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Abstract

Dataset distillation aims to synthesize a small dataset from a large dataset, enabling
the model trained on it to perform well on the original dataset. With the blooming
of large language models and multimodal large language models, the importance
of multimodal datasets, particularly image-text datasets, has grown significantly.
However, existing multimodal dataset distillation methods are constrained by
the Matching Training Trajectories algorithm, which significantly increases the
computing resource requirement, and takes days to process the distillation. In this
work, we introduce EDGE, a generative distillation method for efficient multimodal
dataset distillation. Specifically, we identify two key challenges of distilling
multimodal datasets with generative models: 1) The lack of correlation between
generated images and captions. 2) The lack of diversity among generated samples.
To address the aforementioned issues, we propose a novel generative model training
workflow with a bi-directional contrastive loss and a diversity loss. Furthermore,
we propose a caption synthesis strategy to further improve text-to-image retrieval
performance by introducing more text information. Our method is evaluated on
Flickr30K, COCO, and CC3M datasets, demonstrating superior performance and
efficiency compared to existing approaches. Notably, our method achieves results
18x faster than the state-of-the-art method. Our code will be made public at
https://github.com/ichbill/EDGE.

1 Introduction

Dataset distillation [53]] seeks to synthesize a compact dataset from a larger one, enabling a model
trained on the distilled dataset to achieve strong performance on the original dataset. Typical kernel-
based dataset distillation [53}64] aims to match the performance of the synthetic dataset with the
original dataset. The matching training trajectories (MTT) approaches [2, 19,15, 9,163} 12] have been
proven effective for the distillation of small datasets. Some works [12, 63]] even achieve a lossless
performance from the original dataset. Recently, aiming the large-scale dataset, decoupled dataset
distillation methods [45}57], and generative distillation methods [44] [11, 49] have been proposed,
which enhances scalability by improving the distillation efficiency.

With the emergence of large language models (LLM) and multimodal large language models
(MLLM) [25 123 24} 16} 38]], multimodal datasets become essential, especially image-text datasets.
The first work on Vision Language Dataset Distillation (VLDD) [S5] matches the expert training
trajectories for both the image and text encoders and applies Low-Rank Adaptation [14] to reduce
the computing requirements. The following work, LoRS [56], utilizes similarity mining during the
distillation to improve the performance. However, these MTT-based methods require substantial time
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and computational resources to distill datasets. As illustrated in Figure[T} it takes about four days for
MTT-VL to distill a dataset. The memory peak usage of MTT-VL reaches 200 GB for distilling 500
pairs and 320 GB for 100 pairs. For LORS [56]], it takes about a week (150 hours) to distill only 500
image-text pairs. Therefore, time consumption becomes one of the main drawbacks of current VLDD
methods.
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of correlation between generated images and  Figure 1: Performance vs. resource usage. Exist-
captions. We observe that directly applying gen- ing methods require substantial computation time
erative models to distillation yields a suboptimal  and memory to distill datasets, whereas our method
performance. This is mainly because the diffu- achieves up to 18x faster processing and 16x
sion model training concentrates on sample-wise  lower memory usage while delivering competitive
noise prediction instead of image-text correspon- performance. The experiments are conducted on
dence, which is the most important aspect of the NVIDIA RTX A5000 GPUs.

image-text contrastive learning (ITC) task on vision language datasets. 2) The lack of diversity among
the generated samples. In dataset distillation, the synthetic dataset only contains less than 5% of the
original data, so the generalization of the dataset is essential for the distilled dataset generation.

To address the aforementioned issues, in this work, we introduce Efficient Multimodal Dataset
Distillation via GEnerative Models (EDGE), which utilizes generative priors for distilling vision-
language datasets. Our approach incorporates a novel training workflow that integrates a bi-directional
contrastive loss inspired by InfoNCE [31] and diversity loss inspired by Minimax [11]] to improve
image-text correlation and increase the diversity of distilled datasets. The EDGE framework begins
by introducing noise to the image latent representation, predicting the noise with a conditioning
embedding, and obtaining the denoised image latent. Using the denoised image latent and the
corresponding text embedding, we apply the proposed losses as follows: 1) Contrastive loss supervises
the generative model to produce content that is highly relevant to the given conditioning, aligning
image and text representations effectively. 2) Diversity loss increases the variability of the generated
samples by pushing apart the sample features, encouraging the synthetic dataset to reflect the same
distribution as the original dataset. Additionally, to further improve performance in text-to-image
retrieval tasks, we incorporate a caption synthesis strategy. This involves generating additional
captions for images in the synthetic dataset using MLLMSs, providing sufficient text information for
the evaluation model training and boosting retrieval performance.

