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Abstract

Recent state-of-the-art neural audio compression models have progressively
adopted residual vector quantization (RVQ). Despite this success, these mod-
els employ a fixed number of codebooks per frame, which can be suboptimal
in terms of rate-distortion tradeoff, particularly in scenarios with simple input
audio, such as silence. To address this limitation, we propose variable bitrate RVQ
(VRVQ) for audio codecs, which allows for more efficient coding by adapting
the number of codebooks used per frame. Furthermore, we propose a gradient
estimation method for the non-differentiable masking operation that transforms
from the importance map to the binary importance mask, improving model training
via a straight-through estimator. We demonstrate that the proposed training frame-
work achieves superior results compared to the baseline method and shows further
improvement when applied to the current state-of-the-art codec.

1 Introduction

An audio codec encodes/decodes the audio, aiming to make the decoded signal perceptually indistin-
guishable from the original while using the minimum number of codes to conserve the bit budget.
Conventional audio codecs usually rely on expert knowledge of psycho-acoustics and traditional
digital signal processing to code and allocate bits to represent the coefficient of time-frequency
domain representation such as modified discrete cosine transform (MDCT) [1]. The emergence of
deep neural networks (DNNs) has led to the development of neural audio codecs that outperform
conventional ones. Notably, residual vector quantization (RVQ)-based neural audio codecs [2–4]
have demonstrated state-of-the-art performance by producing compact discrete representations at low
bitrates. These codecs encode raw waveforms into parallel token sequences, subsequently decoded to
reconstruct the audio signal from the summations of quantized residual vectors.

Since a typical RVQ-based neural codec allocates the same number of codebooks across all down-
sampled time frames, it can be considered a form of constant bitrate (CBR) codec.

This approach can be inefficient for encoding less complex segments, such as silence. Traditional
codecs like AAC [5] tackle this inefficiency by supporting variable bitrate (VBR), which allocates
more bits to complex audio segments and fewer bits to simpler ones. Recently, SlowAE [6] in-
troduced VBR discrete representation learning by modeling the event-based representations using
run-length transformers along the time dimension. Additionally, a VBR codec using DNN-based
vector quantization is proposed in [7], employing a code allocation scoring function to determine the
number of vectors allocated for each audio window. However, introducing VBR to an RVQ-based
neural audio codec has not been explored yet.

∗Work done during internship at Sony AI

NeurIPS 2024 Workshop on Machine Learning and Compression.



Figure 1: Overall proposed framework of variable bitrate RVQ.

Meanwhile, similar efforts have been made for VBR in DNN-based image compression. For instance,
[8] utilized the self-attention map of a self-supervised DINO model [9] as a proxy for capacity to be
assigned, leveraging the model’s capability to capture semantic saliency. They allocated a variable
number of bits to each pixel, applying a bit allocation map to their product quantizer [10]. On the
other hand, some works have introduced importance map [11–14] to determine how many channels
per pixel in the quantized features should be used. These importance maps are trained jointly with
the compression model, enabling effective bitrate allocation for each pixel.

Inspired by these approaches, we propose a VBR RVQ (VRVQ) model, which allocates a different
number of bits to each downsampled time frame in the latent space based on an importance map. By
being jointly trained with rate-distortion loss optimization, the importance map learns to determine the
optimal number of codebooks per frame, leading to a more effective rate-distortion curve compared
to previous RVQ-based codecs. Consequently, our contributions are as follows:
Variable Bitrate RVQ: We are the first to achieve variable bitrate (VBR) coding to RVQ-VAE-based
audio codecs. While many audio codecs utilize VBR, no prior work has attempted to incorporate
variable bitrate into RVQ, which is the foundation of current state-of-the-art audio codec models.
Gradient Estimation for Binarized Variables: We adapt the importance map, originally used in
image compression models, for audio coding. The challenge lies in the non-differentiable operations
involved in generating binary masks. Previous approaches employed identical backward passes, but
these methods proved suboptimal in our context. To address this, we propose a more efficient gradient
estimation during binarization, ensuring more effective gradient flow during training.

