536  46.13 4115 4642 3563 3464 4546 5207 4680 5718 | 52.90
satellite 60.35 3947 5928 6650 5440 6593 69.74 5163 4074 5261 4385 4881 47.16 5472 4156 5022 | 7920
satimage-2 3180 281 9452 9628 2847 93.69 83.68 7887 285 6597 159 37.66 842 4075 4399 2983 | 95.70
SpamBase 3829 3372 4136 4061 4191 4823 3792 4323 3863 5183 2672 4066 3882 4038 4041 5120 | 42.50
thyroid 2860 1486 4022 3098 3572 5976 2108 2602 422 4678 216 2723 1458 3236 5068 4956 | 4430
Waveform 1144 1339 1326 564 425 563 435 461 3356 405 619 241 422 1135 578 484 | 9.60
WDBC 2549 6967 5381 5048 1687 6257 1383 5335 2.02 5053 973 861 5407 4717 4851 3199 | 57.80
Average Value | 3634 2880 4431 4287 3299 4759 3578  38.79 2655 4326 2335 2970 2803 3816 3467 3871 | 4543

Table 10: Complete average AUROC (%) and AUPRC (%) of each method on the 15 historical
datasets described above, where the 15 test datasets described above are used as historical datasets.
The best results are highlighted in bold.

KDE LOF iNN  OC-SVM  AE IF  LODA DSVDD NeutralAD ECOD ICL  SLAD DPAD DTENP KPCA MetaOD | UniOD
AUROC (1962) (2000) (2000)  (2001)  (2006) (2008) (2016) (2018)  (2021)  (2022) (2022) (2023) (2024) (2024) +MLP  (2021) | Ours
ALOI 5335 5527 5357 5521 5500 5323 5483 5485 5616 5160 5211 5273 4936 5672 5286 4838 | 54.39
campaign 7419 7082 7421 7358 7154 7308 5860  67.28 69.06 7624 7141 7022 4979 7428 4646 7621 | 73.23
cardio 8390 83.60 9099 9430  89.81 9125 8848  88.94 47.68 9350 2699 47.82 7323 7434 6637 5644 | 9377
celeba 7470 5681 7971 7905 7367 6971 5943 6728 5449 7525 6490 6613 5173 7460 5834 6973 | 8121
cover 8700 9613 9140 9296 8932 90.04 98.04  89.45 7372 89.64 5404 6615 69.82 9163 6269 8882 | 9352
wilt 3402 5494 4440 3230 4498 4491 4085 3193 5272 3940 5757 5983 5108 5800 5732 5172 | 526l
hitp 99.57 9947 9957 9941  99.87 9979 9464  99.70 9171 9827 3505 9995 5161 1254 9990  99.95 | 100.00
magic_gamma | 7000 7838 7639  69.62 7280 7299 7117  67.59 6563 6478 6582 6391 5539  80.60 7348 7099 | 70.10
mammography | 87.17 8116 8492 8730 7652 8636 8893 8695 6221 89.68 5647 5906 6199 8460  79.2 8477 | 87.25
shuttle 9937 4450 9206 9924 9905 9983 87.65  99.26 7358 9940 5221 9427 5666 7958 8061  49.17 | 9951
skin 5125 3529 7604  63.66 4955 6662 5037  59.51 7865 4886 3357 8312 6464 7143 5739 6519 | 76.12
speech 5202 47.86 4783 4687 4749 4667 4417 4570 5361 4697 4322 5241 5098 4999 4830 5488 | 4697
smtp 10000 99.99 10000  100.00 9998 9889 8334 10000  99.69 10000 99.94 100.00 7425  100.00 9999  97.81 | 100.00
letter 8760 8089 7444 5994 6310 6292 5717 5746 8826 5723 7305 8840 5820 8816 5551  90.09 | 64.05
vowels 8291 9314 9123 7691 7625 7701 7699 4154 97.64 5929 8217 9365 7266 9737 7029 9499 | 8501
Average Value | 75.80 7188 7845 7536 7393 7555 7031 7050 7099 7267 5790 7318 5943 7292 6724 7328 | 7852
AUPRC I

