
Combinatorial Optimization via Memory Metropolis:
Template Networks for Proposal Distributions in

Simulated Annealing applied to Nanophotonic Inverse
Design

Marlon Becker1 Marco Butz2 David Lemli2 Carsten Schuck2 Benjamin Risse1
1Department for Computer Science, 2Department for Quantum Technology

University of Muenster, Germany
{marlonbecker, marco.butz, d_leml01, carsten.schuck, b.risse}@uni-muenster.de

Abstract

We propose to utilize a neural network to build transition proposal distributions
in simulated annealing (SA), which we use for combinatorial optimization on
2D-binary grids and thereby direct convergence towards states of structurally
clustered patterns. To accomplish this we introduce a novel class of network
architectures called template networks. A template network learns a template to
construct a proposal distribution for state transitions of the stochastic process of
the Metropolis algorithm, which forms the basis of SA. Each network represents a
single constant pattern and is trained on the evaluation results of intermediate states
of a single optimization run, resulting in an architecture not requiring an input layer.
Using this learning scheme we equip the Metropolis algorithm with the ability to
utilize information about past states, intentionally violating the Markov property
of memorylessness, and therefore call our method Memory Metropolis (MeMe).
Moreover, the emergence of structural clusters is encouraged by incorporating
layers with limited local connectivity in the template network, while the network
depth controls the learnable cluster sizes. Viewing the optimization objective of
the Metropolis algorithm as a reward maximization allows to train the template
network to find high-reward template-patterns.
We apply our algorithm to combinatorial optimization in nanophotonic inverse
design and demonstrate that MeMe results in clustered design patterns suitable for
direct optical chip fabrication which can not be found by plain SA or regularized
SA. Code is available at https://github.com/MarlonBecker/MeMe.

1 Introduction

Finding specifically constrained patterns on a binary grid is a challenging combinatorial optimization
problem with prominent applications in nanophotonic inverse design (Molesky et al., 2018; So et al.,
2020; Piggott et al., 2017; Liu et al., 2018), especially when building compact and high-performance
devices for nanophotonic integrated circuits (Moody et al., 2022). A nanophotonic device represents
a single functional building block which performs arbitrary operations on light propagating through a
photonic circuit, ranging from simple (e.g. equally distributing light to multiple outputs) to highly
complex (e.g., efficient demultiplexing of information encoded in different wavelengths). The goal of
nanophotonic inverse design algorithms is to optimize the material distribution on an optical chip in a
bounded design area in between input and output waveguides. We map the design area to a 2D-grid
and focus on binary material distributions, i.e., at each grid cell material may either be present or not,
thus leading to a binary combinatorial optimization problem (see Fig. 1A). While the efficiency of a
device may directly be obtained from the electromagnetic field distribution for a certain input, which

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/MarlonBecker/MeMe

can be computed with high accuracy through finite-difference frequency-domain (FDFD) simulations,
the fabricability of the evaluated material distribution pattern (called state S in the following) must
also be taken into account. Isolated pixels representing single pillars or holes of very small diameters
may not be feasible for established fabrication processes. Furthermore, larger clustered regions with
less material edges are reducing scattering and thus signal loss (Hughes et al., 2005) and are further
easing fabrication. Therefore, an optimal algorithmic implementation yields both, highly efficient
and locally clustered solutions.
We seek to solve the combinatorial optimization problem of finding clustered patterns on a binary
grid to achieve a desired photonic functionality which we evaluate using FDFD-simulations. This is
searching for the optimal (clustered) state

S∗ = arg max
S∈{−1,1}dx×dy

F(S) (1)

with grid pixel values -1/1 representing material unfilled/filled cells, the fitness function
F : {−1, 1}dx,dy → [0, 1] defining the desired functionality and incorporating the FDFD-simulations
and design area dimensions dx, dy. As a baseline algorithm we consider this problem as a Markov
chain Monte Carlo (MCMC) problem and search for optimal states by Simulated Annealing (SA)
(Kirkpatrick et al., 1983) based on the Metropolis algorithm (Metropolis et al., 1953) (i.e., Metropolis-
Hastings algorithm for Boltzmann distributions; Hastings (1970)). We select next state propos-
als by randomly (uniformly distributed) inverting single pixels and use negative fitness values
(ft = F (St) = −E(St)) as energies, resulting in pixel inversions being accepted with probability
p = min(1, exp((ft+1 − ft)/T

t
M)), with decaying Metropolis temperature T t

M .
However, we identify multiple problems with this approach which are tackled by our proposed
algorithm. We observe regions where unfilled pixels are highly detrimental for the device (e.g., in
front of waveguides). The random selection of pixel inversion proposals results in computationally
heavy FDFD-simulations required to evaluate inverting those pixels, even though these inversions
will rarely be accepted. Likewise, we observe beneficial regions which, however, are explored
slowly. Reaching a final state where these are fully exploited demands a very slow annealing of
TM , resulting in many steps needed. Moreover and most importantly, converged states do not form
densely connected clusters and are thus not suited for actual fabrication.
We solve these problems by proposing pixel inversion candidates with a specially crafted class of
deep neural networks we call template networks, which are trained to learn a single pattern. By
training the network information about previously evaluated pixel inversions is stored and propagated
to patterns in a local vicinity by using locally connected layers. After appropriate normalization we
sample inversion proposals from the discrepancy between the template network output and the current
state and evaluate the Metropolis criterion to construct a stochastic process of states {St}. Since the
network accumulates information about past visited states, we break with the Markov property of
being memoryless. Thus, we call our proposed method Memory Metropolis (MeMe).
Despite the so constructed proposal distribution not being symmetric, we do not consider the transition
probabilities when evaluating the Metropolis criterion. We therefore bias the state distribution and the
resulting stochastic process does not follow the underlying Boltzmann distribution of fitness values
anymore. Instead, the transition distribution is shifted towards the proposal distribution, resulting in
a state distribution which is a combination of the Boltzmann distribution of fitness values and the
learned template pattern, which encourages cluster formation.
To train the network we consider MeMe as a reinforcement learning (RL) algorithm, where actions
are pixel inversions, the policy is learned by the template network and differences between fitness
values of consecutive states are interpreted as rewards. Similar to deep Q-learning, the network output
is interpreted as a reward prediction and used to generate a distribution for action sampling. However,
to learn a fixed template, we directly learn single reward differences without considering future
Q-value contributions, i.e., Q-learning with maximal discount (γ = 0). The Metropolis criterion
allows the agent to directly revert detrimental actions without the need to first update the policy or to
reevaluate the environment. In summary our contributions are:

1. We propose to solve combinatorial optimization problems of nanophotonic inverse design
by extending simulated annealing (SA) to form a reinforcement learning agent.

2. We propose to sample state transitions of SA from a learned neural network storing informa-
tion about past states (Memory Metropolis; MeMe).

3. We introduce template networks, a novel neural network architecture which learns structured
patterns due to a combination of backward and forward propagation in the network, despite
no input layer or activations being used.

2

4. We evaluate our algorithm extensively in the context of inverse nanophotonic designs and
demonstrate that our approach can generate results beyond the capabilities of SA opening
up new experimental possibilities.

In the following we focus on the description and analysis of the combinatorial optimization algorithm,
the deep learning architecture and the reinforcement learning framework. More details on the
application of our algorithm in the context of nanophotonics will be presented in an additional
publication which is prepared in parallel to this work.

