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ABSTRACT

Outlier detection (OD), distinguishing inliers and outliers in completely unlabeled
datasets, plays a vital role in science and engineering. Although there have been
many insightful OD methods, most of them require troublesome hyperparameter
tuning (a challenge in unsupervised learning) and costly model training for every
task or dataset. In this work, we propose UniOD, a universal OD framework that
leverages labeled datasets to train a single model capable of detecting outliers of
datasets with different feature dimensions and heterogeneous feature spaces from
diverse domains. Specifically, UniOD extracts uniform and comparable features
across different datasets by constructing and factorizing multi-scale point-wise sim-
ilarity matrices. It then employs graph neural networks to capture comprehensive
within-dataset and between-dataset information simultaneously, and formulates
outlier detection tasks as node classification tasks. As a result, once the training is
complete, UniOD can identify outliers in datasets from diverse domains without
any further model/hyperparameter selection and parameter optimization, which
greatly improves convenience and accuracy in real applications. More importantly,
we provide theoretical guarantees for the effectiveness of UniOD, consistent with
our numerical results. We evaluate UniOD on 30 benchmark OD datasets against
17 baselines, demonstrating its effectiveness and superiority.

1 INTRODUCTION

Universal Model
UniOD

Historical 
Labeled Dataset

Train

OD Tasks

Dataset Specific Models
Conventional OD

Inliers
Outliers
Unlabeled Data

Fit & Infer

Infer

Figure 1: Pipeline comparison between UniOD
and conventional OD methods. These approaches
train a separate model per dataset, while UniOD
leverages a collection of historical labeled datasets
to train a single universal model.

Outliers are observations that deviate substan-
tially from other normal data in a dataset, indi-
cating they likely arise from a distinct genera-
tive process. In data-driven applications, detect-
ing and removing outliers is vital, since their
presence can severely degrade the accuracy and
robustness of downstream analyses. The prob-
lem of identifying such anomalies—commonly
termed outlier detection (OD) (Hodge & Austin,
2004; Chandola et al., 2009; Ruff et al., 2021),
anomaly detection (Pang et al., 2021), or novelty
detection (Pimentel et al., 2014)—has attracted
extensive research. OD techniques serve a va-
riety of purposes (Singh & Upadhyaya, 2012;
Ahmed et al., 2016; Breier & Branišová, 2017),
including preprocessing for supervised learning
to eliminate aberrant samples, healthcare diag-
nostics and monitoring, fraud detection in finan-
cial transactions and cybersecurity, and beyond.
In the past few decades, many OD methods have been proposed. Basically, we can divide them into
two categories: traditional methods and deep-learning (neural network) based methods. Traditional
methods often employ kernel functions (Parzen, 1962; Schölkopf et al., 2001), nearest neighbors
(Ramaswamy et al., 2000), and decision trees (Liu et al., 2008), among others, to build their models.
For instance, local outlier factor (LOF) (Breunig et al., 2000) compares the local density of an obser-
vation to the local densities of its neighbors and identifies observations that have a substantially lower
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(a) OCSVM on Cardioto (b) OCSVM on fault (c) KDE on breastw (d) KDE on optdigits

(e) NAD on breastw (f) NAD on satellite (g) DPAD on Cardioto (h) DPAD on Pima

Figure 2: Examples of the performance sensitivity of OD methods to their hyperparameters.

density than their neighbors as outliers. Isolation Forest (Liu et al., 2008) assumes that outliers are
more susceptible to isolation than normal observations and uses random decision trees recursively to
partition the feature space, where outliers tend to be separated into leaf nodes in far fewer splits. Deep
learning based OD methods use neural networks for feature extraction, dimensionality reduction,
or other purposes. For instance, DeepSVDD (Ruff et al., 2018b) uses a neural network to project
samples into a hypersphere and uses the distance to the center of the hypersphere as an outlier score.
NeutralAD (Qiu et al., 2021) uses augmentations on data and map the augmented data and original
data into a space where the embedding of the augmented data remains similar to that of the original
data. There are more deep learning based methods, which will not be detailed here (Shenkar & Wolf,
2022; Cai & Fan, 2022; Livernoche et al., 2023a; Xu et al., 2023; Fu et al., 2024).

The OD methods mentioned above, especially those based on deep learning, are dataset-specific as
shown in Figure 1. That means, for a new dataset, especially when it is from a different domain, we
have to train an OD model from scratch, which has the following limitations:

• High effort on model selection and hyperparameter tuning Particularly, for deep
learning based OD methods, we need to determine the network depth, width, learning rate,
and method-specific hyperparameters. As shown in Figure 2, the optimal hyperparameter
combinations vary considerably across different datasets, leading to considerable challenges.

• High computational cost and waiting time before deployment The training or fitting
process is often time-consuming, especially when the model and data sizes are large.

• Waste of knowledge from historical datasets Historical datasets often contain useful and
transferable knowledge about inlier and outlier patterns, which cannot be effectively used by
the conventional OD methods.

In this work, we aim to address the three limitations above by constructing a universal outlier detec-
tion model, called UniOD. The main idea is to use labeled historical datasets (widely available) to
train a universal model capable of detecting outliers for all other tabular datasets without retraining.
Specifically, we extract uniformly dimensioned features for different datasets by building and factor-
izing multi-scale similarity matrices. We then use graph neural networks to capture comprehensive
within-dataset and between-dataset information simultaneously, and formulate outlier detection tasks
as node classification tasks, so as to distinguish inliers from outliers. After training, UniOD can be
applied to any newly unseen tabular datasets without further hyperparameter tuning and parameter
optimization. An overview of UniOD is shown in Figure 3. Our contributions are as follows.

• We propose a novel outlier detection method UniOD, that is able to leverage knowledge
from historical datasets and directly classify outliers inside a newly unseen dataset without
training.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• UniOD has much lower model complexity compared to other deep learning based methods
since outlier detection on all datasets can be done using a single model. Additionally, UniOD
is computationally cheaper for outlier detection because it skips retraining.

• We provide theoretical guarantees for the effectiveness of UniOD, which is consistent with
the numerical verification.

• We conduct experiments on 30 datasets and compare UniOD against 17 baseline methods,
where UniOD outperforms most of them.

2 RELATED WORK

OD Methods without Model Training Several nonparametric OD methods, e.g. k-nearest neighbor
(kNN) (Ramaswamy et al., 2000), avoid explicit training. For instance, kernel density estimation
(KDE) (Parzen, 1962) detects low-density data. Local outlier factor (LOF) (Breunig et al., 2000)
estimates the local density of each sample and compares local density to that of its neighbors. More
recently, ECOD (Li et al., 2022) leverages empirical cumulative distribution functions to capture tail
probabilities, highlighting samples that are extreme along one or more feature dimensions.

Model/Hyperparameter Selection for OD OD methods are often sensitive to hyperparameter
changes (Goldstein & Uchida, 2016; Ding et al., 2022). To address this, recent approaches leverage
prior knowledge from historical datasets for automated hyperparameter or model selection. For exam-
ple, MetaOD (Zhao et al., 2020) and HPOD (Zhao & Akoglu, 2022) exploit past performance records
for prediction, while ROBOD (Ding et al., 2022) ensembles models with different configurations to
bypass manual tuning. ELECT (Zhao et al., 2022) incorporates dataset similarity. PyOD2 (Chen et al.,
2024) and MetaOOD (Qin et al., 2024) employ large language models to reason about models and
datasets. Despite their effectiveness, these methods typically require exhaustive evaluation of hyper-
parameter combinations on historical datasets, leading to substantial computational cost—especially
for deep OD models. Dai & Fan (2025) proposed an inductive anomaly detection approach, which
does not apply to the transductive OD setting.

Transfer Learning for OD Transfer learning (Van Haaren et al., 2015; Weiss et al., 2016) has
been explored in outlier and anomaly detection to alleviate the scarcity of labeled data by reusing
knowledge across related tasks (Andrews et al., 2016; Vercruyssen et al., 2017; Vincent et al., 2020).
For instance, LOCIT (Vincent et al., 2020) transfers labeled instances from source to target tasks, and
detects anomalies using both unlabeled target and transferred labeled source instances. Although
effective in some cases, these methods face two major limitations: (1) they require strong similarity
between source and target domains, which is often unmet in practice, especially for heterogeneous
tabular data; and (2) they require matched feature spaces, excluding the use of source datasets with
differing dimensionalities or semantics.

3 METHODOLOGY

3.1 PROBLEM STATEMENT

Formally, let Ti denote "task i", and let DTi = {x(1)
Ti
,x

(2)
Ti
, . . . ,x

(nTi
)

Ti
} be a set of dTi-dimensional

data and assume that it can be partitioned into two subsets, Dinlier
Ti

and Doutlier
Ti

, where |Dinlier
Ti

| ≫
|Doutlier

Ti
| and the data points in Dinlier

Ti
are drawn from an unknown distribution with a density function

pinlier such that pinlier(x) > pinlier(x
′) holds for any x ∈ Dinlier

Ti
and x′ ∈ Doutlier

Ti
. The primary task

of outlier detection (OD) is to identify Doutlier
Ti

from DTi
. Notably, suppose there are B datasets,

DT1 ,DT2 , . . . ,DTB
, from B different domains, corresponding to B independent OD tasks, existing

OD methods train one model on each dataset independently, which impliesB times of hyperparameter
tuning and model training or fitting. In addition, the knowledge from datasets across different domains
is overlooked. For a new dataset DTB+1

, we need to train an OD model from scratch.

3.2 PROPOSED METHOD

To tackle the challenges faced by previously proposed OD methods, we propose UniOD, which
is able to use labeled historical datasets from different domains, easily available in this big data
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Figure 3: Framework of UniOD. UniOD utilizes multiple labeled datasets to train a universal GNN-
based classifier that generalizes across data dimensions and domains for OD.

era, to train a general model that can detect outliers in a dataset from any unseen domain without
conducting any retraining. Specifically, let DH = {DH1 ,DH2 , . . . ,DHM

} be a set of M historical
labeled datasets, which means:

DHi =
{
(x

(1)
Hi
,y

(1)
Hi

), (x
(2)
Hi
,y

(2)
Hi

), . . . , (x
(nHi

)

Hi
,y

(nHi
)

Hi
)
}
, i = 1, 2, . . . ,M

x
(j)
Hi

∈ RdHi , y
(j)
Hi

∈
{
(0, 1), (1, 0)

}
, j = 1, 2, . . . , nHi

(1)

where nHi and dHi denotes the number and dimension of data in historical dataset DHi respectively.
y
(j)
Hi

= (0, 1) indicates that the sample is an outlier. Also, let DT = {DT1
,DT2

, . . . ,DTB
} be a set

of B unlabeled test datasets. The primary goal of UniOD is to train a universal deep-learning based
model using these historical datasets DH , which can directly detect outliers in these test datasets DT

without any further training or tuning.

3.2.1 MULTI-SCALE SIMILARITY-BASED DATA UNIFICATION OF UNIOD

Considering that datasets often differ in dimensionality, feature semantics, and sample size, we first
apply preprocessing to harmonize their feature spaces—standardizing both the number of dimensions
and the semantic interpretation of each feature. Our key idea is to represent the datasets as point-wise
similarity matrix (graph), since a well-designed graph can capture the local and global structures
of a dataset, and graph-based methods, such as spectral clustering, provide promising performance
in solving various machine learning problems. Specifically, for each dataset DHi

, we calculate a
similarity matrix AHi,σ, which induces a weighted graph, using a Gaussian kernel function with
hyperparameter σ, i.e.,

A
(a,b)
Hi,σ

= exp

(−∥x(a)
Hi

− x
(b)
Hi

∥2

2σ2

)
, ∀a, b ∈ {1, 2, . . . , nHi

} (2)

Here, we encounter two problems. The first one is how to select an appropriate σ for (2). The
other is that converting a whole dataset into one single similarity matrix will result in too much loss
of information. To solve the two problems, we choose K different σ, denoted as σ1, σ2, . . . , σK ,
and each is determined by σk = βkσ̄, where βk takes a value around 1 and σ̄ is set as the average
distance between the data points in DHi

, i.e., σ̄ = n−2
Hi

∑
x∈DHi

∑
x̂∈DHi

∥x− x̂∥. Consequently,
we generate multiple similarity matrices AHi

= {AHi,σk
}Kk=1 for each dataset. For each similarity

matrix AHi,σk
, we use singular value decomposition (SVD) to generate uniformly dimensioned

features across different datasets:
AHi,σk

=[u1,u2, . . . ,unHi
]diag(λ1, λ2, . . . , λnHi

)[v1,v2, . . . ,vnHi
]⊤

XHi,σk
=[u1,u2, . . . ,ud]diag(λ1/21 , λ

1/2
2 , . . . , λ

1/2
d )

(3)

where 0 < d < nHi
is the unified feature dimension. For convenience, we write XHi,σk

=

[x̃
(1)
Hi,σk

, x̃
(2)
Hi,σk

, . . . , x̃
(nHi

)

Hi,σk
]⊤ ∈ RnHi

×d, which is the uniformly dimensioned feature matrix of sim-
ilarity matrices AHi,σk

, k = 1, 2, . . . ,K. As a result, for the whole DH = {DH1
,DH2

, . . . ,DHM
},

we obtain
XH = {X̃H1 , X̃H2 , . . . , X̃HM

} (4)
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where X̃Hi
= (XHi,σ1

, . . . ,XHi,σK
) ∈ RnHi

×Kd. Similarly, for the whole DT =
{DT1

,DT2
, . . . ,DTB

}, we have

XT = {X̃T1
, X̃T2

, . . . , X̃TB
} (5)

The role of converting each dataset into multiple similarity matrices and extracting SVD-based
features is twofold. First, constructing similarity matrices and applying SVD embeddings removes
dependence on the original feature dimensionality and semantics, thereby enabling a unified rep-
resentation across heterogeneous datasets. Second, by applying a simple subsampling technique
(introduced later) to each historical dataset, we can generate a diverse collection of training data for
UniOD, which substantially enhances its generalization capability.

