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EEG2TEXT: Open Vocabulary EEG-to-Text Decoding with EEG Pre-Training
and Multi-View Transformer
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Abstract
Deciphering the intricacies of the human brain has
captivated curiosity for centuries. Recent strides
in Brain-Computer Interface (BCI) technology,
particularly using motor imagery, have restored
motor functions such as reaching, grasping, and
walking in paralyzed individuals. However, un-
raveling natural language from brain signals re-
mains a formidable challenge. Electroencephalog-
raphy (EEG) is a non-invasive technique used
to record electrical activity in the brain by plac-
ing electrodes on the scalp. Previous studies of
EEG-to-text decoding have achieved high accu-
racy on small closed vocabularies, but still fall
short of high accuracy when dealing with large
open vocabularies. We propose a novel method,
EEG2TEXT, to improve the accuracy of open
vocabulary EEG-to-text decoding. Specifically,
EEG2TEXT leverages EEG pre-training to en-
hance the learning of semantics from EEG sig-
nals and proposes a multi-view transformer to
model the EEG signal processing by different t
spatial regions of the brain. Experiments show
that EEG2TEXT has superior performance, out-
performing the state-of-the-art baseline methods
by a large margin of up to 5% in absolute BLEU
and ROUGE scores. EEG2TEXT shows great
potential for a high-performance open-vocabulary
brain-to-text system to facilitate communication.

1. Introduction
Recent advances in brain-computer interface (BCI) tech-
nology have demonstrated exciting progress in restoring
the capabilities of patients with paralysis, such as reaching
(Hochberg et al., 2012), grasping (Aflalo et al., 2015; Bou-
ton et al., 2016), and walking (Lorach et al., 2023). The
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heart of BCI is its ability to accurately decode complex
brain signals. Despite the advances in decoding brain sig-
nals related to motion, decoding brain signals related to
speech remains a formidable challenge. Previous research
translating speech-related brain signals to text (brain-to-
text) primarily relies on electrocorticography (ECoG), an
invasive electrophysiological monitoring method that uses
electrodes placed directly on the exposed brain surface to
record activity from the cerebral cortex. ECoG offers higher
temporal and spatial resolution than traditional noninvasive
scalp electroencephalography (EEG), with a significantly
better signal-to-noise ratio. However, the invasive nature of
ECoG is undesirable for BCI applications, and it is highly
desirable to develop brain-to-text decoding methods using
noninvasive EEG signals, although EEG signals are signifi-
cantly more challenging to work with than ECoG.

Previous studies of EEG-to-text decoding (Herff et al., 2015;
Sun et al., 2019; Anumanchipalli et al., 2019; Makin et al.,
2020; Panachakel & Ramakrishnan, 2021; Moses et al.,
2021; Nieto et al., 2022) have achieved high accuracy on
small closed vocabularies, but still fall short of high ac-
curacy when dealing with large open vocabularies. These
approaches primarily target high accuracy (> 90%) but
are often confined to small closed vocabularies and strug-
gle to decode semantically similar words beyond training
sets. Recent studies broaden the scope from closed to open-
vocabulary EEG-to-text decoding (Wang & Ji, 2021; Willett
et al., 2023; Tang et al., 2023; Duan et al., 2023), drastically
expanding the vocabulary size by over 100-fold, from sev-
eral hundred to tens of thousands of words. Notably, two
of these studies (Wang & Ji, 2021; Duan et al., 2023) lever-
age a pre-trained large language model BART (Lewis et al.,
2019), and represent the state-of-the-art for open vocabulary
brain-to-text decoding. However, these studies are in their
nascent stages and are challenged by their limited accuracy.