We evaluate our methods on multiple vision language datasets, including Flickr30K [33], COCO [22],
and Conceptual Captions 3 Million (CC3M) [42]. Compared to existing VLDD methods, our method
not only achieves more efficient distillation on Flickr30K and COCO, but also extends the capability
to distill the large-scale CC3M dataset. As illustrated in Figure[I] our method significantly reduces
the distillation time, achieving comparable performance to existing methods within just a few hours,
compared to the days required by existing approaches. Furthermore, we successfully distill CC3M,
a dataset containing approximately three million image-text pairs. Notably, most existing dataset
condensation methods, including coreset selection, are infeasible for CC3M due to their extremely
high computational resource requirements.

Our contributions are summarized as follows:

* We identify the efficiency issue of current MTT-based vision language dataset distillation
methods and propose a generative vision language distillation method, EDGE, to efficiently
distill the vision language datasets.



* We identify two key challenges in applying generative methods to VLDD, and introduce
a novel training workflow incorporating contrastive loss and diversity loss. We further
introduce caption synthesis to improve the text-to-image retrieval performance.

* We conduct empirical comparisons with existing methods, demonstrating competitive per-
formance while reducing computational costs by 18 times compared to the SOTA approach.

2 Related works

2.1 Dataset Distillation

Dataset distillation (DD) [S3]] aims to compress a large dataset into a small synthetic dataset while
preserving the performance of the models trained on it. Dataset distillation methods can be categorized
into several classes: performance matching [53| 164, 27, 29| 28, 130} 3], parameter matching [61,
18, [151 2 150 163) 12} 1211 I50]], distribution matching [60} 51} 39| 162} 36, 58] [7, 152} 16l 26} 20] and
decoupled distillation methods [S7, 40l 45} 141} 18l |59} 143} 148, 4]. Recently, generative distillation
methods [[11} 44, 49] synthesize images using generative models to efficiently distill large-scale
datasets. Minimax Diffusion [[L1] introduces additional minimax criteria in the generative training to
enhance the performance of the generated images of the diffusion model. D*M [44] has explored
the use of diffusion models to improve cross-architecture generalization and reduce computational
overhead by constraining the consistency of the real and synthetic image spaces.

While generative distillation methods have proven successful for image classification tasks, existing
single-modality approaches are not suitable for multimodal scenarios. These methods are designed for
a fixed number of classes in both training and test datasets and cannot be generalized to image-caption
datasets, where captions are not constrained to predefined categories.

2.2 Vision Language Dataset Distillation

While the majority of the dataset distillation community focuses on the image classification task in
dataset distillation, recent works [55,156] began to explore the new task of image-text contrastive
learning (ITC) on vision language dataset. The first work of multimodal dataset distillation [55]
matches both the image and text encoders and applies LoRA [14] to reduce the computing require-
ments. In particular, to overcome the challenge that the image-text contrastive learning dataset does
not have discrete classes, this work first proposed jointly distilling image-text pairs in a contrastive
manner. The following work, LoRS [56]], utilizes similarity mining during distillation for performance
improvement. Specifically, a similarity matrix for synthetic image-text pairs is calculated during data
synthesis to explicitly describe the relevance of each image-text pair in the distilled dataset.

However, existing VLDD methods struggle with the distillation efficiency and the scale of the datasets,
which is mainly due to the use of the Matching Training Trajectories (MTT) algorithm [2]]. MTT
obtains synthetic data through a bi-level optimization process, which involves an inner loop for model
updates and an outer loop for synthetic data updates. Not only does the required large number of
unrolled iterations during optimization cause immense computational costs, but generating expert
trajectories itself is also extremely time-consuming. In this work, we propose EDGE to efficiently
distill datasets via the generative method and scale up the large-scaled CC3M [42] dataset.

3 Methods

3.1 Problem Formulation
Given a large target dataset 7 = {x;, yz}gll, where x; denotes the training data and y; denotes
the corresponding annotation, general dataset distillation method aims to synthesize a small dataset

S ={x;, v} L‘i‘l, where |S| << T, so that the model trained on S has the optimal performance on
the target dataset 7. Specifically for image-text contrastive learning (ITC), the target dataset consists
of |T| image-text pairs. Note that in practice, in a dataset, an image can have multiple captions, and
a caption can also have multiple corresponding images. We consider the size of the datasets as the
number of image-text pairs since the number of image-text pairs determines the actual training time.

In Section[3.2] we begin by introducing the advantages of introducing diffusion model priors and
highlighting the limitations of directly applying them to vision-language dataset distillation. Then
we present the workflow of EDGE to overcome the limitations. Section presents the proposed
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Figure 2: The workflow of our method. Given the input image z, text condition, we first get
image latent zp and text embedding y via the image encoder € and text encoder 79. Random
noise € ~ N(0, ) is added to the image latent, and the noise is then predicted using a U-Net [33]
conditioned on y. The denoised latent representation z is obtained as z = (z; — /At - €)/Va?,
where € is the predicted noise. With the denoised latent z and text embedding y, we employ a
contrastive loss L¢ to align corresponding image latents and text embeddings and a diversity loss
Lp to encourage the diversity and generalization between concatenated image-text features.

contrastive loss and diversity loss. Finally, in Section [3.4] to further improve the text-to-image
retrieval performance, we illustrate the caption synthesis process.

