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Abstract

Mathematical word problem solving is a popu-001
lar method for evaluating the ability of Large002
Language Models (LLMs) to handle mathemat-003
ical reasoning. LLMs have demonstrated no-004
table proficiency in this domain. This paper005
introduces an innovative approach to evaluat-006
ing the reasoning capabilities of LLMs, em-007
ploying the paradigm of expectation failure008
to unearth reasoning gaps. Utilizing a rubric009
that emphasizes conceptual clarity over math-010
ematical prowess, and a newly curated dataset011
named FalseMath, comprising 500 intention-012
ally flawed word problems (partially obtained013
through LLM augmentation), we demonstrate014
through experiments that LLMs have yet to at-015
tain complete conceptual mastery in the art of016
algebraic word problem reasoning.017

1 Introduction018

Recent advancements in language models (LLMs)019

have shown remarkable progress in various natural020

language processing tasks, including mathematical021

word problem solving. As Natural Language Pro-022

cessing (NLP) seeks to equip machines with the ca-023

pability to comprehend and respond to natural lan-024

guage, the ability to solve word problems reflects025

a model’s proficiency in contextual understanding,026

logical reasoning, and semantic comprehension.027

Word problems often require a deep understand-028

ing of language nuances, inference, and real-world029

context—challenges central to NLP. This paper030

delves into the landscape of LLMs, with a partic-031

ular focus on their capabilities in handling math-032

ematical word problems. In the realm of LLMs,033

algebraic word problem solving has been hailed as034

a "solved" problem, as evidenced by the accuracy035

rate exceeding 90% demonstrated in the GPT-4036

report (OpenAI, 2023) on GSM8k (Cobbe et al.,037

2021), a high-quality popular dataset. However,038

this paper challenges the prevailing notion, assert-039

ing that there is a subtle yet pervasive undercur-040

rent of flaws in mathematical reasoning within this 041

framework. We advocate for a more discerning 042

evaluation approach by introducing the mechanism 043

of expectation failure. 044

Numerous datasets have been suggested and 045

continue to emerge for the word problem-solving 046

task. Examples include GSM8k (Cobbe et al., 047

2021), GHOSTS (Frieder et al., 2023), SVAMP 048

(Patel et al., 2021), CONIC10K (Wu et al., 2023), 049

CHAMP (Mao et al., 2023), MATH (Hendrycks 050

et al., 2021), among others. These datasets pro- 051

gressively escalate in difficulty. We argue that, 052

despite the apparent success in solving algebraic 053

word problems, there remain unexplored gaps in 054

mathematical reasoning that warrant further inves- 055

tigation. 056

Question A two digit number is twice its reverse. The sum of the
digits is 20. Find the number.

GPT-3.5 198

GPT-4 82

Figure 1: Analysing GPT on Math Word Problems. On
posing an impossible word problem, GPT3.5 and GPT
4 provide incorrect answer

Illustrated through a case study (Figure 1) high- 057

lighting a deliberate error introduced into a simple 058

algebraic word problem, we showcase how expec- 059

tation failure brings forth nuanced insights into the 060

limitations of LLMs. By presenting models with 061

queries resembling their training data but intention- 062

ally incorporating errors, we unveil their tendency 063

to neglect subtleties. This underscores the neces- 064

sity for a deeper comprehension of mathematical 065

contexts. 066

Furthermore, we explore the potential of using 067

LLM hallucination to create false datasets for eval- 068

uation purposes. By modeling expectation failure 069

through hallucination, we ease the development of 070

challenge datasets. We also describe a comprehen- 071

sive five-point rubric for evaluation, aligning with 072
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Domain Concept Example with Math Error
Number Place values and lim-

its
Give me an example of a four digit number
whose sum of digits is 40

Percentage Fractions and values If p% of x is more than x, prove that p <
100

Age Years, time, relation Carmen is 12 years older than David. Five
years ago, the sum of their ages was 28.
When will Carmen’s age be half of David’s
age?