2 Background

This section summarizes RVQ and structured dropout, used in several state-of-the-art CBR RVQ
codecs [2–4].

2.1 Residual Vector Quantization

Let ze = E(x) ∈ RD×T represent the output of the encoder E for the input audio x, where T and D
denotes downsampled timeframes and the dimension of the latent representation, respectively. We
denote the i-th frame at the time t of ze as ze[t]. An RVQ with Nq quantizers takes as input ze[t] and
computes zq[t] as follows:

zq[t] =

Nq∑
i=1

Qi(ri[t]), (1)

where Qi be the i-th quantizer and ri is defined as ri[t] = ze[t]−
∑i−1

j=1 Qj(rj [t]), with the initial
residual given by r1[t] = ze[t]. The resulting zq is then fed to the decoder D to output the audio
estimation x̂.

2.2 Structured Codebook Dropout

Given a target bitrate, a separate model can be trained with the corresponding Nq . However, instead of
this separate training, structured dropout [2, 15] can be used to enable a single RVQ model to support
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multiple target bitrates. During training, rather than utilizing all the codebooks, only the first nq

quantizers are used (i.e., zq[t] =
∑nq

i=1 Qi(ri[t])), where nq is randomly sampled from {1, · · · , Nq}
for each batch (or batch item [4]). During inference, we can select the desired nq for the target bitrate.
We can rewrite the structured codebook dropout using masking notation as follows:

zq[t] =

Nq∑
i=1

1i≤nq
·Qi(ri[t]), (2)

where 1 denotes the indicator function. A neural codec trained with this trick remains a CBR codec,
as it uses the same number of codebooks across all frames once a target bitrate is set.

3 Variable Bitrate RVQ

We propose a VRVQ by introducing the importance map. First, we outline the bit allocation method
based on the importance map (3.1). Next, we propose a gradient estimation method (3.2) to jointly
train the importance map within an encoder-decoder framework. Finally, we describe the joint
training method (3.3) in detail.

3.1 Importance Map-based Bit Allocation

As shown in Fig. 1, the proposed bit allocation at time frame index t is controlled by the binary
mask m[t] ∈ {0, 1}Nq , where mi[t] determines the usage of the i-th codebook at t. Note that this
mask is time-varying over t unlike the indicator function in Eq. (2). We design m[t] to decrease
monotonically over i (i.e., mi[t] ≥ mj [t] for i < j) for the compression efficiency. For a desirable
mask generation, we adopt the importance map, initially proposed for image compression [11–14].
We compute the importance map from an intermediate feature map of the encoder E and generate a
mask based on the importance map for the bit allocation.

We start by decomposing E into two components E = E2 ◦ E1 to obtain the intermediate feature
map: a shared part E1 and an encoding-specific part E2, borrowing notations from [13]. Given
an audio x, a learnable subnetwork Ep takes E1(x) as input, and outputs an importance map
p = Ep(E1(x)) ∈ (0, 1)T . Then, for each time frame index t, we generate m[t] ∈ {0, 1}Nq based
on p[t] with the following importance map-to-mask function I2M : (0, 1) → {0, 1}Nq :

m[t] = I2M(p[t]) := [H0(S(p[t])), · · · , HNq−1(S(p[t]))]T, (3)
where S(p) = Nq · p is a scaling function and each Hk(s) is defined as a Heaviside step function as
follows:

Hk(s) :=

{
1 if k ≤ s,
0 if k > s

. (4)

The obtained mask m[t] is then used to calculate the quantized vector zq by replacing the indicator
function in Eq. (2) as follows:

zq[t] =

Nq∑
i=1

mi[t] ·Qi(ri[t]). (5)

3.2 Gradient Estimation for Binarized Variables

3.2.1 Baseline

Since Hk is a non-continuous function, gradient estimation for backpropagation is required to jointly
train the importance map within the encoding-decoding framework. In the image domain [11, 12],
the saturated identity function fk