To improve the accuracy of EEG-to-text decoding with open
vocabularies, we propose a novel EEG-to-text decoding
method based on transformers. First, we introduce a Con-
volutional Neural Network (CNN) module before the base
transformer model to enhance the model’s ability to han-
dle long EEG signals. Second, we conduct pre-training of
the transformer model by reconstructing randomly masked
EEG signals from the input data. This pre-training step
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Figure 1. The overall framework of open-vocabulary EEG-to-text translation. The first sub-figure comes from (Nagel & Spüler, 2018).

helps our transformer model better learn the semantics of
EEG signals. Last, we propose a multi-view transformer
architecture, where each single-view transformer is the pre-
trained model from the previous step, to model the EEG
signal processing by different spatial regions of the brain.
Experiments show that EEG2TEXT has superior perfor-
mance, outperforming the state-of-the-art baseline meth-
ods by a large margin of up to 5% in absolute BLEU and
ROUGE scores. EEG2TEXT shows great potential for a
high-performance open-vocabulary brain-to-text system to
facilitate communication. We will open-source our code and
dataset to facilitate future studies of EEG-to-text translation.

2. Task Definition
Our task involves decoding corresponding text from EEG
signals (Figure 1). The data acquisition process involves 1)
attaching an EEG cap to each subject’s head, 2) displaying
the text (reading materials) on a screen, and 3) recording the
EEG and eye-tracking (for verification and calibration of the
EEG signals) data while the subject is reading the text. The
EEG signals are further extracted from the recorded data
and fed as input to a decoding model to predict the original
text the subject was reading on the screen.

Formally, this task can be formulated as a sequence-to-
sequence machine translation task as follows:

P (Y |X) = argmax
Y

T ′∏
t=1

P (yt|y<t, X) (1)

where T ′ represents the length of the target sentence Y ;
yt represents the word or token at position t in the target
sentence Y ; y<t represents the words or tokens preceding
position t in the target sentence Y ; X represents the input
EEG data; and P (yt|y<t, X) is the conditional probability
of generating word yt given the previous words y<t and the
input EEG data X . Our goal is to maximize the probability
P (Y |X) of generating the target sentence given the input
EEG data.

3. Methodology
3.1. Baseline Model

Our baseline model (Wang & Ji, 2021) takes the word-level
EEG features as the input to a transformer model followed
by a pre-trained BART model for text decoding. The raw
EEG signals are typically stored as a two-dimensional ar-
ray with one dimension for time and the other for chan-
nels (the number of electrodes used to collect EEG signals).
Each value in this two-dimensional array corresponds to the
signal strength collected at the corresponding time for the
corresponding channel. In the baseline model, the word-
level EEG features are extracted from eight independent
frequency bands from the raw EEG signals. The above eight
word-level EEG features are simply concated across all the
channels as input to the decoder framework.

The baseline model faces the following challenges: 1) the
reliance on eye-tracking calibration for word-level EEG fea-
ture extraction introduces error propagation and lacks gener-
alizability to scenarios such as inner speech decoding (Mar-
tin et al., 2018; Nalborczyk et al., 2020), 2) there is room for
improvement in EEG representation learning through self-
supervised pre-training, and 3) the lack of spatial resolution
modeling ignores the varying importance of different brain
regions in language processing. To overcome these chal-
lenges, we propose a novel framework, EEG2TEXT, that
achieves superior performance for open-vocabulary EEG-
to-text translation.

3.2. Convolutional Transformer for Sentence-Level
EEG Encoding

Instead of using the word-level EEG features crafted based
on the eye-tracking data, we directly use the sentence-level
EEG signals as input to our model. Using sentence-level
EEG signals offers several advantages over word-level EEG
features. It provides richer information without error prop-
agation from the eye-tracking data and exhibits better gen-
eralizability to other tasks, such as inner speech decoding,
where acquiring eye-tracking data is infeasible.

However, the sentence-level EEG signals pose a chal-
lenge due to their excessive length, potentially overloading
laboratory-level GPUs if directly input into the transformer
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Figure 2. The overall framework of EEG2TEXT. It takes the sentence EEG signals as input and decodes the original text as output.
EEG2TEXT includes major steps of 1) a base convolutional transformer model, 2) pre-training for EEG encoding, and 3) a multi-view
transformer for different spatial regions of the brain.