3.2 EDGE Diffusion for VLDD

Diffusion models learn the distribution of a dataset by progressively adding Gaussian noise to images
and then reversing this process to reconstruct the original data. For instance, in the latent diffusion
model (LDM) [34], the training process is described as follows for a given training image z. In
the forward noising process, a vision encoder € encodes the image into the latent representation
zo = (). Gaussian noise € ~ N(0, I) is incrementally added to the initial latent code z, resulting
in: z; = \/a;yz9 + /1 — &z €, where &; is a hyperparameter controlling the noise level at step t.
Next, a decoder reconstructs this latent code back to the image space. With conditioning vector y
encoding additional information, the diffusion model is trained to minimize the mean squared error
between the predicted noise ¢ = €y(z¢,y) and the added noise € ~ N (0, I):

2
L= |leg(ze,y) — €ll3, ¢))
where €y is a noise prediction network parameterized by 6.

Diffusion models are proven efficient on dataset distillation methods for image classification tasks [11}
44]. However, when applying diffusion models to dataset distillation for ITC tasks, there are two
main limitations to the distillation process: 1) The correspondence between image and text features is
not fully explored. As mentioned above, the training of the diffusion model is sample-wise, which
concentrates on noise prediction. Such a training scheme lacks the supervision of the correspondence
of image and text features. 2) The lack of diversity among the synthetic samples. The number of
samples is much smaller than the original datasets, so the diversity among the distilled samples is
essential for dataset distillation.

To address the aforementioned issues, we propose the EDGE finetuning workflow as illustrated
in Figure 2| Instead of calculating the mean squared error between the predicted noise €g(z¢, ¢)
and the ground truth €, we proposed two novel criteria for the vision language dataset distillation.
Given the input image x, text condition, the encoders ¢ and 7y transform them into a compact latent
representation, image latent zg and text embedding y, respectively. Then we add random noise
e ~ N (0, I) to the image latent and predict the noise with U-Net [335] with the conditioning y. With
predicted noise €, we use
Z¢ — \/ﬁ "€

2= ——F—— (@)

Val
to get the de-noised latent z, where o and 3% are hyperparameters. The de-noised latent z and text
embedding y are used to calculate the contrastive loss and the diversity loss, introduced in Section3.3]



The contrastive loss is used to encourage the generative model to synthesize images that are highly
relevant to the given text conditions, while the diversity loss is used to push away the image-text
embeddings among different image-text pairs.

3.3 EDGE Diffusion Criteria

In this section, we begin by presenting the motivation behind the contrastive loss, followed by its
design and impact. Next, we discuss the rationale for the diversity loss and provide its formulation.
We then introduce the combined EDGE loss and conclude by explaining the process of generating the
distilled dataset using our proposed method. Contrastive Loss. The goal of image-text contrastive
learning (ITC) is to establish meaningful relationships between images and text. However, generative
models, such as diffusion models, are typically trained to predict noise, without explicit supervision to
capture image-text alignment. Instead of predicting the noise, we want to connect the latent space z;
and y; for corresponding image x; and text y;. Inspired by InfoNCE [31]], we propose the contrastive
loss that encourages aligned embeddings. Specifically, with the given image embedding z and the
text embedding y, the similarity score between normalized features z; and y; can be defined as
Si; = ¥4, where 7 is the temperature parameter, which is set to 0.5 in experiments. Then we
calculate the cross-entropy loss for both directions:

N
exp(Sii) 1 exp(Si;)
Limr=—+ OgN—,ﬁT—u“z—*ZIOgN—’ (3)
N i=1 Zj:l exp(5i;) N i=1 Zj:l exp(5;i)
where S;; = @ represents the similarity score between z; and y;, and Sj; = Lt the

similarity score between z; and y;. With A controlling the weight ratio, the overall contrastive loss is
defined as:

Le=Aisr+ Loy, 4

In equation 3| the loss encourages alignment between each image and its corresponding caption
while also ensuring that each text matches the correct image. By incorporating this bi-directional
contrastive objective, the diffusion model learns to capture the semantic relevance between images
and text. Consequently, during sampling, the model generates image-text pairs with high relevance,
which is beneficial for evaluation model training.

