
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUTOMATIC ROBUSTNESS STRESS TESTING OF LLMS
AS MATHEMATICAL PROBLEM SOLVERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have achieved distinguished performance on var-
ious reasoning-intensive tasks. However, LLMs might still face the challenges of
robustness issues and fail unexpectedly in some simple reasoning tasks. Previ-
ous works evaluate the LLM robustness with hand-crafted templates or a limited
set of perturbation rules, indicating potential data contamination in pre-training
or fine-tuning datasets. In this work, inspired by stress testing in software en-
gineering, we propose a novel framework, Automatic Robustness Checker (AR-
CHECKER), to generate mathematical problem variants that maintain the seman-
tic meanings of the original one but might fail the LLMs. The AR-CHECKER
framework generates mathematical problem variants through multi-round parallel
streams of LLM-based rewriting and verification. Our framework can generate
benchmark variants dynamically for each LLM, thus minimizing the risk of data
contamination. Experiments on GSM8K and MATH-500 demonstrate the strong
performance of AR-CHECKER on mathematical tasks. We also evaluate AR-
CHECKER on benchmarks beyond mathematics, including MMLU, MMLU-Pro,
and CommonsenseQA, where it also achieves strong performance, further proving
the effectiveness of AR-CHECKER.

1 INTRODUCTION

Large Language Models (LLMs) have seen rapid advancements in recent years and are becom-
ing increasingly important in daily life and research (Brown et al., 2020; OpenAI, 2022; An-
thropic, 2023; llama3, 2024). Numerous benchmarks (Chang et al., 2024) have been estab-
lished to assess their performance on various tasks, such as mathematical problem solving (Cobbe
et al., 2021), coding generation (Chen et al., 2021), and instruction following (Zhou et al., 2023).

Llama3.2-1b-Instruct Gemma-2-2b-IT Llama-3-8b-Instruct DeepSeek-R1-Distill-Llama-8B
0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy 45.26

2.71

29.80

3.40

63.15

13.68

27.40

3.80

76.42

27.51 29.20

6.00

83.09

31.85

83.20

31.00

GSM8K (Vanilla)
GSM8K (AR-CHECKER)
MATH-500 (Vanilla)
MATH-500 (AR-CHECKER)

Figure 1: Accuracy comparison of various
LLMs on GSM8K and MATH-500 benchmarks,
showing performance before and after applying
our AR-CHECKER robustness testing framework.
The significant drop in accuracy after applying our
method highlights the robustness issues of LLMs
on mathematical problems and the unreliability of
current evaluations.

Although evaluation results on these bench-
marks show that LLMs perform very well
and even achieve human-level performance on
many tasks, some studies (Zhu et al., 2023;
Huang et al., 2024; Cheng et al., 2024) have
found that LLMs might perform poorly on cer-
tain instructions or questions that humans be-
lieve to be simple. These observations indicate
that LLMs have significant robustness issues.

Existing works (Shi et al., 2023; Li et al., 2024;
Mirzadeh et al., 2024) focus on the evaluation
of LLM robustness by creation of benchmark
variants on tasks like math reasoning (Cobbe
et al., 2021). They observe that existing LLMs
can still fail on problems that are slightly mod-
ified from the original samples. These find-
ings hint at potential data contamination in
pre-training or fine-tuning datasets (Mirzadeh
et al., 2024). However, previous works evaluate
the LLM robustness by creating variants with
template-based approaches (Shi et al., 2023;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Mirzadeh et al., 2024) or relying on a fixed set of perturbation rules (Li et al., 2024; Zhu et al.,
2024). They underutilize the characteristics of the target LLMs during the benchmark creation pro-
cess and fail to explore more diverse robustness challenges for the target LLMs.