layer. To tackle this issue, we introduce a convolutional
transformer model that incorporates a CNN module for
compressing raw EEG signals. Utilizing CNN-Transformer
for modeling long sequences has been proven effective in
previous EEG signal processing tasks (Song et al., 2022). So
we choose this CNN-Transformer as the base architecture
to develop our models. This CNN module comprises two
convolutional layers, adept at both temporal and spatial (or
channel) compression. We also compared two input formats
of the sentence-level EEG signals: 1) the raw signals, and 2)
the spectrogram of the signals. The spectrogram of a signal
(Appendix Figure A1) is a two-dimensional image, where
the x-axis represents time, the y-axis represents frequency,
and the image pixel value represents the magnitude of the
signal at each time-frequency pair. The sentence-level EEG
signals are then input into the CNN module to obtain com-
pressed EEG signals, which are then fed into the transformer
model for subsequent feature extraction and text translation.

3.3. Transformer Pre-Training for an Enhanced EEG
Encoding

To enhance the semantic understanding of the EEG signals,
we propose a self-supervised pre-training of the convolu-
tional transformer model for parameter initialization (Figure

2). Inspired by the masked language model pre-training
strategies (Devlin et al., 2018; Joshi et al., 2019; Liu et al.,
2019), we formulate our self-supervised pre-training objec-
tive as follows:

θ∗ = argmax
θ

∑
(i,j)∈D

logP (M |C; θ), (2)

where M represents the masked tokens; C represents the
context or surrounding tokens; θ∗ represents the optimal
model parameters; θ represents the model parameters being
optimized; D represents the training data, where (i, j) are
pairs of sentences or sentence fragments; and P (M |C; θ) is
the probability of predicting the masked tokens.

During the self-supervised pre-training stage, we add a con-
volutional decoder module on top of the convolutional trans-
former encoder to decode the input EEG signals. The input
is the sentence-level EEG signals masked with different
strategies and the output is the sentence-level EEG signals
reconstructed by the CNN decoder. Specifically, we com-
pared three different masking strategies for the sentence-
level EEG signals as follows:

• Masked Token Prediction (Devlin et al., 2018): ran-
domly masking 15% of all the tokens.
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Table 1. Ten channel groups and their corresponding approximate
brain areas.

Approximate Brain Areas Corresponding Electrodes

Prefrontal Cortex

E6, E12, E5, E11, E16, E15, E20,
E118, E24, E124, E26, E2, E27,
E123 E3, E4, E23, E19, E22, E9,
E10, E18, E28, E33, E117, E122

Premotor Cortex
CZ, E7, E106, E105, E104, E115,
E114, E120, E110, E116, E121,
E111, E112, E109, E13, E30

Broca’s Area E29, E36, E35, E34

Auditory Association Area E40, E38, E39, E43, E44, E46, E57,
E58, E64

Primary Motor Cortex E31, E80, E55, E37, E87, E93,
E103, E102, E108

Primary Sensory Cortex E54, E79, E61, E78, E62, E53, E86,
E92, E98, E100, E101

Somatic Sensory Cortex E67, E77, E71, E72, E76, E66, E84,
E60, E85

Auditory Cortex E59, E91, E97, E51

Wernicke’s Area E41, E42, E52, E47, E45, E50

Visual Area E65, E69, E70, E74, E75, E82, E83,
E89, E90, E95, E96

• Continuous Masked Token Prediction (Joshi et al.,
2019): randomly masking a sequence of consecutive to-
kens until a total of 15% of all the tokens are masked.

• Re-Masked Token Prediction (Liu et al., 2019): re-
randomizing the masking of 15% of all the tokens for
each training epoch.

It is important to highlight that our self-supervised pre-
training step allows for seamless integration of EEG data
from diverse tasks, including image recognition. In our ex-
periments, we further incorporated an image EEG dataset
(Gifford et al., 2022) during pre-training, aiming to show-
case the model’s adaptability to EEG signals from multi-
modal data and explore the potential for enhanced transla-
tion performance through the combination of EEG signals
from diverse data modalities.

The goal of this pre-training step is to have the convolutional
transformer learn meaningful concepts such as context, re-
lationships, and semantics present in sentence-level EEG
signals during this pre-training process. After pre-training,
the parameters are saved and used as the initial parameters
for the final multi-view transformer model.