Mixtures Concentration, per-
centage, limits

A mixture containing 6% boric acid is to
be mixed with 2 quarts of a mixture which
is 15% acid in order to obtain a solution
which is 4% acid. How much of the 6%
solution must be used?

Flow problems Speed, against/with
flow, current

A boat travels 30 km up a river in the same
time it takes to travel 50 km down the same
river. Find the speed of the current of the
river if it takes more time downstream than
upstream to cover the same distance.

Table 1: Design Principles of FalseMath

the insights garnered through expectation failure.073

The rubric, designed to assess concept understand-074

ing and mathematical accuracy, provides a holistic075

framework for evaluating LLMs in the intricate do-076

main of algebraic word problem solving. Addition-077

ally, we propose the integration of self-verification078

prompting as a means to excel in these metrics.079

Our contributions include:080

• The introduction of a challenge dataset, False-081

Math082

• A robust evaluation rubric for conceptual clar-083

ity084

• Experimental evaluation of GPT on False-085

Math086

In summary, we challenge the prevailing notion087

of algebraic word problem-solving as a "solved"088

problem by LLMs. Through the lens of expecta-089

tion failure, we expose the flaws in mathematical090

reasoning, and not focus on solving alone.091

2 Expectation Failure for Evaluation092

The concept of expectation failure as a challenge093

has been often used in NLP. A case in point is094

the employment of linguistic challenges like gar-095

den path sentences (Jurayj et al., 2022) for parsing.096

Garden path sentences are structurally ambiguous097

phrases that mislead initial parsing attempts, often098

leading to incorrect interpretations. Consider the099

classic example, "The old man the boats," where 100

the sentence initially directs readers to interpret 101

"old man" as the subject, only to require a reinter- 102

pretation when the intended subject becomes clear. 103

In a similar vein, we employ a method of devel- 104

oping challenging word problems that are mathe- 105

matically nonsensical. What we endeavor to accom- 106

plish is to dig out, errors in reasoning that may not 107

have been captured while designing a system to ag- 108

gressively solve a word problem. Similar challenge 109

datasets such as SVAMP (Patel et al., 2021) employ 110

the same principle but SVAMP still maintains the 111

framework of having question both linguistically 112

and mathematically sound. In our case, we present 113

a set of word problems that are linguistically cor- 114

rect but intentionally mathematically incorrect. As 115

such, it does not serve as a resource for training 116

purposes. 117

To create the challenge algebraic word problem 118

set FalseMath, we selected five commonly found 119

sub-topics: numbers, percentages, age-related prob- 120

lems, mixtures, and upstream/downstream prob- 121

lems. A domain expert (person with math pedagog- 122

ical experience) was enlisted to generate erroneous 123

word problems that reveal a concept misconception. 124

Examples are described in Table 1. 125

The resultant core set comprises 60 word prob- 126

lems, each deliberately imbued with errors. This 127

core set is further enriched through augmentation 128
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using ChatGPT, a process that will be expounded129

upon in the subsequent section.130

2.1 Hallucination for Augmentation131

Hallucination (Ji et al., 2023) in the well-studied132

phenomenon of large language models generating133

sentences which include falsities, recurrent ram-134

bling on the same point and so on. While this135

fact hampers automated natural language augmen-136

tation as it slows down the process and often in-137

volves expensive annotators for fact-checking. In138

our application, hallucination actually becomes our139

friend, as we want to introduce as many mathemat-140

ical inconsistencies as possible. After a domain141

expert puts the initial effort in designing such erro-142

neous word problems, GPT3.5 was used to expand143

this core dataset to 500. The table statistics are144

described in Table 2.