In this work, inspired by stress testing in software engineering (Jiang & Hassan, 2015), we frame
the robustness evaluation of LLMs as a stress testing problem and propose a novel framework, AR-
CHECKER, for automatic robustness evaluation of LLMs as mathematical problem solvers. The
framework consists of three LLMs: a rewriter, a verifier, and a target LLM. Given a testing budget of
M , the rewriter rewrites mathematical problems into their variants, at most M times, while keeping
the core meaning unchanged. The verifier checks whether the core meaning of the original question
is preserved and whether the target LLM’s answer to the rewritten variant is different from the
correct answer. The AR-CHECKER framework removes the reliance on hand-crafted guidelines
to generate challenging instruction variants, instead, the rewriter explores to find the optimization
direction via the iterations of multi-round parallel streams. Experiments on GSM8K (Cobbe et al.,
2021) and MATH-5001 prove the effectiveness and scalability of our proposed framework on various
target LLMs. As shown in Figure 1, four LLMs obtain 48.04% and 31.35% less averaged accuracy
on our GSM8K and MATH-500 evaluation variants, respectively. As the evaluation instructions
are generated dynamically for each LLM, our framework is expected to minimize the risk of data
contamination. We also evaluate AR-CHECKER on benchmarks beyond mathematics, including
MMLU (Hendrycks et al., 2021), MMLU-Pro (Wang et al., 2024), and CommonsenseQA (Talmor
et al., 2019), where it also achieves strong performance, further proving the effectiveness of AR-
CHECKER.

2 RELATED WORK

2.1 ROBUSTNESS EVALUATION OF LLMS

There has been a line of work on evaluating the robustness of LLMs. For instance, AdvGLUE (Wang
et al., 2021) and Promptbench (Zhu et al., 2023) are two widely used static benchmarks to evaluate
the robustness of LLMs on various tasks. As mathematical problems offer the advantage of having
standard answers that enable objective evaluation, many previous works have focused on evaluating
the robustness of LLMs in mathematical reasoning (Shi et al., 2023; Huang et al., 2025; Srivastava
et al., 2024; Mirzadeh et al., 2024; Yu et al., 2025; Gulati et al., 2024). Shi et al. (2023) find
that LLMs’ performance is dramatically decreased when irrelevant context is included in GSM8K
problems. Li et al. (2024) propose a variant dataset of the GSM8K benchmark, GSM8K-PLUS,
with various mathematical perturbations and show that LLMs are far from robust. Mirzadeh et al.
(2024) create symbolic templates that allow for the generation of a diverse set of questions from
GSM8K problems. They find that LLMs exhibit noticeable variance when responding to different
instantiations of the same question. Unlike these works, which evaluate LLM robustness through
template-based approaches or fixed sets of perturbation rules, our framework adopts a more flexible
and dynamic optimization strategy.

2.2 LLM-BASED PROMPT OPTIMIZATION

Two lines of work on LLM-based prompt optimization are particularly relevant to our study. One
line of work focuses on enhancing model performance through automatic prompt engineering (Yang
et al., 2023; Zhou et al., 2022). These works, like ours, aim to optimize prompts while maintaining
the core meaning, but they focus on improving the performance of the target LLMs, whereas we
aim to find prompts that cause the target LLMs to fail. Another line of work is the jailbreak attack,
which intentionally designs malicious prompts that adversarially trigger aligned LLMs to produce
uncensored content (Dong et al., 2024; Xu et al., 2024; Yu et al., 2023; Ding et al., 2024). Prompt
Automatic Iterative Refinement (PAIR) (Chao et al., 2023) employs an LLM-based attacker to re-
formulate malicious instructions and utilizes GPT-4 as an evaluator to assess the harmfulness of the
target model’s responses. Different from the PAIR method, which attacks the LLMs to generate
malicious content, our focus is specifically on evaluating the robustness of LLMs as mathematical
problem solvers.