2 Related Work

Reinforcement Learning (RL) is applied to diverse combinatorial optimization problems (Bengio
et al., 2021; Mazyavkina et al., 2021). Some past works also propose combinations of RL and SA or
the Metropolis algorithm, however, none of these use deep neural networks for proposal generation
of discrete states, deliberately bias the state distribution of SA or add the Metropolis criterion to an
RL agent to revert actions.
Guo et al. (2004) are utilizing the Metropolis criterion in Q-learning to choose between an action
from the agents policy or a random action based on Q-values as energies to achieve additional
exploration. Szewczyk & Hajela (1993) are using a neural network to predict energies for SA in
combinatorial optimization. A RL-agent to learn the temperature scheduling of SA was proposed
by Mills et al. (2020). Similarly, other works use RL on top of heuristic optimization algorithms
to control its hyperprameters (Beloborodov et al., 2021; Khairy et al., 2020; Wauters et al., 2020).
Proposal distributions of SA where learned via supervised learning on stored trajectories by Alvarez
et al. (2012). Similar to MeMe, Correia et al. (2023) combine deep RL and SA, however, they do not
use the learned proposal distribution to bias the optimization to converge to a constrained state, they
rely on hand-crafted features as inputs to FC layers where we propose input-less template networks
and update the network predictions by evolution strategies. For the Metropolis-Hastings algorithm
(Hastings, 1970) leapfrog integration of Hamiltonian dynamics Duane et al. (1987); Neal (2011) can
be used for proposal generation. (Levy et al., 2018) propose to learn the leapfrog operator based on
neural networks, which was further adapted by Li et al. (2021) and Hoffman et al. (2019) among
others. Similarly, Müller et al. (2019) use a neural network for minimizing estimation variance in
Monte Carlo integration. Xia et al. (2022) are extracting a proposal distribution for Metropolis-
Hastings from a LSTM trained on a separate training dataset and apply their algorithm to outlier
detection.
Related to our template networks, grids of learned parameters without explicit input layers followed
by fully connected layers are used in neural scene rendering from 2D-images (Mildenhall et al.,
2020; Sun et al., 2022). Similar to our approach, these networks are fully fitted to a single scene.
However, the applied network architectures do not exploit local connectivity to learn local patterns.
Multiresolution hash encodings Müller et al. (2022) offer the ability to share information among grid
cells due to intended hash conflicts.
Locally connected layers where utilized by e.g. Gregor & LeCun (2010) and Huang et al. (2012).
Machine Learning, and especially RL, was applied to nanophotonic inverse design by Li et al. (2023);
Moody et al. (2022) and Dinsdale et al. (2021).
Commonly employed approaches for nanophotonic inverse design cover gradient based methods
(Piggott et al., 2014, 2015) often combined with level-set functions Piggott et al. (2017) to transform
continuous solutions to discrete spaces, direct binary search trees Jia et al. (2018); Shen et al. (2015)
and genetic algorithms Spuhler et al. (1998). Apart from nanophotonic inverse design, RL was also
applied to find patterns in e.g. nuclear assembly (Radaideh et al., 2021) or molecule design (Zhou
et al., 2019).

3 Methods

In the following we describe MeMe and template networks in the framework of reinforcement
learning (RL). We focus on 2D binary grids, however, applications to other search spaces can be
constructed analogously. We denote 2D matrices representing quantities of the grid cells as bold
capital symbols (e.g. Qij

t) where upper indices represent spacial coordinates and lower indices
represent time steps.

3

Softplus
Normalization Metropolis

Rejection

FDFD
Simulation

Template
Matching
Operation

Action

Reward Invert Pixel

Gradient
Descent

Loss Fitness

Agent Interpreter
Template
Network

EnvironmentB

O
U

T
1

O
U

T
2

O
U

T
3

IN
P
U

T

D
esign A

rea

Figure 1: A: Nanophotonic device for optical processing with optimized binary pattern implementing
a wavelength demultiplexer overlayed with the electromagnetic energy density (false-colored). B:
Schematic illustration of MeMe viewed from the perspective of RL.

3.1 Memory Metropolis

Algorithm 3.1: Memory Metropolis (MeMe)
Input: Design area dimensions dx and dy , sampling temperature TS , metropolis base

temperature T 0
M , learning rate η = 1, iterations tmax

Initialize: State S0 ∈ {−1, 1}dx×dy here: Si,j
0 = 1 ∀i, j; network parameters Θ0

for t← 0 to tmax do
Nt = N (Θt) // evaluate template network
Qt = −Nt ⊙ St // template matching operation (TMO)
P ij

t = log(1 + exp(Qij
t /TS))/

∑
i,j log(1 + exp(Qij

t /TS)) // normalization
at = (axt , a

y
t) ∼ Pt // sample action (pixel indices)

S̃t = St // copy state

S̃
ax
t ,a

y
t

t = −1 · S̃ax
t ,a

y
t

t // invert pixel
f̃t ← F(S̃t) // evaluate fitness function (FDFD simulation)
rt = f̃t − ft // calculate reward
T t
M = T 0

M (1 + cos(πt/tmax))/2 // simulated annealing
if exp(rt/T t

M) < X ∼ U(0, 1) then // metropolis criterion
St+1 = St // revert action
ft+1 = ft

else
St+1 = S̃t // accept action
ft+1 = f̃t

end
Θt+1 = Θt+1 − η∂L(Qt, rt, at))/∂Θt // policy learning via SGD

end
return Stmax

Fig. 1B schematically depicts MeMe viewed from the perspective of RL while a detailed description
is given in Alg. 3.1 a detailed listing of our notation is given in Appx. A.16. Starting from an all-ones
(all-material) state we consecutively update states by inverting single pixels.
Action Proposal: For every iteration the template Nt ∈ Rdx×dy is calculated as the output of the
template network N (Θt), followed by comparing the template with the current state St, which we
call template matching operation (TMO). Since the states are defined on a binary grid, Sij

t ∈ {−1, 1},
this can be done by multiplying the state elementwise with the learned template. The resulting values
Qt = −Nt⊙St represent the dissimilarity between template and state as well as the reward expected
from inverting the corresponding pixels (see Sec. 3.2 for a more detailed discussion of template
networks).
Next Qt is normalized to derive the proposal distribution (action policy) Pt ∈ [0, 1]dx×dy . We first
divide Qt by the sampling temperature TS , allowing to control the amount of random exploration.

4

While low temperatures make the agent strictly follow the networks predictions, higher temperatures
result in increasingly uniformly sampled actions. The scaling is followed by a normalized softplus
function, i.e., element-wise applying f(x) = log(1 + exp(x)) and normalizing the sum over all
elements to 1. We chose to use the softplus function instead of an exponential as done in the
broadly used softmax function since softplus approximates a linear function for high inputs. Thereby,
the exploration-exploitation trade-off is independent of the network output scale for large output
magnitudes.
State Evaluation: After sampling an action at (i.e., pixel indices), a candidate for the next state S̃t

is constructed by copying the current state and inverting the pixel corresponding to the action. Next
the fitness of the candidate state f̃t = F(S̃t) is evaluated. The definition of F depends on the desired
nanophotonic functionality, however, evaluating F always requires solving FDFD simulations which
are computationally costly and thus mainly determine the total algorithms runtime. The reward is
calculated as the change of fitness.
Metropolis criterion: Additionally to standard RL agents, we apply the Metropolis criterion to
revert detrimental actions, i.e., an action is reverted with probability min(0, 1− exp(rt/TM)). We
anneal the Metropolis temperature TM following a half-period cosine annealing schedule (simulated
annealing; SA) to converge to the states of high fitness. The Metropolis criterion allows MeMe to
directly revert detrimental actions without the need to reevaluate the state and sample a new action
and thus reduces computationally costly FDFD-simulations.
Policy/template network learning: We train the network by a simple policy gradient algorithm. We
chose to minimize the product of the TMO output and the reward, i.e., L̃(Qt, rt, at) = −rtQax

t ,a
y
t

t ,
instead e.g. a loss based on the temporal difference (i.e. squared error). This loss function trains the
network to predict whether an action will cause a negative or positive reward while the magnitude of
the prediction represents a combination of the magnitude of the expected reward and the certainty
of the predictions. Pixels which have been sampled multiple times and caused rewards of the same
sign will cause Qax

t ,a
y
t

t to grow continuously. In combination with the TMO this causes those actions
to be sampled less. On the other hand, actions which have rarely been sampled or which yielded
ambiguous rewards will be sampled with higher probability. Directly learning to predict the reward
(e.g. by a squared error loss) causes low-importance pixels (i.e. reward close to zero) to be inverted
back and forth endlessly, resulting in non-clustered regions. Furthermore, the continuously increasing
loss function allows for an inherent exploration-exploitation adaption during training similar to the
annealing schedule we apply to TM . To accomplish fast learning for very beneficial/detrimental
actions while still retaining training stability, we employ a dampened version of the product loss:

L(Qt, rt, at) = −sign(rtQ
ax
t ,a

y
t

t) log(1 + |rtQax
t ,a

y
t

t |). (2)