I is employed as a surrogate for Hk during backpropagation, defined
as follows, and serves as the baseline function for our work:

fk
I (s) := max(min(s− k, 1), 0) (6)

However, this function presents an issue where the gradient does not flow through large regions due to
the max and min operations (note that non-zero gradient can exist for only a single k ∈ {0, ..., Nq−1}
in the I2M function). This problem makes the model suboptimal and degrades the performance of
VRVQ, as demonstrated in our experiments.
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3.2.2 Smooth approximation

To address this, we propose a smooth surrogate function that relaxes the fk
I , allowing the gradient to

be computed across all ranges, which is defined as follows:

fk
α(s) :=

1

2α
log

(
cosh(α(s− k))

cosh(α(−s+ k + 1))

)
+

1

2
(7)

This surrogate function is parameterized by α ∈ R>0, which serves as a hyperparameter. In the
extreme case where alpha approaches infinity, this function approaches fk

I for all s ∈ R (i.e.,
fk
∞(x) := limα→∞ fk

α(s) = fk
I (s)). The shape of the function and the proof of convergence are

explained in Appendix A.

By substituting the Hk in I2M with fk
α , we define I2Mα

soft, the surrogate function of I2M, and then
apply the straight-through estimator for backpropagation as follows:

I2Mα
soft(p[t]) := [f0

α(S(p[t])), · · · , fNq−1
α (S(p[t]))], (8)

p[t] 7→ I2Mα
soft(p[t]) + sg (I2M(p[t])− I2Mα

soft(p[t])) , (9)
where sg denotes the stop-gradient operation.

3.3 Training

For the rate-distortion tradeoff, we define the rate loss LR as follows:

LR =
1

T

T∑
t=1

Ep(E1(x))[t] (10)

We basically follow the training scheme of [4], such as GAN training. During the generator training
phase, we optimize the rate-distortion (R-D) tradeoff loss LD + βLR, where LD is the training
objective for generator of [4] and LR is the proposed rate loss. The balancing of these two is
controlled by the tradeoff parameter β, which serves as a hyperparameter.

The downside of the importance map is that once the importance map is trained, it consistently
generates fixed output p for the identical input audio x, which restricts the flexibility of the model
in terms of rate control. Inspired by random sampling approach used in structured dropout [15, 2],
we address this problem by sampling the scaling factor l from the continuous uniform distribution
U([Lmin, Lmax]), where Lmax > Nq, replacing the scaling function S(p) in Eqs. (3) and (8) with
Sl(p) = l · p during training. This approach enables a single model to handle multiple bitrates in
VBR mode. Here, we claim that if we interpret our framework from the perspective of the β-VAE
objective [16], we can formulate the rate loss independently of the randomly sampled l. A detailed
discussion on this can be found in Appendix D.

In this study, we opt not to train a separate entropy model or employ entropy coders such as arithmetic
coding. Instead, we calculate the bitrate based on the number of codebooks used for discrete
representation of the audio on frame-by-frame basis, allowing for potential future enhancements
through the incorporation of entropy modeling.

4 Experiments

4.1 Model Architecture

In our experiments, we implement VRVQ audio codecs based on DAC [4], which itself builds
upon the improved RVQGAN architecture. The improved RVQGAN is derived from the Improved
VQGAN [17], which employs factorized codes and L2-normalized codebook lookups. Specifically,
the codebook has an 8-dimensional space with a size of 1024, corresponding to 10 bits per codebook.
The downsampling rate of the time frame is 512, resulting in a frame rate of 86 Hz in the latent space.
In our experiment, we set the maximum number of codebooks Nq , to 8.

The importance map subnetwork is designed as a simple neural network composed of 1D convo-
lutional layers with weight normalization [18] and Snake activation functions [19]. It takes the
intermediate feature map E1(x), which has a channel dimension of 1024, extracted from the layer
immediately preceding the encoder’s final convolutional block (i.e., E2). It processes the input feature
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Figure 2: The results of VRVQ across different α. The points marked with various markers represent
the results of inference at different scaling factor, l=4, 6, 8, 10, 12, 14, 16, 18, 20, 24, and 32, in VBR
mode. In the rightmost plot, we display solid lines representing the results of inference in CBR mode
for each model.

map through five sequential Conv1D blocks with kernel sizes of [5, 3, 3, 3, 1], progressively reducing
the channel dimensions from 1024 to 512, 128, 32, 8, and finally 1. The output is then passed through
a sigmoid activation function to produce the importance map.