3.4. Multi-View Transformer for Different Spatial
Regions of the Brain

Another important feature of our model is the novel multi-
view transformer decoder architecture we introduced that
encodes different regions of the brain with a different convo-
lutional transformer (Figure 2). The multi-view transformer
model takes into account the fact that different brain regions
potentially play different roles in language processing. This
spatial modeling therefore can improve the model perfor-
mance, but has been overlooked in previous work.

We partition the 105 channels into ten groups based on
their spatial location under the guidance of functional brain
regions (Table 1). Specifically, we compared the spatial
distribution of 105 electrodes with the spatial distribution
of functional brain regions and mapped each electrode to
its closest brain region. Details of the electrode spatial
distribution can be found in (Hollenstein et al., 2018).

After the partition of the electrodes, we create a multi-view
transformer model including ten convolutional transformers
at the bottom level, where each convolutional transformer
encodes the EEG signals from the electrodes in that region.
On top of the ten convolutional transformers, we add a
global transformer to unify the information from different
brain regions. The combined information from the global
transformer is further fed into the BART model for text
decoding.

In summary, the multi-view transformer envisions multi-
ple parallel convolutional transformer models where each
captures different aspects of EEG signals combined from
different spatial regions of the brain regions. This approach
enhances the spatial resolution of the model and further
improves the text decoding performance.

4. Experiment
4.1. Experimental Setup

Dataset We utilize both the Zuco (Hollenstein et al., 2018)
and Image-EEG (Gifford et al., 2022) datasets for pre-
training and use Zuco to train the multi-view transformer
and BART model for text decoding. Details of both datasets
are listed below.

• Zuco (Hollenstein et al., 2018) contains EEG and eye-
tracking data from 12 healthy adult native English speak-
ers engaged in natural English text reading for 4 - 6 hours.
This dataset covers two standard reading tasks and a task-
specific reading task, offering EEG and eye-tracking data
for 21,629 words across 1,107 sentences and 154,173 fix-
ations. Zuco contains both word-level EEG signals and
sentence-level EEG signals. Sentence-level EEG refers to
the complete original EEG signals recorded while the sub-
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ject is reading some texts on the screen. The word-level
EEG is generated based on sentence-level EEG, com-
bined with eye-tracking data captured from the subjects.
Specifically, the eye-tracking machine captures the coor-
dinates of the screen where the subject’s gaze is focused,
while also recording the current time. Then, the word
corresponding to the captured coordinates on the screen
is extracted.

• Image-EEG (Gifford et al., 2022) is a large and rich
dataset containing high temporal resolution EEG signals
of images of objects on natural backgrounds. The dataset
included 10 participants, each performing 82,160 trials
across 16,740 image conditions.

Baselines We compare EEG2TEXT with two baseline
models for open-vocabulary EEG-to-text translation.

• Baseline (EEGtoText) (Wang & Ji, 2021) uses word-level
EEG signals as input to a transformer model followed by a
pre-trained BART model for decoding. EEGtoText is the
first paper that proposed the open-vocabulary EEG-to-text
translation task.

• DeWave (Duan et al., 2023) introduces a discrete codex
encoding after the transformer layer, and uses both word-
level EEG features and the raw EEG signals as input. De-
Wave is the most recent related work and it only included
EEGtoText (Wang & Ji, 2021) as its baseline.

After a comprehensive literature review, we believe we have
included all the baselines to our knowledge.

Evaluation Metrics We utilize BLEU-1, BLEU-2, BLEU-
3, BLEU-4, and ROUGE-1 evaluation metrics to compare
the performance of EEG2TEXT with the baselines.

The BLEU-N scores (N = 1, 2, 3, 4) are used to measure the
quality of the generated text, with higher values indicating
better performance.

BLEU = BP · exp

(
N∑

n=1

wn · log
(

countclip,n

countref,n

))
, (3)

where BLEU represents the BLEU score; BP represents the
brevity penalty; N represents the max n-gram order; wn

represents the n-gram weights; countclip,n represents count
of candidate n-grams in reference and countref,n represents
count of reference n-grams.

ROUGE-1 scores, which include F (F1-score), P (precision),
and R (recall), are used to evaluate the overlap between
generated text and reference text.