1https://huggingface.co/datasets/HuggingFaceH4/MATH-500

2

https://huggingface.co/datasets/HuggingFaceH4/MATH-500

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(b) Multi-round iterations with parallel streams for query search

⋯
⋮ ⋱

Max. 𝐾 Rewriting Iterations

𝑁
 P

ar
al

le
l S

tre
am

s

⋮ ⋮ ⋮
⋯

⋯

Query 𝑥‘

Query 𝑥
Correct Answer 𝑎 Rewriter

Verifier

Rewrite History

Query 𝑥′

Target LLM

Answer a′

End

① ②

③

④

⑤

Yes

No

⑤

(a) Iteratively rewrite and verify to generated the query variants

④

Figure 2: Overview of AR-CHECKER framework. Left: given a query x, AR-CHECKER iteratively
rewrites x with the rewriter (Section 3.3) until the verifier (Section 3.4) detects a query variant x′

that preserves the core mathematical meaning of the original query x but fails the target LLM. Right:
for each query x, AR-CHECKER executes N parallel streams, allowing for a maximum K rewriting
iterations per stream, enhancing both the search breadth and depth of the query variants.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Given a mathematical problem x and corresponding answer a from dataset D, our goal is to rewrite
it into a variant x′ within a given budget M such that x and x′ have the same core meaning, and
the target LLM’s answer to x′, denoted as a′, is different from a. The budget M is defined as the
maximum number of rewrites.

3.2 AR-CHECKER FRAMEWORK

Stress testing, a software testing technique, is used to evaluate the robustness of software systems by
subjecting them to stressful conditions in order to uncover bugs, crashes, and potential vulnerabili-
ties (Jiang & Hassan, 2015). In this work, inspired by stress testing, we propose a novel framework
AR-CHECKER, to stress test the robustness of LLMs as mathematical problem solvers by automat-
ically generating mathematical problem variants, as shown in Figure 2.

The framework consists of three components: a rewriter R, a verifier V , and a target LLM T , all
of which are implemented using LLMs. Given a testing budget of M = N ∗ K, the framework
operates by running N parallel streams, each performing up to K rewriting iterations, as shown in
Algorithm 1.

For each original mathematical problem x with correct answer a, the rewriter R generates variants
x′ while attempting to preserve the core mathematical meaning, which means the correct answer
to x′ should also be a. For each variant x′, the target LLM T produces an answer a′. The verifier
V then evaluates whether: (1) the core meaning of x′ matches that of x, and (2) the target LLM’s
answer a′ differs from the correct answer a. A test is considered to pass only if the target LLM
correctly answers all these variants.

Our AR-CHECKER framework incorporates two key designs that enhance its effectiveness in finding
challenging variants: multi-round iteration and parallel streams. These complementary strategies
work together to better explore the space of potential variants while enhancing both search depth
and breadth, significantly improving the efficiency of identifying robust test cases:

Multi-round Iterations. The optimization of problem variants is formulated as a simulated multi-
round chat between the rewriter and the verifier. Based on the previous problem variants and feed-
backs from the verifier, the rewriter first generates chain-of-thoughts about the strategies to modify
the instruction, and then proposes a novel and diverse variant of the problem. This multi-round itera-
tion approach increases the search depth and encourages diverse proposals, which further challenges
the robustness of the target LLM.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 AR-CHECKER Framework

1: Input: Rewriter R, Verifier V , Target T , Original problem x, Correct answer a, Number of
iterations K, Number of streams N

2: Initialize: Successful variants set V ← ∅
3: for all stream n ∈ {1, 2, ..., N} in parallel do
4: Initialize conversation history Cn ← [(x, a)]
5: for k = 1 to K do
6: x′

n ← R(x,Cn) ▷ Generate variant
7: a′n ← T (x′

n) ▷ Query target LLM
8: vn ← V (x, a, x′

n, a
′
n) ▷ Verify if meaning preserved and a′n ̸= a

9: Cn ← Cn ∪ {(x′
n, a

′
n, vn)} ▷ Update conversation history

10: if vn = D then ▷ If meaning preserved and a′n ̸= a
11: V ← V ∪ {(x′

n, a
′
n)} ▷ Add successful variant

12: terminate all streams and return V ▷ Stop all streams once a successful variant is
found

13: end if
14: end for
15: end for
16: return V ▷ Return all successful variants

Parallel Streams. We design the framework to perform multiple streams of rewriting conversa-
tions in parallel, each of which is independent of the others. Specifically, the rewriter generates
multiple variants in parallel, and any successful variant is considered a successful perturbation. This
design increases the search width, allowing the rewriter to explore more possibilities and generate
more effective adversarial questions, benefiting from different trajectories in different streams.

