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Abstract

The increasing autonomy and physical capability of Embodied Artificial Intelligence (EAI)
introduce critical challenges to safety and trustworthiness. Unlike purely digital AI, failures in
perception, planning, or interaction can lead to direct physical harm, property damage, or the
violation of human safety and social norms. However, current EAI foundation models disregard
the risks of misalignment between the model capabilities and the safety and trustworthiness
competencies. Someworks attempt to address these issues, however, they lack a unified framework
capable of balancing the developmental trajectories between safety and capability. In this paper, we
first comprehensively define a new term safe and trustworthy EAI by establishing an L1-L5 levels
framework and proposing ten core principles of trustworthiness and safety. To unify fragmented
research efforts, we propose a novel, agent-centric framework that analyzes risks across the four
operational stages of an EAI system. We systematically review state-of-the-art but fragmented
solutions, benchmarks, and evaluation metrics, identifying key gaps and challenges. Finally, we
identify the need for a paradigm shift away from optimizing isolated components towards a
holistic, cybernetic approach. We argue that future progress hinges on engineering the closed-loop
system of the agent (Self), its environment (World), and their dynamic coupling (Interaction),
paving the way for the next generation of truly safe and trustworthy EAI.

*These authors contributed equally. §Corresponding Author. †Project Leader. ‡Scientific Leader.
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Figure 1 The divergence between capability and safety in the Embodied AI landscape. The horizontal axis
charts general EAI capability. The vertical axis represents our proposed EAI Safety maturity model, building
upon the general AI Safety levels introduced in R²AI [184]. We observe two divergent trends: current industry
products (blue) are advancing rapidly in capability but lag in safety maturity. Conversely, academic research
(green) is exploring higher safety levels but is often concentrated on less capable systems. Our work aims to
chart a course toward the ideal trajectory of a Safe and Trustworthy EAI (orange), bridging the critical gap
between these two trends.

Embodied Artificial Intelligence (EAI), the integration of perception, cognition, and physical interaction
within a closed-loop agent—has seen rapid progress in recent years, driven by advances in robotics,
computer vision, natural language processing, and large multi-modal language model [36]. Embodied
agents are increasingly deployed in real-world scenarios, including household service robots [89],
autonomous vehicles [240], assistive healthcare devices [107], and interactive learning environments.

As these agents become more complex and autonomous, they also bring serious safety and trust
challenges. Unlike traditional AI systems that work in fixed or virtual settings, embodied agents must
deal with changing, uncertain environments and make physical contact with people and objects [53].
A single mistake in perception, planning, or following instructions can lead to harmful behavior,
ethical problems, or security risks—such as hurting a person or being tricked by an attacker [61]. Such
failures raise critical concerns about the safety and trustworthiness of embodied AI. However, current
EAI foundation models are undergoing rapid advancement, yet they entirely disregard the risks of
misalignment between the model capabilities and the safety and trustworthiness competencies.

As shown in Figure 1, representativeworks such asHelix [46], π0.5 [72], and RT-2 [254] have established
themselves as foundational EAI models. However, none of them explicitly declare the implementation
of powerful safety alignment mechanisms, which constitutes an irresponsible approach for physical-
level AI systems. Conversely, while the academic community has produced fragmented research
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efforts addressing EAI safety and trustworthiness concerns, these investigations consistently fail to
integrate safety capabilities into widely used foundational models. We contend that the fundamental
issue stems from the absence of a coherent developmental framework for safety and trustworthy EAI
research that can be harmoniously aligned with the advancement of EAI capability.

The academic community has indeed produced a growing body of work aimed at addressing the safety
and trust challenges of embodied intelligence. However, as illustrated by the scattered distribution
of research efforts in Figure 1, these investigations are largely fragmented and focus on narrow,
isolated aspects of the problem. Much of the research is concentrated at the lower levels of our
proposed safety maturity model (as detailed in Chapter 2). For instance, a significant cluster of
work explores Alignment, proposing new benchmarks to test for harmful instruction following [101]
or developing new defense mechanisms against prompt-based attacks [228]. Another active area
is Intervention, with studies focusing on enabling agents to ask for help when uncertain [175] or
designing novel architectures for internal safety verification [80]. A third cluster is emerging around
Mimetic Reflection, investigating how imitation learning can be made safer or how to ensure somatic
safety during physical interaction [15]. While these contributions are individually valuable, they rarely
connect to form a cohesive, systemic approach. This fragmentation highlights a critical gap: the field
lacks a unified developmental framework that would allow these disparate research threads to be
integrated, preventing the community from building embodied systems that are holistically safe and
trustworthy.

Ensuring that embodied agents operate safely is crucial for their real-world application. However, as
our review shows, current research on this topic is often fragmented. Many studies focus on solving
specific problems, such as making a robot’s grip more reliable or defending it from a certain type of
attack. Researchers often address individual principles like reliability or security in isolation, without
a clear understanding of how these different aspects connect and interact within a complete embodied
system. Therefore, the research community and industry urgently need a shared framework that
defines what “safe and trustworthy” means for an embodied agent. Such a framework is essential for
systematically measuring progress, identifying critical research gaps, and guiding the development of
holistically safe systems.

To address this need for a unified structure, this paper makes three primary contributions.

• First, we formally introduce and define the concept of Safe and Trustworthy Embodied AI,
establishing it as a holistic field of study that integrates both the internal reliability of an agent
and its external safety in the physical world.

• Second, we propose a five-level maturity model for “Make Safe EAI”. This model provides the
first clear roadmap for the field’s evolution, charting a course from reactive, externalized safety
measures to proactive, intrinsically safe and resilient systems.

• Third, we present a comprehensive framework of ten core principles, organized under the two
primary dimensions of Trustworthiness and Safety. This framework serves as a systematic
tool for analyzing risks, classifying existing research, and identifying critical gaps, guiding the
development of agents that are not just capable, but fundamentally safe and dependable.

How our focus differs from prior surveys? This paper is not only a survey, since we take more
efforts to define a new concept (i.e., Safe and Trustworthy Embodied AI) with the five-level maturity

2



Towards Safe and Trustworthy Embodied AI: Foundations, Status, and Prospects

model. Existing surveys on trustworthy AI, such as those by Li et al.[90], offer valuable high-level
principles, but their generalist approach does not fully capture the unique challenges of embodiment.
Embodied intelligence is not merely an application of AI; it is a complex system where software,
hardware, and physical interaction are deeply intertwined. Similarly, surveys on LLM safety[66, 69]
focus on risks in the text and image domains, overlooking the critical new failure modes that emerge
when an LLM’s outputs are translated into physical actions. Even within the embodied AI literature,
prior surveys have tended to focus on specific, isolated aspects of trustworthiness, such asmanipulation
reliability [248, 210], explainability [196], or ethics [17]. The most closely related work, a survey by
Neupane et al. [134], provides an excellent taxonomy of security threats based on attack surfaces,
ethics and human-robot interaction. However, it overlooks the profound paradigm shift where Large
Language Models have become the “brain” for general-purpose embodied agents.

Structure of this Paper This paper is organized as follows. We begin in Chapter 2 by introducing
our proposed safe and trustworthy maturity model, the “Five Levels of Make Safe EAI”. This chapter
provides a high-level roadmap for the field’s evolution, charting a course from reactive, external-
ized safety measures to proactive, intrinsically safe and resilient systems. Chapter 3 establishes our
foundational framework. It begins by distinguishing between the two core dimensions of Safety and
Trustworthiness, and then details the ten core principles that guide our analysis throughout the paper.
With this framework in place, Chapter 4 provides a comprehensive review of the current research
landscape, organized along the agent’s operational workflow: Instruction, Perception, Planning, and
Interaction. Within each stage, we analyze existing work through the lens of the safety and trust-
worthiness principles defined earlier. Building upon this analysis, the subsequent chapters present
our primary contributions and forward-looking positions. Chapter 5 and 6 then delves into the
critical role of benchmarks and simulators, evaluating them not just on their functionality, but on
their capacity to support trustworthiness research. Finally, Chapter 7 presents our position on the
future of the field, proposing a closed-loop, cybernetic agenda for research centered on three pillars:
high-fidelity environments (the World), self-evolving agents (the Self), and seamless coordination (the
Interaction). We conclude by summarizing our findings and reiterating our call for a more holistic,
systems-level approach to building the next generation of trustworthy embodied AI.

2 Levels of Safe and Trustworthy Embodied AI

2.1 From “Making Embodied AI Safe” to “Making Safe Embodied AI”
The discourse surrounding AI safety is undergoing a fundamental shift, moving from a reactive posture
to a proactive one. This evolution is best captured by the distinction between two philosophies:
“making an embodied AI safe” versus “making a safe embodied AI.” The former represents a traditional,
post-hoc approach where safety mechanisms are treated as external add-ons or “guardrails” bolted
onto a pre-existing, powerful but untrusted intelligence. This approach, while valuable, is inherently
limited, as it contains risk without fundamentally changing the agent’s nature.

In contrast, “making a safe embodied AI” is a proactive, safe-by-design paradigm. It posits that safety
cannot be an afterthought; it must be a core competency embedded within the agent’s architecture,
reasoning, and learning processes from the very beginning. Safety is not a constraint on capability but
is, in fact, a capability itself. While several frameworks exist for grading robot capabilities, such as the
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five-level autonomy standard (IR-L0 to IR-L4) detailed in recent surveys [108], these primarily focus
on task performance, autonomy, and intelligence. They answer “what can the robot do?”, but not “how
is the robot built to be safe?”.

To fill this gap, we propose a new maturity model specifically for “Make Safe Embodied AI”, organized
into five levels (L1-L5), which is build upon the foundational “Make Safe AI” framework proposed in
R²AI [184]. As shown in Figure 2, this framework includes two complementary pillars: Resistance, the
ability to withstand and prevent known threats, and Resilience, the capacity to recover, adapt, and
strengthen when facing novel or unforeseen challenges. Resistance anchors the foundational layers
(L1-L2), while Resilience drives the advanced layers of adaptation and self-improvement (L3-L5),
providing a clear roadmap toward truly robust and provably safe systems.

2.2 The Five Levels of “Make Safe EAI”
Our five-level model adapts the core principles of the R²AI framework [184] to the embodied domain.
The following sectionswill nowdetail each of these levels shown in Figure 2, illustrating the progressive
journey from foundational, data-driven alignment to adaptive, and ultimately, verifiable systems.
Each level represents a significant leap in an agent’s intrinsic safety capabilities, defining a clear and
measurable pathway for future research and development.

L2
Intervention

Enable Physical 
Intervention

L3
Mimetic 

Reflection

Imitate Security 
Paradigm

L4
Evolutionary

Reflection

Evolve through 
Interaction

L5
Verifiable
Reflection

Provable Security
Guarantees

L1
Alignment

Reject Harmful 
Instructions

Levels of Making Safe Embodied AI

Resilience LayerResistance Layer

Figure 2 The five levels of our “Make Safe EAI” maturity model for embodied intelligence. This framework
builds upon the core concepts of the general AI safety levels introduced in R²AI [184], adapting them to the
unique challenges of the physical world. The levels are organized into two foundational pillars: Resistance
(L1-L2), which focuses on withstanding known threats, and Resilience (L3-L5), which enables adaptation and
recovery from novel challenges.

2.2.1 L1: Alignment - Foundational Resistance

At this foundational level, safety is achieved by aligning the agent’s behavior with basic human values
and safety norms through large-scale, data-driven training. This forms the first layer of Resistance. An
L1 agent is not intrinsically reasoning about safety; rather, it has learned to associate certain patterns
in instructions, perceptions, and planned actions with “safe” or “unsafe” outcomes based on its training
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data. For an embodied agent, this means being able to refuse clearly harmful instructions, such as
those cataloged in benchmarks like AGENTSAFE, with a high refusal rate [101]. The key technologies
are Instruction-Tuning and Reinforcement Learning from Human Feedback (RLHF) [27, 140, 13].
However, this alignment is often “skin-deep” and brittle, vulnerable to sophisticated jailbreaking
attacks that exploit the gap between its learned correlations and a true understanding of the physical
world [243].