ROUGE-1 =

∑
ref
∑

1-gram min(match, ref)∑
ref
∑

1-gram ref
, (4)

Table 2. Optimal hyper-parameters for EEG2TEXT ablations.
Methods Batch Size Learning Rate

EEG2TEXT (Convolutional Transformer) 4 1 × 10−5

EEG2TEXT (+ Pre-training) 4 5 × 10−5

EEG2TEXT (+ Multi-View Transformer) 4 3 × 10−5

where ROUGE-1 represents the ROUGE-1 score; match
represents the count of matching 1-gram; ref represents the
count of 1-gram.

Parameter Study We used four A40 GPUs as our com-
puting infrastructure and each training epoch took about 40
minutes. The optimal hyper-parameters for our results are
listed in Table 2. The value ranges of each hyper-parameter
are listed below:

• Batch Size ∈ {4, 8, 16}

• Learning Rate ∈ {1×10−6, 3 × 10−6, 5 × 10−6, 7.5 ×
10−6, 8×10−6, 9×10−6, 1×10−5, 2×10−5, 3×10−5,
4 × 10−5, 5 × 10−5, 7.5 × 10−5, 1 × 10−4, 3 × 10−4,
5× 10−4, 7.5× 10−4, 1× 10−3}

• Epoch ∈ {15}

4.2. Results

Main Results Table 3 shows our main experimental re-
sults. The baseline method (Wang & Ji, 2021) achieves a
moderate performance in text decoding with BLEU scores.
DeWave (Duan et al., 2023) slightly improved the perfor-
mance across all metrics, demonstrating the effectiveness of
discrete encoding. EEG2TEXT improved the text decoding
performance by a large margin due to several technical inno-
vations. First, a single convolutional transformer achieved
slightly lower BLEU scores (BLEU-1: -1.3%; BLEU-
2: -0.5%; BLEU-3: -0.2%; BLEU-4: -0.0%) but higher
ROUGE-1 scores (F1-score: +3.7%; Precision: +2.4%; Re-
call: -0.9%) compared to DeWave. Second, EEG2TEXT
with pre-training further enhanced the BLEU scores (BLEU-
1: +1.8%; BLEU-2: +1.9%; BLEU-3: +1.8%; BLEU-4:
+1.6%) and ROUGE-1 scores (F1-score: +4.2%; Precision:
+2.4%; Recall: +0.0%) compared to DeWave. Pre-training
proved effective in enhancing text generation by providing
a strong initialization foundation for our model. Third,
EEG2TEXT with multi-view transformers achieved the
highest scores across all metrics, with a significant increase
in the BLEU scores (BLEU-1: +3.9%; BLEU-2: +5.0%;
BLEU-3: +5.8%; BLEU-4: +5.9%) and ROUGE-1 scores
(F1-score: +5.4%; Precision: +3.2%; Recall: +1.4%) com-
pared to DeWave. EEG2TEXT excelled in generating co-
herent, contextually relevant, and high-quality text.
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Table 3. Performance comparison of EEG2TEXT with baseline methods.

Methods BLEU-N ROUGE-1
N = 1 N = 2 N = 3 N = 4 F P R

Baseline (Wang & Ji, 2021) 0.401 0.231 0.125 0.068 0.301 0.317 0.288
DeWave (Duan et al., 2023) 0.413 0.241 0.139 0.082 0.288 0.337 0.306

EEG2TEXT (Convolutional Transformer) 0.400 0.236 0.137 0.082 0.325 0.361 0.297
EEG2TEXT (+ Pre-training) 0.445 0.274 0.175 0.117 0.341 0.383 0.310

EEG2TEXT (+ Multi-View Transformer) 0.452 0.291 0.197 0.141 0.342 0.369 0.320

Table 4. Ablation study of different input formats of the EEG signals.