4.2 Experimental Setup

We set the weight of the rate loss β = 2, and kept it fixed for all experiments. During training, we
randomly sample the scaling factor l between Lmin = 1 and Lmax = 48. Note that l can be any
positive real number between Lmin and Lmax for inference. Every model was trained with a batch size
of 32 for 300k iterations, using audio segments of 0.38 seconds in duration.

For evaluation, we measure the ViSQOL [20], as well as the SI-SDR [21]. ViSQOL is a perceptual
quality metric ranging from 1 to 5, designed to estimate a mean opinion score. We also report the
sum of L1 losses of log mel spectrograms, using window sizes of [32, 64, 128, 256, 512, 1024, 2048]
with a hop length of 1/4 of each window size, following the same configuration as in [4].

4.3 Dataset

We train our model using a dataset similar to that used in the original DAC model [4]. For the
speech dataset, we utilize DAPS [22], Common Voice [23], VCTK [24], and clean speech segments
from DNS Challenge 4 [25]. For the music dataset, we use MUSDB18 [26] and Jamendo [27].
Additionally, for general sounds, we incorporate AudioSet [28]. All audio is resampled to 44.1 kHz,
and the training samples were normalized to -16 dB LUFS with phase shift augmentation applied.

For evaluation, we use the F10 and M10 speakers from the DAPS dataset and the test sets from
MUSDB18 and AudioSet. We randomly extract 100 10-second segments from each domain, resulting
in a total of 300 samples for evaluation. The audio is not normalized during the evaluation phase.

5 Result

In this section, we discuss the impact of the fα on VRVQ. The results of the additional ablation study
are described in Appendix C.

Fig. 2 summarizes the result. For comparison, we also report the results of CBR RVQ with 8
codebooks trained from scratch for the same number of iterations with structured codebook dropout
with a dropout rate of 0.5. For each model, we plot the rate-distortion curve for each metric. For our
VBR models, we compute the average bitrate over the test dataset as well as the mean of each metric
for the scaling factor l in the range of [Lmin, Lmax]. We also include the additional transmission
costs (i.e., log2(Nq) = 3) for the number of codebooks used per frame into the bitrate calculation
which amounts to approximately 0.258 kbps. Note that our VRVQ models can also be evaluated in
a fixed-rate RVQ setup, i.e., in CBR mode not using an importance map. In this case, we do not
calculate the transmission cost.

It is observable that the models trained with the proposed smooth surrogate functions outperform the
model trained with the baseline function fI . As α increases, the performance approaches that of fI .
This observation aligns with the fact that fα converges to fI . Our models, trained with α < 2, show
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(a) Codebook usage based on importance map with varying l for seven audio samples when α = 2. The bottom
row shows the spectrogram of the input audio.

(b) Codebook usage based on importance map for the same sample with varying α values. The bottom row
shows the spectrogram of the reconstructed audio with the full number of codebooks.

Figure 3: Visualization of the codebook usages. From the first row, the scaling factor l are set to 6, 8,
14, 20, and 26. In each plot, the bitrate of the mask and the corresponding SI-SDR are also noted.
For the bottom row, the bitrate of the sample is reported when it is inferred with the full number of
codebooks in all frames (i.e., 8 codebooks in CBR mode), and thus, the bitrate is calculated without
transmission cost.

better performance than the DAC trained for the same number of iterations under some conditions.
Notably, for SI-SDR, our models perform significantly better than DAC. For the log mel loss and
ViSQOL, our models outperform the DAC when α is 1 or lower and the bitrate is above 3-4 kbps.