3.3 PROBLEM REWRITING

Given the strong instruction-following capability of current LLMs, we choose to use LLMs as prob-
lem rewriter. In the rewriter’s system prompt, the LLM role, background of the task, and detailed
scenario are specified. Unlike prior work (Zhu et al., 2024), we do not provide specific rewrit-
ing methods or principles; instead, we encourage the rewriter LLM to explore and propose diverse
rewriting suggestions for the user instruction based on its internal knowledge as well as feedbacks
from the verifier. This self-evolvement approach is more scalable and flexible compared with ex-
isting template-based or rule-based methods. On one hand, as LLMs evolve, manually constructed
principles may quickly become obsolete and using a fixed set of principles cannot cover all cases,
potentially limiting the diversity of rewriting problems and hindering the comprehensive evaluation
of the LLM’s robustness. On the other hand, as the capabilities of LLMs improve, the internal
knowledge of the rewriter LLM regarding model weaknesses also expands, enabling the rewriter to
explore a broader spectrum of potential LLM weaknesses. See Figure 6 of Appendix D for the full
system prompt of rewriter.

3.4 VERIFICATION

Although we have explicitly restricted the rewriter to keep the core meaning of the original question
x, there are cases where rewriter unintentionally changes the meaning. Thus, we designed the
verifier V to assess whether the rewritten variant x′ maintains the core meaning of x. Additionally,
the verifier V is responsible for comparing the consistency of the target model’s answer a′ to the
rewritten variant x′ and the original answer a to the original question x. The full system prompt of
the verifier is provided in Figure 7 at Appendix D.

Specifically, the verifier’s prompt includes the original question x, the correct answer a, the rewritten
variant x′, and the target LLM’s answer a′ to x′. We design the prompt to first generate chain-of-
thought to compare the core meaning of x and x′, and then compare the consistency of a and a′.
Finally, the verifier V outputs a verdict among A, B, C, and D, representing the four combinations
of whether the core meaning has changed and whether the answers are consistent.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets. We select the test set of GSM8K (Cobbe et al., 2021) and the MATH-5002 dataset,
a subset of the MATH benchmark (Lightman et al., 2024), to evaluate the robustness of LLMs
as mathematical problem solvers. These datasets are widely used mathematical reasoning bench-
marks, covering a range of mathematical topics and difficulty levels. For GSM8K, we randomly
sample 300 correctly answered questions for each target LLM due to the large number of correctly
answered samples available. For MATH-500, we use all correctly answered questions. Beyond
mathematical problems, we also validated the effectiveness of AR-CHECKER on other domains:
MMLU (Hendrycks et al., 2021), MMLU-Pro (Wang et al., 2024), and CommonsenseQA (Talmor
et al., 2019). Details of these additional evaluations can be found in Section 5.

Models and settings. To evaluate the effectiveness of our approach, we utilize six LLMs as target
models: LLaMA-3.2-1B-Instruct (AI@Meta, 2024), Gemma-2-2B-IT (Team et al., 2024), LLaMA-
3-8B-Instruct (llama3, 2024), DeepSeek-R1-Distill-LLaMA-8B (Guo et al., 2025), Qwen2.5-Math-
7B-Instruct (Yang et al., 2024), Qwen2.5-7B-Instruct (Qwen et al., 2025). All models generate
answers using zero-shot prompting method.