ALOI 426 432 397 428 426 360 431 396 438 330 360 379 303 476 341 279 | 362
campaign 2803 2263 2849 2827 2503 3206 1603 2455 2093 3427 2288 2395 1135 2882 1089 3670 | 2847
cardio 3647 2877 SLIS 5710 4313 5260 47.62 4635 1193 5674 614 1960 3085 3549 2386 1895 | 57.63
celeba 58 256 927 1137 559 591 320 624 231 1076 499 529 237 634 363 537 | 171
cover 517 1637 7177 766 1116 725 2508 1560 3.85 1197 104 146 307 959 394 964 | 589
wilt 367 536 434 3.57 442 436 413 361 13.01 417 605 629 593 573 601 498 3.67
hitp 4432 3861 4432 3522 7008 6957 758 5904 3.88 1595 061 8679 180  LI3 7931 9656 | 100.00
magic_gamma | 6352 6571 6983 6370 6436 6522 6234 5621 5011 5450 5526 5245 4051 7346 6426 6254 | 6248
mammography | 20.98 1299 1598 1722 1214 2444 2886  21.19 3.05 4116 395 410 607 1669 2642 2187 | 1950
shuttle 91.86 950 3451  90.87 7974 9890 3445 9132 1477 9110 829 3986 1299 1976 1682 888 | 96.18
skin 1908 1500 3160 2378 1947 2517 1891 2443 3392 1824 1492 4687 2457 2848 2399 2453 | 3165
speech 177 202 188 1.84 184 187 145 199 228 196 139 248 208 201 147 387 1.84
smtp 100.00 8333 10000  100.00 5833 349 5005 100.00  27.63 10000 6LI1 100.00 1409 10000 8333 112 | 100.00
letter 3542 2427 1530 1009 1130 896  8.66 944 42.13 767 1796 3687 899 3041 664 5240 | 1054
vowels 2307 3842 3029 1633 2148 1443 1570 402 56.95 814 2768 3396 1811 5606 581 3561 | 1723
Average Value | 3224 2466 2992 3142 2882 2785 2189  31.20 1941 3066 1573 3092 1239 2792 2399 2572 | 36.69

H.4 EXPERIMENTAL RESULTS WITH OD METHODS USING THEIR DEFAULT HYPERPARAMETER
COMBINATIONS

In this subsection, we evaluate the effectiveness of our hyperparameter selection strategy by comparing

the performance of OD methods under their default settings versus our selected hyperparameters. The
results with default hyperparameters are shown in Figure[IT} Several methods, including kNN, LOF,
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OC-SVM, DSVDD, and Neutral AD, achieve better performance under our simple tuning strategy,
while others exhibit slight performance degradation. This outcome is reasonable for two reasons:
(1) the default or recommended hyperparameters in the original papers are already designed to be
effective in most scenarios; and (ii) the randomly selected historical datasets may differ substantially
from the test datasets in domain, feature semantics, and dimensionality, making it difficult to transfer
well-tuned hyperparameters, such optimal hyperparamter different in different datasets can also be
observed from Figure 2] This also explains that the performance of MetaOD is not as good as the
most effective OD methods. Nevertheless, the fact that UniOD outperforms both default and tuned
baselines highlights its robustness, even when historical datasets are not closely related to the test
datasets.

Table 11: Average AUROC (%) and AUPRC (%) of each method using their default hyperparameter
combinations on 15 tabular datasets of ADBench. The best results are marked in bold.