2.2.2 L2: Intervention - Resistance through Oversight

Level 2 enhances Resistance by enabling robust external oversight and interruption. The core principle
is that even an aligned agent can make mistakes, and thus, a human must always be in a position to
intervene. For an embodied agent, this extends beyond a simple emergency stop button. It requires the
agent’s decision-making process to be transparent enough for a human to understand its intent before a
potentially harmful physical action occurs. Key technologies include Explainable AI (XAI) to articulate
the rationale behind a plan [196], and systems that explicitly visualize an agent’s future trajectory or
intentions [34]. An L2 agent is designed to respond reliably to interruption commands [139], making it
a trustworthy collaborator under human supervision. Its limitation is its reliance on constant human
vigilance, which does not scale to fully autonomous operation.

2.2.3 L3: Mimetic Reflection - Foundational Resilience

This level marks the transition from purely resisting threats to building Resilience. The core idea is
that an agent can learn to be safer by reflecting upon and internalizing proven safe behaviors. Instead
of just being programmed with what not to do, an L3 agent learns how to perform tasks safely by
imitating validated safe behavior templates, whether from human demonstrations or a curated library
of best practices. For an embodied agent, this means learning complex manipulation or navigation
skills by observing experts, a process often facilitated by imitation learning [167, 168] and behavioral
cloning [148]. Through mimetic reflection, safe conduct becomes an internalized part of the agent’s
expertise, allowing it to generalize safe behaviors to similar but unseen situations. However, its
resilience is limited by the diversity of its demonstrated knowledge; it struggles to handle truly novel
scenarios that have no precedent in its experience [162].

2.2.4 L4: Evolutionary Reflection - Adaptive Resilience

At Level 4, Resilience becomes an adaptive, autonomous process. AnL4 agent develops self-improvement
mechanisms, allowing it to learn and refine its safety strategies through continuous interaction with
the physical world. This is where the agent’s entire perception-planning-interaction loop becomes a
lifelong learning system. It learns from the rich feedback of its own physical experiences—a near-miss,
an unexpected sensor reading, or an action that did not produce the expected physical result. Key
technologies include continual learning to adapt to new threats without catastrophic forgetting [142],
and the ability to perform self-generated “red teaming” to proactively discover and patch its own
vulnerabilities [145]. This evolutionary capability allows the agent to build resilience against novel
and long-term risks, but its learning is still empirical and cannot provide prior guarantees of safety.
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2.2.5 L5: Verifiable Reflection - Guaranteed Resilience

Level 5 represents the pinnacle of “Make Safe AI”, where resilience is fortified by provable guarantees
grounded in control theory. An L5 agent can not only adapt but also reflect on its own dynamic
stability, providing formal assurances about its behavior. For an embodied agent, this means its actions
are governed by a control law that is verifiably safe. This requires a deep integration of learning with
control-theoretic methods, such as reachability analysis, which can compute all possible future states
to verify safety [4, 188]. Neuro-symbolic architectures are a key enabling technology, allowing for the
formal verification of learned policies against symbolic safety constraints [52]. While this level offers
the highest form of trustworthiness, it acknowledges the profound sim-to-real gap [86]: the proof
is only as valid as the underlying dynamic model of the world, making the fidelity of that model a
critical research frontier.
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Figure 3 A timeline illustrating the evolution of trustworthy computing. The figure charts the progression
from foundational systems to the cutting-edge frontier of embodied AI. Different research domains are distin-
guished by color: foundational concepts of Trustworthy Systems are highlighted in purple, core principles of
Trustworthy AI are in blue, and the specific challenges of Safe and Trustworthy Embodied AI are marked
in green.

3 Principles of Safe and Trustworthy Embodied AI
The principles governing safe and trustworthy systems have evolved in lockstep with the advancement
of computing itself. As illustrated in Figure 3, this journey began with a focus on Trustworthy Systems,
where foundational research in areas like SecureOperating Systems and Formal Verification established
the bedrock of reliable computing. With the rise of machine learning, the focus shifted to Trustworthy
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Figure 4 An overview of the ten core principles for trustworthy and safe embodied AI. The framework is
divided into Trustworthiness (top row), which governs the agent’s competence and predictability, and Safety
(bottom row), which governs its capacity for harm avoidance and adherence to norms. Each card provides a
concrete example to illustrate the principle in practice.

AI, introducing new principles such as Attack Resistance against adversarial examples, Explainability
for opaque models, and Value Alignment for large language models.

Today, as AI moves from the digital area into the physical world, we are entering a new era: Safe
and Trustworthy Embodied AI. This paradigm shift introduces unprecedented challenges that
require an expanded set of principles. The direct physical interaction of embodied agents necessitates
a renewed and urgent focus on principles like Abuse Prevention and Controllability, as failures are no
longer confined to virtual errors but can result in tangible harm.

To address this new frontier, wemust establish a clear set of guiding principles. This chapter introduces
a comprehensive framework that distinguishes between two indispensable dimensions: Safety and
Trustworthiness. We define these dimensions and then break them down into ten core principles: five
for trustworthiness and five for safety, that holistically address the challenges of this new era. This
framework provides a structured way to analyze the challenges and evaluate the progress in creating
responsible embodied AI. Figure 4 provides an overview of these ten principles.

3.1 Safety and Trustworthiness: Two Indispensable Dimensions
While often used interchangeably, safety and trustworthiness represent two distinct but complementary
aspects of a responsible embodied agent.

Safety focuses on harm avoidance. It is the absolute baseline requirement for any system that interacts
with the physical world. The core question for safety is: “Will the agent, directly or indirectly, cause
unacceptable physical, psychological, or property damage?” This dimension is primarily concerned
with preventing negative outcomes and protecting against external threats.
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Trustworthiness focuses on confidence building. It is the user’s belief that an agent will consistently
demonstrate competence, reliability, and integrity. The core question for trustworthiness is: “Can I
rely on this agent to perform its tasks correctly and predictably, and if it fails, will I understand why?”
This dimension is about ensuring positive and predictable performance, which builds the foundation
for human-agent collaboration.

3.2 Five Principles of Trustworthiness
Trustworthiness is built upon the agent’s internal capabilities and its ability to interact with the world
in a predictable and understandable manner.

3.2.1 Accuracy

Accuracy is the principle that an agent’s understanding and actions align precisely with reality and
user intent. It has two components. First, content accuracy refers to the agent’s ability to correctly
perceive the world and understand the user’s commands. For example, an agent must accurately
identify objects in its environment and not “hallucinate” non-existent ones [79]. Second, behavioral
accuracymeans the agent’s physical actions precisely match its intended task goals. If asked to place
a cup on a coaster, its movements must be precise enough to succeed, demonstrating a true unity of
knowledge and action [191, 174].

3.2.2 Reliability

Reliability is the agent’s ability to maintain its performance consistently across different situations,
especially in the face of uncertainty. A key aspect is predictable performance, where the agent
delivers consistent results for repeated tasks. What’s more, reliability includes robustness, which is
the capacity to handle unexpected disturbances [147], such as sensor noise or slight changes in the
environment. A reliable agent also understands its own capability boundaries. It knows what it can
and cannot do, and it can perform a graceful degradation by safely stopping its task or asking for
human help when it encounters a situation beyond its abilities [175].

3.2.3 Controllability

Controllability ensures that the agent’s operations and associated risks remain under human oversight.
This involves the ability to predict and assess risks before they occur, allowing for preventive measures.
It also requires that the agent has the built-in capacity to avoid causing harm, even if its primary task
logic fails [60]. Crucially, controllability demands mechanisms for effective human intervention, such
as an emergency stop button or a clear process for a human to take over control, ensuring that a
human operator is the ultimate authority in any situation [139].

3.2.4 Explainability

Explainability is the principle that an agent’s decisions should be understandable to humans. This is
essential for debugging, building trust, and enabling meaningful collaboration. It involves post-hoc
explanation, where the agent can answer “Why did you do that?” in a clear, intelligible way after an
action is complete [124]. For instance, an agent might explain it took a longer path to avoid a slippery
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floor. Explainability also includes the real-time presentation of intent, where the agent visualizes its
internal state or future plan, allowing users to understand its reasoning as it happens [196, 34].

3.2.5 Auditability

Auditability ensures that an agent’s actions can be reviewed and analyzed after the fact, which is critical
for accountability and learning from failures. The first component is traceability, which is the ability
to reconstruct the agent’s decision-making process by tracing the flow of information and logic that
led to a specific action [92]. The second component is the availability of verifiable evidence. This
requires the system to maintain secure, unalterable logs of its sensor data, internal states, and actions,
creating a “black box” recorder that can be used for incident investigation [129].

3.3 Five Principles of Safety
Safety principles focus on protecting the agent and its environment from harm, particularly from
intentional threats and unethical behaviors.

3.3.1 Attack Resistance

Attack resistance is the principle of protecting the agent’s entire operational pipeline from malicious
interference. This includes defending against external attacks that target its perception, cognition, or
actuation. For example, an agent must resist adversarial attacks on its perception, where manipulated
sensor data (e.g., a sticker on a stop sign) could cause it to misinterpret the world [40]. It must also
defend against jailbreak attacks on its instruction understanding, where crafted prompts trick the
agent into performing harmful actions [243]. Finally, its internal reasoning and physical actuators
must be protected from being hijacked or manipulated by an attacker [221].

3.3.2 Abuse Prevention

Beyond defending itself, a safe agent must also prevent itself from being used as a tool for harm. Abuse
prevention is the principle of identifying and refusing to carry out commands that have a malicious
intent. This requires the agent to have a high-level understanding of the potential consequences of
its actions. For example, if commanded to “use this hammer to break the window,” the agent should
recognize the destructive nature of the request and refuse to comply, distinguishing it from a benign
command like “use this hammer to hang a picture” [117]. Such refusal capabilities are central to
alignment research[10, 146], and are increasingly tested in large models through safety evaluations
and system cards [2].

3.3.3 Identifiability

Identifiability ensures that an agent’s presence and actions are clearly distinguishable from those
of a human. This principle helps to prevent deception and manage social expectations. Content
identifiabilitymeans that any language or content generated by the agent should be clearly marked
as AI-generated, as emphasized in regulatory frameworks such as the EU AI Act [39]. Behavioral
identifiability means the agent’s physical form or behavior should make it clear that it is a robot.
For example, a service robot in a public space might have a distinct appearance or an indicator light
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to signal its autonomous operation [113], preventing situations where people might mistake it for a
human-operated device, which is also emphasized in standards like IEEE 7001 [11].

3.3.4 Privacy Protection

Embodied agents, with theirmobile sensors, operate in sensitive environments like homes and hospitals.
The principle of privacy protection requires that they handle personal data with the utmost care. This
includes data minimization, where the agent only collects the sensory information necessary for its
task, as emphasized in the European Union’s General Data Protection Regulation (GDPR)[159] and
the extitIEEE Standard for Data Privacy Process (IEEE 7002-2022) [138]. It also involves the secure
storage, transmission, and access control of any collected data, ensuring that private information, such
as maps of a home or recordings of conversations, is protected from unauthorized access [93].

3.3.5 Value Alignment

Value alignment is the principle that an agent’s behavior must align with human ethics and social
norms. The most critical component is fairness, ensuring the agent does not make decisions that
discriminate against any group of people [119]. It also includes adherence to social norms, such as
respecting personal space or not interrupting conversations. Finally, it involves the capacity for ethical
decision-making, where the agent can navigate moral dilemmas and make choices that reflect widely
held societal values, such as prioritizing human well-being above all else [5].

3.4 Current Research Trends
To provide a quantitative snapshot of the current research landscape, we conduct a literature review
of recent papers in embodied AI safety and trustworthiness. We categorize each paper based on the
primary principle it addresses and the specific AI capability it focuses on. The results, summarized in
Figure 5, reveal the distribution of research efforts across our proposed framework and highlight both
areas of intense focus and those that are currently underexplored.