3.2.2 MODEL DESIGN OF UNIOD

After generating uniformly dimensioned features XH , one straightforward option is to train a classifier
with an MLP to detect outliers in DH . However, this approach discards valuable information contained
in the similarity matrices AHi,σk

. To fully exploit such point-wise similarity information, we treat
each dataset as a collection of graph-structured data, where the adjacency matrices {AHi,σk

}Kk=1

define the graph structure and {XHi,σk
}Kk=1 define the corresponding node features. In this way, the

outlier detection tasks for the historical datasets DH are reformulated as binary node classifications
over graph-structured data. To deal with graph-structured data, we use K graph isomorphism
networks (GINs) (Xu et al., 2018) and K graph transformers (GTs) to build our model, where each
GIN is composed of L1 layers and each GT is composed of L2 layers. Specifically, we let

ZGIN
Hi

= KGINθ1

(
X̃Hi

,AHi

)
, i = 1, 2 . . . ,M (6)

ZGT
Hi

= KGTθ2

(
X̃Hi

)
, i = 1, 2, . . . ,M (7)

where θ1 and θ2 denote the parameters of the GINs and GTs, respectively. The details are provided in
Appendix C. Then the final embedding is the following concatenation

ZHi
=
[
ZGIN

Hi
,ZGT

Hi

]
∈ RnHi

×d̂ (8)

where d̂ is the dimension of final embedding. Then we apply an L3-layer MLP with parameters θ3
followed by a softmax function to predict the labels:

ŶHi
= softmax

(
MLPθ3(ZHi

)
)
, i = 1, 2, . . . ,M (9)

where MLPθ3 : Rd̂ → R2. Then, we minimize cross entropy loss L(θ) to train our proposed UniOD:

L(θ) = − 1

M

M∑
i=1

nHi∑
j=1

〈
y
(j)
Hi
, log ŷ

(j)
Hi

〉
(10)

where θ = {θ1, θ2, θ3} denote all parameters of our model.

After training, for each specific testing dataset DTi
∈ DT , we can use (2) and (3) to construct multiple

graph-structured data and obtain X̃Ti ,ATi , and then we can input these graphs into our trained GINs
and GTs to obtain ZTi , and finally use the trained classifier MLPθ∗

3
to obtain the outlier score for

each data point:

Outlier Score
(
x
(j)
Ti

)
=
[
ŷ
(j)
Ti

]
2

(11)

where [ŷ
(j)
Ti

]2 denotes the second element of a vector ŷ(j)
Ti

. In UniOD, a larger outlier score indicates
a higher probability for a data point to be an outlier.

In summary, for each historical dataset (1), we construct multiple graph-structured representations
via (2) and (3), and reformulate the outlier-detection problem as a node-classification task. These
graphs are then used to train our GNN-based classifier (6,7 and 9) using (10). After training, any new
dataset is processed through the same graph-construction pipeline and fed into the pretrained model
to assign outlier scores according to (11), thereby identifying outliers in the newly unseen datasets.
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3.2.3 ALGORITHM AND IMPLEMENTATION OF UNIOD

We provide a detailed algorithm including both the training and testing stages of UniOD in Algorithm
1, which is in Appendix C due to space limitations. Note that to enhance the generalization capability
of UniOD, we create 5 synthetic datasets by randomly subsampling 60% samples from each DHi

,
where the outlier (anomaly) ratio remains unchanged from the original dataset. This operation is
denoted as Subsampling(DHi

) in Algorithm 1.

4 THEORETICAL ANALYSIS

4.1 TIME COMPLEXITY ANALYSIS

Table 1: Time complexity comparison
(partial)

Time Complexity

DPAD O
(
Qnd̄(Ld̄+ n)

)
ICL O

(
QndLd̄2

)
UniOD O

(
n2(d+Kd̄) + nd̄2L̄+ n2d̄L̄′

)

We compare the time complexity of detecting outliers in
a new dataset DT (with n samples) between the proposed
UniOD and other deep-learning methods. To simplify
the comparison, all neural networks are assumed to share
the same maximum hidden dimension d̄. For the deep-
learning baselines (excluding UniOD), we fix the number
of training epochs to Q and the MLP depth to L. For
UniOD, we denote its total MLP layers by L̄ and its atten-
tion layers by L̄′. Table 1 shows the comparison among
UniOD, ICL, and DPAD, while the complete comparison
for all deep learning methods is in Appendix D.

Previously proposed deep learning OD methods require training for each specific dataset, resulting
in an increasing training time as the number of datasets grows. In contrast, UniOD uses only one
model for all datasets, and its training phase is entirely decoupled from DT , eliminating any need for
per-dataset retraining. This decoupling enables UniOD to perform online outlier detection, yielding
greater efficiency compared to methods that require both training and testing stages for each dataset.

Also, we compare the number of hyperparameters of different deep learning methods in Appendix E.

4.2 GENERALIZATION ABILITY ANALYSIS

In this section, we provide a theoretical guarantee for the effectiveness of the proposed model.
Particularly, we analyze that once the model is well-trained, it is able to provide high detection
accuracy on unseen datasets. This is nontrivial due to the following challenges:

• Given that we are training a universal model for outlier detection across diverse domains,
the training data is not a single dataset. Instead, it is composed of multiple different datasets,
which makes the analysis more complex than the traditional analysis on a single dataset.

• Because of the graph construction and SVD embedding (see (2) and (3)), in each dataset,
the data points are no longer mutually independent, which makes some classical tools in
learning theory inapplicable.

• The model consists of K GINs, K GTs, and one MLP, making it a very complex structure,
which complicates the theoretical analysis.

For convenience, we use W to denote the set of all weight matrices of our deep learning model f ,
and use ∥ · ∥F , ∥ · ∥2, and ∥ · ∥2,1 to denote the Frobenius norm, spectral norm (largest signular value),
and ℓ2,1 norm (sum of ℓ2 norms of columns) of matrix, respectively. To simplify the notation and
analysis, without loss of generality, we let: 1) nT1

= nT2
= · · ·nTM

= n; 2) All GINs and all GTs
have a common layer number L, all MLPs (including those in GINs and GTs and the one following
their concatenation) have a common depth L′, and every multi-heads attentions in the GTs have H
heads; 3) In GTs, the layer normalization and residual connection are omitted since they have tiny
impact on the derivation and result; 4) d̄ is the maximum of the widths of all layers in f . Although in
(10) we used the cross-entropy loss, other loss functions, such as mean square error, mean absolute
error, and hinge loss, are also applicable. Therefore, for theoretical analysis, we consider a general
loss function denoted as ℓ(y, ŷ). Then the average training error (empirical risk) on the M historical
datasets is denoted as L̂(f) := 1

M

∑M
i=1

1
n

∑n
j=1 ℓ(y

(j)
Hi
, ŷ

(j)
Hi

). The expected test error (true risk) is

6
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denoted as L(f) := E[ 1
|y|
∑|y|

j=1 ℓ(y
(j), ŷ(j))], where |y| denotes the number of samples in y. We

are going to analyze the gap between L(f) and L̂(f). Note that if we let ℓ be 1(y ̸= ŷ), 1− L(f)
will be the expected detection accuracy on test datasets.

Theorem 4.1. Let bA = maxi,k ∥AHi,σk
∥2, cX = maxk

√∑
i ∥XHi,σk

∥2F , bW =
maxW∈W ∥W∥2, b′W = maxW∈W ∥W∥2,1. Suppose all activation functions are 1-Lipschitz,
and ℓ is µ-Lipschitz and bounded by β. Then, with probability at least 1− δ over the randomness of
DH , the following inequality holds

L(f) ≤ L̂(f) + 8β
√
n+ 24

√
KµbL

′

W (CGIN + CGT) ln(M)

M
√
n

+ 3β

√
ln (2/δ)

2M
(12)

where CGIN = bLAcXb
LL′

W L3/2L′3/2(b′W /bW )
√

ln(2d̄2), CGT =

dcXH
L/2b

L(1+L′)
W

∏L
i=1 s

(i−1)
√
ln (2d2), and s(i−1) = b2W b

(i−1)
Z d̄−1/2 +

√
n. Particularly,

assuming η-Lipschitz for self-attentions yields CGT = dcXb
LL′

W HL/2ηL
√

ln(2d2).

The proof of the theorem is in Appendix A. Note that b(i−1)
Z is too complex and is detailed in the

proof. The assumptions made in the theorem are mild. For example, regarding the loss functions,
ReLU, Sigmoid, and Tanh are all 1-Lipschitz continuous. The theorem has the following important
implications:

• When there are more training datasets, namely, M is larger, the bound is tighter. This is
consistent with our numerical result shown by Figure 4a.

• Due to the
√
K in the bound, increasing the number K of parallelized GINs and GTs has a

tiny impact on the gap between L(f) and L̂(f) but it can reduce the training error, thereby
increasing the testing accuracy. This is consistent with the results shown by Figure 4b.

• When the layer numbers L and L′ are too large, the generalization ability of UniOD is weak,
especially when the spectral norms of the weight matrices are larger than 1. However, we
can use spectral normalization to ensure the small bW in real applications.

5 NUMERICAL RESULTS

5.1 EXPERIMENTAL SETTINGS

Datasets Our experiments are conducted on ADBench (Han et al., 2022), which is a popular
benchmark in outlier (anomaly) detection, containing widely used real-world datasets in multiple
domains, including healthcare, audio, language processing, and finance. Detailed descriptions and
statistical information about these datasets are provided in the Appendix F.

Baselines and Hyperparameter Settings UniOD is compared with 17 widely-used baseline methods,
including traditional methods: KDE(Parzen, 1962), kNN(Ramaswamy et al., 2000), LOF (Breunig
et al., 2000), OC-SVM(Schölkopf et al., 2001), IF(Liu et al., 2008), LODA (Pevnỳ, 2016), ECOD(Li
et al., 2022), deep-learning based methods: AE (Hinton & Salakhutdinov, 2006), DSVDD(Ruff
et al., 2018a), NeutralAD(Qiu et al., 2021), ICL (Shenkar & Wolf, 2022), SLAD(Xu et al., 2023),
DTE-NP(Livernoche et al., 2023b), DPAD(Fu et al., 2024), KPCA+MLP, MLP+TF, and one model
selection method: MetaOD (Zhao et al., 2020). It is noteworthy that methods such as ELECT (Zhao
et al., 2022) and HPOD (Zhao & Akoglu, 2022) are not included, since their meta-feature construction
processes are not publicly available. MetaOOD (Qin et al., 2024) is designed for out-of-distribution
detection, and AutoUAD (Dai & Fan, 2025) is limited to inductive anomaly detection. For DTE-NP,
DPAD, SLAD, ICL, and NeutralAD, we use the code provided by the authors. As for other methods,
we use the code from the Python library PyOD (Zhao et al., 2019). For both traditional and deep
methods, we use grid search to obtain the best-performing set of hyperparameters in the historical
datasets which is then used in our experiments. The detailed hyperparameter configuration for
grid search and MetaOD is provided in Appendix G. KPCA+MLP and MLP+TF are two baseline
methods that uses historical labeled datasets for training. More details are provided in Appendix H.1.

Implementation In our experiments, we consider 30 datasets and partition them into two equal
groups (Group I and Group II). We use Group II as the historical datasets to train UniOD and use
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Group I as the testing datasets. We also exchange the roles of the two sets. More implementation
details are provided in Appendix H.2.