Methods BLEU-N ROUGE-1
N = 1 N = 2 N = 3 N = 4 F P R

Spectrogram + Transformer 0.386 0.220 0.121 0.067 0.306 0.342 0.306
Spectrogram + Convolutional Transformer 0.374 0.209 0.112 0.061 0.302 0.339 0.274
EEG signal + Convolutional Transformer 0.400 0.236 0.137 0.082 0.325 0.361 0.297

Convolutional Transformer We first compare different
input representations of the EEG signals to see how the
representation affects the performance of a base convolu-
tional transformer model. In this ablation study, we com-
pare the raw EEG signals with their spectrograms using the
fast Fourier transform (Cochran et al., 1967) to convert the
original one-dimensional time array into a two-dimensional
time-frequency matrix. The results are shown in Table 4.
Using the raw EEG as the input consistently led to better
performance than using the spectrogram as the input. Be-
cause the spectrogram only keeps the magnitude information
and ignores the phase information of the raw EEG signal,
the superior performance of the raw EEG signal suggested
that the phase information might be important for decoding.
Therefore, the raw EEG signals are used as the input in our
subsequent experiments.

EEG Pre-Training We then conducted ablation exper-
iments to compare the effectiveness of three pre-training
strategies: 1) Masked Token Prediction (Devlin et al., 2018),
2) Continuous Masked Token Prediction, and 3) Re-Masked
Token Prediction (Liu et al., 2019). The results are shown in
Table 5. The Re-Masked Token Prediction (Liu et al., 2019)
exhibits the best performance among all the three masking
strategies. One potential reason is that the convolutional
transformer model can learn more diverse semantic infor-
mation by masking different tokens in each training epoch
during pre-training.

In the above study, we focused on identifying the optimal
pre-training strategy among the three without incorporat-
ing image-EEG data (Gifford et al., 2022). As an addi-
tional component, we introduced image-EEG data to as-
sess the compatibility of our model with EEG signals from

multi-modal inputs. Leveraging our self-supervised pre-
training strategy, we directly incorporated image-EEG data
into the pre-training phase to enable the model to glean
knowledge from diverse sources. The results, detailed in
Table 6, demonstrate that adding image-EEG data signifi-
cantly enhances translation performance for both the single
convolutional transformer and the multi-view transformer.

Multi-View Transformer Finally, we compare different
training strategies of the multi-view transformer to demon-
strate the effectiveness of the multi-view transformer and
find the best training strategy. The image-EEG data was not
included in this ablation study. Specifically, we compared
three training strategies as follows:

• Only Global Transformer: Fixing the parameters of all
10 convolutional transformer modules and training only
the global transformer for text decoding.

• Global Transformer + One Convolutional Trans-
former: During each training epoch, randomly activate
and train one convolutional transformer with the global
transformer while fixing the parameters of the remaining
nine convolutional transformers.

• Global Transformer + Three Convolutional Trans-
formers: During each training epoch, randomly activate
and train three convolutional transformers with the global
transformer while fixing the parameters of the remaining
seven convolutional transformers.

We have a large dataset with 2K batches to ensure each
individual Transformer is trained sufficiently.

The results in Table 7 demonstrate that activating three con-
volutional transformers together with the global transformer
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Table 5. Ablation study of different pre-training strategies of the EEG signals.

Methods BLEU-N ROUGE-1
N = 1 N = 2 N = 3 N = 4 F P R

Masked Token Prediction 0.409 0.242 0.141 0.087 0.325 0.357 0.300
Continuous Masked Token Prediction 0.411 0.243 0.137 0.078 0.319 0.352 0.294

Re-Masked Token Prediction 0.431 0.260 0.157 0.098 0.330 0.361 0.306

Table 6. Ablation study of adding image-EEG data into pre-training.

Methods BLEU-N ROUGE-1
N = 1 N = 2 N = 3 N = 4 F P R

Single-View without image-EEG 0.431 0.260 0.157 0.098 0.330 0.361 0.306
Single-View with image-EEG 0.445 0.274 0.175 0.117 0.341 0.383 0.310

Multi-View without image-EEG 0.442 0.277 0.179 0.121 0.335 0.365 0.311
Multi-View with image-EEG 0.452 0.291 0.197 0.141 0.342 0.369 0.320

achieves the best performance. This suggests further im-
provement may be attainable by increasing the number of
activated convolutional transformers during each training
epoch if more GPU resources are available.