4 Research in Safe and Trustworthy EAI

4.1 Workflow of Embodied AI
Embodied AI can be understood through the perspective of four key stages that define how an
intelligent agent interacts with its environment: instruction understanding, environment perception,
action planning, and physical interaction. This differs from traditional robotic workflows, which
typically focus on the three fundamental primitives: sense, plan, and act, as described by Murphy et al.
As large language models (LLMs) mature and are integrated into embodied intelligence systems, they
enable these embodied agents to process various user instructions and intentions, completing tasks
autonomously based on the input they received. With this advancement, the embodied agent will
be able to accept various instructions from humans, plan its own actions through perception of the
environment, and ultimately interact with the real-world environment and humans, which is a more
complex system compared with robotics. Figure 7 illustrates the four-stage workflow of embodied
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Figure 5 A quantitative overview of the research landscape for safe and trustworthy embodied AI. Left: A
sunburst chart showing the hierarchical structure of the ten principles, grouped into Trustworthiness and Safety.
Right: A stacked bar chart quantifying the number of reviewed papers for each principle, broken down by the
AI capability they target (Instruction Understanding, Environment Perception, Behavior Planning, or Physical
Interaction). The data indicates a strong research concentration in Accuracy, Reliability, and Attack Resistance,
while principles such as Auditability and Identifiability are comparatively underexplored.

intelligence, highlighting the relationships between each phase and their contributions to a reliable
and secure system.

To systematically organize the research in safe and trustworthy embodied AI, we have constructed a
detailed literature taxonomy based on the four core stages proposed above: instruction understanding,
environment perception, action planning, and physical interaction. Within each stage, this taxonomy
further categorizes existing works according to key principles of safety and trustworthiness, such
as value alignment, privacy protection, attack resistance, and reliability. The overall structure of
this taxonomy, along with detailed citations to the relevant literature, is presented in Figure 6. The
following subsections will adhere to this framework, delving into the specific challenges and research
advancements within each stage.

Instruction understanding refers to the process by which an embodied agent interprets and com-
prehends user input, which can come in various forms, such as text, speech, or gestures. This stage is
critical for ensuring that the agent performs the desired tasks correctly, without misinterpretation or
miscommunication. The agent’s ability to correctly interpret ambiguous or incomplete instructions
directly impacts its performance, and any errors could lead to unreliable task execution. Blindly
following malicious instructions from users can lead to harmful actions, causing harm to humans and
damaging the environment. Ensuring that the agent interprets instructions in a manner that aligns
with ethical guidelines is also essential to prevent undesirable outcomes, such as biased or unfair
actions.

Environment perception involves the agent’s ability to gather and process information from its
surroundings using various sensors, such as cameras, LiDAR, or tactile sensors. This stage enables the
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Figure 7 Embodied AI Agent Workflow. The diagram illustrates the four-stage process that an embodied
agent follows to complete a task based on a user command. (1) Instruction Understanding: A natural
language command (e.g., “Find my glasses on the desk.”) is parsed into a structured, machine-readable goal. (2)
Environment Perception: The agent uses sensors like cameras and radar to build a 3D representation of
its surroundings and determine its own position. (3) Action Planning: A core brain, often based on a Large
Language Model (LLM), performs reasoning and task decomposition to create a multi-step executable plan. (4)
Physical Interaction: The plan is translated into low-level control signals (an action vector) that drive the
actuators to execute the task in the real world.

agent to understand the physical context in which it operates, such as detecting obstacles or identifying
objects of interest. Perception errors can lead to system failures, such as the agent misinterpreting its
environment and taking inappropriate actions based on incorrect data.

Action planning refers to the decision-making process in which the agent determines the sequence
of actions needed to achieve a given goal, based on its understanding of the environment and the
instructions it received. This step involves complex reasoning and decision-making algorithms that
take into account various factors, such as the current environment, the agent’s capabilities, and task
constraints.

Physical interaction involves the agent executing its planned actions in the real world, such as
moving objects, interacting with humans, or navigating through an environment. This stage bridges
the gap between decision-making and real-world execution, and it requires the agent to have precise
control over its physical movements.

4.2 Instruction Understanding
Instruction understanding is the core interface between an embodied agent and a user, translating
human natural language into machine-executable intent. The trustworthiness and security of this
process are therefore critical to the entire system’s performance. Misinterpretation of an instruction
can directly cause downstream planning and execution to fail, while malicious attacks can induce
the agent to perform hazardous or illicit actions. In this section, we focus on trustworthy and secure
instruction understanding by examining existing research and highlighting representativeworks across
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several key dimensions: accuracy, reliability, attack resistance, abuse prevention, privacy protection,
and value alignment.

4.2.1 Accuracy of Instruction Understanding

Interactive Instruction or Dialog. Before the large language model technologies are applied to the
field of embodied intelligence, some methods are devoted to realizing interactive instructions. Some
methods [50, 189] use decomposed modules to enable the agent to actively ask questions or conduct
interactive dialogues. With large language model, some works [163, 65] also allow the agent to ask.
This can enrich the single instruction into a whole dialogue, which improves the agent’s understanding
of user’s needs. These methods improve instruction understanding by designing specialized models,
thereby improving the success rate of tasks and further improving the accuracy of embodied agents.

Disambiguation. With the widespread adoption of large language models (LLMs) and multi-modal
large language models (MLLMs), many challenges in interactive instructions or multi-turn dialogues
have been effectively addressed. However, ambiguity in instruction has long remained a critical
problem for embodied accuracy. Some methods [106, 149, 109, 164, 214] solve the problem of am-
biguous natural language instructions by designing models or specialized data structures. Other
methods [33, 155, 63] focus on eliminating ambiguity or instruction ambiguity based on LLM or
MLLM. These disambiguation methods enable embodied agents to interpret and execute instructions
more accurately by proactively clarifying intent and grounding instructions in context.

Instruction with User Preference. Besides Disambiguation, some studies also focus on user prefer-
ence to enhance accuracy. A method [1] integrates disambiguation and user preferences into large
language models to translate natural language navigation requirements into a safe, high-confidence
path planning process.

4.2.2 Reliability of Instruction Understanding

Embodied Instruction Following. Recent works tackle the generalization challenge in embodied
instruction following from two complementary perspectives: semantic consistency and environmental
adaptability. Works following semantic consistency [226] focus on bridging the semantic gap between
high-level language instructions and low-level executable actions. By aligning internal representations
with linguistic cues and introducing intermediate semantic abstractions, agents become less reliant on
environment-specific visual shortcuts and more faithful to the given instructions. Works following
environmental adaptability [216, 173, 153] generalize the instruction understanding ability across di-
verse or previously unseen environments. Methods in this line dynamically decompose or re-compose
high-level plans into low-level actions that respect the current scene affordances, and continuously
build or refine scene representations during exploration. Together, these directions enable embodied
agents to reliably interpret and execute instructions regardless of domain shifts or prior knowledge
about the environment.

4.2.3 Attack Resistance of Instruction Understanding

Attack. Existing research has extensively explored adversarial instruction design to expose deficiencies
in the instruction-understanding capabilities of current multimodal large language models (MLLMs).
These attack strategies can be broadly categorized into two classes: direct attacks and jailbreak
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attacks. Direct Attacks reformulate benign instructions into explicitly malicious ones whose harmful
intent is immediately evident. Prior studies [101, 201, 114, 243, 105, 112] have proposed a wide
spectrum of harmful instructions and taxonomized them according to the target of harm (e.g., human,
environment, or agent itself) or the type of prohibited action (e.g., privacy invasion, physical harm, or
misinformation). Jailbreak Attacks craft carefully designed prompts that exploit latent vulnerabilities
in the model’s safety alignment. While modern MLLMs are often equipped with refusal mechanisms
that decline obviously malicious requests, jailbreak attacks seek to circumvent these safeguards and
elicit disallowed behaviors. Some works employ hand-crafted prompt templates to achieve this
circumvention [114, 243]. Others train a dedicated Threat Model to generate adversarial suffixes that
systematically evade the model’s safety filters [161, 76, 112]. These developments highlight the urgent
need to address both direct and jailbreak attacks to preserve the reliability and safety of embodied
agents deployed in real-world environments.

Defence. To counter instruction-level attacks, the community has proposed a range of defense
mechanisms that can be broadly grouped into introducing extra modules and safety alignment. Extra
modules augment the MLLM with auxiliary safety modules that screens incoming instructions before
they reach the core model. Some instantiations supply the safety module with carefully designed
safety prompts that explicitly instruct the MLLM to reject harmful requests [105, 112, 235]. Others
train a dedicated policy model to perform binary or graded safety classification on the raw instruction,
ensuring only verified-safe inputs are processed further [112]. While effective, these approaches
introduce non-negligible inference-time overhead. Safety alignment seeks to embed robustness directly
within the MLLM itself, avoiding additional latency. A first line of work operates on model structure:
learnable safety adapters or gated sub-networks are inserted into the transformer stack, allowing the
model to up-regulate its own safeguard mechanism when suspicious patterns are detected [228]. A
second line leverages adversarial training. By curating datasets of risky instructions and pairing them
with appropriate safe responses, researchers design specialized loss functions—e.g., contrastive safety
losses or gradient-ascent regularization—that explicitly teach the model to separate harmful from
benign instructions in latent space [110]. Together, these complementary strategies advance the goal
of delivering both safe and efficient embodied agents for real-world deployment.

4.2.4 Abuse Prevention of Instruction Understanding

Instruction abuse poses a subtle yet serious threat to the safe deployment of embodied agents. While
prior studies have explored abuse prevention in general LLM contexts [200, 9, 239], these efforts
largely focus on text-only or web-based interactions. In embodied domain, Safety-Chip [230] propose
a framework specifically designed for situated, embodied decision-making, where agentsmust interpret
instructions not only for literal correctness but also for contextual and social appropriateness. This role
and context aware filtering introduces a nuanced safety layer that goes beyond traditional keyword-
based refusal, helping embodied agents detect and resist misuse even when user intent is subtly
disguised.

4.2.5 Privacy Protection and Value Alignment of Instruction Understanding

User instructions are not sterile commands; they are often imbued with sensitive personal data and
implicit value judgments, which the robot must navigate responsibly.
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Privacy in Instructions. Instructions given to an embodied agent can inherently contain sensitive
personal information. For example, a command like, “bring my heart medication from the master
bedroom” reveals health status, personal habits, and home layout. As highlighted in broader surveys
of AI-Robotics security, handling such data is not just a technical challenge but also a legal and ethical
one, falling under the purview of data protection regulations like GDPR [134]. The robot’s instruction
understanding module must therefore be designed not only to parse commands but also to recognize
and protect the privacy of the data embedded within them, preventing unauthorized storage, inference,
or transmission.

Value Judgments and Discrimination. A more subtle but equally critical challenge arises when
instructions require the robot to make value judgments about people. Research shows that even top-
tier LLMs, when integrated into robots, produce systematically biased and discriminatory outcomes
based on protected identity characteristics mentioned in a prompt [12]. For instance, when tasked
with assessing trustworthiness or assigning tasks, the models may exhibit prejudice against individuals
described with certain disabilities, nationalities, or genders. This moves the problem of algorithmic
bias from screen-based text output to physical, real-world actions.

The Open-Vocabulary Dilemma. The core of this issue is exacerbated by the “open-vocabulary
can-of-worms” [12]. Users can unintentionally introduce biased or sensitive descriptors into their
natural language commands. The robot must then interpret these ambiguous, value-laden instructions.
This creates a critical need for transparency and explainability, as conceptualized in frameworks
for trustworthy AI [122]. It is no longer sufficient for the robot to simply execute a command; to
be considered trustworthy, it must be able to articulate why it interprets an instruction in a certain
way, especially when it involves sensitive information or potential social bias. Without robust mech-
anisms for privacy-preserving understanding and fair value alignment, deploying these systems in
uncontrolled human environments remains a significant risk.

