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Abstract

Deep-learning-based methods have revolutionized the way we address protein
structure prediction and structure-based sequence design. Despite their success,
current methods still face limitations. Protein structure prediction requires large
models, which often act as bottlenecks in protein design workflows. Design meth-
ods prioritizes the optimization of sequence recovery as a surrogate for structure
recovery. We address these limitations in our model E2ZEFOLD by learning both
tasks end-to-end in a discrete, stochastic autoencoder. E2EFOLD is trained to
reconstruct an input backbone and predict sidechain conformations. An auxiliary
sequence recovery objective guides the encoder to predict a sequence distribution
conditioned on the backbone. Discrete sequences are sampled differentiably from
this distribution and passed to the decoder for structure prediction. We find that
our end-to-end framework enables significantly improved sequence design self-
consistency. On designed sequences, our model’s structure prediction correlates
with Boltz-2’s while relying on more than one order of magnitude fewer parameters.
Taken together, these results suggest a promising framework for the advancement
of protein structure prediction and sequence design.

1 Introduction

Deep-learning-based methods have made outstanding contributions to two biological problems: the
protein structure prediction problem, which involves predicting a protein’s three-dimensional structure
from its amino acid sequence [Anfinsen, [1973| Dill et al.| 2008]], and its inverse, the structure-based
protein design (or "inverse folding") problem [Pabo, |1983|], which involves predicting an amino acid
sequence that will fold into a given backbone structure.

In structure prediction, methods such as AlphaFold 2 [Jumper et al.,2021]] and RoseTTAFold [Baek
et al.}2021]] have demonstrated unprecedented accuracy for a previously untractable problem. These
methods employ large transformer-based architectures and leverage co-evolutionary information
from multiple-sequence alignments (MSAs). An alternative approach to structure prediction, as
exemplified by ESMFold [Lin et al.;|2023]], uses embeddings of protein language models (PLMs) in
place of MSAs.

All these methods incur high computational costs, frequently creating bottlenecks in protein design
pipelines where protein structure prediction is essential for the selection of the best sequences.
Developing more computationally efficient models has emerged as an active area of research. Whereas
previous approaches have focused on the optimization of model architecture and implementation
[Cheng et al.l |2022] [Wohlwend et al.| 2023, we restrict the protein sequences to be predicted to
"designed" sequences. These are commonly characterized by reduced complexity and more explicit
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encoding of protein structure than their native counterparts. Focusing on these sequences allows for
accurate structure prediction by smaller models. Furthermore, the explicit sequence encoding enables
structure prediction without relying on MSAs or PLM embeddings [Chu et al.| 2024].

Structure-based sequence design has been addressed by a plethora of methods, originally physics
and heuristics-based [Leaver-Fay et al., [2011]], and more recently employing graph neural networks
optimized for node classification with the canonical amino acids as node labels and the geometry
between residue atoms as common primary input feature [Ingraham et al., 2019, Dauparas et al.,
2022]. Existing models share sequence recovery as the primary training objective.

As noted in previous publications [Ingraham et al., 2019 [Ektefaie et al., [2024]], this training objective
is theoretically insufficient due to the degenerate relationship between protein structure and sequence.
Numerous sequences can fold into a given backbone [Sander and Schneider} 1991} |Li et al.||[1996],
so higher sequence recovery does not necessarily indicate better sequence design performance.
Conversely, single mutations can cause misfolding or disrupt a structure, demonstrating that high
sequence recovery is not indicative of successful sequence design. By training a sequence design
method primarily with a structure recovery loss, we intend to account for the degenerate relationship
between sequence and structure.