Performance Metrics We use two metrics to evaluate the performance of UniOD and other baseline
methods: Area Under the Receiver Operating Characteristic Curve (AUROC) and the Area Under the
Precision-Recall Curve (AUPRC), following (Xu et al., 2023; Livernoche et al., 2023b; Kim et al.,
2024). The two metrics are threshold-free and hence can avoid the uncertainty and unfairness in
determining the thresholds for the OD methods.

Table 2: Average AUROC (%) and AUPRC (%) of each method over 5 runs, including both training
and testing, on Group I datasets. The best and second-best results are highlighted in red and orange,
respectively.

AUROC
KDE

(1962)
kNN

(2000)
AE

(2006)
DSVDD
(2018)

NeutralAD
(2021)

ECOD
(2022)

ICL
(2022)

SLAD
(2023)

DPAD
(2024)

DTE-NP
(2024)

KPCA
+MLP

MLP
+TF

MetaOD
(2021)

UniOD
Ours

breastw 98.43 98.47 95.12 82.88 84.92 99.14 82.57 81.35 86.29 97.89 88.16 97.21 97.71 99.10
Cardio. 50.27 51.91 55.55 71.36 38.63 78.53 40.82 32.60 30.62 49.23 97.21 74.41 60.51 51.20
fault 73.05 71.46 66.25 48.94 67.35 46.87 55.29 71.83 66.77 73.44 90.55 53.00 57.21 69.60
InternetAds 61.79 62.36 53.71 62.18 66.42 67.70 42.73 64.66 53.86 65.11 58.18 54.47 69.62 63.50
landsat 62.46 61.58 49.87 42.59 61.92 36.78 69.91 67.24 52.72 59.20 39.04 40.08 56.80 69.10
optdigits 32.32 39.91 45.11 40.74 69.38 60.45 54.18 55.29 50.63 36.38 56.63 44.04 87.22 73.80
PageBlocks 90.66 92.08 91.63 89.72 84.17 91.39 62.34 74.08 52.70 89.54 76.26 71.41 75.99 88.20
pendigits 89.05 90.23 79.46 87.87 77.51 92.74 36.64 60.11 63.73 77.08 64.61 85.45 72.11 77.50
Pima 72.28 72.53 63.86 63.21 61.19 59.44 51.15 47.75 61.46 71.54 63.17 68.76 70.89 72.30
satellite 76.03 73.13 68.52 57.25 62.32 58.30 59.07 68.21 64.76 68.91 55.30 61.50 65.20 86.90
satimage-2 96.44 99.88 95.71 96.68 79.71 96.49 64.50 95.97 81.22 96.59 59.62 96.74 91.51 99.70
SpamBase 49.52 56.14 55.99 56.82 51.09 65.56 21.68 52.66 47.14 53.14 53.39 51.36 66.20 56.30
thyroid 95.83 96.49 96.27 91.35 60.25 97.71 42.61 85.12 73.53 96.37 82.68 90.96 95.01 94.10
Waveform 75.12 75.35 60.25 64.70 69.31 60.35 62.36 44.54 55.22 73.89 62.04 54.44 69.40 84.30
WDBC 95.01 98.43 84.37 97.00 30.17 97.06 86.33 70.20 93.63 97.97 89.10 94.86 96.30 98.40

Average 74.55 76.00 70.78 70.22 64.29 73.90 55.48 64.77 62.29 73.75 66.13 69.24 75.45 78.93

AUPRC

breastw 95.58 95.64 87.90 83.10 61.29 98.39 71.74 69.59 79.45 93.03 47.85 93.53 93.54 96.90
Cardio. 27.54 33.64 30.86 43.89 20.17 50.54 18.55 21.78 16.69 31.00 29.47 52.40 36.96 35.30
fault 54.57 52.08 48.16 33.39 47.69 32.57 39.29 53.04 47.89 53.77 84.08 36.42 42.77 49.10
InternetAds 23.80 29.76 19.33 29.83 34.68 50.89 16.07 29.35 21.11 29.39 28.39 26.59 52.50 32.80
landsat 26.03 25.72 20.23 19.02 28.33 16.35 42.64 29.21 22.14 25.13 15.95 16.84 24.29 28.10
optdigits 1.97 2.19 2.43 2.35 5.13 3.37 2.91 2.93 2.95 2.09 3.09 2.36 19.74 5.00
PageBlocks 53.98 56.83 52.12 51.98 32.69 51.99 31.58 36.85 11.82 51.11 30.61 34.99 29.08 46.20
pendigits 12.11 13.66 6.70 14.47 5.14 26.56 1.63 2.75 5.68 8.05 2.89 15.39 7.02 6.00
Pima 53.49 52.64 45.43 46.13 41.15 46.42 35.63 34.64 45.46 52.07 46.80 50.01 57.18 52.90
satellite 60.35 59.28 54.40 51.63 40.74 52.61 43.85 48.81 47.16 54.72 41.56 55.99 50.22 79.20
satimage-2 31.80 94.52 28.47 78.87 2.85 65.97 1.59 37.66 8.42 40.75 43.99 86.93 29.83 95.70
SpamBase 38.29 41.36 41.91 43.23 38.63 51.83 26.72 40.66 38.82 40.38 40.41 39.71 51.20 42.50
thyroid 28.60 40.22 35.72 26.02 4.22 46.78 2.16 27.23 14.58 32.36 50.68 40.81 49.56 44.30
Waveform 11.44 13.26 4.25 4.61 33.56 4.05 6.19 2.41 4.22 11.35 5.78 3.79 4.84 9.60
WDBC 25.49 53.81 16.87 53.35 2.02 50.53 9.73 8.61 54.07 47.17 48.51 22.88 31.99 57.80

Average 36.34 44.31 32.99 38.79 26.55 43.26 23.35 29.70 28.03 38.16 34.67 38.57 38.71 45.43

5.2 RESULTS OF OD

The average AUROC and AUPRC performance on 15 datasets from Group I is shown in Table 2. In
AUROC and AUPRC, UniOD achieves the best average performance, which is 3% higher than the
second-best method-kNN. Compared with KPCA+MLP and MLP+TF, which also use historical
datasets, UniOD significantly outperforms them.

Another interesting phenomenon is that simple traditional methods, such as kNN and KDE, out-
perform most deep learning methods in various datasets. One reason is that in tabular data with
low-dimensional features, even a simple Euclidean distance reflects semantic differences between
different samples. However, as the dimension of datasets increases, deep-learning based methods
will be more powerful since methods like kNN and KDE provide implicit prediction results for
high-dimensional datasets as discussed in (Jiang, 2017; Gu et al., 2019).

To mitigate the influence of specific historical datasets, we conduct cross-validation experiments. In
this setting, the 15 datasets in Group I are treated as historical datasets, and evaluation is performed on
datasets from Group II. For datasets containing more than 6,000 samples, we subsample them to 6,000
while preserving the original anomaly ratio, due to computational resource constraints. As reported in
Table 3, the superior performance of UniOD demonstrates its robustness and effectiveness, indicating
that its performance does not depend on specific historical datasets. Meanwhile, we provide TSNE
visualization results of the learned representations ZTi on several datasets in Figure 5 and observe
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Table 3: Average AUROC (%) and AUPRC (%) of each method over 5 runs, including both training
and testing, on Group II datasets. The best and second-best results are highlighted in red and orange,
respectively.

AUROC
KDE

(1962)
kNN

(2000)
AE

(2006)
DSVDD
(2018)

NeutralAD
(2021)

ECOD
(2022)

ICL
(2022)

SLAD
(2023)

DPAD
(2024)

DTE-NP
(2024)

KPCA
+MLP

MLP
+TF

MetaOD
(2021)

UniOD
Ours

ALOI 53.35 53.57 55.00 54.85 56.16 51.60 52.11 52.73 49.36 56.72 52.86 50.82 48.38 54.39
campaign 74.19 74.21 71.54 67.28 69.06 76.24 71.41 70.22 49.79 74.28 46.46 36.08 76.21 73.23
cardio 83.90 90.99 89.81 88.94 47.68 93.50 26.99 47.82 73.23 74.34 66.37 79.59 56.44 93.77
celeba 74.70 79.71 73.67 67.28 54.49 75.25 64.90 66.13 51.73 74.60 58.34 39.47 69.73 81.21
cover 87.00 91.40 89.32 89.45 73.72 89.64 54.04 66.15 69.82 91.63 62.69 77.59 88.82 93.52
wilt 34.02 44.40 44.98 31.93 52.72 39.40 57.57 59.83 51.08 58.00 57.32 32.03 51.72 52.61
http 99.57 99.57 99.87 99.70 91.71 98.27 35.05 99.95 51.61 12.54 99.90 65.70 99.95 100.00
magic_g. 70.00 76.39 72.80 67.59 65.63 64.78 65.82 63.91 55.39 80.60 73.48 63.95 70.99 70.10
mammog. 87.17 84.92 76.52 86.95 62.21 89.68 56.47 59.06 61.99 84.60 79.12 85.23 84.77 87.25
shuttle 99.37 92.06 99.05 99.26 73.58 99.40 52.21 94.27 56.66 79.58 80.61 95.85 49.17 99.51
skin 51.25 76.04 49.55 59.51 78.65 48.86 33.57 83.12 64.64 71.43 57.39 62.75 65.19 76.12
speech 52.02 47.83 47.49 45.70 53.61 46.97 43.22 52.41 50.98 49.99 48.30 45.96 54.88 46.97
smtp 100.00 100.00 99.98 100.00 99.69 100.00 99.94 100.00 74.25 100.00 99.99 78.85 97.81 100.00
letter 87.60 74.44 63.10 57.46 88.26 57.23 73.05 88.40 58.20 88.16 55.51 54.35 90.09 64.05
vowels 82.91 91.23 76.25 41.54 97.64 59.29 82.17 93.65 72.66 97.37 70.29 61.56 94.99 85.01

Average 75.80 78.45 73.93 70.50 70.99 72.67 57.90 73.18 59.43 72.92 67.24 61.99 73.28 78.52

AUPRC

ALOI 4.26 3.97 4.26 3.96 4.38 3.30 3.69 3.79 3.03 4.76 3.41 3.09 2.79 3.62
campaign 28.03 28.49 25.03 24.55 20.93 34.27 22.88 23.95 11.35 28.82 10.89 12.64 36.70 28.47
cardio 36.47 51.18 43.13 46.35 11.93 56.74 6.14 19.69 30.85 35.49 23.86 38.04 18.95 57.63
celeba 5.86 9.27 5.59 6.24 2.31 10.76 4.99 5.29 2.37 6.34 3.63 4.21 5.37 11.71
cover 5.17 7.77 11.16 15.60 3.85 11.97 1.04 1.46 3.07 9.59 3.94 1.94 9.64 5.89
wilt 3.67 4.34 4.42 3.61 13.01 4.17 6.05 6.29 5.93 5.73 6.01 3.58 4.98 3.67
http 44.32 44.32 70.08 59.04 3.88 15.95 0.61 86.79 1.80 1.13 79.31 1.02 96.56 100.00
magic_g. 63.52 69.83 64.36 56.21 50.11 54.50 55.26 52.45 40.51 73.46 64.26 52.87 62.54 62.48
mammog. 20.98 15.98 12.14 21.19 3.05 41.16 3.95 4.10 6.07 16.69 26.42 10.41 21.87 19.50
shuttle 91.86 34.51 79.74 91.32 14.77 91.10 8.29 39.86 12.99 19.76 16.82 54.14 8.88 96.18
skin 19.08 31.60 19.47 24.43 33.92 18.24 14.92 46.87 24.57 28.48 23.99 35.42 24.53 31.65
speech 1.77 1.88 1.84 1.99 2.28 1.96 1.39 2.48 2.08 2.01 1.47 1.96 3.87 1.84
smtp 100.00 100.00 58.33 100.00 27.63 100.00 61.11 100.00 14.09 100.00 83.33 0.22 1.12 100.00
letter 35.42 15.30 11.30 9.44 42.13 7.67 17.96 36.87 8.99 30.41 6.64 9.32 52.40 10.54
vowels 23.17 30.29 21.48 4.02 56.95 8.14 27.68 33.96 18.11 56.06 5.81 6.44 35.61 17.23

Average 32.24 29.92 28.82 31.20 19.41 30.66 15.73 30.92 12.39 27.92 23.99 15.69 25.72 36.69

Table 4: Time costs (seconds) comparison of different deep methods on 15 datasets.