4.2.6 Remaining Principles for Instruction Understanding

We deliberately exclude Controllability, Explainability, Auditability, and Identifiability from the scope
of instruction-understanding.

• Controllability is enforced downstream, not during parsing.
• Explainability is an interaction service: the agent justifies its interpretation only when the user
asks, not while first decoding the utterance.

• Auditability is infeasible at this stage; the high-dimensional, transient, and privacy-sensitive
transformer states cannot be logged in real time without crippling latency or leaking personal data.

• Identifiability is optional for consumer products; requiring cryptographic or biometric binding
for every spoken command adds friction and fails in noisy, multi-user environments.

4.3 Environment Perception
Environmental perception is the foundational stage in real-world applications of embodied systems,
so its trustworthiness and security are critical to the whole system. Inaccurate or unreliable perception
can compromise downstream decisions, while successful attacks on perception often lead to misinter-
pretation and system failure. In this section, we focus on trustworthy and secure embodied perception
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by examining each core dimension for existing research and highlighting representative works. We
will introduce the methods for trustworthy and secure embodied perception from improving accuracy
and reliability, explainability, auditability, attack resistance, abuse prevention, privacy protection, and
value alignment.

4.3.1 Accuracy and Reliability of Environment Perception

Perception accuracy and reliability mainly encompass two related aspects: intrinsic accuracy under
nominal conditions and robustness under challenging or adverse circumstances. Enhancements in
embodied perception accuracy, such as improvements in 2D segmentation [136, 255, 43, 150], object
detection [203, 44, 87, 22, 171], and 3D grounding [55, 204], directly strengthen the trustworthiness of
the perception module. When integrated into embodied systems, these accuracy gains translate into
improved overall system accuracy. Some works [75, 35, 254, 127, 82] combine perception modules
with pretrained vision–language models and fine-tune them on embodied sensor streams, thereby
enhancing both the accuracy and reliability of perception in embodied systems. In the specialized field
of trustworthy and secure embodied perception, research efforts predominantly focus on perception
robustness in complex scenarios, including studies on robotic locomotion [123, 3, 169, 132] and
navigation [23, 154, 242, 94] under challenging real-world conditions.

4.3.2 Explainability of Environment Perception

Perception explainability refers to render the sensory processing of an agent transparent by produc-
ing interpretable justifications for raw perceptual outputs. Some work [8, 245, 198, 143] addresses
perception errors by allowing agents to explain their incorrect predictions and receive feedback from
a teacher or expert, thus making the perception and learning process more interpretable and guided.
Some studies [246, 38] focus on self-explanatory methods for embodied perception through gener-
ating natural language and other forms of explanation to enhance perception explainability. Other
studies [37, 41] attempt to enhance perception explainability by visualizing and analyzing evolving
internal models of agents. Overall, these approaches enhance transparency in embodied perception
by providing explanations through error-driven feedback, self-generated captions, and analysis of
internal representations, clarifying and guiding how perception informs action.

4.3.3 Auditability of Environment Perception

Perception auditability involves maintaining traceable logs and diagnostic information for each
perception module at runtime, enabling rapid fault localization, adversarial security analysis, and
post-hoc review. For example, the PerSyS framework [6] uses temporal diagnostic graphs to monitor
the consistency of heterogeneous perception components and automatically detect failures, ensuring
audit-trace completeness and module-level diagnosability; Another work [126] applies HAZOP/Guide-
Word techniques to structure safety assessments of perception systems, establishing formal audit
checkpoints for each perceptual interface; and the AuditMAI infrastructure [197] introduces automatic
audit-trace recording, configurable alerting, and decision-rollback interfaces, demonstrating how
auditability can be embedded as a core design property of perception systems.
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4.3.4 Attack Resistance and Abuse Prevention of Environment Perception

Environmental perception is one of the initial stages through which an embodied system acquires
external information, making research on its attack resistance critically important. Many studies focus
on perception attack resistance related to LiDAR [47, 183, 81]. The attack and defensive research on
LiDAR includes physical attack methods that tamper with map data through one-step laser deception
attacks, as well as evaluations of LiDAR vulnerabilities. For example, a work [130] proposes the
SMVS index to determine the optimal attack location, maximizing interference with point cloud
matching and correct positioning. Besides, environmental perception encompasses diverse sensing
techniques [221], and recent studies focus on attacks and defense on depth estimation [59] and visual
positioning tasks [116]. Certain perception-level defense efforts can also be viewed through the lens of
abuse prevention [224, 213], which aims to detect and reject manipulated or malicious sensor inputs
before they corrupt downstream reasoning and acting.

4.3.5 Privacy Protection of Environment Perception

Studies on Perception Privacy Protection are dedicated to protecting privacy in the perception stage
of embodied systems, thus preventing privacy leaks from the initial root. Some work [67, 83, 68]
studies privacy protection in embodied perception through different modalities and low resolution at
the image level, while a recent work [26] focuses on privacy protection for visual observations from
live video streams. Some other works [135, 56] study privacy protection in the perception stage on
specific downstream tasks, such as medical care, nursing, etc.

4.3.6 Value Alignment of Environment Perception

Perception-based value alignment mainly centers on how agents use multi-modal perception to
understand and adapt to human or environmental value demands. For example, a work [20] studies
consistency in the perception-action loop to extract task-relevant features. More studies on value
alignment in the perception stage are usually included in research on value alignment in the embodied
system. A work [207] quickly infers individual preferences from user interaction data for dynamic
value adaptation; another work [19] explores that the perception system itself is the entry point for
value embedding from phenomenological and ontological perspectives.

4.3.7 Remaining Principles for Environment Perception

At the perception stage, among the ten core principles of safe and trustworthy embodied AI, con-
trollability and identifiability are not discussed in detail, as they are less relevant to the perception
part of the embodied system pipeline. Our focus here is on deterministic perception, which involves
interpreting raw sensor inputs in a stable and predictable manner. In contrast, controllability and
identifiability are principles that typically apply to generative components, such as decision-making,
planning, and action generation, where the system must be able to explain or constrain its possible
outputs based on user intent or external feedback. Since perception primarily involves recognizing
and interpreting external information rather than generating responses, current research has devoted
relatively little attention to applying these principles at this stage. As a result, controllability and
identifiability remain underexplored in the context of perception, though they may become more
relevant when perception tightly interacts with adaptive or generative mechanisms in the future.
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4.4 Behavior Planning
Behavior planning is a core component of embodied intelligence systems, responsible for task de-
composition, execution sequencing, interaction strategies, and decision making. As these modules
directly govern agent behavior, any failure, misalignment, or adversarial manipulation can lead to
critical safety incidents. In this section, we examine key safety and trustworthiness challenges across
various categories of planning tasks, organized by the core principles of trustworthy and safe EAI.

4.4.1 Accuracy of Behavior Planning

Accuracy in planning requires a correct understanding of the environment and user intent, ensuring
that actions preciselymatch task goals. A primary challenge ismitigatingmodel “hallucinations”—plausible-
sounding plans unsupported by reality, which can be dangerous in embodied contexts. To this end, Qi
et al. [152] propose an Embodied Knowledge Graph (EKG) to verify physical plausibility. Similarly,
Yao et al. [231] introduce ReAct, a framework that combines reasoning and acting to validate decisions
during planning, while Wu et al. [212] present Reinforced Reasoning, which leverages reinforcement
learning to guide more grounded planning.

Beyond grounding plans in physical reality, accuracy also depends on an agent’s memory, which
provides the necessary context to ensure actions are relevant and correct over long horizons. Inaccurate
or incomplete memory leads to flawed plans. Early work, such as Semi-Parametric Topological
Memory (SPTM) [165], improves navigation accuracy by constructing a graph of observations to enable
structured planning. More advanced methods explicitly build and maintain memory representations
for a more accurate world model. For example, Active Neural SLAM [21] creates a geometric map that
allows a planner to make more precise navigation decisions. To handle dynamic environments, which
pose a significant threat to accuracy, systems like Scene Graph Memory [88] and DynaMem [103]
update their memory of object states and locations in real-time, preventing the agent from acting
on outdated information. Similarly, KARMA [208] employs a dual long- and short-term memory,
including a 3D scene graph, to provide planners with a comprehensive and current understanding of
the environment, thus improving the accuracy of complex, multi-step tasks.

The accuracy of interpreting user intent also heavily relies on memory. For situated instructions, an
episodic buffer is crucial for remembering deferred or conditional tasks, ensuring all components
of a command are accurately executed [125]. For social agents, lifelong memory systems like the
one in Ella [244], which combines semantic and episodic knowledge, enable more accurate and
contextually appropriate social interactions by recalling past events and relationships. Even simulated
agents exhibit more accurate, believable behavior when they can reflect on an episodic memory of
their experiences [144]. To support complex queries, retrieval-augmented systems build structured
memories for precise information access. ReMEmbR [7] uses a vector database of spatio-temporal
experiences to accurately answer questions about long-horizon robot activities. Embodied-RAG [219]
builds a hierarchical semantic forest, enabling accurate retrieval at multiple levels of granularity.
Other approaches focus on the memory representation itself; SnapMem [229] uses a diverse set of
visual snapshots as a compact memory for accurate scene reasoning, while other research shows
that prompting MLLMs to generate explicit cognitive maps improves the accuracy of their spatial
awareness [227]. These works collectively show that a robust and accurate memory is not just a storage
mechanism but a fundamental prerequisite for accurate planning and decision-making in complex,
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long-running tasks like those found in open-vocabulary mobile manipulation [233].

4.4.2 Reliability of Behavior Planning

Reliability ensures stable and predictable agent performance, especially in complex or unforeseen
situations. A key aspect is the agent’s ability to recognize its own limitations and degrade gracefully.
To this end, some models incorporate self-uncertainty estimates. Yu et al. [238] utilize transparency
and credibility of embodied agent planning are improved through confidence assessment, while Singh
et al. [175] suggest agents request human help in low-confidence settings. Other work focuses on
improving policy robustness; for example, Sun et al. [181] propose LLaPa, which incorporates counter-
factual awareness to reduce policy brittleness. Failures in reliability often manifest as generalization
gaps in novel environments, as demonstrated in path learning from human demonstrations [157], or
as challenges in adapting to constrained spaces [247].

4.4.3 Controllability of Behavior Planning

Controllability ensures that risks are foreseeable and manageable, with mechanisms to prevent harm
and allow for human intervention. One approach is to design architectures with explicit safetymodules.
The SAFER framework [80], for instance, uses a dedicated LLM for safety verification. The need for
human oversight is also critical, especially in systems with variable autonomy, to manage trust and
governance [122]. In human-robot collaboration, Tian et al. [190] improve planning trustworthiness
by enabling robots to adaptively balance safety and efficiency through confidence-aware models of
human behavior, while Yu et al. [236] enhance planning trustworthiness by enabling human-robot
collaboration systems to synthesize optimal, trust-aware policies under uncertainty using temporal
logic and POMDP-based reasoning. Failures in controllability can lead to direct harm, such as collisions
caused by miscoordination in social navigation [178]. To proactively identify such risks, methods like
EHAZOP offer a tailored hazard analysis process for robot safety [121].

4.4.4 Explainability of Behavior Planning

Opening the “black box” of decision-making is crucial for building trust and enabling meaningful
oversight. Research in this area explores methods for making agent behavior understandable to
humans. For example, Wang et al. [206] explore explainable learning from demonstration (LfD) as a
means to increase human trust in the agent’s actions.