KDE LOF kNN OC-SVM AE IF DSVDD  NeutralAD ECOD ICL ~ SLAD DPAD DTE-NP KPCA ‘ UniOD
AUROC (1962)  (2000)  (2000) (2001) (2006)  (2008)  (2018) (2021) (2022)  (2022) (2023) (2024)  (2024) +MLP | Ours
breastw 98.40 4490  97.70 95.10 96.50  98.30 85.70 78.10 99.10 7640  88.60  91.30 97.60 2870 | 99.10
Cardiotocography fault ~ 50.30  52.40  49.10 69.60 5420  68.10 68.70 42.30 78.50  37.10 3870  47.00 49.30 42.20 51.20
InternetAds 59.50  60.90  65.20 61.60 5790  62.50 62.40 65.40 67.70 5920 61.90  56.50 63.40 51.80 | 63.50
landsat 62.50 5470  57.60 42.40 52.60  46.20 39.00 70.90 36.80 6430 6750 55.70 60.20 49.50 | 69.10
opidigits 3230 53.70  37.20 50.70 4720 69.60 33.80 34.70 60.50 5330 54.80 46.50 38.60 39.80 | 73.80
PageBlocks 90.70  71.60  83.40 91.50 88.20  88.20 90.30 77.70 9140 7420 7550  84.60 90.60 66.80 88.20
pendigits 7230 89.10  94.70 74.30 93.10  49.90 71.50 70.40 9270 6730  66.60  64.90 78.60 6240 | 7230
Pima 7230  60.10  70.90 62.40 62.80  67.40 65.30 57.10 59.40 5150 5130 65.40 70.70 53.70 | 72.30
satellite 76.00 5420  66.50 66.40 66.70  50.50 62.80 57.60 5830  60.10 7340  68.50 70.20 49.90 | 86.90
satimage-2 96.40  53.60  93.20 99.70 95.20  99.30 95.60 70.20 96.50  86.50  94.00  77.50 98.00 61.10 | 99.70
SpamBase 49.50 4570 48.90 53.40 54.60  63.70 53.20 4530 65.60 47.10 4820 47.40 54.50 9.80 56.30
thyroid 95.80  66.50  95.90 95.90 94.10  97.90 91.40 64.50 97.70 7320 80.90  84.50 96.40 73.00 | 94.10
Waveform 75.10  70.60  72.30 67.20 6240  70.70 63.60 72.10 60.30 6320 4480 64.80 72.90 5130 | 84.30
‘WDBC 95.00 9820  97.40 98.80 94.40  98.80 97.70 26.90 97.10  75.10 87.60  83.70 97.50 58.50 | 99.10
Average Value 7440 5977 72.11 73.41 71.53  76.62 68.73 60.03 73.90  63.70  66.87  66.97 74.07 53.80 | 78.93
AUPRC
breastw 95.50  29.70  92.30 91.70 90.50  96.20 84.60 53.50 98.30 75.70 7840  77.70 92.10 26.90 | 96.90
Cardiotocography fault ~ 27.50  27.50  28.60 41.30 30.00 4350 42.70 21.20 50.50 16.60  23.60  25.00 31.20 22.60 3530
InternetAds 54.50  39.60  52.90 40.10 51.50  39.70 36.90 49.20 3250 4530 51.90 4840 53.20 3140 | 49.10
landsat 22,60 2420  27.90 29.20 22.00  47.00 30.20 27.80 50.80  25.10 2690 24.20 29.00 20.00 32.80
opidigits 26.00 25.10 24.70 17.50 2220 1920 18.70 34.60 16.30 4630 3030 23.10 25.50 18.80 28.10
PageBlocks 5.00 3.50 2.20 2.60 2.50 4.70 2.00 2.00 3.30 3.02 29.00 2.60 2.10 20.10 1.90
pendigits 5390 29.40  46.90 53.30 38.80  47.00 54.40 26.50 51.90  29.10 30.00 47.10 53.00 20.10 | 46.20
Pima 6.00 4.30 7.50 22.70 5.50 26.00 9.20 38.60 4640 3640 3650  48.10 52.80 37.40 | 79.20
satellite 60.30 5340 51.80 65.50 55.60  54.90 58.10 40.30 5260 4680 51.00 50.40 56.30 29.30 | 95.70
satimage-2 31.80 3.10 34.70 96.50 3220  91.60 56.30 2.19 6590 1030  27.80 4.50 50.70 1.40 95.70
SpamBase 3820 3590  39.40 40.20 40.90 4870 39.70 37.40 51.80 3130 37.60 3820 40.70 49.80 | 42.50
thyroid 28.60 7.30 3220 31.80 41.10 4930 20.90 3.40 46.70 5.70 1770 14.90 36.00 13.10 | 44.30
‘Waveform 9.60 11.40 4.70 10.50 5.30 7.50 5.00 27.20 4.00 7.60 2.40 6.00 10.90 2.70 9.60
WDBC 57.80 4780  41.60 49.30 30.70 5530 53.40 1.90 50.50 5.70 23.50 18.10 46.50 3.40 57.80
Average Value 36.26 2430  36.12 42.25 34.15  45.89 37.50 24.71 4326 2588 3033 2893 39.26 18.79 | 4543