Dataset Source Size
FalseMathCore Human 60

FalseMath Human +
ChatGPT

500

Domain Size
Number 133
Age 147
Percent 83
Mixture 24
Flow 79
Misc 34

Table 2: FalseMath Statistics

145

3 Non-Benchmark Evaluation146

When developing an evaluation resource for word-147

problem solving, the standard modus-operandi is to148

provide a set of word problems and the correspond-149

ing aspirational solution, be it a piece of text, the150

final numerical answer, the associated equations151

and so on. By using a dataset of erroneous word152

problems, there is no one-size-fits-all approach in153

dataset design that may be used to model the ideal154

answer. Hence, we instead developed a five-point155

rubric for qualitative evaluation.156

3.1 Evaluation Rubric157

The qualitative method of evaluating generated158

text is commonly used for complex text evalua-159

tion (Frieder et al., 2023). Given in Table 3 is the160

evaluation mechanism employed. The points that161

can be given ranges from 1 to 5, with 1 being the162

lowest and 5 being the highest. The rubric is struc-163

tured in such a way that lower scores signify flawed164

conceptual understanding. This design allows for a165

focus on emphasizing conceptual clarity over mere 166

mathematical accuracy. Also, the score 4 is unique 167

in the sense that we would like to reward cautious 168

solutions over aggressive wrong solutions. 169

Point Explanation
1 Concept Wrong, Math Wrong
2 Concept Wrong, Math Right
3 Concept Right, Math Wrong
4 Concept Right, Math Unattempted
5 Concept Right, Math Right

Table 3: FalseMath Rubric

3.2 Self-Verification Prompting 170

Self-verification is a popular prompting strategy 171

(Zhou et al., 2023) that suggests the system check 172

the work cautiously. We found the tendency to 173

aggressively solve the word problem, most likely 174

a product of the training data and test set, often 175

leads the system to make mathematical inaccu- 176

racies. For this purpose, we used the following 177

prompt as shown in Figure 2 in a section of our 178

experiments. 179

Let us solve word problems in a concise, formal way
with the following principles.

Enumerate the concepts involved
Explain the work
Display the answer as “The answer is”
Check your work

With these principles, show the 4 steps for the following
question :

Figure 2: Self-Verification Prompt

4 Experimental Analysis 180

For the experiments, we utilize the popular LLMs 181

GPT 3.5 and GPT-4 (OpenAI, 2023). The imple- 182

mentation was done with Python3, OpenAI API 183

and executed on Google Colab. The evaluation 184

involves two datasets: FalseMathCore and False- 185

Math. Using the rubric, automated evaluation by 186

GPT-4 was performed. Additionally, a domain ex- 187

pert (male, Asian) with experience in teaching ped- 188

agogy evaluated FalseMathCore. Subsequently, we 189

examine the impact of self-verification prompting 190

on both datasets. 191

5 Discussion 192

The investigation reveals that algebraic word prob- 193

lem solving is NOT a solved problem. GPT-4 does 194
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Input Human GPT-4
FalseMathCore

GPT-3.5 3.23 3.13
GPT-3.5 w Prompt 3.22 3.23

GPT-4 3.96 4.56
GPT-4 w Prompt 3.84 4.33

FalseMath
GPT-3.5 - 3.48

GPT-3.5 w Prompt - 3.57
GPT-4 - 4.53

GPT-4 w Prompt - 4.46

Table 4: FalseMath Evaluation - Two datasets False-
MathCore (60) and FalseMath (500) are evaluated on
GPT3.5 and 4 using the rubric designed by the actors -
human and GPT4 - (higher the score, the better)