Network parameters are updated by performing a gradient descent update step. We neither use
momentum nor adaptive optimizers since completed actions should impact the network immediately.
Since we initialize the template network to have an all-zero output, increasing the learning rate η has
a similar effect to decreasing TS , thus we keep η = 1 fixed and only tune TS if needed.
Markov property: Compared to the Metropolis algorithm we added a proposal distribution and
deliberately did not take the asymmetry of the proposal distribution in the evaluation of the metropolis
criterion into account (cf. Appx. Algo. A.1), which results in violating the Markov property and
biasing the transition distribution from a Boltzmann distribution of the fitness differences towards the
proposal distribution (see Appx. A.15 for exact derivation and Appx. A.9 for results for unbiased
sampling). This results in converging to states that consists of clustered patterns, since the proposal
distribution learned form the template network also forms clustered patterns. The balance between
both distributions is determined by TS and TM (cf. Appx. Fig. A.10). TS =∞ results in a uniform
proposal distribution, reducing MeMe to plain SA (cf. Appx. Algo. A.4) and thus, states are following
the Boltzmann distribution again. TM = ∞ causes the Boltzmann distribution to be replaced by
a uniform distribution, so states will fully follow the proposal distribution and no actions will be
reverted. Since the proposal distribution (as policy of an RL agent) is trained to maximize the reward,
the latter case also converges to high fitness states. However, combinations of finite TS and TM allow
tuning tradeoffs between exploration and exploitation and cluster formation and fitness maximization.

3.2 Template Networks

The template network is designed to learn a single pattern, thus no input layer is needed. Instead,
the first layer of the template network consists of a grid of learned parameters, followed by multiple

5

2D-locally connected layers. Locally connected layers are connected in the same way as convolutional
layers but do not share weights among spatial dimensions (cf. Fig. 2A). The locally connected layers
enable the network to learn local relations and thus encourage cluster formation. Since there is no
input, the output is constant and could also be directly extracted from a simple table, however, the
learning dynamics would differ significantly from our proposed architecture. When backpropagating
gradients through the network during the backward path, the locally connected layers propagate the
gradient to a broader neighborhood with increasing network depth. The networks subsequent forward
pass distributes the updated weights up to a distance of dk/2 where d is the networks depth and k
the connectivity (cf. filter size in CNNs). Fixing all weights of the locally connected layers to the
same value is equal to convolving the first learned parameter layer with a binomial (or Gaussian)
kernel (cf. Fig. 2B). We initialize the first learned parameter layer to zeros and all locally connected
layers weights to 1/k2. Thus, Gaussian-like cluster formation is encouraged by the network output.
However, since weights will change during training and are not shared across spatial dimensions (as
in convolutional layers), activations can decouple and cluster formation is not enforced strictly. This
decoupling especially takes place if neighboring neurons are backpropagating contradicting gradients,
hence connecting weights will be reduced resulting in dismantling the local connectivity. This allows
for sharp-edged structures to be learned, if beneficial for the optimization objective (cf. Appx. Fig.
A.1). However, regions of low importance (low reward and thus low gradients) form dense structures.
Furthermore, the network architecture allows incorporating prior knowledge similar to importance
sampling in Metropolis-Hastings by setting the initialization values of the learned parameter layers.
E.g. connecting lines between input and output waveguides can significantly speed up optimizations
(cf. Appx. A.6). Hard constraints can be included by additionally freezing or masking layers.
Lastly, the template network output is compared against the current state to construct inversion
probabilities (template matching operation; TMO; see Fig. 2C).

A B C
Fully Connected

Locally Connected

Convolutional

Template Network
Template Matching Operation (TMO)Template NetworkLC-Layers

Proposal Distribution
(before Normalization)

Intermediate State

Element-wise
MultiplicationForward Pass

Backward Pass

Locally
 Conn-
 ected
 Layers

Figure 2: A: Locally connected networks are connected in the same way as convolutional layers
but do not utilize weight sharing. B: Template networks first layer are learned parameters (squared
boxes), followed by multiple 2D-locally connected layers (here shown in 1D). During the backward
pass gradients are flowing from single positions to an increasing field of view from layer to layer.
The next iteration’s forward pass thus yields activations in the form of a Gaussian. C: The template
matching operation (TMO) compares the learned template (network output) with the current state to
calculate inversion probabilities by element-wise multiplication. Red: positive, blue: negative.

4 Experiments

While our method is applicable for arbitrary functionalities (defined by corresponding fitness func-
tions), we focus on analyzing properties of MeMe when searching for a 3-port wavelength demul-
tiplexer (WDM; see Appx. A.4 for results for other optical functionalities). The WDM comprises
one input and three output connections aiming to direct input signals of specific wavelengths to
different outputs (cf. Fig. 1A). We conduct experiments for dx = dy = 100, i.e., grids of 10, 000

6

elements resulting in 210,000 possible states. As discussed above, we fix the learning rate η = 1 for
all experiments and initialize the learned parameter layer to zero and locally connected layers weights
to 1/k2. We set the connectivity of locally connected layers to k = 2 for all experiments and the
network depth to d = 10 if not stated differently. Please see Appx. A.13 for details regarding the
physical system as well as the FDFD-simulations and Appx. A.14 for exact definitions of fitness
functions F . Since we focus on algorithmic properties of MeMe in this publication, we utilize faster
2D-FDFD-simulations when evaluating the fitness functions. However, we validate the applicability
of MeMe for 3D-simulations in Appx. A.5, where hyperparameters TS and TM , which where opti-
mized for 2D-systems can be used without further tuning. If not stated differently, we set tmax = 106

and use parallel exploration for MeMe and SA with multiple CPU-workers solving FDFD-simulations
in parallel to evaluate inversion candidates (see Appx. A.10 for details on parallelization). Further
experiments and visualizations offering additional insights to MeMe and its applications are given in
the appendix.

4.1 Optimization Process

t = 100 t = 1000 t = 8000 t = 15000 t = 100000

Figure 3: Optimization Process for tmax = 105, TS = 0.0001 and TM = 0.1. Top: TMO outputs
Qt, i.e., proposal distribution before scaling and normalization. Blue: negative, red: positive, white:
0. Bottom: States St of stochastic process. Black: "1"/material, white: "-1"/air. Exploration followed
by cluster formation and condensing to dense clusters.

To visualize the optimization process we depict the evolution of states St as well as the output of the
template network after TMO (i.e. Qt) in Fig. 3. Starting from Sij

0 = 1 and Qij
0 = 0 ∀i, j inversion

proposals are sampled from Pt and are optionally reverted by the Metropolis criterion. Since the
sampling distribution Pt is uniform in the first iteration, the optimization process is dominated by
the Boltzmann distribution of fitness values ft in the beginning. Typically, most inversions are
accepted during the early phase. Each action, reverted or not, propagates the corresponding rewards
through the template network causing clusters with shapes resembling isotropic Gaussian functions
in Qt of the same sign as the reward. Accepted actions result in center pixels of opposite sign
due to the sign flip in the TMO. By this, the template network identifies regions of high reward as
well as detrimental regions. Subsequent actions will be sampled with higher probability from the
proposed beneficial regions, resulting in first cluster formation (t = 1000). Next, clusters are filled
progressively while larger structures are building. Due to the product loss (Eq. 2) the network output
grows steadily (corresponding heatmaps getting darker), causing the proposal distribution to further
deviate from a uniform distribution with every step. Since we do not regard the asymmetry of the
proposal distribution when evaluating the Metropolis criterion as discussed above, this results in
an increasing bias of the state distribution St from the Boltzmann distribution of fitness values ft
towards the pattern learned by the template network, thus encouraging cluster formation. During the
last phase of the optimization process cluster positions are mostly staying constant, while actions are
mainly sampled from borders of clusters where subtle structures are learned and last freestanding
pixels are incorporated into clusters. During this last phase, formation of sharp/edged structures
takes place, caused by decoupling of weights in locally connected layers. We further analyze this
decoupling in Appx. A.2. Finally, the state St converges against the exact learned template, i.e., the

7

template network output (before TMO) Nt thresholded at 0, for TM =∞, while finite TM result in
a local maximum of ft where small differences from the template might still occur.