The rewriter and verifier are both implemented using Qwen2.5-32B-Instruct (Qwen et al., 2025)
unless otherwise specified. We set the temperature to 0 for all target models and the verifier, ensuring
deterministic sampling, and set the temperature to 1 and top-p to 0.9 for the rewriter to encourage
diverse exploration of rewriting. We set the stream number N to 5 and the iteration number K to 3.

Evaluation. We evaluate our approach using two metrics: test failure rate (TFR) and accuracy.
• Test failure rate (TFR) is calculated as the percentage of questions that fail our testing, meaning
those that—after applying our AR-CHECKER framework—result in incorrect answers from the tar-
get model despite being answered correctly in their original form.
• Accuracy measures the proportion of questions correctly answered relative to the total number
of questions in the dataset. We report the vanilla accuracy (VAcc, performance on the original
dataset) and the robustness accuracy (RAcc, performance after applying our AR-CHECKER frame-
work). Since we do not apply AR-CHECKER to all of the originally correctly answered questions in
GSM8K, the robustness accuracy on that benchmark is estimated with RAcc = VAcc× (1− TFR).

4.2 MAIN RESULTS

We show the performance of AR-CHECKER on GSM8K and MATH-500 across various target LLMs
in Table 1. All models achieve a TFR exceeding 60% on both benchmarks, except for Qwen2.5-7B-
Instruct and Qwen2.5-Math-7B-Instruct. This demonstrates that our method effectively identifies
robustness issues associated with LLMs. Comparing different target LLMs, we observe that LLMs
with lower VAcc tend to exhibit larger TFR values.

Table 1: Performance of AR-CHECKER on GSM8K and MATH-500 datasets. VAcc and RAcc de-
note the vanilla accuracy and the robustness accuracy, respectively. ∆Acc is the difference between
RAcc and VAcc.

Target model GSM8K MATH-500

VAcc RAcc ∆Acc TFR VAcc RAcc ∆Acc TFR

LLaMA-3.2-1B-Instruct 45.26 2.71 42.55 94.00 29.80 3.40 26.40 88.59
Gemma-2-2B-IT 63.15 13.68 49.47 78.33 27.40 3.80 23.60 86.13
LLaMA-3-8B-Instruct 76.42 27.51 48.91 64.00 29.20 6.00 23.20 79.45
DeepSeek-R1-Distill-LLaMA-8B 83.09 31.85 51.24 61.67 83.20 31.00 52.20 62.74
Qwen2.5-Math-7B-Instruct 92.34 48.63 43.71 47.33 81.60 44.20 37.40 45.83
Qwen2.5-7B-Instruct 91.51 61.01 30.50 33.33 75.20 42.60 32.60 43.35

2https://huggingface.co/datasets/HuggingFaceH4/MATH-500

5

https://huggingface.co/datasets/HuggingFaceH4/MATH-500

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

This finding suggests that LLMs with superior performance are generally more robust. Comparing
the two datasets, non-reasoning LLMs demonstrate significantly better performance on GSM8K than
on MATH-500, primarily due to the higher difficulty of MATH-500. In terms of robustness, we find
that most LLMs are more robust on GSM8K compared to MATH-500, indicating that LLMs tend to
demonstrate reduced robustness when faced with more challenging problems. Notably, DeepSeek-
R1 performs comparably on both datasets in all metrics, primarily because it is a reasoning model
that excels at addressing challenging problems. For the metric ∆Acc, DeepSeek-R1 achieves the
highest ∆Acc among all evaluated LLMs across both benchmarks. This finding suggests that ro-
bustness testing can significantly hinder the problem-solving capabilities of reasoning models. Fur-
thermore, it underscores the increasing importance of examining robustness issues in the context of
the emerging era of reasoning models.

Our framework can also be applied to robustness evaluation in other domains beyond mathematical
reasoning. Details of these additional evaluations can be found in the Broad Applicability to Other
Domains of Section 5.