AE
(2006)

DSVDD
(2018)

NeutralAD
(2021)

ICL
(2022)

SLAD
(2023)

DPAD
(2024)

UniOD
Ours

384 511 664 1391 485 788 240

that most outliers tend to gather into a small, dense cluster while a smaller portion of outliers appear
as isolated nodes.

Also, we compare the time costs of different deep learning OD methods in detecting the outliers on
the 15 datasets from Group I, the results are shown in Table 4. Note that the reported results exclude
hyperparameter tuning time. UniOD achieves a lower time cost than those dataset-specific deep OD
methods.

5.3 ABLATION STUDIES

In this subsection, we conduct experiments to investigate how each component of our proposed
UniOD affects its outlier detection performance. We first evaluate the performance of UniOD with
1, 3, 5, 10, 15 training historical datasets (with sub-sampling augmentation) shown in Figure 4a. It is
obvious that as the number of historical datasets expands, its generalization performance improves
correspondingly. In Figure 4b, we analyze how the number of bandwidths K affects the performance
of UniOD. A larger K results in less information loss, which improves the generalization ability.
These results are consistent with Theorem 4.1. For more detailed results, please refer to Appendix H.

6 CONCLUSION

This work proposed a novel and efficient outlier detection method called UniOD. The core idea of
UniOD is to leverage historical datasets to train a deep universal model that can detect outliers in
newly unseen datasets from diverse domains without retraining. By converting each dataset into
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(a) (b)

Figure 4: Ablation study: (a) Average performance using different numbers of historical datasets; (b)
Average performance using different number of bandwidths for similarity matrices.

graph-structured data and generating uniformly dimensioned node features, UniOD enables a single
model to handle heterogeneous datasets. We provide both theoretical analysis and empirical results to
demonstrate its effectiveness and efficiency. Although UniOD is primarily designed for transductive
anomaly detection, it can also be applied to inductive anomaly detection by converting the training
set and each test point into graph-structured data and computing their outlier scores.
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A PROOF FOR THEOREM 4.1

Recall that our model f ∈ F is composed of K GINs and K GTs followed by an MLP. For
convenience, in the main paper, we have let each GIN have L layers and each layer has an MLP
of depth L′. The GTs have the same sizes. The depth of the MLP following the concatenation of
GINs and GTs is also L′. We have also let bA = maxi,k ∥AHi,σk

∥2, cX = maxk
√∑

i ∥XHi,σk
∥2F ,

bW = maxW∈W ∥W∥2, b′W = maxW∈W ∥W∥2,1. Suppose all activation functions are 1-Lipschitz,
and ℓ is µ-Lipschitz and bounded by β.

The main idea of our analysis is composed of the following steps: 1) derive the covering number
bound of F ; 2) derive the Rademacher complexity bound of the loss function; 3) establish the
generalization bound of f .

First, we analyze the complexity of the input data Xk ∈ RMn×d, which is composed of {XHi,σk
}Mi=1,

k = 1, 2, . . . ,K. We show the following lemma (Lemma 3.2 in (Bartlett et al., 2017)).
Lemma A.1. Let conjugate exponents (p, q) and (r, s) be given with p ≤ 2, as well as positive reals
(a, b, ϵ) and positive integer m. Let matrix X ∈ Rn×d be given with ∥X∥p ≤ b. Then

lnN
({

XA : A ∈ Rd×m, ∥A∥q,s ≤ a
}
, ϵ, ∥ · ∥F

)
≤
⌈a2b2m2/r

ϵ2

⌉
ln (2dm)

For convenience, we drop the index of X. Denote X := {X : ∥X∥F ≤ cX}. According to the
lemma, letting A be an identity matrix, and letting p = q = 2, s = 1, r = ∞, we have

lnN (X , ϵ, ∥ · ∥F ) ≤
c2Xd

2

ϵ2
ln (2d2) (13)

The Lipschitz constant τGT of one GT is given by the following lemma (proved in Section B.1).
Lemma A.2. Suppose in the GT, the layer normalization is ρ-Lipschitz. Let Zp−1 be the input of
layer p, ∥Zp−1∥2 ≤ b

(p−1)
Z , and ∥Zp−1∥F ≤ c

(p−1)
Z . Then the Lipschitz constant of the GT is

τGT =

L∏
i=1

(
ub

(i−1)
Z + v

)
(14)

where u =
ρb3+L′

W

√
H√

d̄
and v = ρbL

′

W (1 +
√
HbW

√
m) and b(i−1)

Z ≤ c
(i−1)
Z ≤ τGTi−1

c
(i−2)
Z . If all

self-attentions are η-Lipschitz, then

τGT = bLL′

W ρLnorm

(
1 +

√
Hη
)L

(15)

According to Lemma A.3 (a well-known result), we can bound the covering numbers of the GT:

lnN (FGT, ϵ, ∥ · ∥F ) ≤
RGT

ϵ2
(16)

where RGT = c2Xd
2τ2GT ln (2d

2).
Lemma A.3. Suppose ψ is a κ-Lipschitz function, then lnN (ϵ, ψ ◦ F , ρ) ≤ lnN (ϵ/κ,F , ρ).

The following lemma (proved in Section B.2) provides an upper bound for the covering number of a
GIN model:
Lemma A.4. Consider the L-layer GIN, where each layer has an MLP of L′ layers. For any ϵ > 0,
it has

lnN (ϵ,FG, ρ) ≤
RGIN

ϵ2

where RGIN = b2LA c2Xb
2LL′

W L3L′3(b′W /bW )2 ln(2d̄2).

Since our model is a concatenation of K independent GINs and K independent GTs, the covering
number bound of their combination is

lnN (FK , ϵ, ∥ · ∥F ) ≤
K(RGIN +RGT)

ϵ2
(17)
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The K-GINs and K-GTs are followed by an MLP with L′ layers, and the Lipschitz constant of the
MLP is τMLP = bL

′

W . Consequently,

lnN (F , ϵ, ∥ · ∥F ) ≤
Kτ2MLP(RGIN +RGT)

ϵ2
(18)

Since the overall loss is L̂(f) := 1
M

∑M
i=1

1
n

∑n
j=1 ℓ(y

(j)
Hi
, ŷ

(j)
Hi

), the loss on one dataset is ē(y, ŷ) =
1
n

∑n
j=1 ℓ(yj , ŷj). Suppose ℓ is µ-Lipschitz with respect to y. Then according to Lemma B.3, ē is

µ√
n

-Lipschitz. Then the covering number of our model with loss is bounded as

lnN (ℓ ◦ F , ϵ, ∥ · ∥F ) ≤
Kµ2τ2MLP(RGIN +RGT)

nϵ2
(19)

The Dudley entropy integral bound used by Bartlett et al. (2017) is shown below.

Lemma A.5 (Lemma A.5 of Bartlett et al. (2017)). Let F be a real-valued function class taking
values in [0, 1], and assume that 0 ∈ F . Then

RD(F) ≤ inf
α>0

(
4α√
M

+
12

M

∫ √
M

α

√
lnN (ϵ,F , ρ) dϵ

)
.

In our method, |ℓ| ≤ β. We let F̃ = ϕ ◦ F , where ϕ(x) = 1
βx, then F̃ is a real-valued function class

taking values in [0, 1]. Using Lemma A.5, we obtain

RD(F̃) ≤ inf
α>0

(
4α√
M

+
12

M

∫ √
M

α

√
lnN

(
ϵ

β
, F̃ , ρ

)
d(
ϵ

β
)

)

= inf
α>0

(
4α√
M

+
12

Mβ

∫ β
√
M

βα

√
lnM

(
ϵ

β
, ϕ ◦ F , ρ

)
dϵ

)

≤ inf
α>0

(
4α√
M

+
12

Mβ

∫ β
√
M

βα

√
lnM (ϵ,F , ρ) dϵ

) (20)

Multiplying both side by β yields

RD(F) ≤ inf
α>0

(
4αβ√
M

+
12

M

∫ β
√
M

βα

√
lnN (ϵ,F , ρ) dϵ

)
. (21)

Letting v =
Kµ2τ2

MLP(RGIN+RGT)
n , it follows that

RG(F) ≤ inf
α>0

(
4αβ√
M

+
12

M

∫ β
√
N

βα

√
v

ϵ2
dϵ

)

= inf
α>0

(
4αβ√
M

+
12

√
v

ln

(√
M

α

))

=
4β

M
+

12
√
v ln(M)

M

(22)

where we have chosen α = 1/
√
M .

Then, using the following lemma (a standard tool in Rademacher complexity (Mohri et al., 2018)),
the generalization bound of our UniOD can be derived.

Lemma A.6. Given hypothesis function space F and loss function ℓβ bounded by β > 0, define
Fβ := {(Z,y) 7→ ℓβ(f(Z),y) : f ∈ F}. Then, with probability at least 1− δ over a sample D of

size M , every f ∈ F satisfies Lβ(f) ≤ L̂β(f) + 2RD(Fβ) + 3β
√

ln (2/δ)
2M .
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Specifically, we have

L(f) ≤L̂(f) + 8β
√
n+ 24

√
KµτMLP

√
RGIN +RGT ln(M)

M
√
n

+ 3β

√
ln (2/δ)

2M

≤L̂(f) + 8β
√
n+ 24

√
KµbL

′

W (
√
RGIN +

√
RGT) ln(M)

M
√
n

+ 3β

√
ln (2/δ)

2M

(23)

where RGIN = b2LA c2Xb
2LL′

W L3L′3(b′W /bW )2 ln(2d̄2), RGT = c2Xd
2τ2GT ln (2d

2), τGT =∏L
i=1

(
ub

(i−1)
Z + v

)
, u =

ρb3+L′
W

√
H√

d̄
, v = ρbL

′

W (1 +
√
HbW

√
n), and b

(i−1)
Z ≤ c

(i−1)
Z ≤

τGTi−1c
(i−2)
Z ≤

∏i−2
j=1

(
ub

(j)
Z + v

)
cX . Dropping the terms related to the residual connections

and layer normalizations in the GTs, we complete the proof.

If we assume that all self-attentions are η-Lipschitz, then τGT = bLL′

W ρLnorm

(
1 +

√
Hη
)L

.

B LEMMAS AND PROOFS

B.1 PROOF FOR LEMMA A.2

Proof. We denote fi the i-th layer of a GT. It is composed of multi-head self-attention, residual
connection, layer normalization, and MLP. To analyze the covering number bound of a single GT, we
first present the following lemma for the Lipschitz continuity of self-attention.

Lemma B.1. Consider the following self-attention mechanism

f(Z) = Softmax
(
ZWQ(ZWK)⊤√

d

)
ZWV

where Z ∈ Rn×d′
and WQ,WK ,WV ∈ Rd′×d. Suppose max{∥WQ∥2, ∥WK∥2, ∥WV ∥2} ≤

batt, then for any Z and Z′ satisfying ∥Z∥2 ≤ bz and ∥Z′∥2 ≤ bz , it holds that

∥f(Z)− f(Z′)∥ ≤
(

1√
d
b3attbz + batt

√
n

)
∥Z− Z′∥F (24)

Then, according to the concatenation Lipschitz lemma (Lemma B.4), the Lipschitz constant of the
multi-head (H heads) attention is

Lmulti-att =
√
H

(
1√
d̄
b3attbz + batt

√
n

)
(25)

Assume that the Lipschitz constant of the layer normalization is ρnorm, and the feedforward network
has L′ layers. Then the Lipschitz constant of the transformer layer i is

LGTi
=bL

′

W ρnorm

(
1 +

√
H

(
1√
d̄
b3attb

(i−1)
z + batt

√
n

))
=ub(i−1)

z + v

(26)

where u =
bL

′
W b3attρnorm

√
H√

d̄
and v = bl

′

W ρnorm(1 +
√
Hbatt

√
n). As ∥Zi∥2 ≤ b

(i)
z and ∥Zi∥2 ≤

∥Zi∥F , we bound ∥Zi∥F instead, where ∥Z0∥F = ∥X∥F ≤ cX . That means, we let bi−1
z be the

upper bound of ∥Zi−1∥F . It follows that

bi−1
z ≤ LGTi−1

bi−2
z (27)

We have L layers in the GIN. Therefore,

LGT =

L∏
i=1

(ub(i−1)
z + v) (28)
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If all self-attentions are η-Lipschitz, i.e.,

∥f(Z)− f(Z′)∥ ≤ η ∥Z− Z′∥F (29)

then the Lipschitz constant of the transformer layer i is

LGTi =b
L′

W ρnorm

(
1 +

√
Hη
)

(30)

which makes

LGT =bLL′

W ρLnorm

(
1 +

√
Hη
)L

(31)

B.2 PROOF FOR LEMMA A.4

Since the lemma is a simple variant of Lemma F.8 in (Wang & Fan, 2024), we will not detail the
proof here. For convenience, we show the original lemma (with modified notations) below:

Lemma B.2 (Covering number bound of GIN). Let c = ∥Ã∥2 and d̄ = maxi,l d
(l)
i . Given an

L-layer GIN message passing network FG, for any ϵ > 0

lnN (ϵ,FG, ρ) ≤
RG

ϵ2

where RG = c2L∥X∥2F ln(2d̄2)
(∏L

l=1 κ
2
l

)(∑L
l=1 (τl)

2
3

)3
and κl =

∏r
j=1 κ

(l)
j , τl =(∑r

i=1

(
b
(l)
i

κ
(l)
i

)2/3
)3/2

.