4.2 Comparison against SA and regularized SA

Not only are isolated pixels not suited for actual optical chip fabrication, larger clustered regions are
also reducing scattering and thus signal loss (Hughes et al., 2005) and are further easing fabrication.
We chose to quantify these properties by defining the granularity g(St) of a state as the normalized
average number of pixels with dissimilar value in a 3x3 neighborhood (see Appx. A.1 for exact
definition).
We conducted extensive experiments for combinations of the sampling temperature TS and the
metropolis temperature TM and report results in Fig. 4A. For each temperature combination we
perform optimizations with three random seeds and depict fitness f and granularity g for the state of
the highest fitness per temperature combination. We seek to achieve high fitness f while keeping the
granularity g low. As baseline results we compare against simulated annealing (SA) which equals
setting TS =∞.
Furthermore, we show resulting states in Fig. 4 for the highest fitness result for SA (1), the highest
fitness result for MeMe (2) and lowest granularity result (3). While SA reaches high fitness values for
optimal TM = 0.0001, resulting states (1) are not suited for actual fabrication due to many isolated
pixels. On the other hand, setting TM = ∞ yields states with dense clusters and without isolated
pixels while fitness values are still comparably high. Combinations of finite TS and TM not only
show cluster formation, but also reach fitness values which could not be reached by SA.
As an alternative approach, we compare against explicitly reducing the granularity by incorporating
direct regularization into SA, i.e., distorting the energies/fitness values of the Boltzmann distribution
of SA to f̃ = f−λg with regularization factor λ. In Fig. 4B we show the full optimization trajectories
for scanning λ on (approximately) logarithmic scale and compare to MeMe’s trajectory. Furthermore,
we show (diagonal) contour lines for the regularized fitness f̃ = f − λcontg for λcont = 0.1. We
chose λcont = 0.1 for visualization purposes only and report an alternative visualization for all λ in
Appx. Fig. A.2.
While explicit regularization significantly reduces the granularity g, high values of λ result in a
mode collapse. Starting from low f and high g, small λ prioritize maximization of f while g mainly
decreases towards the end of each run. Higher regularization (λ > 0.17) effectively minimizes g,
however, high fitness values are not achieved. The mode collapse can be observed best for λ = 0.17
where two runs reach high f with high g, while one run reaches low g with low f despite the runs
only differing in the random seed.
MeMe does not suffer from mode collapse but instead reaches both, high f and low g. Visible
when studying the countour lines, MeMe is even more efficient in minimizing f̃ = f − λcont

than the corresponding runs for λcont = 0.1, despite MeMe not having any information about g.
MeMe encourages cluster formation without counteracting fitness maximization, since the proposal
distribution of MeMe is not only encouraging arbitrary cluster formation as regularizing g does, but
instead is itself learned to maximize f and inherently tends to form clusters.

4.3 Template Network Depth

The template network architecture inherently controls size and shape of learned clusters. Next to the
connectivity k, the network depth (number of layers) allows to control the cluster size. Furthermore,
different initializations of the locally connected layers encourage different local patters (also see Appx.
A.6). Additionally, convolutional layers could be used to learn translationally invariant patterns.
We depict optimized devices (highest fitness states) when varying the number of locally connected
layers in Fig. 5. While the general trend, i.e., more layers result in larger cluster, can already be
concluded qualitatively from the shown examples, we further quantify this observation. As shown in
Fig. 5A, deep networks result in lower granularity but also cause fitness degradation, however, an
optimal network depth and therefore resulting cluster size, can be seen for d = 10. Thus, encouraging
cluster formation does not need to be contrary to fitness optimization (also see Appx. A.8). To
measure the cluster size, we first calculate the autocorrelation function of the best fitness states for 10
optimization runs and plot the mean radial autocorrelation in Fig. 5B. We calculate the radial distance
where the autocorrelation decayed to 50% and depict the dependence on d in Fig. 5C showing a
sublinear cluster size growth with the network depth. Since the receptive field of each layer scales
linearly with the network depth, linear growth would be an expected upper bound. When considering

8

1

3

2

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fitness f

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G
ra
nu

la
ri
ty
g

B

0.
64

=
f
− g
λ
co
nt

0.
68

0.
72

0.
76

0.
80

0.
84

0.
88

0.
92

0.
96

λ = 0

λ = 0.03

λ = 0.055

λ = 0.1

λ = 0.17

λ = 0.3

λ = 0.55

λ = 1

MeMe

λ = 0

λ = 0.03

λ = 0.055

λ = 0.1

λ = 0.17

λ = 0.3

λ = 0.55

λ = 1

MeMe

Figure 4: A: Hyperparameter scan of TS and TM including comparison against SA (TS = ∞).
Granularity g (cf. Appx. A.1) and fitness f for state with the highest fitness for each temperature
combination. See Appx. Fig. A.13 for further results. MeMe reaches better fitness and lower granu-
larity. B: Comparison against the Metropolis algorithm with additional granularity regularization, i.e.,
maximization of f̃ = f−λg. Diagonal lines mark contour of maximization objective for λcont = 0.1.
TS = 0.0001 and TM = 0.003 (MeMe only). MeMe reaches lower values of f̃ compared to SA
which explicitly minimizes f̃ , despite having no information about g.

decoupling (cf. Appx. A.2) and finite size effects, the empirical observations thus aligns with our
expectations. This confirms the tunability of the cluster size by varying the network depth.

d = 1
d = 2
d = 3
d = 5
d = 7
d = 10
d = 13
d = 16
d = 20
d = 25
d = 30

d = 1
d = 2
d = 3
d = 5
d = 7
d = 10
d = 13
d = 16
d = 20
d = 25
d = 30

0.86 0.88 0.90 0.92 0.94 0.96 0.98

Fitness f

0.4

0.6

0.8

1.0

1.2

G
ra
nu

la
ri
ty
g

A

0 2 4 6 8 10

Radial Distance r [px]

0.0

0.2

0.4

0.6

0.8

1.0

M
ea
n
A
ut
oc
or
re
la
ti
on

B

123 5 7 10 13 16 20 25 30

Network Depth d

1

2

3

4

50
%
-D

is
ta
nc

e
r 5

0
[p
x]

C
r50(d) = 1.21 · d 0.34

d = 1 d = 3 d = 5 d = 10 d = 16 d = 30

Figure 5: Dependence on network depth/number of locally connected layers d for TS = 0.0001
and TM = ∞. A: d controls fitness-granularity tradeoff. Best fitness values at d = 10. B: Radial
autocorrelation function to measure cluster size. C: Cluster radius at 50% autocorrelation vs. d.
Sublinear dependence (exponent 0.34 in least-squares fit). Bottom Row: Optimized highest fitness
states.

5 Conclusion

We proposed MeMe, a novel algorithm for combinatorial optimization combining elements from
Markov Chain Monte Carlo optimization and reinforcement learning utilizing novel template networks
which encode optimal states without the need of input layers and are trained on single optimization
runs. We demonstrate that MeMe finds clustered design patterns suitable for direct optical chip
fabrication which can not be found by plain SA or regularized SA.

9

Acknowledgements

References
Alejandro Marcos Alvarez, Francis Maes, and Louis Wehenkel. Supervised learning to tune simulated

annealing for in silico protein structure prediction. In 20th European Symposium on Artificial
Neural Networks, ESANN 2012, 2012.

Dmitrii Beloborodov, A E Ulanov, Jakob N Foerster, Shimon Whiteson, and A I Lvovsky. Reinforce-
ment learning enhanced quantum-inspired algorithm for combinatorial optimization. Machine
Learning: Science and Technology, 2(2):025009, 2021. ISSN 2632-2153.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
A methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
2021.

Alvaro H.C. Correia, Daniel E. Worrall, and Roberto Bondesan. Neural simulated annealing. In
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, volume
206, pp. 4946–4962, 2023.

Nicholas J. Dinsdale, Peter R. Wiecha, Matthew Delaney, Jamie Reynolds, Martin Ebert, Ioannis
Zeimpekis, David J. Thomson, Graham T. Reed, Philippe Lalanne, Kevin Vynck, and Otto L.
Muskens. Deep Learning Enabled Design of Complex Transmission Matrices for Universal Optical
Components. ACS Photonics, 8(1):283–295, 2021.

Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid monte carlo. Physics
Letters B, 195(2):216–222, 1987.

Karol Gregor and Yann LeCun. Emergence of complex-like cells in a temporal product network with
local receptive fields. CoRR, abs/1006.0448, 2010.