H.5 RESULTS OF USING MULTIPLY BAND WIDTH FOR SIMILARITY MATRICES
CONSTRUCTION

Table[12] provides the OD performance results of UniOD on 15 tabular datasets of ADBench using
different numbers K of bandwidth for similarity matrices construction, the detection performance
and generalization ability increase significantly, which mainly stems from less information loss of
these datasets.

H.6 RESULTS OF USING DIFFERENT NUMBERS OF HISTORICAL DATASETS

Table [13] presents the outlier-detection (OD) performance of UniOD on 15 tabular datasets from
ADBench when it is trained with varying numbers of historical datasets, denoted by M. Even with
M = 1, UniOD already achieves competitive performance on the ’breastw’ dataset. This early
success is largely attributable to the structural resemblance between the single historical dataset
and "breastw’ after both of them are converted into graphs. As M increases, UniOD is exposed to
a more diverse set of graph-structured training examples, which enables the model to learn richer,
structure-invariant representations of normal and anomalous patterns, thereby improving both its
detection performance and its generalization ability to previously unseen datasets.

H.7 RESULTS OF USING ORIGINAL HISTORICAL DATASETS

In the training of UniOD, we use a subsampling strategy on each historical dataset to create more
data for training, which enhances the generalization capability of UniOD. In this subsection, we
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Table 12: Complete average AUROC (%) and AUPRC (%) of UniOD on 15 tabular datasets of
ADBench using different numbers K of bandwidth for similarity matrices construction.

AUROC |K=1 K=2 K=3 K=4 K=5
breastw 96.73  96.83 7735 9836  99.10
Cardiotocography | 44.49 4176  49.69 4721 51.20
fault 5573  71.06 66.86 66.15  69.60
InternetAds 60.50 60.56 62.84 62.19 6350
landsat 6620 6147 6353 6393  69.10
optdigits 81.61 71.68 6058 58.88  73.80
PageBlocks 9346 9455 8588 8748  88.20
pendigits 5394  78.17 8841 8506  77.50
Pima 70.72 7434  73.66  72.80  72.30
satellite 84.59  81.13 8248 82.62 86.90
satimage-2 64.63 7897 9981 9976  99.70
SpamBase 56.51 57.05 5529 56.01  56.30
thyroid 97.69 9623  90.70 9694  94.10
Waveform 79.30  81.85 79.57 80.32  84.30
WDBC 8720 7490 9529 97.17 9840
AVG | 72.89 7470 7546 7699 7893
AUPRC |