In the lemma, let r = L′, c = bA, b(l)i = b′W , and κ(l)i = bW , we obtain Lemma A.4.

B.3 PROOF FOR LEMMA B.3

Lemma B.3. Let ē(y) = [ 1n
∑n

j=1 ℓ(y
∗
ij , yij)]i. Suppose ℓ is µ-Lipschitz, then ē is µ√

n
-Lipschitz.

Proof. It can be proved by the following derivations:

∥ē(y)− ē(y′)∥

=
1

n

∥∥∥∥∥∥∥∥
∑n

j=1(ℓ(y
∗
1j , y1j)− ℓ(y∗1j , y

′
1j))∑n

j=1(ℓ(y
∗
2j , y2j)− ℓ(y∗2j , y

′
2j))

. . .∑n
j=1(ℓ(y

∗
Nj , yNj)− ℓ(y∗Nj , y

′
Nj))

∥∥∥∥∥∥∥∥
≤ 1

n

∥∥∥∥∥∥∥∥
∑n

j=1 µ|y1j − y′1j |∑n
j=1 µ|y2j − y′2j |

. . .∑n
j=1 µ|yNj − y′Nj |

∥∥∥∥∥∥∥∥
≤µ
n

∥∥∥∥∥∥∥
√
n∥y1 − y′

1∥√
n∥y2 − y′

2∥
. . .√

n∥yN − y′
N∥

∥∥∥∥∥∥∥
=

µ√
n
∥y − y′∥

(32)
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B.4 PROOF FOR LEMMA B.1

Proof. Let g(Z) = ZWQ(ZWK)⊤√
d̄

. We calculate

∥f(Z)− f(Z′)∥F = ∥Softmax(g(Z))ZWV − Softmax(g(Z′))Z′WV ∥F
≤∥WV ∥2 ∥Softmax(g(Z))Z− Softmax(g(Z′))Z′∥F
≤∥WV ∥2 (∥Softmax(g(Z))Z− Softmax(g(Z′))Z∥F + ∥Softmax(g(Z′))Z− Softmax(g(Z′))Z′∥F )

≤∥WV ∥2
(
∥Softmax(g(Z))− Softmax(g(Z′))∥F︸ ︷︷ ︸

T1

∥Z∥2 + ∥Z− Z′∥F ∥Softmax(g(Z′))∥2︸ ︷︷ ︸
T2

)
(33)

For T1, we have

T1 ≤1

2
∥g(Z)− g(Z′)∥F

=
1

2
√
d

∥∥ZWQ(ZWK)⊤ − Z′WQ(Z
′WK)⊤

∥∥
F

≤ 1

2
√
d

(∥∥ZWQW
⊤
KZ⊤ − Z′WQW

⊤
KZ⊤∥∥

F
+
∥∥Z′WQW

⊤
KZ⊤ − Z′WQW

⊤
KZ′⊤∥∥

F

)
≤ 1

2
√
d

(
∥Z− Z′∥F ∥WQ∥2 ∥WK∥2 ∥Z∥2 + ∥Z− Z′∥F ∥WQ∥2 ∥WK∥2 ∥Z

′∥2
)

≤ 1√
d
b2attbz ∥Z− Z′∥F

(34)
For T2, we have

T2 ≤∥Softmax(g(Z′))∥F

≤

√√√√ m∑
i=1

∥Softmax(ti)∥2

≤

√√√√ m∑
i=1

∥Softmax(ti)∥21

=
√
m

(35)

where ti denotes gi(Z). Combining the results above, we obtain

∥f(Z)− f(Z′)∥F ≤
(

1√
d
b3attbz + batt

√
m

)
∥Z− Z′∥F (36)

B.5 PROOF FOR LEMMA B.4

Lemma B.4 (Concatenation Lipschitz). For K matrix functions with the same input X, suppose
each of them has a Lipschitz constant Lk. Then the concatenation of these functions has a Lipschitz
constant maxk Lk

√
K with respect to X.

Proof. Given K matrix functions f1, f2, . . . , fK with the same input X, the row-wise concatenation
of the output is denoted Ȳ, given by F (X) := [f1(X); f2(X); . . . ; fK(X)]. Suppose the Lipschitz
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constant of each fk is Lk, k = 1, 2, . . . ,K. We obtain

∥F (X)− F (X′)∥ =

∥∥∥∥∥∥∥∥
f1(X)− f1(X

′)
f2(X)− f2(X

′)
...

fK(X)− fK(X′)

∥∥∥∥∥∥∥∥
=

√√√√ K∑
k=1

∥fk(X)− fk(X′)∥2F

≤

√√√√ K∑
k=1

L2
k∥X−X′∥2F

≤max
k

Lk

√√√√ K∑
k=1

∥X−X′∥2F

=max
k

Lk

√
K∥X−X′∥F

(37)

C ALGORITHM DETAILS

C.1 KGINθ1 AND KGTθ2

KGINθ1 and KGTθ2 are combinations of K GINs and GTs respectively. For the k-th GIN GINθk
1

and GTθk
2

parametered by θk1 , θ
k
2 , their outputs follows:

ZGINk

Hi
= GINθk

1

(
X̃Hi

,AHi

)
, i = 1, . . . ,M

ZGTk

Hi
= GTθk

2

(
X̃Hi

)
, i = 1, . . . ,M

(38)

Then, we have ZGIN
Hi

and ZGT
Hi

follows:

ZGIN
Hi

= [ZGIN1

Hi
,ZGIN2

Hi
, . . . ,ZGINK

Hi
], θ1 = {θk1}Kk=1

ZGT
Hi

= [ZGT1

Hi
,ZGT2

Hi
, . . . ,ZGTK

Hi
], θ2 = {θk2}Kk=1

(39)

C.2 GIN

The details about GIN are as follows:

∀l ∈ [1, 2, . . . , L− 1], h(j),l+1 = fΘ(l+1)

(1 + ϵ)h(j),l +
∑

u∈N (j)

Ah(u),l

 (40)

where h(j),l+1 is the output from l + 1 GIN layer, h(j),0 = x̃
(j)
Hi,σk

is the input node feature, N (j)
denotes the neighbor set of node j, fΘ(l+1) is a multi layer perceptrons (MLP) parameterized by
Θ(l+1), ϵk is a learnable parameter.

C.3 DETAILED TRAINING AND TESTING ALGORITHM

The detailed training and testing procedures of UniOD is provided in Algorithm 1.

D DETAILED COMPLEXITY COMPARISON FOR DEEP-LEARNING BASED OD
METHODS

In this section, we analysis the time complexity on conducting outlier detection for each deep-learning
based methods. For all these methods which primarily uses MLP in the form of encoder, we assume
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Algorithm 1 Training and Testing Stages of UniOD
Training stage of UniOD:
Require: historical datasets DH = {DH1 ,DH2 , . . . ,DHM

}, training epoch Q, X̂H = ∅, ÂH = ∅
Output:θ∗

1: for each historical dataset DHi
∈ DH do

2: {DH1
i
,DH2

i
,DH3

i
,DH4

i
,DH5

i
} = Subsapmling(DHi

)

3: Obtain ÂH = ÂH ∪ {AHm
i
}5m=1, X̂H = X̂H ∪ {X̃Hm

i
}5m=1 using (2) and (3) respectively.

4: end for
5: Initialize the parameters of UniOD: θ
6: for b = 1, . . . , Q do
7: for each XHj

i
∈ X̂H , AHj

i
∈ ÂH do

8: Obtain node classification prediction using (6, 7,8 and 9)
9: Update parameters θ using (10)

10: end for
11: end for
Testing stage of UniOD:
Require: newly unseen test dataset DTi , trained model parameters θ∗

Output:
{

Outlier Score(x(j)
Ti

)
}nTi

j=1

12: Obatain graph structured data X̃Ti
,ATi

using (2and 3)
13: Obtain outlier score

{
Outlier Score(x(j)

Ti
)
}nTi

j=1
11 using (6, 7, 8 and 9)

that the largest hidden dimension is d̄, the training epoch is Q and the layer of this encoder is L4,
for those methods using decoder as well, we assume the layer of encoder is equal to L4. The time
complexity comparison of conducting outlier detection on a new dataset DTi

between several deep-
learning based methods is shown in Table 5. Note that here we assume Several specific parameters
for these models are:

• SLAD: SLAD includes two hyperparamters r, c which defines the repeat time for data
trnasformation and the number of sub-vectors.

• ICL: ICL includes a hyperparamter 0 < q ≤ dTi which splits each data into dTi − k + 1
pairs.

• NeutralAD: NeutralAD includes a hyperparamter e which determines the number of learn-
able transformations.

• DSVDD: DSVDD requires using AE to pretrain its encoder.

Table 5: Time complexity comparison of UniOD and classical deep learning based methods in
detecting the outliers of a new dataset DTi

.

Time Complexity

SLAD O
(
QnrcL4d̄

)
DPAD O

(
Qnd̄(Ld̄+ n)

)
ICL O

(
QndLd̄2

)
NeutralAD O

(
QneL4d̄

2
)

DSVDD O
(
QnL4d̄

2
)

AE O
(
QnTiL4d̄

2
)

UniOD O
(
n2(d+Kd̄) + nd̄2L̄+ n2d̄L̄′

)
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E HYPERPARAMETER COMPARISON OF OD METHODS

Most deep-learning based OD methods have several hyperparameters which can significantly affect
their performance. In Table 6, we compare the number of hyperparameters of different deep-
learning based methods. Notably, classical deep-learning methods require careful tuning of these
hyperparameters when applied to newly unseen datasets. In contrast, when applied to newly unseen
datasets, UniOD involves no hyperparameters to be tuned.

Table 6: The number of hyperparameters in recent deep-learning based methods and UniOD when
applied to newly unseen datasets.

Methods Hyperparameters Number

DTE-NP k, T 2
SLAD h, c, r, δ, γ, 5
DPAD γ, λ, k 3

ICL k, u, τ, r 4
NeutralAD τ,K,m 3

UniOD - 0

F STATISTICS OF DATASETS

In our experiments, we train our model using 15 historical datasets and evaluate the performance of
16 methods on 15 widely used real-world datasets spanning multiple domains, including healthcare,
audio, language processing, and finance, in a popular benchmark for anomaly detection Han et al.
(2022). The statistics of these datasets are shown in Table 7. These datasets encompass a range of
samples and features, from small to large, providing comprehensive metrics and evaluations for the
methods.

G HYPERPARAMETER COMBINATION OF OD METHODS

In our experiments, we perform a grid search on the historical datasets to identify the best hyper-
parameter configuration for each traditional and deep OD method, and use these configurations
in subsequent evaluations. MetaOD further leverages these hyperparameter settings in traditional
methods to train a model that predicts the optimal method–hyperparameter pair for each testing
dataset. The specific hyperparameter configurations for different methods are summarized in Table 8.

H DETAILED EXPERIMENTAL SETTINGS AND RESULTS

In this section, we provide more detailed experimental settings and results.

H.1 INTRODUTION OF KPCA+MLP AND MLP+TF

For KPCA+MLP, KPCA (Hoffmann, 2007) is first applied to obtain uniformly dimensioned data
across historical datasets. These transformed datasets are then used to train MLPs as classifiers.
The main difference from UniOD is that similarity matrices are not directly utilized. Inspired by
meta-learning approaches (Iwata & Kumagai, 2020; 2023; Hollmann et al., 2025), we also introduce
another baseline, MLP+TF. In this method, each feature is first projected into a higher dimension
using an MLP, then each sample can be represented as a sequence whose length equals the number of
features, and whose token dimension is the MLP output size. A transformer is then applied to extract
embeddings from these sequences, followed by a sum readout function to obtain a representation for
each sequence (sample), which is subsequently fed into another MLP for classification.
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Table 7: Statistics of 30 real-world datasets in ADBench.