M. Guo, Y. Liu, and J. Malec. A New Q-Learning Algorithm Based on the Metropolis Criterion.
IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 34(5):2140–2143,
2004.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57(1):97–109, 1970.

Matthew Hoffman, Pavel Sountsov, Joshua V. Dillon, Ian Langmore, Dustin Tran, and Srinivas
Vasudevan. NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport.
CoRR, abs/1903.03704, 2019.

Gary B. Huang, Honglak Lee, and Erik Learned-Miller. Learning hierarchical representations for
face verification with convolutional deep belief networks. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2518–2525, 2012.

S. Hughes, L. Ramunno, Jeff F. Young, and J. E. Sipe. Extrinsic optical scattering loss in photonic
crystal waveguides: Role of fabrication disorder and photon group velocity. Phys. Rev. Lett., 94:
033903, 2005.

Hao Jia, Ting Zhou, Xin Fu, Jianfeng Ding, and Lin Yang. Inverse-design and demonstration of
ultracompact silicon meta-structure mode exchange device. Acs Photonics, 5(5):1833–1838, 2018.

Sami Khairy, Ruslan Shaydulin, Lukasz Cincio, Yuri Alexeev, and Prasanna Balaprakash. Learning
to optimize variational quantum circuits to solve combinatorial problems. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(03):2367–2375, 2020. ISSN 2159-5399.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220
(4598):671–680, 1983.

Daniel Levy, Matthew D. Hoffman, and Jascha Sohl-Dickstein. Generalizing Hamiltonian Monte
Carlo with Neural Networks, 2018.

10

H. H. Li. Refractive index of silicon and germanium and its wavelength and temperature derivatives.
Journal of Physical and Chemical Reference Data, 9(3):561–658, 1980.

Renjie Li, Ceyao Zhang, Wentao Xie, Yuanhao Gong, Feilong Ding, Hui Dai, Zihan Chen, Feng
Yin, and Zhaoyu Zhang. Deep reinforcement learning empowers automated inverse design and
optimization of photonic crystals for nanoscale laser cavities. Nanophotonics, 12(2):319–334,
2023.

Zengyi Li, Yubei Chen, and Friedrich T. Sommer. A neural network mcmc sampler that maximizes
proposal entropy. Entropy, 23(3), 2021.

Dianjing Liu, Yixuan Tan, Erfan Khoram, and Zongfu Yu. Training deep neural networks for the
inverse design of nanophotonic structures. Acs Photonics, 5(4):1365–1369, 2018.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for
combinatorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward
Teller. Equation of state calculations by fast computing machines. The Journal of Chemical Physics,
21(6):1087–1092, 1953.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. CoRR,
abs/2003.08934, 2020.

Kyle Mills, Pooya Ronagh, and Isaac Tamblyn. Finding the ground state of spin hamiltonians with
reinforcement learning. Nature Machine Intelligence, 2(9):509–517, 2020. ISSN 2522-5839.

Sean Molesky, Zin Lin, Alexander Y. Piggott, Weiliang Jin, Jelena Vucković, and Alejandro W.
Rodriguez. Inverse design in nanophotonics. Nature Photonics, 12(11):659–670, 2018.

Galan Moody, Volker J. Sorger, Daniel J. Blumenthal, Paul W. Juodawlkis, William Loh, Cheryl
Sorace-Agaskar, Alex E. Jones, Krishna C. Balram, Jonathan C. F. Matthews, Anthony Laing,
Marcelo Davanco, Lin Chang, John E. Bowers, Niels Quack, Christophe Galland, Igor Aharonovich,
Martin A. Wolff, Carsten Schuck, Neil Sinclair, Marko Lončar, Tin Komljenovic, David Weld,
Shayan Mookherjea, Sonia Buckley, Marina Radulaski, Stephan Reitzenstein, Benjamin Pingault,
Bartholomeus Machielse, Debsuvra Mukhopadhyay, Alexey Akimov, Aleksei Zheltikov, Girish S.
Agarwal, Kartik Srinivasan, Juanjuan Lu, Hong X. Tang, Wentao Jiang, Timothy P. McKenna,
Amir H. Safavi-Naeini, Stephan Steinhauer, Ali W. Elshaari, Val Zwiller, Paul S. Davids, Nicholas
Martinez, Michael Gehl, John Chiaverini, Karan K. Mehta, Jacquiline Romero, Navin B. Lingaraju,
Andrew M. Weiner, Daniel Peace, Robert Cernansky, Mirko Lobino, Eleni Diamanti, Luis Trigo
Vidarte, and Ryan M. Camacho. Roadmap on integrated quantum photonics. Journal of Physics:
Photonics, 4(1):012501, 2022.

Thomas Müller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. Neural
Importance Sampling. ACM Transactions on Graphics, 38(5):1–19, 2019.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM Transactions on Graphics, 41(4):1–15,
2022.

Radford M. Neal. MCMC using Hamiltonian dynamics, volume abs/1206.1901. arXiv, 2011.

Alexander Y. Piggott, Jesse Lu, Thomas M. Babinec, Konstantinos G. Lagoudakis, Jan Petykiewicz,
and Jelena Vučković. Inverse design and implementation of a wavelength demultiplexing grating
coupler. Scientific Reports, 4(1):7210, 2014.

Alexander Y. Piggott, Jesse Lu, Konstantinos G. Lagoudakis, Jan Petykiewicz, Thomas M. Babinec,
and Jelena Vučković. Inverse design and demonstration of a compact and broadband on-chip
wavelength demultiplexer. Nature Photonics, 9(6):374–377, 2015.

Alexander Y Piggott, Jan Petykiewicz, Logan Su, and Jelena Vučković. Fabrication-constrained
nanophotonic inverse design. Scientific reports, 7(1):1786, 2017.

11

Majdi I. Radaideh, Isaac Wolverton, Joshua Joseph, James J. Tusar, Uuganbayar Otgonbaatar,
Nicholas Roy, Benoit Forget, and Koroush Shirvan. Physics-informed reinforcement learning
optimization of nuclear assembly design. Nuclear Engineering and Design, 372:110966, 2021.

Bing Shen, Peng Wang, Randy Polson, and Rajesh Menon. An integrated-nanophotonics polarization
beamsplitter with 2.4× 2.4 µm2 footprint. Nature Photonics, 9(6):378–382, 2015.

Sunae So, Trevon Badloe, Jaebum Noh, Jorge Bravo-Abad, and Junsuk Rho. Deep learning enabled
inverse design in nanophotonics. Nanophotonics, 9(5):1041–1057, 2020.

Michael M Spuhler, Bert J Offrein, G-L Bona, Roland Germann, Ilana Massarek, and Daniel Erni. A
very short planar silica spot-size converter using a nonperiodic segmented waveguide. Journal of
Lightwave Technology, 16(9):1680–1685, 1998.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct Voxel Grid Optimization: Super-fast Conver-
gence for Radiance Fields Reconstruction, 2022.

Z. Szewczyk and P. Hajela. Neural network approximations in a simulated annealing based optimal
structural design. Structural Optimization, 5(3):159–165, 1993.

Matteo M. Wauters, Emanuele Panizon, Glen B. Mbeng, and Giuseppe E. Santoro. Reinforcement-
learning-assisted quantum optimization. Phys. Rev. Res., 2:033446, 2020.

Mingchao Xia, Jinping Sun, and Qifang Chen. Outlier Reconstruction Based Distribution System
State Estimation Using Equivalent Model of Long Short-term Memory and Metropolis-Hastings
Sampling. Journal of Modern Power Systems and Clean Energy, 10(6):1625–1636, 2022.

Kane Yee. Numerical solution of initial boundary value problems involving maxwell’s equations in
isotropic media. IEEE Transactions on Antennas and Propagation, 14(3):302–307, 1966.

Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N. Zare, and Patrick Riley. Optimization of molecules
via deep reinforcement learning. Scientific Reports, 9(1), 2019.