breastw 9275 9020 93.02 97.69 9690
Cardiotocography | 2690  26.84 2854 3630  35.30
fault 4214 5349 5278 4545  49.10
InternetAds 29.07 30.52 3036 2994  32.80
landsat 2690 2484 2980 20.84  28.10
optdigits 6.81 4.57 4.04 3.10 5.00
PageBlocks 57.53 7325 4573 4395  46.20
pendigits 3.34 4.54 4.89 7.85 6.00
Pima 51.02 54.62 5475 5242 5290
satellite 78.03  76.59 8147 70.82  79.20
satimage-2 7.97 19.50 49.60 9624  95.70
SpamBase 4292 4422 4226  41.07  42.50
thyroid 55.81 49.82 42.19 37.69 4430
Waveform 8.40 16.87 14.94 6.96 9.60
WDBC 15,52 39.68 4125 5511 57.80
AVG | 3634 40.64 41.04 4303 4543

investigate how this influences the performance of UniOD by training UniOD using only the original
historical datasets in Table T4l

I ADDITIONAL EXPERIMENTAL RESULTS ADDED DURING THE REBUTTAL
PHASE

In this section, we provide all additional experiments included during the rebuttal phase for the
convenience of the reviewers.

I.1 T1-SNE PLOTS OF THE LEARNED REPRESENTATIONS Z7, ON MULTIPLE DATASETS.

In Figure |5) we provide t-SNE plots of the learned representations Zz, on multiple datasets to
illustrate their structure. We observe that most outliers tend to concentrate into a small, dense cluster,
while a smaller portion of outliers appear as isolated points.

We also notice that the separation between normal data and outliers is not particularly pronounced
in the t-SNE space, which is likely because Zr, are high-dimensional representations (with dimen-
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Table 13: Average AUROC (%) and AUPRC (%) of UniOD on 15 tabular datasets of ADBench using
different numbers M of historical datasets for training.

AUROC | M=1 M=3 M=5 M=10 M=15
breastw 84.59 15.39 70.53 98.39 99.10
Cardiotocography | 28.37 64.32 57.71 61.71 51.20
fault 51.99 48.67 67.90 56.17 69.60
InternetAds 39.74 61.57 62.53 61.83 63.50
landsat 43.63 55.51 66.89 60.28 69.10
optdigits 43.15 70.63 66.30 62.65 73.80
PageBlocks 20.66 88.03 76.74 89.66 88.20
pendigits 7.19 56.70 79.32 87.98 77.50
Pima 37.73 67.64 72.58 71.18 72.30
satellite 28.42 76.14 84.95 80.18 86.90
satimage-2 7.10 98.12 99.65 99.84 99.70
SpamBase 53.85 56.11 55.42 55.60 56.30
thyroid 14.78 85.55 95.82 96.66 94.10
Waveform 31.75 61.11 77.37 81.22 84.30
WDBC 14.79 95.10 98.60 96.67 98.40
AVG | 33.85 66.71 75.49 77.33 78.93
AUPRC |

breastw 60.13 33.80 75.76 95.80 96.90
Cardiotocography | 14.70 39.23 37.57 38.11 35.30
fault 34.20 31.96 48.42 42.63 49.10
InternetAds 16.35 33.11 30.88 29.74 32.80
landsat 17.39 23.01 27.22 24.05 28.10
optdigits 2.31 5.07 3.82 3.46 5.00
PageBlocks 5.57 45.37 24.62 45.44 46.20
pendigits 1.21 4.25 5.05 8.45 6.00
Pima 30.47 49.20 53.20 53.63 52.90
satellite 22.04 74.01 79.25 75.38 79.20
satimage-2 0.65 58.84 92.87 96.69 95.70
SpamBase 48.92 4250  41.31 41.05 42.50
thyroid 1.37 34.75 35.75 3544 44.30
Waveform 1.94 3.55 6.22 9.00 9.60
WDBC 1.72 25.55 59.87 33.19 57.80
AVG | 17.26 33.61 41.45 42.14 45.43

sionality > 1000). As such, although a simple MLP can effectively separate normal and anomalous
samples in this high-dimensional space, t-SNE may not faithfully preserve the underlying geometry
of the original embedding space.