Data # Samples # Features # Outlier % Outlier Ratio Category Historical
ALOI 49534 27 1508 3.04 Image ✓

campaign 41188 62 4640 11.27 Finance ✓
cardio 1831 21 176 9.61 Healthcare ✓
celeba 202599 39 4547 2.24 Image ✓
cover 286048 10 2747 0.96 Botany ✓
Wilt 4819 5 257 5.33 Botany ✓
http 567498 3 2211 0.39 Web ✓
letter 1600 32 100 6.25 Image ✓

magic.gamma 19020 10 6688 35.16 Physical ✓
mammography 11183 6 260 2.32 Healthcare ✓

shuttle 49097 9 3511 7.15 Astronautics ✓
skin 245057 3 50859 20.75 Image ✓
smtp 95156 3 30 0.03 Web ✓

speech 3686 400 61 1.65 Linguistics ✓
vowels 1456 12 50 3.43 Linguistics ✓
breastw 683 9 239 34.99 Healthcare ×

Cardiotocography 2114 21 466 22.04 Healthcare ×
fault 1941 27 673 34.67 Physical ×

InternetAds 1966 1555 368 18.72 Image ×
landsat 6435 36 1333 20.71 Astronautics ×

optdigits 5216 64 150 2.88 Image ×
PageBlocks 5393 10 510 9.46 Document ×

pendigits 6870 16 156 2.27 Image ×
Pima 768 8 268 34.90 Healthcare ×

satellite 6435 36 2036 31.64 Astronautics ×
SpamBase 4207 57 1679 39.91 Document ×
satimage-2 5803 36 71 1.22 Astronautics ×

thyroid 3772 6 93 2.47 Healthcare ×
Waveform 3443 21 100 2.90 Physics ×

WDBC 367 30 10 2.72 Healthcare ×

Table 8: Hyperparameter combinations of traditional and deep OD methods used for grid search and
MetaOD.

Method Hyperparameter 1 Hyperparameter 2 Total Methods
LOF n_neighbors: [1, 5, 10, 15, 20, 25, 50, 60, 70, 80, 90, 100] distance: [’manhattan’, ’euclidean’, ’minkowski’] 36
kNN n_neighbors: [1, 5, 10, 15, 20, 25, 50, 60, 70, 80, 90, 100] method: [’largest’, ’mean’, ’median’] 36
OCSVM nu (train error tol): [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] kernel: [’linear’, ’poly’, ’rbf’, ’sigmoid’] 36
KDE gamma: [0.3,0.5,1,3,5] distance: [’manhattan’, ’euclidean’, ’minkowski’] 15
IF n_estimators: [10, 20, 30, 40, 50, 75, 100, 150, 200] max_features: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 81
LODA n_bins: [10, 20, 30, 40, 50, 75, 100, 150, 200] n_random_cuts: [5, 10, 15, 20, 25, 30] 54
AE epoch_num: [10,50,100] batch_size: [256,512] 6
DSVDD l2_regularizer: [1e-2,1e-1] epoch_num: [10,50,100] 6
NeutralAD n_trans: [5,10,15,20] temp: [0.3,0.5,0.8] 12
ICL max_negatives: [100,300,500,1000] temperature: [0.3,0.5,0.8] 12
SLAD n_slad_ensemble: [10,20,30,40] hidden_dims: [32,64,128] 12
DPAD gama: [0.01,0.1,0.5,1] lambda: [0.01,0.1,1] 12
DTE-NP K: [5,10,15,20] T: [200,500,1000,2000] 16

H.2 IMPLEMENTATION DETAILS

All of our experiments in this paper are implemented using Pytorch (Paszke et al., 2017) on a
system equipped with an NVIDIA Tesla A40 GPU and an AMD EPYC 7543 CPU. In UniOD,
we set the dimension of unified feature d = 256, the number of σ is determined as K = 5, with
{β2

k}5k=1 = {0.3, 0.5, 1, 3, 5}. Our KGINθ1 comprises L1 = 4 layers with successive hidden-
dimensionalities [1024, 1024, 1024, 64]. As for KGTθ2, the dimension of the feedforward network
model is set to 1024 and the layer is set to L2 = 6. Classifier MLPθ3 is a 3-layer MLP with successive
hidden-dimensionalities [128, 64, 2]. We use AdamW (Loshchilov & Hutter, 2017) as our optimizer
with learning rate being 5 ∗ 10−5 and weight decay being 10−6 to train UniOD for 50 epochs.
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H.3 EXPERIMENTAL RESULTS WITH MORE OD METHODS

The experimental results on more OD methods with hyperparameter tuning including the cross
validation experiments is shown in Table 9 and Table 10.

Table 9: Complete average AUROC (%) and AUPRC (%) of each method on 15 tabular datasets of
ADBench. The best results are marked in bold.

AUROC
KDE

(1962)
LOF

(2000)
kNN

(2000)
OC-SVM

(2001)
AE

(2006)
IF

(2008)
LODA
(2016)

DSVDD
(2018)

NeutralAD
(2021)

ECOD
(2022)

ICL
(2022)

SLAD
(2023)

DPAD
(2024)

DTE-NP
(2024)

KPCA
+MLP

MetaOD
(2021)

UniOD
Ours

breastw 98.43 45.20 98.47 99.01 95.12 98.76 95.41 82.88 84.92 99.14 82.57 81.35 86.29 97.89 88.16 97.71 99.10
Cardiotocography 50.27 55.66 51.91 68.38 55.55 67.97 77.64 71.36 38.63 78.53 40.82 32.60 30.62 49.23 53.30 60.51 51.20
fault 73.05 59.59 71.46 53.95 66.25 56.15 41.56 48.94 67.35 46.87 55.29 71.83 66.77 73.44 90.55 57.21 69.60
InternetAds 61.79 62.55 62.36 61.65 53.71 66.67 46.62 62.18 66.42 67.70 42.73 64.66 53.86 65.11 58.18 69.62 63.50
landsat 62.46 52.86 61.58 41.16 49.87 52.78 42.98 42.59 61.92 36.78 69.91 67.24 52.72 59.20 39.04 56.8 69.10
optdigits 32.32 39.03 39.91 51.78 45.11 68.72 52.42 40.74 69.38 60.45 54.18 55.29 50.63 36.38 56.63 87.22 73.80
PageBlocks 90.66 85.05 92.08 90.37 91.63 89.52 67.94 89.72 84.17 91.39 62.34 74.08 52.70 89.54 76.26 75.99 88.20
pendigits 89.05 48.11 90.23 93.61 79.46 96.11 91.98 87.87 77.51 92.74 36.64 60.11 63.73 77.08 64.61 72.11 77.50
Pima 72.28 66.99 72.53 67.45 63.86 67.06 62.38 63.21 61.19 59.44 51.15 47.75 61.46 71.54 63.17 70.89 72.30
satellite 76.03 56.97 73.13 65.43 68.52 69.80 73.65 57.25 62.32 58.30 59.07 68.21 64.76 68.91 55.30 65.20 86.90
satimage-2 96.44 68.67 99.88 99.55 95.71 99.42 99.72 96.68 79.71 96.49 64.50 95.97 81.22 96.59 59.62 91.51 99.70
SpamBase 49.52 38.79 56.14 54.25 55.99 62.92 45.47 56.82 51.09 65.56 21.68 52.66 47.14 53.14 53.39 66.20 56.30
thyroid 95.83 90.84 96.49 95.60 96.27 98.19 94.62 91.35 60.25 97.71 42.61 85.12 73.53 96.37 82.68 95.01 94.10
Waveform 75.12 75.59 75.35 70.18 60.25 70.72 63.68 64.70 69.31 60.35 62.36 44.54 55.22 73.89 62.04 69.40 84.30
WDBC 95.01 99.10 98.43 98.38 84.37 98.46 89.19 97.00 30.17 97.06 86.33 70.20 93.63 97.97 89.10 96.3 98.40

Average Value 74.55 63.00 76.00 74.05 70.78 77.55 69.68 70.22 64.29 73.90 55.48 64.77 62.29 73.75 66.13 75.45 78.93

AUPRC

breastw 95.58 31.64 95.64 97.78 87.90 97.18 89.39 83.10 61.29 98.39 71.74 69.59 79.45 93.03 47.85 93.54 96.90
Cardiotocography 27.54 28.08 33.64 41.32 30.86 41.77 45.36 43.89 20.17 50.54 18.55 21.78 16.69 31.00 29.47 36.96 35.30
fault 54.57 40.22 52.08 39.26 48.16 41.34 30.10 33.39 47.69 32.57 39.29 53.04 47.89 53.77 84.08 42.77 49.10
InternetAds 23.80 34.28 29.76 29.47 19.33 42.56 25.04 29.83 34.68 50.89 16.07 29.35 21.11 29.39 28.39 52.50 32.80
landsat 26.03 23.44 25.72 17.75 20.23 21.13 17.71 19.02 28.33 16.35 42.64 29.21 22.14 25.13 15.95 24.29 28.10
optdigits 1.97 2.24 2.19 2.71 2.43 4.57 2.79 2.35 5.13 3.37 2.91 2.93 2.95 2.09 3.09 19.74 5.00
PageBlocks 53.98 47.06 56.83 50.74 52.12 48.81 27.73 51.98 32.69 51.99 31.58 36.85 11.82 51.11 30.61 29.08 46.20
pendigits 12.11 3.85 13.66 23.82 6.70 30.95 22.59 14.47 5.14 26.56 1.63 2.75 5.68 8.05 2.89 7.02 6.00
Pima 53.49 47.27 52.64 49.68 45.43 49.70 45.36 46.13 41.15 46.42 35.63 34.64 45.46 52.07 46.80 57.18 52.90
satellite 60.35 39.47 59.28 66.50 54.40 65.93 69.74 51.63 40.74 52.61 43.85 48.81 47.16 54.72 41.56 50.22 79.20
satimage-2 31.80 2.81 94.52 96.28 28.47 93.69 83.68 78.87 2.85 65.97 1.59 37.66 8.42 40.75 43.99 29.83 95.70
SpamBase 38.29 33.72 41.36 40.61 41.91 48.23 37.92 43.23 38.63 51.83 26.72 40.66 38.82 40.38 40.41 51.20 42.50
thyroid 28.60 14.86 40.22 30.98 35.72 59.76 21.08 26.02 4.22 46.78 2.16 27.23 14.58 32.36 50.68 49.56 44.30
Waveform 11.44 13.39 13.26 5.64 4.25 5.63 4.35 4.61 33.56 4.05 6.19 2.41 4.22 11.35 5.78 4.84 9.60
WDBC 25.49 69.67 53.81 50.48 16.87 62.57 13.83 53.35 2.02 50.53 9.73 8.61 54.07 47.17 48.51 31.99 57.80

Average Value 36.34 28.80 44.31 42.87 32.99 47.59 35.78 38.79 26.55 43.26 23.35 29.70 28.03 38.16 34.67 38.71 45.43

Table 10: Complete average AUROC (%) and AUPRC (%) of each method on the 15 historical
datasets described above, where the 15 test datasets described above are used as historical datasets.
The best results are highlighted in bold.