12

Appendix

A.1 Definition of Granularity

We aim to quantify the number of isolated pixels but as well measure the formation of larger
clustered regions. For this, we calculate the average number of grid cells with dissimilar cell state
Ñ(St) by convolving the state St with a 3x3 kernel (Ki,j)i,j∈{−1,0,1} where K0,0 = −1 and
Ki,j = 1/8 ∀(i, j) ̸= (0, 0) and dividing by the grid size. Borders are padded with 1 to reflect
the substrat-less surrounding of the chip. Directly using this definition for granularity calculations
would not only disregard larger cluster formation, but also, if used as a regularizer, heavily favour
the starting state impeding the Metropolis algorithm for large regularization factors λ. Thus, we
normalize this metric by subtracting the starting state value (which is not 0 due to border cells) and
normalize by the total ratio of cells with dissimilar state:

g(St) =
Ñ(St)− Ñ(S0)

1− |
dx,dy∑
i,j

Si,j
t |/(dxdy)

(A.1)

A.2 Decoupling

As a measure of decoupling, i.e., the deviations of the stacked locally connected layers from a
Gaussian filtering, we calculate the standard deviation of weights per spatial position. In analogy to a
convolution layer, this is calculating the standard deviation per filter/kernels (which are not shared
spatially in locally connected layers). However, there will also be more noise and thus higher standard
deviations for filters/kernels which simply changed more compared to their initial value, thus, we
additionally divide by the absolute difference from the initialization value and average over all layers.
With weight W l,t

ijnm at layer l, iteration t, spatial positions i, j and filter/kernel indices n,m this is

Dt
ij =

1

L

L∑
l=1

√
1

NM

∑
n,m

((
1

NM

∑
n,m

W l,t
ijnm

)
−W l,t

ijnm

)2
∑
n,m
|W l,t

ijnm −W l,0
ijnm|+ ϵ

, (A.2)

where ϵ = 10−6 is a constant for numerical stability. We depict the decoupling factor for the final
iteration in Fig. A.1. The decoupling reaches highest values at the edges of the device, supporting
that decoupling allows the template network to learn finegrained structures.

Figure A.1: Decoupling Factor (Eq. A.2) overlayed with device edges. tmax = 106, TS = 0.0001
and TM =∞.

13

A.3 MeMe vs. Regularized SA

We show that MeMe reaches higher regularized fitness values f̃ = f − λg for all λ despite MeMe
not having any information about g, which we showed for λcont = 0.1 in Fig. 4B. Instead of drawing
the full contour of f̃ as done in the main text, we only draw the contour line for the highest value of
f̃ that could be reached with regularized SA, thus the end points of optimizations with regularized
SA are intercepting with these lines (see Fig. A.2).
MeMe reaches points below all of these lines (i.e. bottom right corner) and hence surpasses regularized
SA for any λ.

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fitness f

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G
ra
nu

la
ri
ty
g

λ = 0

λ = 0.03

λ = 0.055

λ = 0.1

λ = 0.17

λ = 0.3

λ = 0.55

λ = 1

MeMe

λ = 0

λ = 0.03

λ = 0.055

λ = 0.1

λ = 0.17

λ = 0.3

λ = 0.55

λ = 1

MeMe

Figure A.2: All λ results for Figure 4B.

A.4 Further devices compared against regularized SA

We compare MeMe against granularity regularized SA for three photonic functionalities and report
results in Fig. A.3. Namely, we compare results for 90-10 power splitters (PS), mode demultiplexers
(MDM), and the wavelength demultiplexer (WDM) discussed in the main text (see Appx. A.14 for
corresponding fitness functions). We set TS = 0.0001 and tmax = 106. For regularized SA we scan
the regularization parameter λ and show results with highest fitness for the highest λ before mode
collapse (cf. Fig. 4), i.e. λWDM = 0.17, λWDM = 0.17 and λPS = 0.3.
While SA reaches comparable results to MeMe, many isolated pixels and small clusters occur, making
these devices unsuitable for actual chip fabrication.

14

SA: WDM (f = 0.975) SA: MDM (f = 0.992) SA: PS (f = 0.995)

MeMe: WDM (f = 0.975) MeMe: MDM (f = 0.995) MeMe: PS (f = 0.998)

Figure A.3: Best devices found for MeMe and SA with granularity regularization. MeMe reaches
high fitness values for all devices while yielding densely clustered structures.

A.5 3D FDFD Simulations

We utilized 2D-FDFD-simulations in the main text, since we focused on algorithmic properties of
MeMe. While these simulations yield less accurate predictions of electromagnet fields, they require
less computational resources and thus allowed us to perform the shown extensive empirical analysis
of MeMe. However, we report results for a 90-10 power splitter (PS) evaluated with 3D-FDFD-
simulations with dx = dy = 80, TS = 0.0001, TM = 0.01 and tmax = 105. While these simulations
are computationally more costly, they yield high accuracy results directly transferable to experimental
measurements.
We find an optimized state yielding normalized powers of p1 = 0.093 and p2 = 0.845 (see Fig. A.4).
Furthermore, we show the optimization trajectory in Fig. A.5.
By this we confirm the applicability of MeMe to 3D-FDFD-simulations. We are looking forward
to extending these promising results to other optical functionalities and validate our findings with
experimental measurements in future work.

Figure A.4: Optimized state for PS with 3D-FDFD-simulations.

15

Figure A.5: 90-10 PS utilizing 3D-FDFD-simulations. Fitness function F(S) in dependence on
corresponding powers p1(St) and p2(St) overlayed with optimization trajectory.

A.6 Network Initilization Priors

The initialization of the first fully learned layer allows to set prior distributions. For power splitters
(PS) a straightforward prior is to directly connect input and output waveguides. MeMe yields final
states close to the prior distribution (cf. Fig. A.6). Setting priors can reduce the optimization runtime
significantly as shown in Fig. A.7.
However, we could not find equally high fitness values as without setting a prior, probably caused
by steering into a local minimum where more complex patterns (cf. Fig. A.4) could not be reached
anymore. Furthermore, finding a reasonable prior might be challenging for other devices such as
wavelength demultiplexers (WDM) and mode demultiplexers (MDM).

Figure A.6: Left: Prior state directly connecting input and output waveguides. Right: Optimized
state. 90-10-power splitter utilizing 3D-FDFD-simulations.

16

0 20000 40000 60000 80000 100000

Iteration t

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

F
it
ne

ss
f

Inc Prior
No Prior

Figure A.7: MeMe optimization with and without setting prior as in Fig.A.6. PS utilizing 3D-FDFD-
simulations. Prior causes the best device to be found after less than 2000 iterations, however fitness
values are lower.

A.7 Larger Pixel Size

Alternative to encouraging cluster formation of small pixels, the pixel size could be simply increased.
However, this results in dramatically restricting the search space. Optimizing with SA thus does not
yield comparable fitness values to MeMe results (See Fig. A.8)

0 200000 400000 600000 800000 1000000
Iteration t

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

B
es
t
F
it
ne

ss
f

TM = 0

TM = 0.00001

TM = 0.00003

TM = 0.0001

TM = 0.0003

TM = 0.001

TM = 0.003

TM = 0.01

Figure A.8: Accumulated maximal fitness for SA with 4x increased pixel size. Three random seeds
each. tmax = 106.

A.8 Spatial Reward Patterns

An unbiased Metropolis algorithm samples states according to the Boltzmann distribution of fitness
values (energies). This is equivalent to sampling transitions from a Boltzmann distribution of the
fitness differences (rt = ft+1 − ft) which we use as rewards for the RL agent. However, fully
calculating this transition probability requires to evaluate the reward for every possible action which
results in dx · dy = 10000 FDFD-simulations. While the acceptance criterion of the Metropolis
algorithm allows sampling from this distribution without explicitly calculating it, we here calculate
the rewards for all possible actions in one state. Since rewards are fitness differences and thus are
symmetric, we depict Rt ⊙ St to visualize the rewards independent of the current pixels state.
In Fig. A.9 we show rewards for corresponding pixel inversions if starting from an all-material state
(left). Even though without clear symmetry, a clustered pattern occurs. However, when finding a local
maximum via SA (i.e. all rewards Rt are negative), not only state pixels are mostly isolated (mid)
but also reward distributions are not showing cluster formation anymore (right). The isolated pixel
inversions of SA seem to break up the clustered patterns in the rewards (and thus in the Boltzmann
transition distribution) and thus cause final states to consist of many isolated pixels too.

17

Figure A.9: Left: Rt ⊙St at t = 0, i.e., for all-material state. Mid: Local fitness maximum obtained
via SA. State St at t = tmax. Right: Rt ⊙ St at t = tmax. Even though initial distribution was
clustered, isolated pixels of SA states cause breaking of clustered structure and thus no clusters occur
in final state.