1.2 ROBUSTNESS EVALUATION OF UNIOD TO THE DOMAIN OF HISTORICAL DATASETS

In this subsection, we conducted additional experiments where UniOD is evaluated on datasets
from the physical, astronautics, and image domains, while systematically removing all historical
datasets belonging to the same domain or field during training. As shown in Table[I5] we observe
that excluding these domain-specific datasets does not lead to a significant performance drop on the
corresponding test domain, suggesting that UniOD is not overly sensitive to the particular composition
of the historical training data.

We attribute this robustness to two main factors: (i) Even among tabular datasets within the same
domain, the feature spaces and data characteristics can vary substantially. (ii) UniOD does not directly
rely on the original raw features. Instead, it leverages similarity matrices to construct uniformly
dimensioned representations across datasets. As a result, datasets from different domains may
still exhibit similar structural patterns in their similarity matrices, enabling effective cross-domain
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Table 14: Average AUROC (%) and AUPRC (%) of UniOD on 15 tabular datasets of ADBench using
only original historical datasets for training.

AUROC | Original ~ Subsampling
breastw 98.89 99.10
Cardiotocography | 69.05 51.20
fault 51.28 69.60
InternetAds 61.62 63.50
landsat 47.11 69.10
optdigits 52.45 73.80
PageBlocks 89.94 88.20
pendigits 88.59 77.50
Pima 68.08 72.30
satellite 69.78 86.90
satimage-2 99.24 99.70
SpamBase 55.63 56.30
thyroid 95.08 94.10
Waveform 64.14 84.30
WDBC 98.54 98.40
AVG | 73.96 78.93
AUPRC |

breastw 97.73 96.90
Cardiotocography | 43.52 35.30
fault 35.17 49.10
InternetAds 30.00 32.80
landsat 20.21 28.10
optdigits 2.73 5.00
PageBlocks 43.68 46.20
pendigits 8.47 6.00
Pima 49.18 52.90
satellite 70.21 79.20
satimage-2 92.35 95.70
SpamBase 40.96 42.50
thyroid 29.17 44.30
Waveform 4.44 9.60
WDBC 52.35 57.80
AVG | 41.34 45.43

generalization. Therefore, for a domain without historical data, our model, learned from the historical
data of other domains, performs well.
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Figure 5: T-SNE visualization results of learned representations Zr, on several datasets.

27




Under review as a conference paper at ICLR 2026

Table 15: Performance (AUROC %) of UniOD on datasets from different domains when removing
historical datasets from the corresponding domains.

Physical Image Astronautics
magic.gamma | ALOI celeba letter skin shuttle AVG
UniOD 70.10 5439 8121 64.05 76.12 99.51 78.52
UniOD without Physical 68.47 54.13 86.48 75.15 56.30 87.49 76.42
UniOD without Astronautics 68.67 54.09 8391 70.10 62.99 98.48 76.02
UniOD without Image 68.44 54.65 8094 60.89 71.05 96.85 75.32

1.3 EVALUATION OF UNIOD ON LARGE-SCALE DATASETS

In this subsection, we evaluate the performance of UniOD on large-scale datasets. Due to the GPU
memory constraint, we randomly partition large-scale datasets into disjoint subsets and run UniOD
independently on each partition. Results in Table[T6and Table [I7]demonstrate its effectiveness.

Table 16: AUROC comparison on large-scale datasets.

Data (samples) \kNN IF  ECOD DTE-NP UniOD

Campaign (41188) | 742 703  76.9 74.0 75.1
shuttle (49097) 65.8 997 99.2 62.5 99.2

Table 17: AUPRC comparison on large-scale datasets.