Diversity Loss. Compared to the original dataset, the distilled dataset distilled by generative
methods [[11]] has limited diversity. This problem is even more evident in image-text contrastive
(ITC) tasks compared to image classification, since the captions are not constrained to predefined
categories. Diffusion model training is in a sample-wise manner and neglects this requirement for
dataset distillation. To address this issue and ensure the distilled dataset accurately represents the
original distribution, we focus on increasing the diversity of generated samples and enhancing the
generalization of models trained on the synthetic dataset. To achieve this, we introduce a diversity
loss that leverages the de-noised embedding z and the text embedding y:

Lp = Z Z ( Ziyil ”[Zjifyji} )7 5)

=1 jmit1 ERRAL [Zjvy]m

where [z;; y;| represents the concatenation of the image and text embeddings z; and y;. The term

(H EZ%” X %Z ;y %”> indicates the similarity matrix of normalized concatenated embeddings. The
i Yi VRN

diversity loss is designed to maximize the distance between these concatenated embeddings, effec-
tively pushing them away in the embedding space. This encourages diversity in the representations of
image-text pairs, promoting improved generalization and robustness.

Finally, by incorporating the contrastive loss L£¢ and the diversity loss Lp together, we formulate the
EDGE loss as:

Lepce = Lc + ALp. (6)

The EDGE loss is used to train the diffusion model on the target dataset, to get the corresponding
generative model. To synthesize the distilled dataset, we directly use diffusion model sampling for
the required number of images. We first randomly select captions from the original dataset, and then
use each caption as a condition to sample the image.



3.4 Caption Synthesis

We observed that when training a model on the synthetic dataset, it is often more challenging for the
model to retrieve the correct image with a given text than to retrieve the correct text for a given image.
As discussed in Section [I] applying the generative-based dataset distillation method to ITC tasks
will counter the issue that the captions are not sufficient for the model training. To address this issue,
we propose caption synthesis to generate more captions for each image. We developed a scalable
approach to create as many captions as we want. Our method involves crafting specific prompt
engineering templates that guide the Multimodal Large Language Models (MLLM) [25] 23| 24] to
produce the captions for given images.

We start by gathering the images from the syn-

thetic dataset. For each image, we consider a Context

straightforward prompt template to generate cap- ([ [LaVA

tions effectively. As illustrated in Figure[3] we | vser —> pescribe the image in one sentence.

can use MLLM such as LLaVA [25] or GPT [32]] plﬁo;d!n T B dog s taving on & couch with & red
model to generate any number of captions for a  |-----------oommmoo o]
given image. The prompts we pass to different | GPT model _ ‘ _

MLLMs are a little bit different. For LLaVA, We | tontoroe. oo moc siare mich rine tmamer . o
directly pass the prompt “Describe the image Assistant => A relaxed yellow labrador lies on a

- . h, ing its head brigh .
in one sentence" and we can get the required [ °°Uchr Festing its head on 2 bright orange tov

caption. GPT models tend to generate long se- i @
quences of text, and it often contains the phase _
that is used for interactions, such as "the image Augmented Caption

contains". Thus we change the prompt to “De-
scribe the image briefly in one sentence. Do not
start with ‘the image.”"

" | A dog sits on a couch while resting its head on a plush toy.
1 A dog is laying on a couch with a red pillow on it.

Figure 3: Illustration of the caption synthesis.
An image and a prompt are passed to a Multimodal
Large Language Model (MLLM) to generate cap-
tions. Then the dataset contains |S|/n images with
|S| captions, where 7 is the caption per image
(CPI) and each image is captioned by 7 captions.
Caption synthesis aims to provide sufficient text
information for the model training.

During the model training stage, even though
our method produces fewer images than cap-
tions, we consider the same image with different
caption pairs as distinct image-text pairs. This
is due to the similar computational resources
required from the model training perspective.

4 [Experiments

4.1 Datasets and Metrics

Following previous methods [S5, 56], we evaluate our method on Flickr30k [33]] and COCO [22]]
datasets for a fair comparison with existing methods. Flickr30K and COCO are image-text datasets
with 31K and 123K images, where each image is paired with five captions. We also evaluated
methods on a larger image-caption dataset, Conceptual Captions 3 Million (CC3M) [42], to validate
the effectiveness of our method on large-scale datasets. CC3M contains about 3.3 million image-
text pairs. The evaluation involves the metrics of top-K retrieval from both the image and the text
perspectives. We denote the text-to-image retrieval as IR@K and image-to-text retrieval as TR@K.

4.2 TImplementation Details

Following previous works [55,156] on Vision Language Dataset Distillation, for the evaluation model,
we adopt NFNet [1]] as image encoder and BERT-base [17] as text encoder. The pre-trained weights
are used, and the text encoder is frozen during evaluation. Our entire distillation process can be done
on a single NVIDIA RTX A5000 GPU. For evaluation on the CC3M dataset, since the dataset is
constructed with URLs and by the time we conduct experiments, some URLSs are no longer available.
Eventually, we collected 2.3M of 3.3M images for the CC3M training data. In addition, since the
validation set is large, we first subsample a 1000 image-text pair validation subset and then evaluate
the validation subset. In the distillation stage, following previous works [56], the images are resized
to 224 x224 resolution, and text embeddings are of 768 dimension.