When optimizing with MeMe, the template network learns a template targeted at predicting the
rewards (and thus the Boltzmann transition distribution). We depict the resulting reward pattern next
to the template network output in Fig. A.10. The template network learns to predict the full reward
pattern with high accuracy while maintaining a clustered pattern. Furthermore, the rewards pattern
itself does not show isolated pixels as for the SA-optimized device.
The states of the resulting stochastic process of MeMe are sampled from a distribution combining
the learned template (mid) and the actual reward distribution (right) controlled by TS and TM . The
learned template encourages cluster formation, however, since it itself approximates the reward, high
fitness values can be achieved.

Figure A.10: Left: State St. Mid: Network output Nt. Right: Reward for each pixel inversion
pixel-wise multiplied with state (Rt ⊙ St; colormap thresholded for better visualization). All at
t = tmax with tmax = 105, TS = 0.0001 and TM = 0.1.

A.9 Unbiased Sampling

To construct a stochastic process that generates unbiased samples from the underlying Boltzmann dis-
tribution of fitness values, the proposal distribution asymmetry has to be considered when evaluating
the Metropolis criterion (see Alg. A.1). With a slight abuse of notation this is scaling the rejection
probability by Pt(a

−1
t |S̃t)/Pt(at|St), where Pt(at|St) notates the probability for sampling action

at in state St and where at describes the transition St → S̃t. The inverted action a−1
t describes

S̃t → St, however, a−1
t = at since actions are pixel inversions.

Resulting granularities and fitness values in analogy to Fig. 4A are shown in Fig. A.11. Compared to
SA, fitness values f could be increased marginally, however, the granularity is not reduced, i.e., no
increased cluster formation occurs.

18

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

Fitness f

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

G
ra
nu

la
ri
ty
g

TS = 0.0001

TS = 0.001

TS = 0.01

TS = 0.1

SA (TS =∞)

TM = 0.00001

TM = 0.00003

TM = 0.0001

TM = 0.0003

TM = 0.001

TM = 0.003

TM = 0.00001

TM = 0.00003

TM = 0.0001

TM = 0.0003

TM = 0.001

TM = 0.003

Figure A.11: Unbiased sampling from Boltzmann distribution. No increased cluster formation
compared to SA.

Algorithm A.1: MeMe with unbiased sampling
Input: Design area dimensions dx and dy , sampling temperature TS , metropolis base

temperature T 0
M , learning rate η, iterations tmax, fitness function F , loss function L

Initialize: State S0 ∈ {−1, 1}dx×dy here: Si,j
0 = 1 ∀i, j; network parameters Θ0

for t← 0 to tmax do
Nt = N (Θt) // evaluate template network
Qt = −Nt ⊙ St // template matching operation (TMO)
P ij

t = log(1 + exp(Qij
t /TS))/

∑
i,j log(1 + exp(Qij

t /TS)) // normalization
at = (axt , a

y
t) ∼ Pt // sample action (pixel indices)

S̃t = St // copy state

S̃
ax
t ,a

y
t

t = −1 · S̃ax
t ,a

y
t

t // invert pixel
f̃t ← F(S̃t) // evaluate fitness function (FDFD simulation)
rt = f̃t − ft // calculate reward
Θt+1 = Θt+1 − η∂L(Qt, rt, at))/∂Θt // gradient descent
T t
M = T 0

M (1 + cos(πt/tmax))/2 // simulated annealing
if exp(rt/T t

M)·Pt(a
−1
t |S̃t)/Pt(at|St) < X ∼ U(0, 1) then // metropolis criterion

St+1 = St // revert action
ft+1 = ft

else
St+1 = S̃t // accept action
ft+1 = f̃t

end
end
return Stmax

A.10 Parallel Exploration

We implement SA and MeMe with parallel exploration, i.e., multiple workers are solving compu-
tationally costly FDFD-simulations in parallel, however, actions are still applied sequentially. The
corresponding adapted algorithms for SA and MeMe are shown in Alg. A.2 and Alg. A.3. As a
consequence we calculate the reward for each pixel as the difference to the fitness at the beginning of
the last batch (rt = f̃t− fj) instead of the last iteration (rt = f̃t− ft+1), causing minor divergences.
However, states and fitness values are always matched correctly. We set N = 24 for all results in the
main text and N = 1 for 3D-FDFD-simulation results in Appx. A.5.
We empirically study the effect of the number of workers N exploring in parallel in Fig. A.12. While
fitness values f are not effected, larger N tend to lower granularity devices, however, 2-σ confidence
ellipses overlap for all N .

19

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98

Fitness f

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

G
ra
nu

la
ri
ty
g

N = 24
N = 18
N = 14
N = 10
N = 7
N = 5
N = 3
N = 2
N = 1

N = 24
N = 18
N = 14
N = 10
N = 7
N = 5
N = 3
N = 2
N = 1

Figure A.12: Parallel exploration with N workers. 10 random seeds per N . 2-σ confidence ellipses.
TM = 0.0001, TS = 0.00001, tmax = 105.

Algorithm A.2: Simulated Annealing with parallel exploration

Input: Design area dimensions dx and dy , metropolis base temperature T 0
M , iterations tmax,

number of workers N
Initialize: State S0 ∈ {−1, 1}dx×dy here: Si,j

0 = 1 ∀i, j
for j ← 0 to tmax/N do

t = j ·N
for n← 0 to N do // execute in parellel

t← t+ 1
at = (axt , a

y
t) ∼ U // sample action uniformly

S̃t = Sj // copy state

S̃
ax
t ,a

y
t

t = −1 · S̃ax
t ,a

y
t

t // invert pixel
f̃t ← F(S̃t) // evaluate fitness

end
fj ← F(Sj) // evaluate in parallel to workers
join_workers()
t = j ·N // reset t for next loop
for n← 0 to N do // execute sequentially

t← t+ 1
St+1 = St // copy state
rt = f̃t − fj // calculate reward
if exp(rt/T t

M) < X ∼ U(0, 1) then // metropolis criterion
pass // no action

else
S

ax
t ,a

y
t

t+1 = −1 · Sax
t ,a

y
t

t+1 // apply action
end

end
end
return Stmax

20

Algorithm A.3: MeMe with parallel exploration
Input: Design area dimensions dx and dy , sampling temperature TS , metropolis base

temperature T 0
M , learning rate η, iterations tmax, number of workers N

Initialize: State S0 ∈ {−1, 1}dx×dy here: Si,j
0 = 1 ∀i, j

for j ← 0 to tmax/N do
t = j ·N
for n← 0 to N do // execute in parellel

t← t+ 1
Nt = N (Θt) // evaluate template network
Qt = −Nt ⊙ St // template matching operation (TMO)
P ij

t = log(1 + exp(Qij
t /TS))/

∑
i,j log(1 + exp(Qij

t /TS)) // normalization
at = (axt , a

y
t) ∼ Pt // sample action (pixel indices)

S̃t = Sj // copy state

S̃
ax
t ,a

y
t

t = −1 · S̃ax
t ,a

y
t

t // invert pixel
f̃t ← F(S̃t) // evaluate fitness

end
fj ← F(Sj) // evaluate in parallel to workers
join_workers()
t = j ·N // reset t for next loop
for n← 0 to N do // execute sequentially

t← t+ 1
St+1 = St // copy state
rt = f̃t − fj // calculate reward
Θt+1 = Θt+1 − η∂L(Qt, rt, at))/∂Θt // gradient descent
if exp(rt/T t

M) < X ∼ U(0, 1) then // metropolis criterion
pass // no action

else
S

ax
t ,a

y
t

t+1 = −1 · Sax
t ,a

y
t

t+1 // apply action
end

end
end
return Stmax

A.11 All Seeds Results for Temperature Scan

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Fitness f

0.5

1.0

1.5

2.0

2.5

G
ra
nu

la
ri
ty
g

TS = 0.00001

TS = 0.0001

TS = 0.001

SA (TS =∞)

TM = 0

TM = 0.00003

TM = 0.0001

TM = 0.0003

TM = 0.001

TM = 0.003

TM = 0.01

TM = 0.03

TM = 0.1

TM =∞

TM = 0

TM = 0.00003

TM = 0.0001

TM = 0.0003

TM = 0.001

TM = 0.003

TM = 0.01

TM = 0.03

TM = 0.1

TM =∞

Figure A.13: All seed results for Fig. 4A.