4.3 ABLATION STUDY

1 2 3 4 5
K

0.0

0.2

0.4

0.6

0.8

1.0

TF
R

1 2 3 4 5
K

0.0

0.2

0.4

0.6

0.8

1.0

TF
R

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

Figure 3: Ablation study on the number of streams N
and number of iterations K. Left: Gemma-2-2B-IT.
Right: LLaMA-3-8B-Instruct.

To study the impact of the stream number
N and the iteration number K on the per-
formance of AR-CHECKER, we conduct
experiments for each combination of N
and K within the ranges N ≤ 10,K ≤
5 on the GSM8K dataset, as illustrated
in Figure 3. First, increasing both N
and K improves the performance of AR-
CHECKER. With N = 10,K = 5, AR-
CHECKER acheives a TFR of 97.00% for
Gemma-2-2B-IT and 88.00% for LLaMA-
3-8B-Instruct, significantly outperforming
the results from our main experiments by
an average TFR of 11.50%. This un-
derscores the substantial potential of AR-
CHECKER by simply increasing the rewriting budget. Second, regarding varying stream numbers
N , we note a significant increase in TFR when N is raised from 1 to 5, with continued improvement
as N increases further. However, the performance gains become marginal beyond N = 5. This
suggests that while increasing the number of streams can enhance AR-CHECKER’s performance,
the benefits diminish after a certain point. Similarly, the iteration number K also demonstrates
diminishing marginal gains, with the most significant performance gains occurring within the first
three to four iterations. Finally, when comparing Gemma-2-2B-IT and LLaMA-3-8B-Instruct, we
observe that larger values of N and K yield greater performance gains for LLaMA-3-8B-Instruct
compared to Gemma-2-2B-IT. This indicates that a more robust target LLM requires larger N and
K to achieve satisfactory results. For simplicity and to balance performance with computational
cost, we chose to set N = 5 and K = 3 for all target LLMs in our main experiments.

5 ANALYSES

Table 2: Influence of the rewriter model.

Rewriter / Target LLaMA-3.2 Gemma-2 LLaMA-3

Qwen2.5-32B-Instruct 94.00 78.33 64.00
GPT-4o-mini 89.33 74.33 52.67

Influence of Rewriter Model Table 2
compares the TFR of different rewriter
models, where we employ one open-
sourced LLM Qwen2.5-32B-Instruct,
alongside a proprietary LLM, GPT-4o-
mini. Both models demonstrate strong
performance as rewriters; however,
Qwen2.5-32B-Instruct surpasses GPT-4o-
mini by an average of 6.67 points in terms of TFR. Given that Qwen2.5-32B-Instruct is open-source
and achieves superior performance, we select it as the rewriter model for the main experiments,
ensuring both performance and cost-effectiveness.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Performance of the verifiers. Qwen2.5-32B-
Instruct achieves remarkably high precision, which in-
dicates a minimal probability of incorrectly classifying
passing tests as failing ones.

Verifier Model Precision (%)

Qwen2.5-32B-Instruct 98.00
GPT-4o-mini 90.67

Performance of the Verifier In the pro-
posed AR-CHECKER, the verifier is im-
plemented by an LLM. Given that the per-
formance of the verifier is crucial for the
reliability of testing and evaluation, we an-
alyze its performance in detail. In our pre-
liminary experiments, we used Qwen2.5-
32B-Instruct and GPT-4o-mini as the ver-
ifier and annotated their consistency with
human evaluations. More details are pro-
vided in Appendix C.1. As shown in Table 3, Qwen2.5-32B-Instruct achieves a precision of 98.00%,
significantly outperforming GPT-4o-mini, which attains 90.67%. This result indicates that Qwen2.5-
32B-Instruct is reliable, exhibiting a low false positive rate and a minimal probability of incorrectly
classifying passing tests as failing ones.