AUROC
KDE

(1962)
LOF

(2000)
kNN

(2000)
OC-SVM

(2001)
AE

(2006)
IF

(2008)
LODA
(2016)

DSVDD
(2018)

NeutralAD
(2021)

ECOD
(2022)

ICL
(2022)

SLAD
(2023)

DPAD
(2024)

DTE-NP
(2024)

KPCA
+MLP

MetaOD
(2021)

UniOD
Ours

ALOI 53.35 55.27 53.57 55.21 55.00 53.23 54.83 54.85 56.16 51.60 52.11 52.73 49.36 56.72 52.86 48.38 54.39
campaign 74.19 70.82 74.21 73.58 71.54 73.08 58.60 67.28 69.06 76.24 71.41 70.22 49.79 74.28 46.46 76.21 73.23
cardio 83.90 83.60 90.99 94.30 89.81 91.25 88.48 88.94 47.68 93.50 26.99 47.82 73.23 74.34 66.37 56.44 93.77
celeba 74.70 56.81 79.71 79.05 73.67 69.71 59.43 67.28 54.49 75.25 64.90 66.13 51.73 74.60 58.34 69.73 81.21
cover 87.00 96.13 91.40 92.96 89.32 90.04 98.04 89.45 73.72 89.64 54.04 66.15 69.82 91.63 62.69 88.82 93.52
wilt 34.02 54.94 44.40 32.30 44.98 44.91 40.85 31.93 52.72 39.40 57.57 59.83 51.08 58.00 57.32 51.72 52.61
http 99.57 99.47 99.57 99.41 99.87 99.79 94.64 99.70 91.71 98.27 35.05 99.95 51.61 12.54 99.90 99.95 100.00
magic_gamma 70.00 78.38 76.39 69.62 72.80 72.99 71.17 67.59 65.63 64.78 65.82 63.91 55.39 80.60 73.48 70.99 70.10
mammography 87.17 81.16 84.92 87.30 76.52 86.36 88.93 86.95 62.21 89.68 56.47 59.06 61.99 84.60 79.12 84.77 87.25
shuttle 99.37 44.50 92.06 99.24 99.05 99.83 87.65 99.26 73.58 99.40 52.21 94.27 56.66 79.58 80.61 49.17 99.51
skin 51.25 35.29 76.04 63.66 49.55 66.62 50.37 59.51 78.65 48.86 33.57 83.12 64.64 71.43 57.39 65.19 76.12
speech 52.02 47.86 47.83 46.87 47.49 46.67 44.17 45.70 53.61 46.97 43.22 52.41 50.98 49.99 48.30 54.88 46.97
smtp 100.00 99.99 100.00 100.00 99.98 98.89 83.34 100.00 99.69 100.00 99.94 100.00 74.25 100.00 99.99 97.81 100.00
letter 87.60 80.89 74.44 59.94 63.10 62.92 57.17 57.46 88.26 57.23 73.05 88.40 58.20 88.16 55.51 90.09 64.05
vowels 82.91 93.14 91.23 76.91 76.25 77.01 76.99 41.54 97.64 59.29 82.17 93.65 72.66 97.37 70.29 94.99 85.01

Average Value 75.80 71.88 78.45 75.36 73.93 75.55 70.31 70.50 70.99 72.67 57.90 73.18 59.43 72.92 67.24 73.28 78.52

AUPRC

ALOI 4.26 4.32 3.97 4.28 4.26 3.60 4.31 3.96 4.38 3.30 3.69 3.79 3.03 4.76 3.41 2.79 3.62
campaign 28.03 22.63 28.49 28.27 25.03 32.06 16.03 24.55 20.93 34.27 22.88 23.95 11.35 28.82 10.89 36.70 28.47
cardio 36.47 28.77 51.18 57.10 43.13 52.60 47.62 46.35 11.93 56.74 6.14 19.69 30.85 35.49 23.86 18.95 57.63
celeba 5.86 2.56 9.27 11.37 5.59 5.91 3.20 6.24 2.31 10.76 4.99 5.29 2.37 6.34 3.63 5.37 11.71
cover 5.17 16.37 7.77 7.66 11.16 7.25 25.08 15.60 3.85 11.97 1.04 1.46 3.07 9.59 3.94 9.64 5.89
wilt 3.67 5.36 4.34 3.57 4.42 4.36 4.13 3.61 13.01 4.17 6.05 6.29 5.93 5.73 6.01 4.98 3.67
http 44.32 38.61 44.32 35.22 70.08 69.57 7.58 59.04 3.88 15.95 0.61 86.79 1.80 1.13 79.31 96.56 100.00
magic_gamma 63.52 65.71 69.83 63.70 64.36 65.22 62.34 56.21 50.11 54.50 55.26 52.45 40.51 73.46 64.26 62.54 62.48
mammography 20.98 12.99 15.98 17.22 12.14 24.44 28.86 21.19 3.05 41.16 3.95 4.10 6.07 16.69 26.42 21.87 19.50
shuttle 91.86 9.50 34.51 90.87 79.74 98.90 34.45 91.32 14.77 91.10 8.29 39.86 12.99 19.76 16.82 8.88 96.18
skin 19.08 15.00 31.60 23.78 19.47 25.17 18.91 24.43 33.92 18.24 14.92 46.87 24.57 28.48 23.99 24.53 31.65
speech 1.77 2.02 1.88 1.84 1.84 1.87 1.45 1.99 2.28 1.96 1.39 2.48 2.08 2.01 1.47 3.87 1.84
smtp 100.00 83.33 100.00 100.00 58.33 3.49 50.05 100.00 27.63 100.00 61.11 100.00 14.09 100.00 83.33 1.12 100.00
letter 35.42 24.27 15.30 10.09 11.30 8.96 8.66 9.44 42.13 7.67 17.96 36.87 8.99 30.41 6.64 52.40 10.54
vowels 23.17 38.42 30.29 16.33 21.48 14.43 15.70 4.02 56.95 8.14 27.68 33.96 18.11 56.06 5.81 35.61 17.23

Average Value 32.24 24.66 29.92 31.42 28.82 27.85 21.89 31.20 19.41 30.66 15.73 30.92 12.39 27.92 23.99 25.72 36.69

H.4 EXPERIMENTAL RESULTS WITH OD METHODS USING THEIR DEFAULT HYPERPARAMETER
COMBINATIONS

In this subsection, we evaluate the effectiveness of our hyperparameter selection strategy by comparing
the performance of OD methods under their default settings versus our selected hyperparameters. The
results with default hyperparameters are shown in Figure 11. Several methods, including kNN, LOF,
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OC-SVM, DSVDD, and NeutralAD, achieve better performance under our simple tuning strategy,
while others exhibit slight performance degradation. This outcome is reasonable for two reasons:
(i) the default or recommended hyperparameters in the original papers are already designed to be
effective in most scenarios; and (ii) the randomly selected historical datasets may differ substantially
from the test datasets in domain, feature semantics, and dimensionality, making it difficult to transfer
well-tuned hyperparameters, such optimal hyperparamter different in different datasets can also be
observed from Figure 2. This also explains that the performance of MetaOD is not as good as the
most effective OD methods. Nevertheless, the fact that UniOD outperforms both default and tuned
baselines highlights its robustness, even when historical datasets are not closely related to the test
datasets.

Table 11: Average AUROC (%) and AUPRC (%) of each method using their default hyperparameter
combinations on 15 tabular datasets of ADBench. The best results are marked in bold.

AUROC
KDE

(1962)
LOF

(2000)
kNN

(2000)
OC-SVM

(2001)
AE

(2006)
IF

(2008)
DSVDD
(2018)

NeutralAD
(2021)

ECOD
(2022)

ICL
(2022)

SLAD
(2023)

DPAD
(2024)

DTE-NP
(2024)

KPCA
+MLP

UniOD
Ours

breastw 98.40 44.90 97.70 95.10 96.50 98.30 85.70 78.10 99.10 76.40 88.60 91.30 97.60 28.70 99.10
Cardiotocography fault 50.30 52.40 49.10 69.60 54.20 68.10 68.70 42.30 78.50 37.10 38.70 47.00 49.30 42.20 51.20
InternetAds 59.50 60.90 65.20 61.60 57.90 62.50 62.40 65.40 67.70 59.20 61.90 56.50 63.40 51.80 63.50
landsat 62.50 54.70 57.60 42.40 52.60 46.20 39.00 70.90 36.80 64.30 67.50 55.70 60.20 49.50 69.10
opidigits 32.30 53.70 37.20 50.70 47.20 69.60 33.80 34.70 60.50 53.30 54.80 46.50 38.60 39.80 73.80
PageBlocks 90.70 71.60 83.40 91.50 88.20 88.20 90.30 77.70 91.40 74.20 75.50 84.60 90.60 66.80 88.20
pendigits 72.30 89.10 94.70 74.30 93.10 49.90 77.50 70.40 92.70 67.30 66.60 64.90 78.60 62.40 72.30
Pima 72.30 60.10 70.90 62.40 62.80 67.40 65.30 57.10 59.40 51.50 51.30 65.40 70.70 53.70 72.30
satellite 76.00 54.20 66.50 66.40 66.70 50.50 62.80 57.60 58.30 60.10 73.40 68.50 70.20 49.90 86.90
satimage-2 96.40 53.60 93.20 99.70 95.20 99.30 95.60 70.20 96.50 86.50 94.00 77.50 98.00 61.10 99.70
SpamBase 49.50 45.70 48.90 53.40 54.60 63.70 53.20 45.30 65.60 47.10 48.20 47.40 54.50 9.80 56.30
thyroid 95.80 66.50 95.90 95.90 94.10 97.90 91.40 64.50 97.70 73.20 80.90 84.50 96.40 73.00 94.10
Waveform 75.10 70.60 72.30 67.20 62.40 70.70 63.60 72.10 60.30 63.20 44.80 64.80 72.90 51.30 84.30
WDBC 95.00 98.20 97.40 98.80 94.40 98.80 97.70 26.90 97.10 75.10 87.60 83.70 97.50 58.50 99.10
Average Value 74.40 59.77 72.11 73.41 71.53 76.62 68.73 60.03 73.90 63.70 66.87 66.97 74.07 53.80 78.93

AUPRC

breastw 95.50 29.70 92.30 91.70 90.50 96.20 84.60 53.50 98.30 75.70 78.40 77.70 92.10 26.90 96.90
Cardiotocography fault 27.50 27.50 28.60 41.30 30.00 43.50 42.70 21.20 50.50 16.60 23.60 25.00 31.20 22.60 35.30
InternetAds 54.50 39.60 52.90 40.10 51.50 39.70 36.90 49.20 32.50 45.30 51.90 48.40 53.20 31.40 49.10
landsat 22.60 24.20 27.90 29.20 22.00 47.00 30.20 27.80 50.80 25.10 26.90 24.20 29.00 20.00 32.80
opidigits 26.00 25.10 24.70 17.50 22.20 19.20 18.70 34.60 16.30 46.30 30.30 23.10 25.50 18.80 28.10
PageBlocks 5.00 3.50 2.20 2.60 2.50 4.70 2.00 2.00 3.30 3.02 29.00 2.60 2.10 20.10 1.90
pendigits 53.90 29.40 46.90 53.30 38.80 47.00 54.40 26.50 51.90 29.10 30.00 47.10 53.00 20.10 46.20
Pima 6.00 4.30 7.50 22.70 5.50 26.00 9.20 38.60 46.40 36.40 36.50 48.10 52.80 37.40 79.20
satellite 60.30 53.40 51.80 65.50 55.60 54.90 58.10 40.30 52.60 46.80 51.00 50.40 56.30 29.30 95.70
satimage-2 31.80 3.10 34.70 96.50 32.20 91.60 56.30 2.19 65.90 10.30 27.80 4.50 50.70 1.40 95.70
SpamBase 38.20 35.90 39.40 40.20 40.90 48.70 39.70 37.40 51.80 31.30 37.60 38.20 40.70 49.80 42.50
thyroid 28.60 7.30 32.20 31.80 41.10 49.30 20.90 3.40 46.70 5.70 17.70 14.90 36.00 13.10 44.30
Waveform 9.60 11.40 4.70 10.50 5.30 7.50 5.00 27.20 4.00 7.60 2.40 6.00 10.90 2.70 9.60
WDBC 57.80 47.80 41.60 49.30 30.70 55.30 53.40 1.90 50.50 5.70 23.50 18.10 46.50 3.40 57.80
Average Value 36.26 24.30 36.12 42.25 34.15 45.89 37.50 24.71 43.26 25.88 30.33 28.93 39.26 18.79 45.43

H.5 RESULTS OF USING MULTIPLY BAND WIDTH FOR SIMILARITY MATRICES
CONSTRUCTION

Table 12 provides the OD performance results of UniOD on 15 tabular datasets of ADBench using
different numbers K of bandwidth for similarity matrices construction, the detection performance
and generalization ability increase significantly, which mainly stems from less information loss of
these datasets.

H.6 RESULTS OF USING DIFFERENT NUMBERS OF HISTORICAL DATASETS

Table 13 presents the outlier-detection (OD) performance of UniOD on 15 tabular datasets from
ADBench when it is trained with varying numbers of historical datasets, denoted by M . Even with
M = 1, UniOD already achieves competitive performance on the ’breastw’ dataset. This early
success is largely attributable to the structural resemblance between the single historical dataset
and ’breastw’ after both of them are converted into graphs. As M increases, UniOD is exposed to
a more diverse set of graph-structured training examples, which enables the model to learn richer,
structure-invariant representations of normal and anomalous patterns, thereby improving both its
detection performance and its generalization ability to previously unseen datasets.

H.7 RESULTS OF USING ORIGINAL HISTORICAL DATASETS

In the training of UniOD, we use a subsampling strategy on each historical dataset to create more
data for training, which enhances the generalization capability of UniOD. In this subsection, we
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Table 12: Complete average AUROC (%) and AUPRC (%) of UniOD on 15 tabular datasets of
ADBench using different numbers K of bandwidth for similarity matrices construction.