4.4.5 Auditability of Behavior Planning

Auditability provides the foundation for accountability by ensuring that an agent’s decision-making
process is traceable and its actions are verifiable. This is particularly critical in high-stakes applications,
where Naik. [133] highlights the challenges in attributing responsibility for failures. To address this,
standardized frameworks are being developed; for instance, Adebayo. [195] introduces the Robot
Security Framework (RSF), which offers a standardized safety assessment.
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4.4.6 Attack Resistance of Behavior Planning

Protecting planning and decision-making systems from malicious manipulation is paramount for
safety. Research has identified several vulnerabilities and proposed corresponding defenses. Backdoor
attacks are a significant threat, where hidden triggers can exploit planners. Nahian et al. [131] show
how LLM-based planners can be exploited, while Zhou et al. [251] proposed a backdoor attack method
based on Objective-Decoupled Optimization, which exposes the backdoor vulnerabilities of VLA
models for the first time. Other work explores vulnerabilities in neural path planning and proposes
gradient-based defenses [222]. Attacks can also occur at the instruction level, such as the physical-
world jailbreaks of embodied agents investigated by Zhang et al. [243]. Furthermore, attackers can
manipulate the physical environment itself, e.g., by placing objects to degrade motion planners like A*
or RRT [215]. Consequently, assessing the adversarial robustness of decision layers in LLM-based
embodied models is an active area of research [104].

4.4.7 Privacy Protection of Behavior Planning

As embodied agents operate in personal spaces and handle sensitive data, protecting user privacy
is a fundamental requirement. Techniques that enable learning without centralizing raw data are
crucial. In this context, Borazjani et al. [16] propose Federated FoundationModels (FFM) to enable safe,
adaptive, and personalized embodied AI by combining foundation models with the privacy-preserving,
distributed, and user-personalized learning capabilities of federated learning.

4.4.8 Value Alignment of Behavior Planning

Ensuring that an agent’s behavior aligns with human ethics and societal norms is a critical challenge.
This requires a proactive approach to design. Tahri Sqalli et al. [186] advocate for integrating ethical
and inclusive design principles early in the development process, particularly for applications like
medical training. This perspective is echoed in specific domains, where researchers examine EAI in
assistive robotics from a bioethical standpoint to ensure that technology serves users equitably and
responsibly [32].

4.5 Physical Interaction
Physical interaction is fundamental to embodied intelligence systems, enabling precise motion execu-
tion, control, environmental manipulation, and adaptive responses to dynamic scenarios. As these
modules directly govern an agent’s physical behavior, any instability, misalignment, or adversarial
interference may result in safety hazards or operational failures. In this section, we explore key safety
and trustworthiness challenges in physical control and interaction, focusing on some key components
like robustness and secure human-agent collaboration guided by the principles of trustworthy and
safe AI.

4.5.1 Reliability of Physical Interaction

In the context of embodied intelligence, reliability in physical interaction has evolved beyond merely
maximizing task success rates into a multi-layered, dynamic research frontier. We posit that the
paradigm for physical reliability can be deconstructed into three interconnected and progressive
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stages: basic execution reliability, which confronts the physical world’s uncertainty; behavioral strategy
reliability, which masters the multimodality of task solution spaces; and long-horizon task reliability,
which ensures the composition and generalization of complex skills. This evolutionary path reflects
a profound shift from solving the foundational problem of “whether it can be done” to tackling the
advanced challenge of “how to do it more flexibly and intelligently.”

Basic Execution Reliability. At this stage, the primary objective is to overcome perceptual noise
and physical disturbances to ensure the precise completion of atomic operations, such as grasping
and placing. A significant body of work has focused on mitigating execution failures caused by
incomplete or inaccurate sensory information. For instance, grasping in cluttered environments,
where objects are occluded, requires robust collision avoidance, as addressed by methods like Contact-
GraspNet [185] and CollisionNet [128]. Similarly, manipulating transparent objects, which poses a
severe challenge to depth sensors, has spurred the development of novel perception techniques. These
range from specialized depth completion networks [42] to generative approaches that reconstruct
scenes using Neural Radiance Fields (NeRFs) [71] or even leverage diffusion models for view synthesis
and inpainting [78]. These methods tightly couple perception and execution, where improvements in
perception enhance the determinism of action. By ensuring that each action is stable and well-defined,
they establish a solid basis for physical reliability.

Behavioral StrategyReliability. As basic execution capabilitiesmature, the research focus transitions
to this stage, which centers on acknowledging and effectively modeling the multi-modal nature of
a task’s solution space. In the real world, a single task often admits multiple valid solutions; for
example, a tool can be gripped in various ways, and a path can have multiple obstacle-avoidance
options. A truly reliable agent must be capable of generating and selecting from a diverse set of
effective strategies, rather than relying on a single, rigid behavior pattern. This shift has catalyzed
the rise of generative policy learning methods, most notably those based on diffusion models [62].
By learning to denoise from a simple noise distribution to a valid action, these models can capture
the entire complex distribution of the action space. Seminal works like Diffusion Policy [25] and
Diffuser [74] have demonstrated that visuomotor policies learned via diffusion can effectively handle
the behavioral multimodality inherent in imitation learning datasets. This paradigm extends to
complex, non-Euclidean action spaces, such as generating diverse 6-DoF grasp poses on the SE(3)
manifold [194]. This capability not only makes policies more generalizable to slight variations in initial
conditions but also provides a foundation for handling more complex constraints and preferences,
thereby greatly enhancing strategic flexibility and robustness.

Long-Horizon Task Reliability. The frontier of physical reliability is advancing toward this stage.
Real-world activities, such as tidying a room or preparing a meal, are inherently long-horizon tasks
that require the logical composition of multiple skills. At this level, reliability is no longer about the
success of an individual action but the successful completion of the entire task flow. This demands
that an agent possess hierarchical planning capabilities and the ability to achieve compositional
generalization of its skills. For instance, tasks like kit assembly [241] or manipulating complex
articulated objects [54] are quintessential examples of this challenge. Recent studies begin to investigate
hierarchical policies, where a high-level planner generates a sequence of subgoals and a low-level
policy, often implemented with diffusion models, is responsible for executing each of them [115, 99].
We argue that reliability at this stage is “semantic”, requiring the agent not only to execute actions
precisely but also to deeply understand the task’s structure and goal. This is increasingly being
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addressed by leveraging the reasoning and planning capabilities of Large Language Models (LLMs)
and Vision-Language Models (VLMs) to guide low-level motion policies [64, 172, 141], bridging the
gap between high-level instructions and low-level physical execution.

4.5.2 Controllability and Explainability of Physical Interaction

The process by which embodied agents transform high-level planning into actions in the physical
world fundamentally relies on the precise manipulation of physical variables. By computing joint
displacements and rotations at each moment, robots are able to perform a wide range of tasks in the
physical world. Therefore, how to control and interpret the changes in these variables is a crucial topic
in the interaction between embodied agents and their physical environment. This topic is extensively
addressed in the field of control theory. As a system, the robot’s ability to precisely and rapidly
control its internal variables has a long history of research. As early as 1960, Kalman proposed the
use of the Kalman rank condition for determining controllability and observability in his paper [77]
. Since then, numerous studies have investigated the controllability of robots. For example, the
paper [30] introduced the concept of the controllability Gramian, providing criteria for analyzing the
controllability of dynamic linear systems. These studies not only ensure that the actions of embodied
agents can be accurately controlled during physical movement, but also offer explanations for the
execution of each action.

4.5.3 Attack Resistance of Physical Interaction

The robustness against physical attacks at the interaction level primarily focuses on ensuring robots can
maintain normal functionality when subjected to external physical disturbances. For locomotion tasks,
current research mainly addresses how to preserve robot balance and stability under external force
interference. The study [232] introduces a hybrid framework that integrates trajectory optimization
with Bayesian optimization to improve the robustness of humanoid locomotion. By tuning cost weights
using data from full-body simulations, the method enables the generation of motions that remain
stable under various disturbances and uncertainties. Another work [29] introduces a robust anti-
disturbance framework based on multi-domain hybrid systems and reduced-order model predictive
control, allowing robots to regain balance without falling even when subjected to pushes as strong as
130N. For manipulation tasks, [205] presents an adversarial attack method that interferes with robotic
arm grasping tasks by altering objects’ geometric shapes.

4.5.4 Abuse Prevention of Physical Interaction

To prevent the abuse of embodied intelligent agents in physical interactions, it is essential to ensure
that each control input correctly influences the system, enabling the state variables of the robotic
system to evolve as intended. Current research encompasses both studies on how to attack control
inputs and strategies to prevent such attacks. In [202], a control input injection method leveraging
reinforcement learning is proposed, causing the agent to deviate from its intended trajectory during
motion. Conversely, [211] introduces a secure controller designed to prevent robotic systems from
collapsing under attack.
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4.5.5 Privacy Protection and Value Alignment of Physical Interaction

The physical embodiment of AI and its interaction with humans in real-world settings introduces
complex societal, ethical, and psychological challenges. The deployment of humanoid robots in
public-facing sectors like tourism and hospitality, for example, raises critical questions about their
psychological and emotional effects on both customers and employees, as well as their influence on
cultural practices [176]. The ethical stakes are even higher when these systems interact with vulnerable
populations. Bioethical analyses warn against a purely functionalist approach to assistive robots for
people with disabilities, stressing that failure to consider the person’s intrinsic dignity and complex
situational factors could be damaging and discriminatory [31]. Ultimately, these specific interaction
challenges reflect a broader, urgent need to proactively embed ethical considerations into the design
of all robotics and AI systems to avoid the dystopian futures that prominent thinkers have warned
against [193].

4.5.6 Remaining Principles for Physical Interaction

The accuracy of physical interaction can be encompassed by the concept of controllability. To ensure
that a robot’s physical behavior is controllable, it is essential that its actions are executed precisely in
accordance with its intended plan. Similarly, auditability is inherently embedded within explainability.
When an error occurs during a physical interaction, tracing the source of the problem inevitably
involves inspecting certain physical variables. The logical process of such inspection relies on the
foundation of explainability. Therefore, the concept of auditability is inherently contained within
explainability.

5 Benchmarks and Evaluation
To systematically evaluate and enhance the trustworthiness of embodied agents, the research commu-
nity develops a diverse array of benchmarks. As shown in Table 1, these benchmarks move beyond
traditional task success metrics to conduct in-depth assessments of agents across multiple dimensions,
including interactive understanding, explainability, physical safety, and adversarial robustness.

5.1 Interactive Instruction Understanding.
Early research recognizes that trustworthy agents must not only complete tasks but also comprehend
the ambiguity and uncertainty inherent in human instructions. To this end, researchers develop
benchmarks aimed at enhancing communicative abilities. DialFRED [50] pioneers the introduction
of a dialogue mechanism, allowing agents to actively query the user to resolve ambiguity when
information is insufficient. Embodied Multi-Agent Task Planning [106] extends this concept to multi-
agent collaboration, requiring multiple agents to work together to parse ambiguous instructions.
More recent works have further advanced this direction. NoisyEQA [214] focuses on evaluating and
improving an agent’s ability to identify and correct various types of noise and inaccuracies in user
queries, while ASK-TO-ACT [156] explores how reinforcement learning can enable agents to learn
to ask the most effective questions at the most opportune moments, thereby efficiently resolving
instructional ambiguity. Collectively, these benchmarks have driven the evolution of agents from
passive executors to active communicators.
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5.2 Decision Transparency and Explainability
To enable humans to understand and trust agent behavior, another critical line of research focus on
creating benchmarks for evaluating and generating decision explanations. Generating Explanations for
Embodied Action Decision [206] introduces the first large-scale dataset that requires an agent not only
to make a decision (e.g., circumvent an obstacle) but also to generate a natural language explanation of
why that action is optimal. Similarly, Self-Explainable Affordance Learning [246] combines affordance
learning with intent expression, requiring the model to generate an “embodied caption” describing
its intended action while predicting interactable regions. By “visualizing” and “verbalizing” the
agent’s decision-making process, these works significantly enhance system transparency and lay the
groundwork for establishing human-robot trust.