To accurately and efficiently predict protein structure for designed sequences, and to account for
sequence-structure degeneracy in sequence design, we propose learning both problems end-to-end
with our method E2EFOLD. Specifically, we train a discrete, stochastic protein structure autoencoder
in which the encoder learns structure-based sequence design, and the decoder structure prediction
of designed sequences. The autoencoder is optimized to reconstruct the input backbone structure
and predict side-chain conformations. An auxiliary sequence recovery objective guides the encoder
to output sequence distributions conditioned on the backbone. Discrete sequences are sampled
differentiably from these distributions using the Gumbel-Softmax trick and passed to the decoder.

We aim to examine the effects of learning structure-based sequence design and structure prediction of
designed sequences end-to-end. Accordingly, we evaluate E2ZEFOLD’s performance on both tasks
across multiple datasets, ablate its structure recovery component, and compare with standard methods.

We summarize main contributions and relevance of this work as follows.

Conceptual Novelty: To our knowledge E2EFOLD is first to learn structure-based sequence design
followed by structure prediction of the designed sequences in an end-to-end differentiable model.

Performance: Our approach improves self-consistency in sequence design and achieves competitive
structure prediction with substantially smaller model size.

Practical Relevance: Advances in both problems can improve biological understanding and acceler-
ate progress in areas such as drug and material discovery, synthetic biology, and enzyme engineering.
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Figure 1: Model overview. E2EFOLD learns structure prediction and structure-based sequence
design end-to-end in a discrete, stochastic autoencoder.

2 Method

Our end-to-end discrete, stochastic autoencoder framework is illustrated in Figure We first
describe the framework and then discuss key aspects of architecture and training. Pseudocode for the
architecture, training details and hyperparameters are available in Appendix



2.1 End-to-End Framework

Let X € RV*4x3 represent the native backbone atomic coordinates (N, C,, C, and O) of a protein
with IV residues and let S = [S1, Ss, ..., Sy] € RV*20 be its sequence, where each S; € {0,1}2°
is a one-hot vector encoding the amino acid type at residue ¢. Let (¢, 1) be learnable parameters of
our model.

During a forward pass, the encoder e, conditioned on X, predicts logits L € RY *2 to parametrize
categorical distributions over all amino acid types j € {1,2,...,20} at each residue ¢ leading to the

following probability distribution:
20
( exp(Li ;) >
20 ’
k=1 eXp(Liyk) j=1

The quantizer ¢ samples a discrete sequence S at temperature 7 from this distribution using the
Gumbel-Softmax trick [Jang et al.| 2016, [Maddison et al., [2016] and straight-through gradient
estimation [Bengio et al.| 2013]:

p(S|X;9) = HCat S;

(Li,jJrGi,j)

~ exp | =202

S; = one_hot| argmax ,  Gij ~ Gumbel(0, 1).
j€{1,...,20} E k=1 exp <LG1)C)

The decoder dy,, conditioned on S, predicts rigid frames and torsion angles at each residue position for
all 20 amino acid types. From these predictions, it constructs all-atom structures based on either the
native or a sampled sequence. The native-derived structure Xan atom € RVX14X3 hag a one-to-one
correspondence with the reference and is used to compute reconstruction losses during training. In
contrast, the sampled-sequence structure X&u atom € RV *14x3 1acks this correspondence because
side chains differ, and therefore cannot be used for reconstruction losses. Instead, it serves as the
model’s predicted structure at inference.

The model is optimized with the loss function £ and loss coefficients («a, 5,7, 6, €)

L= aEFAPE + BECQ—FAPE + ’YACTorsion + 5£Distogram + 6ACchucncc Recovery

where Lgequence Recovery 1S @ categorical cross-entropy loss between the native sequence S and the
encoder’s predicted distribution and the other structure terms are adapted from Jumper et al.|[2021]].

2.2 Architecture

Encoder We adopt the feature creation procedure and architecture from ProteinMPNN [Dauparas
et al., 2022, but intercalate an attention layer between the node and position-wise feedforward
layers. Instead of the random-order autoregressive decoding scheme in ProteinMPNN, we employ
simultaneous prediction at all residue positions.