4.3 Main Results

We compare our method with coreset selection methods [54,10, 46, existing VLDD methods [55}156]
and a pre-trained generative model, Stable-diffusion v1.5 [34] on Flickr30K and COCO datasets.



Table 1: Results of 500 pairs on Flickr30K and COCO dataset. For Flickr30K, the dataset
condensation ratio is 1.7%. For COCO, the condensation ratio is 4.4%o. Bold values indicate the best
results, while underlined values denote the second-best results.

Dataset Rati Metri Coreset Selection Dataset Distillation
atase ano eMC | Rand HERD K-Cent Forget | MTT-VL TESLA LoRS SD EDGE
R@1 | 24 3.0 35 1.8 6.6 1.1 100 3.1 6.7
R@5 | 105 100 10.4 9.0 202 73 289 115 210
. IR@10 | 174 170 17.3 15.9 30.0 126 416 185 305
Flickr30K  1.7%  tr@1 | 52 5.1 4.9 3.6 133 5.1 155 46 133
TR@5 | 183 164 164 12.3 328 153 398 151 35.6
TR@10 | 257 243 23.3 19.3 46.8 238 537 222 413
R@l | 1.1 1.7 1.1 0.8 1.4 0.8 21 12 18
IR@5 | 5.0 5.3 6.3 5.8 5.1 3.6 80 5.1 6.5
R@10 | 87 9.9 10.5 8.2 8.9 6.9 137 90 112
COCO  44%  1R@y | 19 19 25 21 23 17 28 22 29
TR@5 | 7.5 7.8 8.7 8.2 8.4 59 99 87 95
TR@10 | 125  13.7 14.3 13.0 13.8 102 162 149 157

Table 2: Results of 1000 pairs on Flickr30K Table 3: Results on CC3M. We compare our
and COCO dataset. Bold values indicate the method with random selection and a pre-trained
best results, while underlined values denote the Stable Diffusion v1.5 model. The synthetic

second-best results. dataset contains 1000 image-text-pairs, which
Dataset  Ratio Metric | Rand LoRS SD EDGE  is only 0.3%o of the original dataset. Other ex-
IR@! | 39 112 33 99 isting methods are not applicable due to long
[R@5 | 130 3L3 119 282  computation time or high memory requirements.
Flicki30k 349 R@I0 | 207 429 191 405
1c A%  TtrR@1 | 53 144 50 145 Methods | IR@1 IR@5 IR@10 TR@I TR@5 TR@I0
TR@5 | 17.1 375 159 383 Rand 01 04 0.9 0.0 0.3 0.9
TR@10 | 27.7 50.5 248 51.7 SD ‘ 0.1 04 0.9 0.0 0.3 0.9
R@l | 16 25 18 28 EDGE | 02 05 10 01 07 11
R@> | 65 94 69 98 Table 4: CLIP score. Table 5: FID score.
coco  ssu R@IO0 |15 154 119 162 : :
-6/00 TR@1 2.4 3.6 28 3.9 Methods | Flickr-30K COCO CC3M Methods ‘Fllckr-}OK COCO
TR@5 | 9.9 11.8 102 130 MTT-VL | 02966 0.2264 - MTT-VL 210.0 2763
TR@10 | 167 1901 168 210 Gus | 0327 0378 o3 Ours ss.1 83l

Due to extremely long computing time, coreset selection methods [54,[10} 46] are hard to be applied
on a large number of pairs. As for MTT-based DD methods [55} 3]}, distilling to a large number of
pairs will lead to extremely high GPU memory usage.

Flickr30K results. We evaluate our method on the Flickr30K dataset and compare it with existing
approaches. The distilled dataset contains 500 and 1000 image-text pairs, representing 1.7% and
3.4% of the original dataset, respectively. As shown in Table [I]and Table 2} our method achieves
performance comparable to or even outperforms that of time-intensive SOTA methods across several
metrics. Notably, compared to the baseline—a pre-trained Stable Diffusion v1.5 model—our approach
demonstrates significant improvements, highlighting the effectiveness of the proposed techniques.

COCO results. We also evaluate our method on the COCO dataset in comparison with existing
methods in Table [T] and Table 2] The distilled dataset contains 500 and 1000 image-text pairs,
representing 4.4%o0 and 8.8%o of the original dataset, respectively. With 500 pairs, it achieves
competitive performance relative to SOTA methods, which require a significantly longer distillation
time. When distilling 1000 image-text pairs, our method shows an obvious advantage from both
performance and efficiency perspectives. Similar to the Flickr30K results, our method substantially
improves over the baseline pre-trained Stable Diffusion model, further validating its effectiveness.