Data (samples) \kNN IF  ECOD DTE-NP UniOD

Campaign (41188) | 27.7 30.7 354 26.6 289
shuttle (49097) 174 978 904 15.6 93.3

1.4 EXPERIMENTAL RESULTS ON THE OTHER 27 DATASETS FROM ADBENCH
To provide a more comprehensive evaluation, we have now conducted additional experiments using

Group I for training and testing on the remaining 27 datasets. As shown in Table[I8]and Table [T9} the
results consistently demonstrate the effectiveness of UniOD.
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Table 18: AUROC (%) comparison on the additional 27 datasets of ADBench.

Dataset DTE-NP ECOD IF KNN  UniOD
annthyroid 81.8 79.1 815  79.1 68.8
backdoor 82.5 84.2 76.6  85.4 88.3
census 68.1 67.0 572 68.1 67.8
donors 81.6 86.4 763 835 89.1
fraud 99.5 99.4 99.1  99.6 99.2
ionosphere 92.7 72.8 84.7 921 81.5
mnist 82.6 74.1 79.7 853 86.1
musk 26.6 95.6 999  85.8 100.0
stamps 75.9 87.6 89.1 87.6 93.7
yeast 38.6 44.4 40.5  40.1 38.8
CIFARI10 85.7 84.7 853 885 89.8
MVTec-AD 99.4 97.9 98.5 993 99.0
agnews 62.5 50.5 53.0 613 56.0
20news 74.2 60.4 65.0 722 55.0
SVHN 61.4 51.2 539  59.0 67.0
MNIST-C 37.5 34.6 356 413 54.0
FashionMNIST 81.5 87.8 87.7 859 41.0
amazon 55.2 51.4 48.6 545 89.3
yelp 58.5 56.0 51.7  58.0 64.1
imdb 514 47.0 49.7 513 50.9
glass 86.6 70.5 784  86.7 79.4
Hepatitis 68.7 73.9 72.8  75.0 83.8
Lymphography 99.4 99.5 100.0 99.8 98.1
vertebral 36.1 42.0 36.8 354 28.6
WBC 98.8 99.4 99.4  98.4 99.2
wine 46.0 73.3 73.7 728 99.6
WPBC 49.6 48.1 483 529 55.1
Average 69.7 71.1 712 74.0 74.9
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Table 19: AUPRC (%) comparison on the additional 27 datasets of ADBench.

Dataset DTE-NP ECOD IF KNN  UniOD
annthyroid 23.9 27.8 31.8  23.1 21.7
backdoor 42.7 8.6 5.1 45.5 354
census 9.1 8.6 6.6 8.9 8.8
donors 17.3 23.3 11.5 169 22.5
fraud 15.5 17.9 14.7 18.6 17.7
ionosphere 92.8 64.6 794 91.7 64.5
mnist 38.1 17.5 257  40.8 39.5
musk 8.7 49.2 97.9  38.1 100.0
stamps 21.3 314 30.8 302 45.0
yeast 28.9 333 304 299 29.1
CIFARI10 423 31.5 31.6 512 46.5
MVTec-AD 97.7 95.3 959 976 97.4
agnews 7.2 5.0 54 7.0 5.8
20news 12.0 6.6 7.2 10.7 5.7
SVHN 6.7 5.2 6.0 6.2 7.8
MNIST-C 3.8 3.5 3.6 4.0 5.5
FashionMNIST 22.7 32.8 343 305 4.0
amazon 5.6 5.2 4.9 54 38.8
yelp 6.2 54 5.0 6.1 7.3
imdb 5.0 4.5 4.8 4.9 5.0
glass 16.9 18.6 15.1 16.0 11.3
Hepeatitis 23.8 29.2 269 315 58.2
Lymphography 85.6 89.7 100.0 94.8 71.4
vertebral 9.4 10.7 9.5 9.3 8.5
WBC 84.2 90.3 94.7  176.1 87.1
wine 8.0 19.1 174 13.8 94.3
WPBC 22.6 21.8 22.1 239 25.6
Average 28.1 28.0 303 309 35.7
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