Decoder We adapt the ESMFold [Lin et al.,|2023]] architecture. This architecture contains by default
three parts, a structure module implementation from OpenFold [|Ahdritz et al., {2024} Jumper et al.,
2021} [Evans et al.,|2021]], a Pairformer Trunk and a pretrained ESM-2 PLM. We drastically downsize
the Pairformer Trunk and remove the PLM integration. Given that we train on full-length proteins
of maximally 412 residues, we increase the number of recycles to permit the model to expand the
protein frame gas initialized at the origin over more iterations. Lastly, we modify the structure module
to reconstruct all-atom coordinates either based on the native sequence or the sampled sequence.

2.3 Data

We train and evaluate models on splits by Ingraham et al.|[2019] of CATH 4.2 [Orengo et al., | 1997]
and E2EData, a custom-curated dataset from the Protein Data Bank [wwPDB Consortium) 2019]]. We
also evaluate our model on RFData, a set of RFDiffusion [Watson et al., 2023]] generated backbones.



3 Results

We assess structure-based sequence design using two metrics: (i) sequence recovery and (ii) self-
consistency, for which we compute TM-score and RMSD between the reference structure and the
Boltz-2 prediction of the designed sequence [Passaro et al., 2025]. To quantify the contribution of
structural supervision, we ablate the structural loss terms. For protein structure prediction of designed
sequences, a newly defined task without tailored baselines, we use Boltz-2 as the reference method
and report prediction accuracy in RMSD to the reference structure.
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Figure 2: Results. (A) Effect of training with a structure recovery objective on self-consistency
(TM-score, RMSD; evaluated on RFData) and sequence recovery (evaluated on E2EData). (B)
Comparison of E2EFOLD structure prediction with Boltz-2’s on E2EFOLD’s designed sequences
(evaluated on E2EData). Significance is assessed by a paired Wilcoxon signed-rank test (x p < 0.05,
#x p < 0.01, xx%p < 0.001, 5% p < 1074).

Sequence Recovery On CATH 4.2, E2EFOLD achieves 25.15% mean sequence recovery, below
prior work (see Appendix, Table [2), but self-consistency is the more relevant metric for this task.
Training and evaluation on the larger E2EData splits improves recovery to 31.01%, suggesting that
structural context beyond single domains is important for end-to-end learning.

Self-Consistency On the RFData test split, E2ZEFOLD attains an average TM-score of 0.78 and
RMSD of 6.02 A. On E2EData, the scores are 0.64 (TM-score) and 8.84 A (RMSD).

Ablation of Structure Recovery Adding of the structure-recovery objective (Figure[TJA) shows
significantly improved self-consistency (TM-score, RMSD) on RFData at reduced sequence recovery
on E2EData. The improvement in self-consistency persists accross all protein lengths and increases
as a function of it.

Comparison with Boltz-2 E2EFOLD’s decoder achieves on average more accurate structure
prediction of designed sequences than Boltz-2 (Figure 2.54 A vs. 6.03 A RMSD). This comparison
is however not straightforward, since our model was trained specifically on sequences from its
encoder. Prediction errors correlate with those of Boltz-2 on designed sequences (Appendix, Figure 3}
Spearman’s p = 0.60 on RFData and p = 0.60 on E2EData), while still yielding higher accuracy
overall. Notably, our decoder has only 7.8 million parameters, compared to 432 million for Boltz-2
(excluding its confidence model).