5.3 Physical Safety and Risk Awareness
Ensuring physical safety is a core requirement for trustworthy embodied AI, leading to the development
of numerous benchmarks for assessing agent risk awareness. These can be broadly divided into two
categories. The first category focuses on evaluating the safety of static planning at a symbolic or logical
level. Examples include EARBench [253], which assesses the physical risk awareness of foundation
models in high-level plan generation; SafePlan-Bench [70] and Subtle Risks, Critical Failures [177],
which use symbolic environments (e.g., VirtualHome, PDDL) to diagnose subtle risks in plans; and
Embodied Agent Interface [92], a diagnostic benchmark that assesses LLMs’ core cognitive abilities
in embodied decision-making to precisely identify their failure points. The second category takes a
step further by evaluating safety during the interactive simulation of dynamic execution processes.
SafeBench [223] concentrates on safety-critical scenarios in autonomous driving; HASARD [192]
provides an efficient testbed for vision-based safe reinforcement learning; SafeAgentBench [234]
systematically evaluate agent responses to hazardous instructions in AI2-THOR; IS-Bench [111]
assesses an agent’s ability to handle dynamically emerging risks during interaction in OmniGibson;
and IndustryEQA [96] extends safety assessment to high-fidelity industrial settings for the first time.
Together, these efforts have built a comprehensive evaluation framework for physical safety, spanning
from planning to execution and from general household to domain-specific environments.

5.4 Measuring Robustness Against Adversarial Threats
A truly trustworthy system must be resilient to malicious adversarial attacks. To this end, researchers
develop benchmarks to assess agents’ abilities of attack resistance from different perspectives. At
the high-level instruction layer, MM-SafetyBench [105] reveals vulnerabilities in multimodal models
to unsafe responses induced by visual content; Advancing Embodied Agent Security [201] focuses
on moderating malicious input instructions; and Jailbreaking LLM-Controlled Robots [161] and
POEX [112] pioneers research into “jailbreak” attacks that trick agents into performing physically
harmful actions, proposing the “Execution Success Rate” metric to measure real-world physical risk.
At the low-level perception layer, research has concentrated on stealthier threats like backdoor attacks.
BadDepth [59] is the first to systematically demonstrate backdoor attacks against monocular depth
estimation models, causing targets to “disappear” from the depth map; BadVLA [251] targets end-
to-end Vision-Language-Action models with backdoors; and Adversarial Attacks and Detection in
Visual Place Recognition [116] provides a novel experimental paradigm for evaluating the safety of
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visual localization systems under adversarial attack. These benchmarks expose vulnerabilities across
different attack surfaces and guide the development of more secure embodied AI systems.

5.5 Evaluation Metrics
A rigorous and multi-faceted evaluation framework is paramount for assessing the trustworthiness
and safety of embodied agents. Traditional metrics focusing solely on task completion are insufficient
for safety-critical applications. Consequently, recent benchmarks introduce a sophisticated suite of
metrics designed to quantify performance across distinct principles of trustworthiness and safety. This
section systematically categorizes these evaluation methods into four core areas, providing formal
definitions and citing their originating works.

5.5.1 Task Performance and Instruction Grounding

Metrics in this category quantify how well an agent’s actions align with the explicit and implicit goals
of a given instruction, assessing its core competency and understanding. This extends beyond simple
task success to include efficiency and the correct interpretation of ambiguous or noisy user inputs.

A foundationalmetric is the Success Rate (SR), which provides a binarymeasure of task goal completion.
This is often complemented by the Success weighted by Path Length (SPL), which penalizes inefficient
paths, thereby measuring both correctness and efficiency [106, 50]. The SPL is formally defined as

SPL =
1

N

N∑
i=1

Si
L∗
i

max(Li, L∗
i )
, (1)

whereN is the total number of episodes, Si is a binary success indicator for episode i, L∗
i is the length

of the optimal path, and Li is the length of the agent’s actual path.

For tasks involving ambiguity, specialized metrics are required. The Ambiguity-Resolution Efficiency
Score (ARS) evaluates an agent’s ability to ask minimal, relevant questions to successfully complete a
task [156]. It is calculated as

ARS =
Isuccess

1 + |qrelevant −K|+ qirrelevant
, (2)

where Isuccess is a success indicator, qrelevant and qirrelevant are the numbers of relevant and irrelevant
questions asked, andK is theminimumnumber of questions required. Similarly, to evaluate robustness
against noisy queries, the Noise Detection Rate (DR) and Noise Correction Rate (CR) measure the
agent’s ability to identify and rectify factual errors in user instructions [214]:

DR =
|Ad|
|A|

× 100%, CR =
|Ac|
|A|

× 100%, (3)

where |A| is the total set of answers, while |Ad| and |Ac| are the subsets of answers that successfully
detect or correct the noise, respectively.
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5.5.2 Safe and Reliable Plan Execution

Metrics for safe and reliable execution assess the quality of the agent’s generated plan, focusing on its
physical executability and adherence to safety constraints. A reliable plan must first be executable. The
Execution Success Rate (ESR) or Execution Rate (ER) measures the proportion of a plan’s steps that
can be successfully run by the low-level controller without errors, diagnosing the crucial gap between
high-level planning and physical embodiment [117, 234]. Frameworks like Embodied Agent Interface
[92] provide a fine-grained error analysis, breaking down failures into categories such as “Missing
Step” and “Affordance Error” for deeper reliability diagnostics.

More importantly, a reliable plan must be safe. Safety metrics evaluate the agent’s capacity to avoid
causing harm. The Task Risk Rate (TRR) measures the fraction of plans containing potential physical
risks [253]:

TRR =

∑N
i=1 Is(pi, si)

N
. (4)

where Is(pi, si) is an indicator function that is true if the plan pi violates safety guidelines si. Other
benchmarks introduce a suite of safety-centric success rates, such as the overall Safety Rate (SafeR)
[70] and the Safe Success Rate (SSR) [111]. A crucial process-oriented metric is the Safety Recall (SRec),
which evaluates whether safety-critical actions are performed correctly within the task flow [111]:

SRec =

∑
g∈Gsafe

I(g is triggered ∧ g is satisfied)∑
g∈Gsafe

I(g is triggered)
. (5)

This metric uniquely captures whether safety goals (g ∈ Gsafe) are met when they become relevant
(i.e., are triggered).

5.5.3 Decision Transparency and Explainability

Explainability metrics assess the quality of natural language explanations generated by an agent to
justify its decisions, opening the “black box” of its reasoning process. To evaluate the factual correctness
of an explanation’s content, the F1-score is commonly used, which is the harmonic mean of Precision
(P) and Recall (R) [206]:

Precision =
TP

TP + FP
, (6)

Recall =
TP

TP + FN
, (7)

F1 = 2 · P ·R
P +R

. (8)

For fluency and semantic similarity, standard NLP metrics like BLEU-n [206] and CIDEr [246] are
employed. The BLEU score measures n-gram overlap with a brevity penalty (BP):

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
, (9)

where pn is the modified n-gram precision. The CIDEr score evaluates consensus by computing
the average cosine similarity between the TF-IDF vectors (gn) of the candidate sentence (ci) and the
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reference sentences (sij ):

CIDErn(ci, Si) =
1

M

∑
j

gn(ci) · gn(sij)
∥gn(ci)∥ · ∥gn(sij)∥

. (10)

5.5.4 Security against Malicious Use and Attacks

Security metrics evaluate an agent’s resilience against external threats, encompassing both the explicit
rejection of malicious instructions and the defense against subtle adversarial attacks. The first line of
defense is abuse prevention, measured by the agent’s ability to refuse harmful commands. The primary
metrics here are the Rejection Rate (Rej) [234] and the Planning Rejection Rate (PRR) [117, 177],
calculated as the fraction of hazardous instructions the agent explicitly refuses to execute:

PRR =
|Dreject|
|Deval|

, (11)

where |Dreject| is the subset of correctly refused instructions.

When prevention fails, attack defense metrics quantify the impact. The most prevalent metric is the
Attack Success Rate (ASR), which measures the frequency with which an attack successfully coerces
the agent into performing a harmful action [251, 112]:

ASR =
Number of successful jailbreaks
Number of attempted jailbreaks

. (12)

The consequences of a successful attack are measured with task-specific metrics, such as increased
Along-Track Error (ATE) in navigation, or catastrophic failure events like Loss of Vehicle (LoV) [116].
For perception-level attacks, the degradation of standard metrics like absolute relative error within
the targeted image region can signify a successful backdoor injection [59].

5.6 Future Directions: Towards a Unified and Dynamic Evaluation Frame-
work

While foundational, the current landscape of embodied AI benchmarks reveals a fragmented ecosystem
struggling to keep pace with the field’s rapid advancements. Most evaluation platforms are static,
limited in their coverage of dynamic and long-tail risks, and suffer from a persistent sim-to-real gap.
Furthermore, the lack of standardized data representations and metrics makes it difficult to compare
agent performance across different embodiments and environments. To foster the development of
truly robust and reliable agents, the community must move towards a unified, dynamic, and extensible
evaluation framework. This next-generation paradigm would be built on a standardized architecture
capable of harmonizing heterogeneous 3D data and a normalized metric library, enabling fair, cross-
platform comparisons.

At the core of this future framework will be high-fidelity, interactive, and editable virtual worlds. To
bridge the sim-to-real gap, these environments must not only be visually realistic but also physically
accurate, powered by advanced physics engines that simulate complex dynamics. Crucially, they must
allow users or automated systems to perform real-time, personalized editing—dynamically altering
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object properties, introducing unexpected obstacles, or modifying task constraints during execution.
This interactivity transforms evaluation from a static checklist into a targeted, adversarial process.
To populate these worlds at scale, the framework will leverage generative AI, using techniques like
diffusion models and LLMs to automatically synthesize a vast and diverse array of scenes and logically
complex tasks, thus overcoming the bottleneck of manual creation.

Ultimately, the most profound shift will be from one-off assessments to a continuous, closed-loop
evaluation system. This paradigm views evaluation as an integral part of the agent’s development
lifecycle, creating a co-evolutionary process. In this “generate-execute-analyze-evolve” loop, the
system would automatically generate tasks tailored to an agent’s current capabilities, analyze its
performance to pinpoint specific failures or weaknesses, and then use that analysis to generate new,
targeted challenges. This creates a symbiotic relationship where the agent’s capabilities and the
platform’s evaluation rigor improve together, systematically driving embodied AI towards a higher
level of generalizable and trustworthy intelligence.

6 Simulator

Name Scenes /
Rooms

Objects /
Cat.

Physics
Engine

Scene
Source Customizable Editable Action

Space
Multi-
agent

AI2-THOR [85] -/120 118/118 Unity Modeling ✓ I, M N, F, A ✓
CALVIN [118] 4/- 7/5 Bullet Modeling ✗ I, M N, F ✗

CHALET [225] 10/58 330/150 Unity Modeling ✗* I, M N, A ✗

DMC [187] 1/- 4/4 MuJoCo Modeling ✓ I F ✗

InternUtopia [199] 100000/- 24957/956 PhysX Modeling ✗* I, M A, N ✗

Gazebo [84] – – Open Dynamics Engine Modeling ✓ I F ✓
Genesis [250] – – (Proprietary) Modeling ✓ I, M N, A, F ✓
Gibson [217] 572/- – Bullet Scanning ✗ N N, F ✗

Habitat [166] – – Bullet Scanning ✓ N N ✗

Isaac Sim [137] – – PhysX Modeling ✓ I, M N, A, F ✓
LabUtopia [95] 100 -/140 PhysX Modeling ✓ I, M N, A, F ✗

Meta-World [237] 1/- 80/7 MuJoCo Modeling ✓ I, M F ✗

RLBench [73] 1/- 28/28 Bullet Modeling ✓ I, M F ✗

SAPIEN [218] – 2346/- PhysX Modeling ✓ I, M A, F ✗

ThreeDWorld [48] 15/120 112/50 Unity, Flex Modeling ✓ I, M A, F ✓
UNREALZOO [249] 100/ – Unreal Modeling ✓ I, M N, A, F ✓
VRKitchen [51] 16/16 – Unreal Modeling ✗ I, M N, A, F ✗

VirtualHome [151] 7/- -/509 Unity Modeling ✗ I, M N, A ✗

airsim [170] – – Unreal Modeling ✓ N F ✗

iGibson [91] 15/108 152/5 Bullet Scanning ✗ I, M N, F ✗

Table 2 A Comparison of Major Simulators for Embodied AI. Column definitions are as follows. Scene Source:
Modeling indicates scenes created with 3D software; Scanning indicates scenes reconstructed from real-world
scans. Customizable: ✓indicates the ability for users to create new scenes; ✗ indicates a lack thereof. An
asterisk (*) denotes the ability to recombine existing assets but not create entirely new scenes. Editable: I for
interactable objects; M for multi-state objects; N for non-editable/static scenes. Action Space: N for navigation
actions; A for atomic interactions; F for fine-grained force/torque control. Multi-agent: ✓indicates support
for multiple agents; ✗ indicates no support. A double dash (–) indicates data not specified in the source.