Table 4: TFR comparison with GSM-PLUS, GSM
Symbolic, and AR-CHECKER. ‘∆’ is the TFR im-
provement of AR-CHECKER over other robustness
datasets.

Method / Target LLaMA-3.2 Gemma-2 LLaMA-3

AR-CHECKER 94.00 78.33 64.00
GSM-Plus 78.67 54.67 48.00
∆ +15.33 +23.66 +16.00

AR-CHECKER 93.94 90.91 72.73
GSM Symbolic 60.61 45.45 45.45
∆ +33.33 +45.46 +27.28

Comparison with Robustness Bench-
marks We compare AR-CHECKER
with two robustness benchmarks on eval-
uating LLMs as mathematical problem
solvers: GSM-PLUS (Li et al., 2024)
and GSM Symbolic (Mirzadeh et al.,
2024). For the GSM-PLUS, we utilize the
identical subset of 300 correctly answered
samples for each target model as used
in our main experiments in Section 4.2.
Given that GSM-PLUS comprises 8
variants of each original GSM8K question
and some of these variants yield answers
that differ from those of the original
GSM8K questions, we restrict our analy-
sis exclusively to variants that preserve the original answer, for a fair comparison. For the GSM
Symbolic, we filter it to retain samples where rewriting preserved the original GSM8K answer,
resulting in a subset of 33 samples from the initial 100. We apply AR-CHECKER on these 33
samples to ensure a fair comparison. For these benchmarks, we also consider a sample pass the test
if the target LLM correctly answers all the variants. As shown in Table 4, AR-CHECKER can more
effectively identify robustness issues of LLMs than these two benchmarks, without any human
intervention. This indicates that AR-CHECKER can be used as a more scalable and efficient method
for evaluating the robustness of LLMs.

Table 5: Effect of rewriting principles.

Strategy / Target LLaMA-3.2 Gemma-2 LLaMA-3

w/o Principles 94.00 78.33 64.00
w/ Principles 94.00 73.67 56.33
w/ Principles per Stream 91.67 77.00 60.00

Effect of Rewriting Principles Prior
works (Wang et al., 2021; Zhu et al., 2023;
Li et al., 2024; Zhu et al., 2024) utilize
a fixed set of rewriting principles to gen-
erate adversarial examples. Here, we an-
alyze how AR-CHECKER performs with
and without predefined rewriting princi-
ples. We manually summarize 14 types of
rewriting principles, detailed in Appendix C.3, and compare three strategies: (1) Without Principles
(AR-CHECKER): The rewriter generates variants without any predefined principles. (2) With Prin-
ciples: All 14 predefined principles are added to the rewriter’s system prompt for all streams. (3)
With Principles per Stream: Each stream independently samples 5 principles from the 14 principles.
As shown in Table 5, the use of predefined principles did not significantly impact the TFR, indicating
that the internal knowledge of LLM is sufficient to generate effective rewrites.

Scaling to Stronger Rewriter and Targets. To further demonstrate the potential of AR-
CHECKER, we conducted additional experiments with more powerful rewriter and target mod-
els. We employed GPT-4o-2024-11-20 as an alternative rewriter alongside our previously used
Qwen2.5-32B-Instruct. For target models, we evaluated three large-scale models: Gemma-3-27B-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

IT (Team et al., 2025), Qwen2.5-32B-Instruct, and Qwen2.5-72B-Instruct on the GSM8K bench-
mark. As shown in Table 6, when using Qwen2.5-32B-Instruct as the rewriter, AR-CHECKER
achieves substantial TFR scores: 25.33% on Gemma-3-27B-IT, 22.00% on Qwen2.5-32B-Instruct,
and 27.33% on Qwen2.5-72B-Instruct, demonstrating its effectiveness in evaluating stronger mod-
els. Furthermore, when employing GPT-4o-2024-11-20 as the rewriter, AR-CHECKER consistently
achieves higher TFR scores compared to using Qwen2.5-32B-Instruct, resulting in a more decrease
in RAcc. These results demonstrate that AR-CHECKER’s effectiveness scales with the capabilities
of the rewriter model. This finding suggests that as more powerful LLMs become available, AR-
CHECKER can leverage their enhanced reasoning and creativity to generate increasingly challenging
test cases. Such scalability highlights the long-term potential of AR-CHECKER in maintaining its
effectiveness as an evaluation tool while keeping pace with advancing model capabilities.