21

A.12 Simulated Annealing (SA) Algorithm

Algorithm A.4: Simulated Annealing

Input: Design area dimensions dx and dy , metropolis base temperature T 0
M , iterations tmax

Initialize: State S0 ∈ {−1, 1}dx×dy here: Si,j
0 = 1 ∀i, j

for t← 0 to tmax do
at = (axt , a

y
t) ∼ U // sample action uniformly

S̃t = St // copy state

S̃
ax
t ,a

y
t

t = −1 · S̃ax
t ,a

y
t

t // invert pixel
f̃t ← F(S̃t) // evaluate fitness function (FDFD simulation)
rt = f̃t − ft // calculate reward
T t
M = T 0

M (1 + cos(πt/tmax))/2 // simulated annealing
if exp(rt/T t

M) < X ∼ U(0, 1) then // metropolis criterion
St+1 = St // revert action
ft+1 = ft

else
St+1 = S̃t // accept action
ft+1 = f̃t

end
end
return Stmax

A.13 Physical Details and FDFD-simulations

The electromagnetic simulations in this work have been conducted using the finite-difference
frequency-domain (FDFD) method. Our implementation of method solves the time-harmonic
Maxwell equation shown in Eq. A.3 for the electric field vector.

∇× µ−1
0 ∇× E⃗ − ω2ϵE⃗ = −iωJ⃗, (A.3)

where µ0 and ϵ are the magnetic permeability and electric permittivity of the material at the respective
grid cell, ω is the angular frequency and J⃗ is the current distribution of the source. Using space-
discretized operators, Eq. A.3 can be transformed into a system of coupled equations which is
expressed as

A · x⃗− b⃗ = 0⃗. (A.4)

Here, the matrix A represents the physical properties of the system, b⃗ is the excitation of the
system, and x⃗ is the solution vector containing the components of the electric field distribution in the
simulation cell.

The simulation cell, which includes the design area and the surrounding waveguide geometry, is
numerically respresented using a Yee-Grid discretization scheme (Yee, 1966). The grid-cells have
uniform dimensions with a cell size of 50 nm. As a boundary condition, we employ a perfectly
matched layer (PML) of sufficient thickness (> 0.5λ) surrounding the simulation cell.

The current sources of the conducted simulations are transverse-electric (TE) modes. All devices
have been simulated for a fundamental TE-mode current source in the input waveguide. For the
mode-demultiplexer (MDM), a second waveguide mode source has been considered representing
the TE10-mode. The wavelenght of the FDFD-simulations is λ = 1550 nm. The second and third
wavelength considered for the wavelength-demultiplexer (WDM) are λ = 1540 nm and λ = 1530 nm,
respectively.

The photonic platform employed is silicon-on-insulator. Tab. A.1 shows the refractive index values
(Li, 1980).

The 2D-simulations have been conducted using an effective refractive index approximation to reduce
the impact of the high difference between the effective wavelengths in 2D and 3D simulations,
respectively.

22

Table A.1: Refractive indices of silicon at the cosidered wavelengths.
Wavelength (λ) Refractive Index (nSi)

1550 nm 3.4757
1540 nm 3.4765
1530 nm 3.4774

A.14 Fitness functions

The devices shown in this work have been optimized using the following fitness functions. ηi→j

denotes the fraction of the total power inserted into the system through input-mode i being coupled
into mode j at the target output-port. CTi is the crosstalk of the other wavelengths or modes at output
port i.

A.14.1 Mode Demultiplexer and wavelength Demultiplexer

For the mode demultiplexer (MDM), we consider fundamental, second order and third order transverse
electric waveguide modes at λ = 1550 nm as inputs to the system. In case of the wavelength
demultiplexer (WDM), the input modes are all fundamental, but the wavelengths are shifted such
that λ0 = 1530 nm, λ1 = 1540 nm and λ2 = 1550 nm. The fitness function calculates the harmonic
mean of the fitness functions at each individual output port, which are a sums of the desired coupling
efficiencies subtracted by the calculated crosstalk resulting from the other inputs.

FWDM, MDM(S) = 3

(
2

η0→0 −CT0 + 1
+

2

η1→1 −CT1 + 1
+

2

η2→2 −CT2 + 1

)−1

(A.5)

A.14.2 Power Splitter

Since there is only one input mode for the power splitter (PS), we denote the corresponding output
powers η0 and η1. With target ratio r̃ = 0.9 for a 90-10-PS we set

FPS(S) = exp

(
−
(

r̃

η0/η1
+

η0/η1
r̃

)
/2− 1

)
· (η0 + η1). (A.6)

A.15 Effect of Markov Property Violation

Violating the Markov property by dropping the correction term for the asymmetry of the proposal
distribution biases the generated samples of the random process and thus the converging state towards
the proposal distribution. We are analyzing this effect in more detail here and analytically derive the
exact distribution from which samples are generated.
In the following we will drop the temporal index t for better readability. The analysis can be done
analogously for softplus and softmax normalization of TMO outputs Q, however, for simplicity we
will focus on softmax normalization here, which also approximates softplus normalization since
log(1 + x) ≈ x for x ≈ 0. Please also see Sec. A.9 for unbiased sampling.
With a slight abuse of notation the correction would be to scale the rejection probability by
P (a−1|S̃)/P (a|S), where P (a|S) notates the probability for sampling action a in state S and where
a describes the transition S → S̃. The inverted action a−1 describes S̃ → S, however, a−1 = a since
actions are pixel inversions (i.e. tuples of indices, a ∈ {(i, j)|0 ≤ i < dx; 0 ≤ j < dy; i, j ∈ N}).
Dropping this correction term equals dividing by it, i.e. the unbiased (unnormalized) Boltzmann
distribution exp(rt/T

t
M) is scaled by P (a|S)/P (a−1|S̃). Reintroducing the index notation for the

action as used in the main text yields

Bij := Pij(S)/Pij(S̃), (A.7)

which equals the (unnormalized) 2D distribution by which MeMe biases the stochastic process
towards cluster formation. Given the softmax normalization and that S̃ only differs from S by

23

flipping the sign of Qij it holds that

Pij(S) =
exp(Qij/TS)∑

n,m
exp(Qnm/TS)

(A.8)

Pij(S̃) =
exp(−Qij/TS)

exp(−Qij/TS) +
∑

n,m ̸=i,j

exp(Qnm/TS)
. (A.9)

Since exp(|Qij/TS |)≪
∑
n,m

exp(Qnm/TS) it follows that

Bij = Pij(S)/Pij(S̃) ≈ exp(Qij/TS)/ exp(−Qij/TS) = exp(2Qij/TS). (A.10)

Thus, the resulting stochastic process again fulfills the Markov property for the product of the
Boltzmann distribution of fitness values and the bias B which monotonically depends on the TMO
output Q (learned template). Furthermore we confirm that TS controls the induced bias.

A.16 Notation Summary

state space S = {−1, 1}dx×dy

state St ∈ S
action space A = {(i, j)|0 ≤ i < dx; 0 ≤ j < dy; i, j ∈ N}

action at ∈ A
fitness ft ← F(St)

reward rt = f̃t − ft
template network output Nt = N (Θt)

template matching operation (TMO) Qt = −Nt ⊙ St

normalized proposal distribution (policy) Pt

24

	Introduction
	Related Work
	Methods
	Memory Metropolis
	Template Networks

	Experiments
	Optimization Process
	Comparison against SA and regularized SA
	Template Network Depth

	Conclusion
	Appendix
	Definition of Granularity
	Decoupling
	MeMe vs. Regularized SA
	Further devices compared against regularized SA
	3D FDFD Simulations
	Network Initilization Priors
	Larger Pixel Size
	Spatial Reward Patterns
	Unbiased Sampling
	Parallel Exploration
	All Seeds Results for Temperature Scan
	Simulated Annealing (SA) Algorithm
	Physical Details and FDFD-simulations
	Fitness functions
	Mode Demultiplexer and wavelength Demultiplexer
	Power Splitter

	Effect of Markov Property Violation
	Notation Summary