Simulators are essential tools in Embodied AI research, providing scalable, parallelizable, and safe
environments for training and evaluating intelligent agents. To develop trustworthy and reliable
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agents, two dimensions are of paramount importance: scene customization and environmental editability.
Scene customization—the ability to generate or import novel environmental layouts—is fundamental
to building trustworthy agents. An agent can be deemed reliable, robust, and predictable only if it
is validated across a wide distribution of diverse scenarios, rather than a limited set of pre-defined.
This capability allows researchers to rigorously evaluate an agent’s generalization limits, assess its
capabilities and failure modes, and ensure its behavior remains controllable. From a safety perspec-
tive, programmatic scene generation enables the creation of adversarial or edge-case scenarios (e.g.,
cluttered pathways, unusual object placements) to proactively identify and mitigate potential risks,
ensuring the agent operates safely even in unforeseen situations. Environmental editability—the extent
to which an agent can interact with its environment, ranging from basic physical dynamics to complex
object state changes—is equally critical. It directly influences the trustworthiness of an agent by
enabling it to learn and perform complex, meaningful tasks. An agent that can accurately manipulate
articulated objects or change their intrinsic states (e.g., slicing a fruit) demonstrates greater reliability,
and its abilities more closely reflect real-world competence. From a safety perspective, simulating
fine-grained interactions allows researchers to evaluate agent behavior, ensuring that actions are
identifiable and that associated risks remain controllable. This, in turn, helps prevent unintended
harmful outcomes and ensures that the agent’s interactions with the environment are both effective
and safe. We summarize the key features of prominent simulators in Table 2. This review categorizes
prominent simulators along these two dimensions to create a clear landscape of available tools for
embodied AI research, as illustrated in Figure 8.

6.1 Pre-defined, Static Scenes
This category includes simulators that offer high-fidelity, realistic scenes but with limited interactivity
and no support for creating new environments. Such simulators are primarily suited for navigation and
perception tasks in realistic settings. A representative example is the original Gibson environment [217].
It provides a large dataset of scenes reconstructed from real-world 3D scans. While this offers
unparalleled visual realism for navigation tasks, the scenes are static and do not support object
manipulation. The agent’s interaction is limited to navigation and collision with the static mesh of the
environment.

6.2 Pre-defined, Interactive Scenes
Simulators in this category provide a fixed set of environments but enrich them with highly interactive
objects that can change states. These platforms are excellent for research on long-horizon planning,
task decomposition, and complex manipulation skills. This category includes several benchmarks
designed for complex household tasks. For example, CALVIN[118] and VirtualHome[151] feature
agents performing long-horizon activities involving objects with discrete states (e.g., opening drawers,
switching on lights). Others emphasize finer-grained realism; VRKitchen[51] simulates continuous
state changes like slicing vegetables, while iGibson 2.0[91] incorporates physical states like temper-
ature and wetness into scanned environments. Similarly, CHALET[225] allows for programmatic
object placement within its fixed houses to test generalization across diverse object configurations.
To enhance scene diversity, UnrealZoo[249] provides a large collection of 100 interactive worlds,
ranging from indoor to urban environments, making it valuable for evaluating generalization across
dynamic scenarios. A distinct sub-category focuses on task generalization within a single, static scene.
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A.1 Scanning-based Fidelity A.2 Modeling-based Fidelity

B.Scene Customization:From Blueprint to Virtual World

Procedural Scene Customization

Input: 2D Map Process: 3D Extrusion Output: Usable 3D Scene

C.Environmental Editability

Intrinsic State Change (Cooking)

Before: Raw After: Cooked

A. Scene Fidelity: Scanning-based vs. Modeling-based Worlds

geometric 
distortion

artificial &
sterile

Figure 8 VisualizingKeyDimensions for Evaluating Embodied AI Simulators. This figure illustrates three
critical dimensions—scene fidelity, customization, and editability—that are essential for developing trustworthy
agents. (A) Scene Fidelity: Comparison of scene generation methods. (A.1) A scene from a real-world scan
(Habitat [166]) may contain artifacts such as geometric distortions. (A.2) Scenes from a modeling-based engine
ThreeDWorld [48] are geometrically accurate but appear artificial and sterile. (B) Scene Customization: An
example of procedural scene generation from Gazebo [84]. A simple 2D map is programmatically converted
into a novel 3D environment, a crucial capability for testing agent generalization across diverse scenarios. (C)
Environmental Editability: An example of intrinsic state change from iGibson 2.0 [91]. An agent’s interaction
transforms an object’s state from ’Raw’ to ’Cooked’, enabling the simulation of complex real-world tasks beyond
simple navigation and manipulation.

Meta-World[237], for instance, offers 50 distinct manipulation tasks in one tabletop setting with
randomized object and goal positions, making it a standard for multi-task and meta-reinforcement
learning. Similarly, RLBench[73] features over 100 tasks and a powerful API for creating new ones,
positioning it as an ideal testbed for skill acquisition, imitation learning, and few-shot learning. Fi-
nally, some platforms serve as foundational frameworks rather than navigable environments. The
DeepMind Control Suite [187], built on MuJoCo, offers a rich set of pre-defined control tasks, acting
as a standardized tool for benchmarking reinforcement learning algorithms.

6.3 Customizable, Static or Low-Interaction Scenes
This category is characterized by platforms that allow users to create or import new scenes but offer
limited physics-based interaction. They are suitable for large-scale navigation experiments across
diverse environments but not for manipulation-heavy tasks. Habitat [166] is a key example. It is a
high-performance simulator optimized for navigation, allowing users to easily import and use their
own 3D scene datasets (e.g., from scans). However, its initial versions lacked physics simulation,
rendering all objects static. AirSim [170], built on Unreal Engine, also fits here. It allows users to create
or use any environment within Unreal Engine, offering high customization. Its focus, however, is on
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vehicle (drone, car) simulation, and it does not support agent-based object manipulation.

6.4 Highly Customizable and Interactive Scenes
This category features simulators that provide powerful APIs for creating diverse new scenes and
support rich, physics-based interactions with multi-state objects. These platforms provide a strong
foundation for developing general-purpose, robust, and highly capable embodied agents. We can
group these platforms into general-purpose engines and task-oriented simulators.

General-Purpose Platforms and Engines: NVIDIA Isaac Sim [137] stands out as a powerful,
robotics-focused platform built on PhysX. It offers extensive scene customization through Python
APIs and asset importers (URDF, MJCF) and supports complex, multi-state object interactions and
large-scale, multi-agent simulations. ThreeDWorld [48] is another versatile platform supporting
multi-modal simulation (including audio and soft-body physics) and procedural generation of rich,
interactive environments. Genesis [250] aims to be a generative and universal physics engine that can
create scenes and tasks from high-level prompts. The open-source Gazebo simulator [84] supports
multi-robot simulation with high customizability for models and environments.

Task-Oriented and Extensible Simulators: Many simulators provide both rich default content
and strong extension capabilities. AI2-THOR [85], especially with its ProcTHOR extension, excels at
the procedural generation of interactive indoor environments where objects can be manipulated in
complex ways (e.g., sliced, cooked, opened). SAPIEN [218], with its focus on part-based articulated
objects from the PartNet-Mobility dataset, is ideal for tasks requiring a deep understanding of object
mechanics. Other simulators extend the frontiers of scale and domain. InternUtopia [199] introduces
city-scale environments with thousands of interactive scenes and social, LLM-driven NPCs. Its scene
customization is primarily reflected in the ability to modularly combine a massive library of pre-made
scenes into new, larger-scale city environments, rather than procedurally generating individual scenes
from scratch. LabUtopia [95] focuses on scientific laboratory environments, featuring a procedural
scene generator and simulating not just physics but also chemical state changes.

7 Position and Future Directions
Our systematic review in Chapters 4, 5, and 6 reveals a vibrant yet fragmented research landscape.
While significant progress has been made in perception, planning, control, and safety evaluation, these
efforts often advance in isolated silos. We posit that the path toward truly trustworthy embodied
AI necessitates a paradigm shift from optimizing individual components to engineering a holistic,
closed-loop system. Inspired by the principles of cybernetics, we argue that trustworthiness is not a
feature we can simply “add” to an agent. Instead, it is a quality that emerges from the agent’s constant,
dynamic interaction with its environment and other beings.

From this perspective, a trustworthy embodied agent should be conceptualized not as a pre-programmed
machine, but as an advanced adaptive control system. As illustrated in Figure 9, this system operates
within a classic feedback loop. The Environment, which includes the physical world, humans, and
other agents, serves as the complex, unpredictable “plant” to be controlled. The Agent itself acts as the
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The Self TheWorld

Action

Feedback

The Interaction

Evolution

Collaboration

Figure 9 Our proposed cybernetic framework for trustworthy embodied AI, visualized as a closed-loop system
built upon three fundamental pillars. The Self represents the agent, which acts as an adaptive controller.
It performs an Action in The World (the environment), which provides sensory Feedback. This feedback
drives the agent’s internal Evolution, enabling it to learn and adapt. Simultaneously, the agent engages in
Collaboration through The Interaction interface, which encompasses complex interactions with humans and
other agents. This virtuous cycle illustrates our position that trustworthiness emerges from the continuous
interplay of these three pillars.

adaptive controller. It receives a high-level Task as its reference signal and continuous Perception as
its feedback signal.

The core of our position is that the trustworthiness of this entire system hinges on the quality of three
fundamental pillars that constitute this loop:

TheWorld: The quality of the feedback signal is determined by the realism of the environment. A
trustworthy agent can only be forged through interaction with a high-fidelity world that provides
meaningful, realistic consequences for its actions.

The Self: The agent itself must be adaptive. It needs an intrinsic self-evolution mechanism that allows
it to learn from the feedback loop, continuously updating its internal model and improving its control
strategy over time.

The Interaction: The Sophistication of the Interface. The agent’s ability to process inputs and produce
effective outputs depends on its coordination architecture. This interface must seamlessly integrate
internal brain-body synergy with external multi-agent and human-agent collaboration.

This chapter will now elaborate on each of these pillars, culminating in a unified vision for a research
agenda aimed at building and perfecting this closed-loop system for trustworthiness.

7.1 The World: Bridging the Reality Gap with High-Fidelity Scalable Inter-
active Virtual Environments

In Chapter 4, we see that most existing research on trustworthy embodied AI uses limited real data [59]
or handcrafted simulators [85, 166] to address a specific trustworthiness or security issue. Research on
the entire process of embodied systems is lacking, indicating that progress in trustworthy embodied AI
is severely constrained by the development of the basic capabilities of embodied intelligence. However,
in contrast to fields such as computer vision and natural language processing that have access to
large-scale general-purpose data, large-scale high-quality data for trustworthy embodied intelligence
is extremely scarce since the research on embodied intelligence relies on the interaction between agents
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Figure 10 Existing virtual environment and the virtual world we prefer. We argue that high-fidelity, scalable,
and interactive are three key aspects of a virtual environment. Existing methods fail to meet all requirements
simultaneously, while the preferred virtual world should achieve three aspects together.

and physical environments, and the data forms of different embodied tasks vary greatly. Therefore,
researching trustworthy embodied intelligence in virtual environments has become an inevitable
choice at present.