CC3M results. For larger datasets like Conceptual Captions 3M (CC3M) [42]], existing dataset
distillation methods are not applicable due to the high resource demands of trajectory matching
algorithms. Even coreset selection methods are difficult to apply, as their time consumption and
memory usage scale rapidly. In contrast, our method is capable of distilling the CC3M dataset
efficiently using only a single GPU. The distilled dataset contains 500 image-text pairs, representing
0.3%o of the original dataset. We compare our approach with the random selection method and the
pre-trained Stable Diffusion v1.5 model in Table[3] Our method outperforms the baseline methods,
demonstrating the effectiveness of our method on CC3M dataset.

More aspects of evaluation. Furthermore, we provide the CLIP scores on Flickr30K, COCO, and
CC3M, comparing with existing dataset distillation methods in Table 4] Table 5] assesses image



Table 6: Comparison of required computing resources. We provide the GPU hours required
for different method to distill different datasets. “OOM" in the table indicates the method is not
applicable due to extremely high memory usage.

Dataset Flickr30K COCO CC3M

# Pairs 500 1000 1500 500 1000 1500 500 1000 1500
MTT-VL [55] 77.8 109.1 1419 1623 1941 OOM OOM OOM OOM
LoRS [56] 542 57.6 59.0 151.6  155.6 1725 OOM OOM OOM
EDGE (ours) 13.6 143 14.9 7.7 8.5 9.2 31.7 32.5 33.2

Table 7: Cross architecture evaluation. For baseline method, we use NFNet+BERT to distill, and
evaluate with various architectures. Compared to matching training trajectory based approaches, the
dataset generated by our method has a better generalization.

. . . COCO
#Pairs Ratio Method Evaluation model R@1 IR@5 IR@10 ‘ TR@1 TR@5 TR@10
NfNet+Bert 2.5 9.4 154 3.6 11.8 19.1
1000 8.8%0 LoRS ResNet+Bert 0.1 0.6 1.1 0.4 1.6 2.8
RegNet+Bert 0.1 0.5 0.9 0.1 0.5 0.9
NfNet+Bert 2.8 9.8 16.2 3.9 13.0 21.0
1000 8.8%0 EDGE ResNet+Bert 2.5 9.5 16.0 3.7 12.7 20.1
RegNet+Bert 2.3 8.4 14.1 2.6 10.7 17.7

quality using FID. Results show our method improves both text-image alignment and image quality,
where the former is more crucial for retrieval tasks.

Computational efficiency. We provide the computing efficiency comparison of our method and
the SOTA methods [55 56]. As depicted in Table[6] for Flickr30K, our method is approximately 9
times faster than MTT-VL, and 4 times faster than LoRS. For the COCO dataset, our method is 22
times faster than MTT-VL and 18 times faster than LoRS. Not even mentioning that both existing
methods [55/156] are not applicable for large dataset CC3M [42]. For CC3M, our method is the only
applicable dataset distillation method, and our method is able to distill the dataset in an efficient
manner. The GPU hour usage is even less than the baseline methods on the Flickr30K dataset.

Cross-architecture experiments. In this work, we also evaluate the cross-architecture generalization
of our method. As shown in Table[7} we evaluate performance by changing the image encoder, and
our method significantly outperforms the baseline. The results highlight that the cross-architecture
performance of the baseline method [56] is highly dependent on the model used during distillation.
For example, when synthetic datasets are distilled with NFNet and BERT, evaluation using the exact
same model architectures yields strong performance. However, substituting NFNet with ResNet [[13]]
or RegNet [37] causes a significant performance drop in both image and text retrieval tasks. In
contrast, our method, which is not related to a specific model architecture during training, maintains
consistent performance across various model architectures.

4.4 Ablation Study

Ablation on different components. Table 3| states the effectiveness of each component of our
method. The experiments are performed on the COCO [22]] dataset, distilling into 500 image-text
pairs. The baseline “SD v1.5" in the table indicates the baseline model, a pretrained stable-diffusion
model v1.5 [34] used in our method. “+ L¢" and “+ Lp" indicates the generative model fine-tuned
with our proposed workflow in Figure 2]and corresponding losses.

The pre-trained stable diffusion model shows low performance on the evaluation dataset, indicating
that the vanilla generative models, which are not designed for dataset distillation tasks, do not
guarantee the correspondence for image-text pairs. By adding our proposed fine-tuning workflow
and the corresponding losses, both IR and TR have been improved. By further adding the post-
training caption synthesis, the performance of image-text retrieval is further improved, indicating the
effectiveness of proposed methods.

Effect of different diffusion models. The diffusion model used to distill the dataset is an important
aspect of our method. We evaluate two widely used diffusion models: Stable Diffusion v1.5 (denoted
as "SD v1.5" in the table) and Stable Diffusion 3 (denoted as "SD 3") in this work. We compare two
models from both perspectives of performance and efficiency. The performance of the methods is
depicted in Table 0] where the performance of two diffusion models is similar. However, the sampling



& § Cap 1: A dog is running through some dead
leaves.