AUROC K = 1 K = 2 K = 3 K = 4 K = 5

breastw 96.73 96.83 77.35 98.36 99.10
Cardiotocography 44.49 41.76 49.69 47.21 51.20
fault 55.73 71.06 66.86 66.15 69.60
InternetAds 60.50 60.56 62.84 62.19 63.50
landsat 66.20 61.47 63.53 63.93 69.10
optdigits 81.61 71.68 60.58 58.88 73.80
PageBlocks 93.46 94.55 85.88 87.48 88.20
pendigits 53.94 78.17 88.41 85.06 77.50
Pima 70.72 74.34 73.66 72.80 72.30
satellite 84.59 81.13 82.48 82.62 86.90
satimage-2 64.63 78.97 99.81 99.76 99.70
SpamBase 56.51 57.05 55.29 56.01 56.30
thyroid 97.69 96.23 90.70 96.94 94.10
Waveform 79.30 81.85 79.57 80.32 84.30
WDBC 87.20 74.90 95.29 97.17 98.40

AVG 72.89 74.70 75.46 76.99 78.93

AUPRC

breastw 92.75 90.20 93.02 97.69 96.90
Cardiotocography 26.90 26.84 28.54 36.30 35.30
fault 42.14 53.49 52.78 45.45 49.10
InternetAds 29.07 30.52 30.36 29.94 32.80
landsat 26.90 24.84 29.80 20.84 28.10
optdigits 6.81 4.57 4.04 3.10 5.00
PageBlocks 57.53 73.25 45.73 43.95 46.20
pendigits 3.34 4.54 4.89 7.85 6.00
Pima 51.02 54.62 54.75 52.42 52.90
satellite 78.03 76.59 81.47 70.82 79.20
satimage-2 7.97 19.50 49.60 96.24 95.70
SpamBase 42.92 44.22 42.26 41.07 42.50
thyroid 55.81 49.82 42.19 37.69 44.30
Waveform 8.40 16.87 14.94 6.96 9.60
WDBC 15.52 39.68 41.25 55.11 57.80

AVG 36.34 40.64 41.04 43.03 45.43

investigate how this influences the performance of UniOD by training UniOD using only the original
historical datasets in Table 14.

I ADDITIONAL EXPERIMENTAL RESULTS ADDED DURING THE REBUTTAL
PHASE

In this section, we provide all additional experiments included during the rebuttal phase for the
convenience of the reviewers.

I.1 T-SNE PLOTS OF THE LEARNED REPRESENTATIONS ZTi ON MULTIPLE DATASETS.

In Figure 5, we provide t-SNE plots of the learned representations ZTi on multiple datasets to
illustrate their structure. We observe that most outliers tend to concentrate into a small, dense cluster,
while a smaller portion of outliers appear as isolated points.

We also notice that the separation between normal data and outliers is not particularly pronounced
in the t-SNE space, which is likely because ZTi are high-dimensional representations (with dimen-
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Table 13: Average AUROC (%) and AUPRC (%) of UniOD on 15 tabular datasets of ADBench using
different numbers M of historical datasets for training.

AUROC M = 1 M = 3 M = 5 M = 10 M = 15

breastw 84.59 15.39 70.53 98.39 99.10
Cardiotocography 28.37 64.32 57.71 61.71 51.20
fault 51.99 48.67 67.90 56.17 69.60
InternetAds 39.74 61.57 62.53 61.83 63.50
landsat 43.63 55.51 66.89 60.28 69.10
optdigits 43.15 70.63 66.30 62.65 73.80
PageBlocks 20.66 88.03 76.74 89.66 88.20
pendigits 7.19 56.70 79.32 87.98 77.50
Pima 37.73 67.64 72.58 71.18 72.30
satellite 28.42 76.14 84.95 80.18 86.90
satimage-2 7.10 98.12 99.65 99.84 99.70
SpamBase 53.85 56.11 55.42 55.60 56.30
thyroid 14.78 85.55 95.82 96.66 94.10
Waveform 31.75 61.11 77.37 81.22 84.30
WDBC 14.79 95.10 98.60 96.67 98.40

AVG 33.85 66.71 75.49 77.33 78.93

AUPRC

breastw 60.13 33.80 75.76 95.80 96.90
Cardiotocography 14.70 39.23 37.57 38.11 35.30
fault 34.20 31.96 48.42 42.63 49.10
InternetAds 16.35 33.11 30.88 29.74 32.80
landsat 17.39 23.01 27.22 24.05 28.10
optdigits 2.31 5.07 3.82 3.46 5.00
PageBlocks 5.57 45.37 24.62 45.44 46.20
pendigits 1.21 4.25 5.05 8.45 6.00
Pima 30.47 49.20 53.20 53.63 52.90
satellite 22.04 74.01 79.25 75.38 79.20
satimage-2 0.65 58.84 92.87 96.69 95.70
SpamBase 48.92 42.50 41.31 41.05 42.50
thyroid 1.37 34.75 35.75 35.44 44.30
Waveform 1.94 3.55 6.22 9.00 9.60
WDBC 1.72 25.55 59.87 33.19 57.80

AVG 17.26 33.61 41.45 42.14 45.43

sionality > 1000). As such, although a simple MLP can effectively separate normal and anomalous
samples in this high-dimensional space, t-SNE may not faithfully preserve the underlying geometry
of the original embedding space.

I.2 ROBUSTNESS EVALUATION OF UNIOD TO THE DOMAIN OF HISTORICAL DATASETS

In this subsection, we conducted additional experiments where UniOD is evaluated on datasets
from the physical, astronautics, and image domains, while systematically removing all historical
datasets belonging to the same domain or field during training. As shown in Table 15, we observe
that excluding these domain-specific datasets does not lead to a significant performance drop on the
corresponding test domain, suggesting that UniOD is not overly sensitive to the particular composition
of the historical training data.

We attribute this robustness to two main factors: (i) Even among tabular datasets within the same
domain, the feature spaces and data characteristics can vary substantially. (ii) UniOD does not directly
rely on the original raw features. Instead, it leverages similarity matrices to construct uniformly
dimensioned representations across datasets. As a result, datasets from different domains may
still exhibit similar structural patterns in their similarity matrices, enabling effective cross-domain
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Table 14: Average AUROC (%) and AUPRC (%) of UniOD on 15 tabular datasets of ADBench using
only original historical datasets for training.

AUROC Original Subsampling

breastw 98.89 99.10
Cardiotocography 69.05 51.20
fault 51.28 69.60
InternetAds 61.62 63.50
landsat 47.11 69.10
optdigits 52.45 73.80
PageBlocks 89.94 88.20
pendigits 88.59 77.50
Pima 68.08 72.30
satellite 69.78 86.90
satimage-2 99.24 99.70
SpamBase 55.63 56.30
thyroid 95.08 94.10
Waveform 64.14 84.30
WDBC 98.54 98.40

AVG 73.96 78.93

AUPRC

breastw 97.73 96.90
Cardiotocography 43.52 35.30
fault 35.17 49.10
InternetAds 30.00 32.80
landsat 20.21 28.10
optdigits 2.73 5.00
PageBlocks 43.68 46.20
pendigits 8.47 6.00
Pima 49.18 52.90
satellite 70.21 79.20
satimage-2 92.35 95.70
SpamBase 40.96 42.50
thyroid 29.17 44.30
Waveform 4.44 9.60
WDBC 52.35 57.80

AVG 41.34 45.43

generalization. Therefore, for a domain without historical data, our model, learned from the historical
data of other domains, performs well.

(a) Cardio (b) mammog. (c) shuttle

Figure 5: T-SNE visualization results of learned representations ZTi
on several datasets.
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Table 15: Performance (AUROC %) of UniOD on datasets from different domains when removing
historical datasets from the corresponding domains.

Physical Image Astronautics
magic.gamma ALOI celeba letter skin shuttle AVG

UniOD 70.10 54.39 81.21 64.05 76.12 99.51 78.52
UniOD without Physical 68.47 54.13 86.48 75.15 56.30 87.49 76.42

UniOD without Astronautics 68.67 54.09 83.91 70.10 62.99 98.48 76.02
UniOD without Image 68.44 54.65 80.94 60.89 71.05 96.85 75.32

I.3 EVALUATION OF UNIOD ON LARGE-SCALE DATASETS

In this subsection, we evaluate the performance of UniOD on large-scale datasets. Due to the GPU
memory constraint, we randomly partition large-scale datasets into disjoint subsets and run UniOD
independently on each partition. Results in Table 16 and Table 17 demonstrate its effectiveness.

Table 16: AUROC comparison on large-scale datasets.

Data (samples) kNN IF ECOD DTE-NP UniOD

Campaign (41188) 74.2 70.3 76.9 74.0 75.1
shuttle (49097) 65.8 99.7 99.2 62.5 99.2

Table 17: AUPRC comparison on large-scale datasets.

Data (samples) kNN IF ECOD DTE-NP UniOD

Campaign (41188) 27.7 30.7 35.4 26.6 28.9
shuttle (49097) 17.4 97.8 90.4 15.6 93.3

I.4 EXPERIMENTAL RESULTS ON THE OTHER 27 DATASETS FROM ADBENCH

To provide a more comprehensive evaluation, we have now conducted additional experiments using
Group I for training and testing on the remaining 27 datasets. As shown in Table 18 and Table 19, the
results consistently demonstrate the effectiveness of UniOD.
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Table 18: AUROC (%) comparison on the additional 27 datasets of ADBench.

Dataset DTE-NP ECOD IF KNN UniOD

annthyroid 81.8 79.1 81.5 79.1 68.8
backdoor 82.5 84.2 76.6 85.4 88.3
census 68.1 67.0 57.2 68.1 67.8
donors 81.6 86.4 76.3 83.5 89.1
fraud 99.5 99.4 99.1 99.6 99.2
ionosphere 92.7 72.8 84.7 92.1 81.5
mnist 82.6 74.1 79.7 85.3 86.1
musk 26.6 95.6 99.9 85.8 100.0
stamps 75.9 87.6 89.1 87.6 93.7
yeast 38.6 44.4 40.5 40.1 38.8
CIFAR10 85.7 84.7 85.3 88.5 89.8
MVTec-AD 99.4 97.9 98.5 99.3 99.0
agnews 62.5 50.5 53.0 61.3 56.0
20news 74.2 60.4 65.0 72.2 55.0
SVHN 61.4 51.2 53.9 59.0 67.0
MNIST-C 37.5 34.6 35.6 41.3 54.0
FashionMNIST 81.5 87.8 87.7 85.9 41.0
amazon 55.2 51.4 48.6 54.5 89.3
yelp 58.5 56.0 51.7 58.0 64.1
imdb 51.4 47.0 49.7 51.3 50.9
glass 86.6 70.5 78.4 86.7 79.4
Hepatitis 68.7 73.9 72.8 75.0 83.8
Lymphography 99.4 99.5 100.0 99.8 98.1
vertebral 36.1 42.0 36.8 35.4 28.6
WBC 98.8 99.4 99.4 98.4 99.2
wine 46.0 73.3 73.7 72.8 99.6
WPBC 49.6 48.1 48.3 52.9 55.1

Average 69.7 71.1 71.2 74.0 74.9
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Table 19: AUPRC (%) comparison on the additional 27 datasets of ADBench.

Dataset DTE-NP ECOD IF KNN UniOD

annthyroid 23.9 27.8 31.8 23.1 21.7
backdoor 42.7 8.6 5.1 45.5 35.4
census 9.1 8.6 6.6 8.9 8.8
donors 17.3 23.3 11.5 16.9 22.5
fraud 15.5 17.9 14.7 18.6 17.7
ionosphere 92.8 64.6 79.4 91.7 64.5
mnist 38.1 17.5 25.7 40.8 39.5
musk 8.7 49.2 97.9 38.1 100.0
stamps 21.3 31.4 30.8 30.2 45.0
yeast 28.9 33.3 30.4 29.9 29.1
CIFAR10 42.3 31.5 31.6 51.2 46.5
MVTec-AD 97.7 95.3 95.9 97.6 97.4
agnews 7.2 5.0 5.4 7.0 5.8
20news 12.0 6.6 7.2 10.7 5.7
SVHN 6.7 5.2 6.0 6.2 7.8
MNIST-C 3.8 3.5 3.6 4.0 5.5
FashionMNIST 22.7 32.8 34.3 30.5 4.0
amazon 5.6 5.2 4.9 5.4 38.8
yelp 6.2 5.4 5.0 6.1 7.3
imdb 5.0 4.5 4.8 4.9 5.0
glass 16.9 18.6 15.1 16.0 11.3
Hepatitis 23.8 29.2 26.9 31.5 58.2
Lymphography 85.6 89.7 100.0 94.8 71.4
vertebral 9.4 10.7 9.5 9.3 8.5
WBC 84.2 90.3 94.7 76.1 87.1
wine 8.0 19.1 17.4 13.8 94.3
WPBC 22.6 21.8 22.1 23.9 25.6

Average 28.1 28.0 30.3 30.9 35.7
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