Existing simulators [91, 51, 151, 118] lack realism and are difficult to scale up under limited resources,
failing to capture the authenticity and scene diversity of real environments. We argue that research
on trustworthy embodied intelligence requires constructing high-fidelity, scalable, interactive virtual
training environments that bridge the reality gap to the real world, which could significantly facilitate
progress toward the entire system of trustworthy embodied intelligence.

The constructed virtual environment should have the following capabilities: (1) Efficient mapping
mechanisms among heterogeneous 3D representations in the virtual environment. Different embodied
tasks often rely on different forms of 3D representation [54, 71], while existing virtual scenes typically
use fixed representations [85, 166, 51, 151, 170, 249], and a single unified representation lacks a feasible
solution. Therefore, the virtual environmentmust supportmappings acrossmultiple representations to
enable flexible transfer and efficient adaptation of virtual scenes among diverse embodied tasks, thereby
improving task generality. (2) High-fidelity and scalable virtual environments. The virtual embodied
training environment should directly leverage raw sensor data from real-world environments to
construct high-fidelity scenes, and support dynamic expansion mechanisms, such as via the internet or
real-time data collection, to increase scene diversity and scale, meeting the requirements of embodied
research for varied and large-scale scenarios. (3) Personalized interaction capabilities in the virtual
environment. The constructed virtual environment should allow objects to be manipulated via
convenient interfaces, such as natural language, enabling efficient interaction, and providing embodied
systems with real-time operational feedback and dynamic scene updates.

As shown in Figure 10, these capabilities, including high fidelity, scalability, and interactivity, form an
“impossible triangle” in existing virtual-scene construction methods, as current techniques typically
address atmost one or two of these aspects and cannot satisfy all three simultaneously. If the limitations
in balancing realism, generality, and interactivity are addressed, we can construct high-fidelity, scalable,
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and interactive virtual embodied environments that support training for diverse embodied tasks and
ultimately enable trustworthy embodied system solutions.

7.2 The Self: From Pre-Trained Statues to Self-Evolving Embodied AI

Actions

Feedback World

Human

Other
Agents

Environment

Parametric
Memory

Contextual
Memory

Model
Weight

Model
Context

Co-Evolution Read Write

Model

Compression Active
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Editable &
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Figure 11 A next generation memory system holds promise as the key component toward EAI evolution.
Compared to chatbot agents, embodied agents should incorporate parametrized active memory systems to
compress multi-model and life-time scene memories and participate in co-evolution with the model parameters
themselves. Black components represent mature technologies (RAG, continual learning, working memory, etc.),
while red annotations indicate immature technologies.

In Chapter 4, we saw two different ideas for safety: building it from rules or learning it from data.
Both methods today lead to agents that are like “pre-trained statues.” Once they are created, their
abilities are fixed. This makes them fragile. They cannot adapt to new dangers, and we cannot be
sure their safety rules will work in new situations. We argue that trustworthy agents cannot just be
“built”; they must be able to evolve. They need their own ways to improve themselves based on their
experience in the world.

World experience, comprising perception-action data accumulated by embodied agents during envi-
ronmental exploration, constitutes the foundation of their knowledge acquisition. Current research
predominantly employs external memory systems to structure these experiences into retrievable
knowledge representations and episodic memories [57, 14]. However, this approach fundamentally
remains an in-context engineering mechanism that, while enhancing agent performance in specific
environments and tasks [220], lacks the means to continuously improve agent capabilities through
systematic utilization of the memory system. Embodied continual learning [209, 28] enables direct
integration of accumulated experiences into model parameters [120]. Nevertheless, this approach
faces technical challenges including prohibitive computational costs, training instability, and catas-
trophic forgetting [18]. More critically, existing continual learning paradigms scarcely constitute
self-evolution, instead relying upon external evaluation criteria and training pipelines.

As shown in Figure 11, a self-evolving embodied memory systems must incorporate the following
capabilities: (1) Active Preception, memory systems should actively perceive the environment and
assess trajectories [102, 160] based on historical experience , rather than merely serving as passive
LLM tools. (2) Parametric Memory compression for life time multi-model memory, enable a
comprehensive observation of the “world” [24, 100]. (3) Shareable and editable memory mecha-
nisms, with related work including memory interchange protocols and multi-agent memory sharing
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frameworks [49, 97]. (4) Memory-Model co-evolution mechanisms, parameters should achieve
natural alignment and co-evolution within a unified semantic space, rather than relying upon external
auxiliary modalities [98, 252, 179].

Ultimately, we can construct a next-generation intrinsic embodied memory system that fully serves
trustworthy model capability evolution. This system transcends rigid “retrieval-generation” mech-
anisms, establishing an iterative pathway from environmental perception → decision execution →
self-memory updating → continual learning. This framework integrates the stability advantages of
memory systemswith the adaptive capabilities of continual learning, providing a theoretical foundation
for the long-term autonomous development of embodied intelligence.

7.3 The Interaction: Achieving Seamless Coordination

Body

Agent

Collaboration

Other Agents

HumanCollaboration

Collaboration

Fast Thinking

Slow Thinking

Figure 12 An illustration of the third pillar of seamless coordination: Internal, Multi-Agent, and Human-Agent.
The agent’s ability to effectively integrate these three interaction channels is fundamental to achieving robust
trustworthiness in the physical world. Each channel addresses a unique challenge, from bridging the internal
semantic-physical gap to enabling safe collective behavior and intuitive human collaboration.

Many trust failures in embodied intelligence arise not from a single faulty component, but from poor
coordination. This friction can occur as a disconnect between the agent’s deliberative “brain” and its
reactive “body,” or as a breakdown in its interactions with humans and other agents.

We believe that trustworthiness is not a property of an agent in isolation but emerges from the quality
of its interactions. Therefore, to build truly trustworthy agents, we must develop better architectures
and protocols for seamless coordination at three critical levels: internal (brain-body), multi-agent, and
human-agent, as illustrated in Figure 12.

Before delving into these three levels, it is noteworthy that a foundational principle of trustworthy
interaction, Identifiability, has received little attention. This principle ensures an agent’s presence
and actions are clearly distinguishable from those of a human to prevent deception. Indeed, our
quantitative literature analysis (Figure 5) shows that research in this area is still nascent. While we
focus on the three levels of coordination below, we consider Identifiability a cross-cutting concern for
all forms of interaction.

Internal Coordination: Brain-Body Synergy via Fast and Slow Thinking The most fundamental chal-
lenge in internal coordination is bridging the “semantic-physical safety gap.” We posit this gap can be
powerfully framed through the lens of Fast and Slow Thinking, which distinguishes between an agent’s
“Slow Thinking” brain (the deliberative, LLM-based planner) and its “Fast Thinking” body (the reactive,
low-level motor controller). Trustworthiness failures often occur when the “slow,” semantically-aware
plan is incompatible with the “fast,” dynamic realities of physical execution. Therefore, the research
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frontier is to develop unified architectures that enable a seamless synergy between fast and slow
thinking, a direction already being explored in frameworks that learn to make a decision between
deliberative and reactive modes [180, 182]. The emergence of powerful, end-to-end Vision-Language-
Action (VLA) models like Helix, which fuse high-level reasoning with low-level motor control in a
single system, represents a significant step toward this goal [46].

Multi-Agent Coordination: From Individual Safety to Collective Trust Coordination extends beyond
the agent’s own mind and body to its interactions with other intelligent agents [58]. In shared spaces
like warehouses or public roads, the safety of one agent is inextricably linked to the predictability
and cooperativeness of others. Therefore, a trustworthy system requires robust protocols for multi-
agent coordination. This involves designing rules for negotiation, signaling intent, and decentralized
teamwork, ensuring that a group of agents can act as a safe and reliable collective, rather than a chaotic
crowd.

Human-Agent Coordination: Beyond Control to Shared Autonomy The ultimate form of external
coordination involves interaction with human users. A truly trustworthy agent must be more than
a simple tool; it must be a competent collaborator. This requires moving beyond simple remote
control to a system of shared decision-making, often referred to as shared autonomy. In such a system,
humans provide high-level, goal-oriented direction, while the agent executes the low-level details.
Critically, this collaboration must be bidirectional: the agent needs to infer the user’s intent from their
actions [158], and in turn, it must also be able to clearly communicate its own capabilities, limitations,
and uncertainty back to the human partner, ensuring that the human can make informed decisions
and build a well-calibrated sense of trust [45].

7.4 A Unified Vision for the Future
The three pillars we have outlined, the World, the Self, and the Interaction, are not independent
research avenues but the essential, interdependent components of the cybernetic control system
illustrated in Figure 9. The future of trustworthy embodied AI lies not in perfecting any single
component in isolation, but in understanding and engineering the synergies of the entire closed loop.

This virtuous cycle represents the process by which trustworthiness is continuously generated and
reinforced. A high-fidelity Environment is the source of all meaningful experience, providing the rich,
realistic feedback necessary for learning. This feedback is the lifeblood for the agent’s Self-Evolution
mechanism; without authentic data from a challenging world, adaptation stagnates, and the agent’s
internal model of reality becomes a fragile caricature. Finally, the quality of this entire feedback
loop is mediated by the Coordination architecture. A sophisticated interface ensures that the agent’s
intentions are translated into effective actions and that environmental feedback is perceived without
distortion, closing the loop and enabling the next cycle of evolution.

The interdependence is absolute: a brilliant self-evolution algorithm is useless if it learns from a
simplistic world. A hyper-realistic world provides no benefit to an agent that cannot evolve. And a
failure in coordination renders both a realistic world and an adaptive mind impotent.

The grand challenge for the next decade, therefore, is not simply to advance the state-of-the-art
within each pillar, but to focus on the interfaces and feedback pathways that connect them. The most
profound breakthroughs will come from research that asks: How can physical feedback from the body
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reshape the brain’s high-level plans? How can an agent’s evolving self-awareness be used to actively
seek out challenging scenarios in its environment? How can human interaction provide the richest
form of feedback to accelerate the entire evolutionary loop?

We call for a community-wide focus to shift from optimizing isolated performance metrics to building
and perfecting this complete, dynamic system. The most trustworthy embodied AI will not be the
one with the single best component, but the one that achieves the most stable and adaptive harmony
within this entire closed-loop system.

8 Conclusion
The field of Embodied Artificial Intelligence (EAI) is advancing at an unprecedented pace, with agents
moving from simulated environments to complex, physical interactions in the real world. This
increasing autonomy and physical capability, however, introduces profound challenges to safety and
trustworthiness, where failures can result in direct physical harm, property damage, or the violation
of societal norms. In this paper, we have provided a comprehensive framework to navigate this
critical landscape. We began by establishing ten core principles, systematically organized under the
two indispensable dimensions of Trustworthiness (accuracy, reliability, explainability, controllability,
auditability) and Safety (attack resistance, abuse prevention, identifiability, privacy protection, value
alignment). To unify disparate research efforts, we introduced a novel, agent-centric framework
that analyzes risks across the four operational stages of an EAI system: Instruction Understanding,
Environment Perception, Behavior Planning, and Physical Interaction. Within this structure, we
systematically reviewed the current state-of-the-art, examining key solutions, benchmarks, evaluation
metrics, and simulators, thereby identifying critical gaps and challenges. This paper has sought tomove
beyond a narrow focus on individual components, instead advocating for a holistic understanding of
the entire EAI system. We conclude by reiterating our position that the future of safe and trustworthy
EAI lies not in perfecting isolated modules, but in engineering the closed-loop, cybernetic system as
a whole. Future progress hinges on a paradigm shift towards understanding the dynamic interplay
between the Agent (Self), its Environment (World), and their Interaction. By focusing on this unified
system, we can pave the way for the next generation of embodied agents that are not only capable and
intelligent but are fundamentally safe and genuinely trustworthy.
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