Cap 2: A white dog is running through a
field with leaves on the ground.

Table 8: Effect of different components. The ex-
periments are conducted on COCO dataset. The
synthetic dataset contains 500 image-text pairs. |
The evaluation model is NFNet+BERT. “CS" de-
notes the Caption Synthesis strategy.

Cap 1: A motocross rider in the process of
wiping out at a race.

. Cap 2: A man is riding a dirt bike on a

Methods \ IR@1 IR@5 IR@I0 TR@1 TR@5 TR@I10 dirt track, with a crowd watching him.
SDvL.5 1.2 5.1 9.0 22 87 149  [Zoiooooommmmmmeeeees e . “ommmomoonooonoog
+ Lc 1.3 5.1 9.2 23 8.3 13.7 ! Cap 1: A man is walking behind a tree on
+Lc+Lp 1.4 5.6 10.1 23 8.9 14.4 the street.

+ Lepce + CS 1.8 6.5 11.2 2.9 9.5 15.7 Cap 2: A man wearing a hooded sweatshirt

is walking down a tree-lined street.

Table 9: Comparison of different generative
models. SD represents Stable Diffusion. Stable
Diffusion v1.5 takes about 0.4 hour to distill 500

images, while it takes approximately 1.6 hours to Figure 4: Examples of images and captions of

Cap 1: A sports mascot during a performance.

Cap 2: A mascot in a yellow jacket and a
black shirt is standing on a field.

distill 500 images for Stable Diffusion 3. the distilled dataset. For each example image,
Methods | IR@1 IR@5 IR@I0 TR@I TR@5 TR@I0 twq corresponding captions are provided. The
SDvis | 12 51 90 22 87 149 : : :
SD3 5 I o4 51 56 147 ~ greencaptions are generated by caption synthesis.

Table 11: Comparison of different MLLMs.
Table 10: Ablation study on caption per image Post-training strategies perform better than pre-
(CPI). On COCO dataset, when CPI=2, the model processing strategies. With captions by LLaVA,

achieves the best performance. the model achieves the best performance.
Methods | IR@1 [R@5 IR@10 TR@1 TR@5 TR@I0 “Methods | IR@I IR@5 IR@I0 TR@I TR@S TR@I0
CPI=1 1.9 6.9 11.8 2.7 9.7 16.0 LLaVA 2.8 9.8 16.2 3.9 13.0 21.0
CPI=2 | 28 9.8 16.2 39 13.0 210 GPT-4o-mini | 2.5 8.8 149 37 12.5 20.0
CPI=5 | 12 47 8.2 2.0 7.0 12.3 Llama 12 50 88 24 85 13.6

time of stable diffusion 3 is four times longer than that of Stable Diffusion v1.5. Consequently, we
selected Stable Diffusion v1.5 as the primary model for our results.

Effect of caption per image. For caption synthesis, the number of captions per image (CPI) is
essential. To investigate its impact on the model’s performance, we vary the CPI during caption
synthesis while keeping the total number of image-text pairs constant. The evaluation is done on
COCO dataset, distilling the dataset into 500 image-text pairs. For CPI=1, CPI=2, CPI=5, we sample
500, 250, 100 images.

There are two main observations from Table[T0} 1) Compared to the “vanilla” synthetic dataset, where
each image is paired with only one caption, generating additional captions assists with the evaluation
model training. This observation is consistent with the motivation of our caption synthesis, harm the
performance of the evaluation model. This occurs because, with a fixed number of image-text pairs,
increasing the CPI leads to the reduction of the total number of unique images. Consequently, the
reduced number of images becomes insufficient for effective model training.

Effect of different MLLMs. The MLLM used for caption synthesis is also essential in our method. In
this work, we compare three MLLM/LLM models with two different strategies. The first strategy, pre-
processing, involves rephrasing captions before image generation. The second strategy, post-training
caption synthesis, involves rephrasing captions after image generation, as illustrated in Section [3.4]
The models evaluated in our study include LLava [25]], GPT-40-mini [32]], and Llama [47]. For
LLava, we adopt the post-training strategy, while for Llama, we use the pre-processing strategy. For
the GPT model, both pre-processing and post-training strategies are applicable.

As illustrated in Table[TT] the pre-processing strategy, regardless of the model used for rephrasing
captions, proves to be less effective compared to post-training strategies. For the post-training
methods, captions generated by the LLaVA model are more beneficial for training the evaluation
model than those generated by the GPT model. Therefore, we adopt the post-training caption
synthesis strategy with the LLaVA model as our primary approach.

4.5 Dataset Visualization

We visualized the images with corresponding captions generated by our method in Figure[d}, Compared
to previous VLDD methods [55, 56, the images generated by our method exhibit a realistic, high-
quality appearance. The green captions are generated by our caption synthesis. The captions exhibited



in the figure are generated by LLaVA [25]]. We can observe that compared to the image caption from
the original dataset, the synthesized caption tends to capture more features from the image.