Case Study Table 8 shows our case study results. In
the first sentence, the baseline model accurately translates
”good,” whereas EEG2TEXT, in addition, accurately cap-
tures the first half of the sentence with ”movie” (synony-
mous with ”film”). Additionally, EEG2TEXT correctly
translates the second half of the sentence with ”disaster
movie” corresponding to ”monstrous one” in the original
sentence. In the second sentence, EEG2TEXT accurately
captured ”won Nobel Prize in Chemistry,” while the base-
line produced incorrect information, stating ”Pulitzer Prize”
and the wrong field, ”Literature.” In the third sentence, both
EEG2TEXT and the baseline correctly identified ”book”
and ”Pulitzer Prize.” However, EEG2TEXT, in addition,
correctly identified the field as ”Biography,” while the base-
line erroneously outputted ”Fictionography.”

In addition, we conducted an interesting case study to show
that EEG2TEXT has the ability of zero-shot image-to-text
translation. Details can be found in Appendix B.

5. Related Work
Brain Computer Interface The landscape of brain-to-
speech and brain-to-text decoding encompasses three princi-
pal approaches grounded in the features they capture: motor
imagery-based, overt speech-based, and inner speech-based.
These methods explore a variety of brain signals, including
electroencephalogram (EEG), electrocorticography (ECoG),
and functional magnetic resonance imaging (fMRI). Despite
these endeavors, existing approaches exhibit limitations con-

cerning vocabulary size, articulation dependence, speed, and
device compatibility. Motor imagery-base systems, exem-
plified by point-and-click (Pandarinath et al., 2017) mecha-
nisms and imaginary handwriting (Willett et al., 2021), show
high accuracy but modest typing rates. Overt speech-based
techniques for decoding speech offer expedited communi-
cation rates. However, they require either physical vocal
tract movement (Herff et al., 2015; Anumanchipalli et al.,
2019; Makin et al., 2020) or mental articulation imagination
(Moses et al., 2021; Willett et al., 2023). This engenders
language dependency and pronunciation variations across
languages. Another line of research tackles articulation de-
pendency by decoding imagined speech (Nieto et al., 2022)
or reading text (Sun et al., 2019; Panachakel & Ramakrish-
nan, 2021). Our work follows this line of decoding reading
text directly from EEG signals.

EEG-to-Text Decoding Prior investigations into the de-
coding of EEG-to-text, as documented in the literature
(Herff et al., 2015; Sun et al., 2019; Anumanchipalli et al.,
2019; Makin et al., 2020; Panachakel & Ramakrishnan,
2021; Moses et al., 2021; Nieto et al., 2022), have demon-
strated commendable accuracy when applied to limited
and closed vocabularies. Nevertheless, these studies en-
counter challenges in attaining comparable levels of accu-
racy when confronted with more extensive and open vo-
cabularies. New investigations have expanded their focus
from closed-vocabulary EEG-to-text decoding to encom-
pass open-vocabulary scenarios (Wang & Ji, 2021; Willett
et al., 2023; Tang et al., 2023; Duan et al., 2023). The
two research studies most similar to our work are a base-
line method (Wang & Ji, 2021) and DeWave (Duan et al.,
2023). The baseline method proposes a framework utilizing
transformer and pre-trained BART language models, which
establish baseline performance of open-vocabulary EEG-to-
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Table 7. Ablation study of different training strategies of the multi-view transformer.

Methods BLEU-N ROUGE-1
N = 1 N = 2 N = 3 N = 4 F P R

Only Global Transformer 0.404 0.238 0.139 0.084 0.303 0.335 0.279
+ One Convolutional Transformer 0.436 0.270 0.168 0.110 0.327 0.363 0.299

+ Three Convolutional Transformers 0.442 0.277 0.179 0.121 0.335 0.365 0.311

Table 8. Case study of the output sentences comparing EEG2TEXT and the baseline method (Wang & Ji, 2021).

(1)
Ground Truth: It’s not a particularly good film, but neither is it a monsterous one.

Baseline Output: was a a bad good story, but it is it bad bad. one.

EEG2TEXT output: ’s a a great romantic movie, but it is it the disaster movie one.