4 Conclusion

E2EFOLD is a lightweight method for structure-based sequence design and accurate structure predic-
tion of designed sequences. Despite being at an early stage, it already shows promising performance
on both tasks, and ablations of the structure loss confirm its benefit for sequence design. Going
forward, we aim to address current limitations by optimizing the sequence decoding strategy, en-
abling conditional sequence design, and reformulating structure prediction as a generative task with
confidence estimation. In parallel, we plan more extensive comparisons with established baselines
and additional ablations. We will examine with particular attention how the relative weighting of
sequence and structure loss components affects performance.
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A.1 Extended Methods

A.1.1 Architecture

E2EFOLD’s architecture comprises three parts: the encoder (Algorithms [T} 2l B), the quantizer
(Algorithm[d)), and the decoder (Algorithms|[5][6] [7). We use V for the single/node representation, and
E for pair/edge representations. Model predictions for the native sequence are marked with a dot (°),
and predictions for the sampled sequence with a tilde (7). The pseudocode for the StructureModule
is adapted from Jumper et al.|[2021]] and the pseudocode for Decoder and FoldingBlock is adopted

from Lin et al.|[2023]).

Algorithm 1 Encoder

1
2
3
4:
5:
6.
7
8
9

: def Encoder(V € RVXev E € RVNXkxce Np oo =3)
form =1,..., NpLayers do
(V, E) «+ MPNNEncoderLayer,,(V, E)
end for
form =1,..., Npayers do
(V, E) «+ MPNNDecoderLayer,,(V, E)
end for
: L € R¥*20 « Linear(V)
: return L

Algorithm 2 MPNNEncoderLayer

1: def MPNNEncoderLayer(V € RV*ev E ¢ RNxkxcr)

a

8:
9:
10:

# Node message passing

H « [COHC&t(Vi, Vj, EZJ)] i=1.N, j=1.k S ]RNXkX(chJrCE)
M + MLP,04.(H)

M+ b M

V « LayerNorm(V + Dropout, ; (M))

FeedForward

F MLPFeedForward (V)

V « LayerNorm(V + Dropout, ; (F))

Edge message passing

H « [concat(V;, V, Eij)]i:l..N, j=1.k © RV kx(zevres)
M ¢ MLP.qg. (H)

E + LayerNorm(E + Dropout, ; (M))

11: returnV, E

Algorithm 3 MPNNDecoderLayer

1: def MPNNDecoderLayer(V € RV*cv E ¢ RN xkxcr)

2
3:
4:
5

>

© % 3

# Node message passing

H « [concat(V;, V;, Eij)]i:L,N, j=1.k € A (Eevrer)
M + MLP,,0q.(H)

M« Sh M

V < LayerNorm(V + Dropout ; (M))

Node attention

V « V + Dropout, ; (SelfAttention(V))

FeedForward

F MLPFeedForward (V)

V «+ LayerNorm(V + Dropout, ; (F))

returnV, E




Algorithm 4 Quantizer

1:

2:

def Quantizer(L € RV*20.§ € {0, 1}V*20 7 > 0)

# Sample Gumbel noise for all residues and amino acid types
G ~ Gumbel(0, 1)V *20

# Gumbel softmax - reparametrization trick
Y « softmax((L + G)/7) € RV*20

# Discretization with straight-through gradient estimation

S « one_hot(argmax; Y, ;) € {0,1}V*20
S « stopgrad(S—Y) +Y

# Log-probabilities for sequence recovery loss
Q < log(softmax(L/7)) € RN*20

1 N 20
L:Sequence Recovery <~ — 7 Zi:] Zj:l S’L}j Qi,j

return S, ['Sequence Recovery

Algorithm 5 Decoder

1:

19:
20:
21:
22:
23:
24:

25:

PRI IN RN

def Decoder(S € {0, 1}NX20 (Xall-atoms X5 o) € RYX14X3,
(Tall—aloma T ) c SE( )N><77 (a’aalt ) RNX'TXQ)
V « Linear(S)
(Vrecycle7 E7 Erecycle’ Drecycle) —0
forn=1,..., Nicycle do > Shared weights
(Vrecycle, Erecycle’ Drecycle) — StOng‘ad(VreCyde, Erecycle) Drecycle)
if 1 < Niecycle then
(V, E) « stopgrad(V, E)
end if
Vrccyclc — LayerNorm(Vrccyclc)
Erecycle . LayerNorm(Erecycle)
Erecycle — Erecycle + Embedding(Drecycle)
V«V+ Vrecycle
E«E+ Erecycle
form=1,..., NFoldingBlock do
E < E + PairwiseRelativeSequencePositionalEncoding (V)
(V, E) < FoldingBlock,,(V, E)
end for
(X, Lrarr, Lc,-FAPE, LTorsion)
< StIUCtureMOdule(V’ E’ (Xall-atom, Xalltatom) (Tall-amma T:llltiétom)a (Ot, aalt.))
Dreeyele ¢ Distogram(X)
Vrecycle —V
Erecycle «— E
end for > Use loss and structure from the last recycling iteration
D <« DistogramHead(E)
LDistogram computeDistogramLoss(D, Xaii-atom)

all-atom

return X7 EFAPE, EC(,-FAPEy ‘CTOFSiOIla ﬁDistogram

Algorithm 6 FoldingBlock

1:
2:
3
4:
5:
6:
7
8
9:

def FoldingBlock(V € RV*v E € RNV*Nxer)
B «+ Linear(E)
V + V + MultiHeadSelfAttention(V, bias = B)
V <V +MLP(V)
E + E + Linear(Concat [OuterProduct(V), OuterDifference(V)])
E + E + TriangularMultiplicativeUpdateOutgoing(E)
E < E + TriangularMultiplicativeUpdateIncoming(E)

: E +— E+ MLP(E)
returnV, E




Algorithm 7 StructureModule
1: def StructureModule(V € RV E € RV*N>¢r (X aom, Xalom) € RY*14X3,

atom

(Tall—atoma T ) S SE(3)N><77 (a, aalt-) € RNX7><2)

all-atom

2: V «+ LayerNorm(V)
3: E + LayerNorm(E)
4: Vinitial —V
5: V « Linear(V)
6: (T, T)« (I,0O)N (IcR3>*3 0eR3)N
7: for { =1,..., NLayers do > Shared weights
8: V + V + InvariantPointAttention(V, E, ’i‘)
9: V « LayerNorm (Dropout, ;(V))
# Transition
10: V « V + Linear (ReLU(Linear(ReLU(Linear(V)))))
11: V « LayerNorm (Dropout, ;(V))
# Update backbone
12: T + T o BackboneUpdate(V), T « T o BackboneUpdate(V)
# Predict torsion angles w, ¢, ¥, x1, X2, X3, X4
13: A < Linear(V) + Linear(Vnitial)
14: A « A + Linear(ReLU(Linear(ReLU(A))))
15: A « A + Linear(ReLU(Linear(ReLU(A))))
16: o+ Linear(ReLU(A))
17: (&, &) + «
# Backbone and torsion losses at each iteration
18: (R, &)« T
19: X, + t
20: Lé papg ¢ computeFAPE(T, Xcao, T, Xca)
21: Lo rsion + computeTorsionAngleLoss (¢, a, a®!*)
# No rotation gradients between iterations to stabilize training.
22: if £ < Npayer then
23: T + (stopgrad(f{), E)
24: T + (s‘copgrad(f.{)7 ﬁ)
25: end if
26: end for
27: £CC¥_FAPE — m ZZ ﬁéa—FAPE7 ETOYSiOH — ﬁycrs ZE ‘Cg[‘orsion
28: ('i‘an_atom X) — computeAllAtomCoordinates(’i‘7 Q)
29: (Tau_atom, X) — computeAllAtomCoordinateS(T, &)
# Rename symmetric atoms in ground truth
30: (Xairatom; Tail-atom) < renameSymmetricGround TruthAtoms (Xau_amm, Xf;lllt_émm,
Tait-atom, T;”lllt_;nom, X, T)