However, across all metrics, we observe that the benefit of using VBR diminishes at lower bitrates.
This is likely due to the overhead of additional transmission costs, which become relatively larger for
lower bitrates. The performance at lower bitrates improves for a larger α. This occurs because, as
shown in Fig. 3b, increasing α limits the model’s ability to generate the importance map in various
ranges, leading it to predominantly sample lower bitrates. This results in improved performance
within that bitrate range. However, reduced diversity in the importance map results in significant
underperformance at higher bitrates. It is also notable in Fig. 2 and 3b that when α = ∞, the SI-SDR
of the sample using the full codebook is worse than in cases with lower bitrates. This is because the
importance map during training rarely utilized all codebooks, leading to poorer performance in the
full codebook scenario and failing to optimize the rate-distortion tradeoff.

6 Conclusion

In this paper, we introduced a VBR RVQ for audio coding, leveraging an importance map. While
developing the framework, we addressed key challenges such as managing the non-continuous
function that converts the importance map into a binary mask by introducing the surrogate functions
for gradient estimation, demonstrating that our approach provides better gradient flow compared to the
function previously used in the image domain. As a result, we achieved efficient bit allocation within
the RVQ-VAE framework and demonstrated the effectiveness of our models through rate-distortion
curves across various metrics.
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Appendix

A Smooth approximation of baseline function

Figure 4: Gradient estimator fk
α when k = 0

Eq. (7) is defined to approximate Eq. (6) smoothly, as illustrated in Fig. 4. This function is
constructed to converge to Eq. (6) for all s ∈ R as α increase, as can be proven as follows.
Lemma 1. limα→∞ fk

α(s) = fk
I (s), ∀s ∈ R

Proof. Without loss of generality, we prove the case for k = 0.

lim
α→∞

f0
α(s) = lim

α→∞

1

2α
log

(
cosh(αs)

cosh(α(−s+ 1))

)
+

1

2

= lim
α→∞

1

2α
log

(
eαs + e−αs

eα(−s+1) + eα(s−1)

)
+

1

2

Case 1. s < 0

lim
α→∞

1

2α
log

(
eαs + e−αs

eα(−s+1) + eα(s−1)

)
+

1

2
= lim

α→∞

1

2α
log

(
e2αs + 1

1 + e2α(s−1)
· e−αs

eα(−s+1)

)
+

1

2

= lim
α→∞

1

2α
· (−α) +

1

2
= 0

Case 2. 0 ≤ s < 1

lim
α→∞

1

2α
log

(
eαs + e−αs

eα(−s+1) + eα(s−1)

)
+

1

2
= lim

α→∞

1

2α
log

(
e−2αs + 1

1 + e2α(s−1)
· eαs

eα(−s+1)

)
+

1

2

= lim
α→∞

1

2α
· α(2s− 1) +

1

2
= s

Case 3. s ≥ 1

lim
α→∞

1

2α
log

(
eαs + e−αs

eα(−s+1) + eα(s−1)

)
+

1

2
= lim

α→∞

1

2α
log

(
e−2αs + 1

e2α(−s+1) + 1
· eαs

eα(s−1)

)
+

1

2

= lim
α→∞

1

2α
· α+

1

2
= 1
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Figure 5: The results of VRVQ across different α values on various metrics. The scaling factors of
VBR mode are the same as in Fig. 2. The solid lines represent the results inferred in CBR mode for
each model.
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(a) Bitrate (b) Log Mel L1 (c) ViSQOL (d) SI-SDR

Figure 6: Bitrate and various metrics as a function of scale factor in VBR mode

B Evaluation across additional metrics

In this section, we report additional results for the models presented in Fig. 2. We also plot the results
for inference in CBR mode for the previously reported metrics. In addition to SI-SDR [21], ViSQOL
[20], and Log Mel L1, we also report SDR, L1 loss on the raw waveform (Waveform L1), and L1
loss on the magnitude spectrogram (Mag Spec L1). For the Mag Spec L1 loss, we used multiscale
STFT loss [29], with window sizes of 512 and 2048, and a hop size of 1/4 of those values.