5 Conclusion

In this work, we identify key limitations in current vision language dataset distillation methods,
including poor efficiency and limited scalability. To address these issues, we propose EDGE, a
generative vision language dataset distillation approach designed to efficiently distill large-scale
multimodal datasets. Specifically, we introduce a novel training workflow for generative models
tailored to the image-text dataset distillation task. Additionally, we implement a post-training caption
synthesis step to further enhance performance. Our method not only outperforms existing approaches
on small datasets but also enables effective distillation of large datasets.

Acknowledgments: This research is supported by NSF 11S-2525840, CNS-2432534, ECCS-2514574,
NIH 1RFIMH133764-01 and Cisco Research unrestricted gift. This article solely reflects opinions
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction accurately reflect the contributions
of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 4]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The are fully discussed.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code will be released publicly.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: They are discussed in details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Error bars are not reported because it would be too computationally expensive
for baselines.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: It is properly discussed.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research conducted in this paper adheres to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Appendix
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets such as datasets and code libraries used in the research are
properly credited, and their licenses are respected and clearly mentioned.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: The usage of LLMs is detailed in Section 4]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Training details

We provide the detailed hyperparameter settings used during diffusion model training. Following the
approach in [11]], we fine-tune only a small subset of the diffusion model’s parameters. The weight A
in Equation@is set to 1. For Flickr30K dataset, the learning rate is set to 1 x 10, with a batch size
of 8 and a total of 16 training epochs. For COCO dataset, the learning rate is set to 1 x 10~4, with a
batch size of 8 and a total of 8 training epochs.

B Qualitative results

Cap 1: A woman is holding a plate
with a piece of cake on it.

Cap 2: A woman is about to eat a
huge slice of cake.

Cap 1: A man is walking in the
snow, with a car behind him.

Cap 2: Some people are standing
out in the snow.

Cap 1: A living room with a brown couch,
a coffee table, and a flat screen TV.

Cap 2: A nice big living room with
a television and a table.

Cap 1: Three ducks are sitting on
the grass, looking at the camera.
Cap 2: Some very cute looking
ducks in the grass.

Cap 1: A horse is tied to a wooden
building, with a saddle on its back.

Cap 2: A horse strapped to the front of a
carriage stop in front of a wooden building.

Cap 1: A red wooden bench is located in
a park setting with a cement ground.

Cap 2: A red wooden bench sits in
a park with a concrete ground.
Cap 1: A small bird with a blue head and
yellow body is perched on a metal fence.
Cap 2: A bird sits on the ground
near a fence

Cap 1: Two elephants are walking through a
muddy river, with one of them looking back.

Cap 2: Two brown elephants walking
through mud in a jungle.

Cap 1: A brown suitcase is sitting
next to a bed with a pillow.

Cap 2: A luggage bag is next to a
dresser in a bedroom.

Cap 1: A brown bear and two cubs
are standing in a grassy area.

Cap 2: Some baby bears are having
fun on a sunny day.

Cap 1: A dirty toilet is sitting in a
dirty bathroom with a broken mirror on

the f1l .
Cap 27°0rine filled toilet in a

state of disrepair.

Cap 1: Three slices of pizza are on
white plates, with one slice missing.

Cap 2: A piece of pizza sits on a
white plate that has gold accents.

Cap 1: A yellow and white train is traveling
down the tracks, passing under a bridge.

Cap 2: A double decker train is
going down the tracks.

Cap 1: Two clock towers are lit up at
night, standing in front of a building.

Cap 2: Two tall clock towers above
multiple circular light fixtures.

Cap 1: A white plate with a variety of
fruits on it, including blueberries,
raspberries, and an orange.

Cap 2: A cooked lunch with fruit
sits on a table.

Cap 1: A brown and white dog is laying
on a bed with its head on a pillow.

Cap 2: A dog that is laying down
on a bed.

Figure 5: More qualitative results of the distilled dataset.

C Broader Impacts and Limitations

The societal impacts of our work are multifaceted. Positively, it contributes to greater resource
efficiency, accelerates advancements in artificial intelligence, improves accessibility, and can enhance
data privacy. However, it also introduces potential drawbacks, such as the possibility of information
loss, the introduction of security vulnerabilities, and the complication of intellectual property rights.
A careful balance between these advantages and challenges is paramount to ensure the responsible
and ethical application of this technology.

We recognize that the current approach may exhibit limitations when applied to highly specialized do-
mains such as medical imaging, where the data distribution, structural characteristics, and annotation

21



protocols differ substantially from those of general-purpose datasets used in our experiments. These
domain-specific complexities may not be fully captured by the existing framework. Future research
could address this limitation by incorporating domain-informed priors, adapting the optimization
objectives, or designing customized representations that better align with the underlying structure
and semantics of such specialized data.
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