#  Final loss on all atom coordi'nates and’ all frames(renamed)
31: »CFAPE <~ ComPUteFAPE(Tall-atom; Xall—aloma Tall—atoma Xall—atom)
32: return X, Lpapge, Lc,-FAPE; LTorsion

10



A.1.2 Data

We curate our custom dataset E2EData from protein-only entries fetched from the Protein Data Bank
on July 16, 2025 and determined by X-ray diffraction, electron microscopy, neutron diffraction, or
electron crystallography and with a reconstruction or refinement resolution of 3 A or better; further,
we limit sequence lengths to lie between 50 and 412 resolved residues. Homooligomeric assemblies
were omitted due to chain-permutation symmetry incompatibilities with our model architecture. We
then clustered the first biological assembly of each remaining entry using foldseek-multimer with
0.5 coverage, a per chain TM-score threshold of 0.6 and the coverage-mode set to 0. Based on the
clustering results, entries were partitioned into training (90%), validation (5%), and test (5%) sets.

A.1.3 Training/evaluation details and hyperparameters
As E2EFOLD’s architecture is adapted from OpenFold/AlphaFold 2, ESMFold, and ProteinMPNN,

we primarily adopt the implementations and reference hyperparameters of these models. Table|I]
summarizes important details and hyperparameters.

Table 1: Important training/evaluation details and hyperparameters.

Category

Details and hyperparameters

Loss weights

FAPE clamps

Liotat = 0.5 (Lintra-c.-FAPE + Linter-Co-FAPE) + 0.5 Lpapg +
0.5 EDistogram + 0.5 ﬁTorsion + 0.05 ESequence Recovery
intra-chain-C,: 10.0 A

inter-chain-Ca:OBO.O A

all-atom: 10.0 A

clamped weight: 0.99

unclamped weight: 0.01

Optimizer
LR schedule

AdamW: 5 = (0.9,0.98), AMSGrad, gradient-norm clip: 0.1
Piecewise schedule:

linear warmup from 1e-6 to 5e-4 over 5e5 steps

constant at 5e-4 until step 3e6

exponential decay, every le5 steps multiply by 0.95

Featurizer

128 positional encodings

32 radial basis functions

k = 48 nearest neighbors

Gaussian noise (variance scale 0.4 Aat training, 0.0 Aat evaluation)

Encoder

Quantizer

Decoder
(ESMPairformer)

Decoder
(StructureModule)

N Layers — 3

Cy = 96

transformer head width: wy = 96

Gumbel-Softmax (straight-through)

temperature annealed 7 : 10.0 — 1.0 over 1000 epochs
evaluation at 7 = 1.0, argmax instead of sampling

6 blocks

Cy = 256, Cg = 32

transformer head widths: wy = 64, wg = 32

Dropout 0.125

Nrecycle =5

Cy = 384, Cg = 128, CIPA — 16

IPA heads: wipp = 12,

number of query-key and value points: Ny, =4, N, =8
StructureModule layers: Nyayers = 8
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A.2 Extended Results

A.2.1 Structure-based Protein Sequence Design

Table 2: Median sequence recovery (%) on the CATH 4.2 test set, as reported by |Gao et al.|[2022]]
and Shuai et al.|[2025]]. Bold indicates the best result.

Model Recovery (%1)
GraphTrans 35.82
StructGNN 3591
GCA 37.64
ESM-IF1f 38.30
GVP-large' 39.20
GVP 39.47
AlphaDesign 41.31
ProteinMPNN* 45.96
ESM-IF1 (AF2DB)f 51.60
PiFold 51.66
FAMPNN (5-Step) 50.00
E2EFoLD 25.15

 Evaluated on CATH 4.3 test set [Hsu et al.;[2022]. * Reproduced by |Gao et al.|[2022] with CATH 4.2.

A.2.2 Structure prediction
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Figure 3: Structure Prediction. Prediction errors by E2EFOLD’s decoder and Boltz-2 on RFData
(left) and E2EData (right) correlate.
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