As mentioned in the main text, in most cases, our proposed method outperforms both the Baseline
and DAC for α < 2, with particularly strong performance in waveform L1 loss and magnitude
spectrogram L1 loss. As a reference, we also include plots of bitrate vs. scale factor, along with
various metrics vs. scale factor, for the models inferred in VBR mode in Fig. 6.

C Ablation study

We conduct additional experiments to assess the impact of various configurations. First, we investigate
whether allocating the full number of codebooks for a subset of samples in each mini-batch during
training, as proposed in [4], could improve rate-distortion tradeoff, rather than solely relying on
importance map-based allocation. Thus, we conduct ablation studies with α = 2, where the
performance is slightly worse than smaller α values at higher bitrates. Specifically, for 25% of
the samples in each mini-batch, we use the full set of codebooks regardless of the importance map.
Additionally, we investigate the effect of removing LUFS normalization preprocessing during training.
We also experiment with increasing the number of codebooks to 16 to assess the scalability of the
proposed method with respect to the maximum number of the codebooks. The corresponding increase
in additional transmission cost for VBR is 0.344 kbps. For consistency, a DAC model is also trained
from scratch using the same configuration. All ablation studies adhere to the settings outlined in
Section 4.2.

The results for the first studies are shown in Fig. 7. From the results, we can observe that using
the full codebooks for a subset of samples does not provide a significant advantage for SI-SDR,
SDR, Log Mel L1 loss and Waveform L1 loss. This is likely because, when α = 2, the model have
observed a sufficiently wide range of the codebook usage cases during training, simply by varying
the scaling factor l. Instead, it results in the performance degradation at lower bitrates. On the other
hand, the models trained without LUFS normalization shows a significant performance improvement
in SI-SDR, SDR, ViSQOL, and Waveform L1 loss, but not in Log Mel L1 loss. This suggests that the
importance subnetwork may have generated a higher-quality importance map by learning the energy
distribution of frames.

For Nq = 16, VRVQ shows better performance than DAC in SI-SDR, SDR, and Waveform L1 loss
similar to the results for Nq = 8, as shown in Fig. 8. In particular, the CBR performance of VRVQ
almost matched that of DAC in SI-SDR, SDR and Waveform L1 loss. Although not all metrics
outperformed the DAC, such as Log Mel L1, ViSQOL, and Mag Spec L1 loss, the VRVQ still showed
comparable results to the DAC. This shows the scalability that our method can be applied to higher
bitrates without impairing the performance of existing CBR codecs.
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Figure 7: The results for ablation studies. The scaling factors of VBR mode are the same as in Fig. 2.
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Figure 8: Results for the model trained with 16 codebooks (Nq = 16) shown in blue. The scaling
factors l for VBR mode are set to 8, 12, 16, 20, 24, 28, 32, 40, 48, and 56, with each scaling factor
annotated above the corresponding points. The DAC model, shown in magenta, is trained with the
same configuration.
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Figure 9: Simplified overall framework graph of VRVQ

D Independence of rate loss from random sampling

Typically, rate control is achieved by setting different weights β for the rate loss, which leads to
the inconvenience of deploying a separate model for each β. Some studies have addressed this by
allowing the model to respond to changes in β by incorporating β as an input condition [30, 14, 31–
34]. In our research, we avoided inputting β as a condition into the model. Instead, we fixed β and
introduced an external operator Sl that is randomly sampled to control the rate loss. This section
justifies our approach, demonstrating that rate loss can be formulated in such a way that the sampled
l does not influence it—in other words, proving that the rate loss and l are independent.