perform significantly better than GPT 3.5. It is in-195

teresting to note that in the GPT4 evaluation, not196

having a prompt improved performance slightly.197

The prompting strategies seem to have a small ef-198

fect on the performance. This suggests that self-199

verification alone did not suffice to regulate the200

reasoning process. However, neither is GPT3.5 nor201

GPT4, a perfect math reasoning model for simple202

word problems (as would be evidenced by a perfect203

score of 5), suggesting some caution to be exer-204

cised while deploying these models into homework205

solution bots or tutoring systems. While human206

and GPT-4 evaluations are consistent for GPT3.5207

models, there is a marked difference when it comes208

to GPT-4. This observation also implies that the209

method of GPT-4 evaluation may not be reliable.210

Also, we have deliberately not provided a sample211

answer because we do not want to bias algorithms212

to perform better on this dataset. We believe the213

gold rush to beat leaderboards for math word prob-214

lem solving has also led to focus on solving, than215

reasoning. On close examination, we found that216

the same word problem would be solved correctly217

when the number is 4 digit long, but not when the218

number is 8 digit long. The (in)stability of the an-219

swers is also a well-studied problem (Frieder et al.,220

2023). Rather, we want to use these design princi-221

ples of expectation failure to incrementally test the222

math reasoning capabilities of such models.223

6 Related Work224

Automatic math word problem solving has been225

an active area of research in the past decade ((Lu226

et al., 2023), (Liu, 2023)). Some of the most recent227

works (Gao et al., 2023),(Kim et al., 2022),(Wang228

and Lu, 2023), (Zhao et al., 2023), (Schick et al.,229

2023), (Xie et al., 2023), (Zheng et al., 2023) use230

a judicious mix of GPT-4 and prompting and code 231

generation to navigate the difficult realm of mathe- 232

matical word problem solving. There has also been 233

significant work on the strengths and limitations 234

of LLMs on reasoning ((Huang and Chang, 2023), 235

(Tan et al., 2023), (Gaur and Saunshi, 2023) etc). 236

The community is vibrantly and actively looking 237

into both math word problem solving and math rea- 238

soning of LLMs (Ferreira, 2023) and hence, it is 239

possible we might have missed individual citations 240

on the same. The focus of this contribution is to 241

provide a more nuanced perspective of the math 242

reasoning capabilities of LLMs and not to take any 243

level of mathematical prowess for granted. 244

7 Conclusion 245

This study has explored the complexities of alge- 246

braic word problem-solving, questioning the com- 247

mon belief that it is a fully resolved challenge for 248

LLMs. By utilizing expectation failure, we pro- 249

pose that incorporating mathematical errors in the 250

format of the training data reveals errors in method- 251

ological reasoning. Beyond traditional datasets, 252

we have introduced FalseMath—a dataset inten- 253

tionally featuring mathematically erroneous word 254

problems. The experiment was designed with a 255

core set of 60 word problems and augmented to 256

500, by taking advantage of ChatGPT hallucina- 257

tion for augmentation. We then introduced a five 258

point rubric for evaluation, that placed a higher pre- 259

mium on concept understanding, rather than word 260

problem solving. The evaluation of GPT 3.5 and 261

4 reveal that all in not well in the world of sim- 262

ple math word problem solving. While GPT-4 is 263

certainly significantly better than GPT-3.5, we ex- 264

amined the errors to uncover inconsistencies in the 265

face of many red herrings that resemble the train- 266

ing data. This research can be extended to assess 267

various categories of LLMs, conduct a more de- 268

tailed examination of instances where the models 269

falter, enlarge the primary dataset by engaging ad- 270

ditional experts, complete human evaluation of the 271

entire dataset, and replicate the methodology in 272

other facets of mathematical reasoning. By adopt- 273

ing the design principle of expectation failure and 274

employing the evaluation rubric of FalseMath, the 275

study aims to push the frontiers of evaluating math- 276

ematical NLP reasoning tasks, fostering a more 277

nuanced and comprehensive understanding of lan- 278

guage models’ proficiency in mathematical reason- 279

ing. 280
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Limitations281

This work presents FalseMath - a method to eval-282

uate LLM math reasoning systems through the283

method of testing expectation failures. The dataset284

presented is small and the design of it is based285

on two annotators. This work can be made more286

robust by adding more annotators and building a287

bigger core. The evaluation metric often necessi-288

tates human evaluation, though we have demon-289

strated GPT4 evaluation. The confidence of GPT4290

evaluation is yet to be examined.291
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