(2)
Ground Truth: He won a Nobel Prize in Chemistry in 1928

Baseline Output: was the Pulitzer Prize for Literature in 18.

EEG2TEXT Output: won Nobel Prize in Chemistry for 1901

(3)
Ground Truth: The book was awarded the 1957 Pulitzer Prize for Biography.

Baseline Output: first is published the Pulitzer Pulitzer Prize for Fictionography.

EEG2TEXT Output: book is a Pulitzer Prize for Biography.

text translation. DeWave employs a quantization encoder
to derive discrete encoding and aligns it with a pre-trained
language model for the open-vocabulary EEG-to-text trans-
lation. The limitations of both the baseline method and
DeWave lie in their reliance on eye-tracking calibration
for word-level EEG feature extraction that introduces error
propagation and lacks generalizability to scenarios such as
inner speech decoding. EEG2TEXT improves the open-
vocabulary EEG-to-text translation performance as well as
enhancing the generality by requiring only sentence-level
EEG signals as input.

EEG Encoding It is a challenging problem to effectively
encode the long and noisy EEG signals to facilitate subse-
quent decoding tasks. In Conformer (Song et al., 2022),
the authors propose a compact convolutional transformer,
named EEG Conformer, to encapsulate local and global fea-
tures in a unified EEG classification framework. Specifically,
the convolution module learns the low-level local features
throughout the one-dimensional temporal and spatial convo-
lution layers. The self-attention module is straightforwardly
connected to extract the global correlation within the local
temporal features. However, in the case of the Conformer
model, the authors trained this model from scratch, whereas
EEG2TEXT further incorporated pre-training and multi-
view settings to enhance the text translation performance.

EEG Pre-Training Recent work, such as BrainBERT
(Wang et al., 2023), BENDR (Kostas et al., 2021) and

MAEEG (Chien et al., 2022), has been done on EEG signal
pre-training that greatly inspired EEG2TEXT.

BrainBERT converts intracranial recordings to spectrograms
and uses spectrograms as input. BrainBERT masks multiple
continuous bands of random frequencies and time intervals
from spectrograms and aims to reconstruct the original spec-
trogram. BENDR uses raw EEG signals as input. After a
convolutional layer, the raw EEG signals are converted to
embedding features. These embedding features are masked
by using masked token prediction (Devlin et al., 2018) and
the reconstruction goal is the original embedding features.
MAEEG uses raw EEG signals as input and masks the em-
bedding features of the convolutional layer generated with a
masked token prediction as BENDR. However, MAEEG’s
reconstruction goal is the raw EEG signals. EEG2TEXT
directly masks the raw EEG signals with the pre-training
objective to reconstruct the raw EEG signals. EEG2TEXT
also experimented with various masking strategies and in-
corporated EEG signals for the pre-training process.

6. Conclusion
In this work, we proposed a novel EEG-to-text decoding
model, EEG2TEXT that takes raw EEG signals as input and
leverages EEG pre-training and a multi-view transformer to
enhance the decoding performance. EEG2TEXT achieved
superior performance for open-vocabulary EEG-to-text de-
coding. Future work includes expanding the model’s capa-
bilities to EEG signals from diverse multi-modal data.
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A. EEG to Stectrogram
Figure A1 shows a piece of EEG signals and its corresponding spectrogram.

Figure A1. a piece of EEG signals and its corresponding Spectrogram

B. Zero-Shot Image-to-Text Translation
Figure 2(a) and 2(b) show the zero-shot image-to-text translation results. We directly input the EEG signals of image-EEG
data into the multi-view transformer model after training, and the output results are image-to-text translation results. The
first image contains multiple cars, and the output accurately captures the ”car” keyword. The second image contains a fish,
and the output captures the ”fish” keyword equally accurately.

(a) An image of car. The translation result of EEG2TEXT
is: ”alog,,. car,,,,,,,,,,,,,,,,,,,,,,”

(b) An image of car. The translation result of EEG2TEXT
is: ”fish,,... has,,,,,,,,,,,,,,,,,,,,,,,,,,”

Figure A2. Zero-Shot Image-to-Text Translation.