Typically, the β-VAE objective [16] is formulated with a reconstruction loss and a KL divergence
term, also known as the rate loss, as follows:

Lβ(ϕ, θ) = Eqϕ(z|x) log pθ(x|z)− βDKL(qϕ(z|x)||pr(z)) (11)

In our case, z can be viewed as a joint variable of the latent variable ze, the importance map p, and the
scaling factor l, i.e., z = (ze, p, l). Once ze, p, and l are determined, the mask ml is also determined,
allowing the decoder input zq to be calculated as shown in Fig. 9. The first term corresponds to
the reconstruction loss, which is calculated using the reconstructed audio with the masked latent zq.
Therefore, we focus on maximizing the second term, the rate loss, which can be expanded as follows:

min
ϕ

∫
z

qϕ(z|x) log
qϕ(z|x)
pr(z)

dz (12)

=

∫
z

qϕ(ze, p, l|x) log
qϕ(ze, p, l|x)
pr(ze, p, l)

dz (13)

=

∫
z

qϕ(p, l|x)qϕ(ze|p, l, x) log
(
qϕ(p, l|x)
pr(p, l)

· qϕ(ze|p, l, x)
pr(ze|p, l)

)
dz (14)

= Eqϕ(p,l|x)qϕ(ze|p,l,x)

[
log

qϕ(p, l|x)
pr(p, l)

]
(15)

+ Eqϕ(p,l|x) [DKL(qϕ(ze|p, l, x)||pr(ze|p, l))] (16)

Due to the independence of l from other variables and the conditional independence of ze and p given
x, Eq. (15) can be simplified as follows:

Eqϕ(p,l|x)qϕ(ze|p,l,x)

[
log

qϕ(p, l|x)
pr(p, l)

]
= Eqϕ(p|x)pr(l)qϕ(ze|x)

[
log

qϕ(p|x)
pr(p)

]
(17)

= Eqϕ(p|x)

[
log

qϕ(p|x)
pr(p)

]
(18)

= DKL(qϕ(p|x)||pr(p)) (19)
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For the second term, Eq. (16), we have:

Eqϕ(p,l|x) [DKL(qϕ(ze|p, l, x)||pr(ze|p, l))] = Eqϕ(p|x)pr(l) [DKL(qϕ(ze|x)||pr(ze|p))] (20)

= Eqϕ(p|x) [DKL(qϕ(ze|x)||pr(ze|p))] (21)

Consequently, both terms Eq. (19) and Eq. (21)) are independent of l, meaning the calculation of the
rate loss is unaffected by l.
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Figure 10: Comparison of Sl and other alternative scaling functions

(a) Samples trained on Sγ
exp (b) Samples trained on Sγ

T

Figure 11: Visualization of codebook usage based on alternative functions. In each plot, the bitrate
of the mask and the corresponding SI-SDR are noted. The bottom row displays the reconstructed
samples using the full number of codebooks. From the first row, the γ values are set to 0.1,0.5, 1, 4,
and 8

E Exploration of alternative scaling operators

We randomly sample the scale factor l and apply the corresponding operator Sl to the importance
map p, as shown in Fig. 9 . In this work, Sl(p) = l · p is implemented as a simple scaling function.
However, this approach presents a limitation: if the sampled scale factor is less than Nq − 1, the
upper bound of codebook usage is constrained to that value.

To address this limitation, we have explored alternative operators as shown in Fig. 10, such as an
exponential function Sγ

exp(p) = Nq · pγ , inspired by [14], and a Transformed scaling function, which
we define below. The expectation is that the gradient around 0 will neither be infinite nor zero unlike
Sexp, thereby stabilizing the training process:

Sγ
T (x) =


Nqγx if 0 < x ≤ 1/(γ + 1),
Nq

γ
(x+ γ − 1) if 1/(γ + 1) < x < 1

(22)

Despite experimenting with these alternative operators, the importance map is not trained effectively,
as shown in Fig. 11. We set α = 2 and sampled the random value γ from a log-uniform distribution:
log γ ∼ U([log 0.1, log 6]) during training. The results indicate only a few extreme spikes of
codebook usage in some time frames, but for most frames, the model consistently uses a single
codebook, thereby limiting the performance of the VRVQ framework.

Addressing this issue remains part of future work, as these alternative operators have the potential
to avoid limiting the upper bound of codebook usage at low γ, which is a drawback of the simple
scaling function Sl used in this study.
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