Table 6: Performance of AR-CHECKER with stronger rewriter and target models on GSM8K.

Rewriter Target VAcc RAcc ∆Acc TFR

Qwen2.5-32B
Gemma3-27B 95.38 71.21 24.16 25.33
Qwen2.5-32B 94.31 73.56 20.75 22.00
Qwen2.5-72B 95.30 69.25 26.05 27.33

GPT-4o
Gemma3-27B 95.38 61.68 33.70 35.33
Qwen2.5-32B 94.31 66.56 27.67 29.33
Qwen2.5-72B 95.30 67.66 27.64 29.00

LL
aM

A-3.
2

Gem
ma-2

LL
aM

A-3

Dee
ps

ee
k-R

1

Source

LLaMA-3.2

Gemma-2

LLaMA-3

Deepseek-R1

Ta
rg

et

100.00 31.56 21.63 17.73

68.09 100.00 33.62 27.23

74.42 59.30 100.00 41.86

72.97 61.62 40.00 100.00

0

20

40

60

80

100

Figure 4: Cross-Model Strategy Transfer Performance

Transferability of Robustness Test
Cases To further understand the gen-
eralizability of robustness issues across
different models, we analyze the transfer-
ability of test cases that fail our robustness
testing. As shown in Figure 4, we evaluate
how test cases that cause one model to
fail transfer to other models. The diagonal
values of 100% represent self-testing
(using a model’s own failure cases).
Examining the transferability patterns,
we observe that failure cases from more
capable models like Deepseek-R1 trans-
fer well to other models, with 72.97%
transferability to LLaMA-3.2, 61.62%
to Gemma-2, and 40.00% to LLaMA-3.
Conversely, failure cases from smaller
models like LLaMA-3.2 transfer poorly
to larger models (31.56% to Gemma-2,
21.63% to LLaMA-3, and 17.73% to
Deepseek-R1). These findings indicate
that robustness vulnerabilities are partially shared across models, but each model also exhibits
unique weaknesses that others may not have, underscoring the value of model-specific and dynamic
stress testing.

Broad Applicability to Other Domains The proposed AR-CHECKER framework is not limited
to mathematical problems but can be effectively applied to any domain with well-defined ground
truth answers. To demonstrate the framework’s broader applicability, we conduct experiments on
three additional datasets: MMLU (Hendrycks et al., 2021), MMLU-Pro (Wang et al., 2024), and
CommonsenseQA (Talmor et al., 2019). For MMLU, we use the high school computer science
subset, which contains 100 single-choice questions. For MMLU-Pro, we use the ori mmlu-
high school computer science subset, which contains 62 single-choice questions. For Common-
senseQA, we sample 300 questions from the val set.

The results are presented in Table 7. As shown, AR-CHECKER achieves consistently high TFR
across all target models on both datasets. Notably, LLaMA-3.2-1B-Instruct exhibits a TFR of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

88.10% on MMLU, 92.31% on MMLU-Pro, and 67.33% on CommonsenseQA, indicating AR-
CHECKER’s effectiveness in evaluating the robustness of LLMs across different domains.

Table 7: Performance of AR-CHECKER on MMLU, MMLU-Pro, and CommonsenseQA datasets.
VAcc and RAcc denote the vanilla accuracy and the robustness accuracy, respectively. ∆Acc is the
difference between RAcc and VAcc.

Target model MMLU MMLU-Pro CommonsenseQA

VAcc RAcc ∆Acc TFR VAcc RAcc ∆Acc TFR VAcc RAcc ∆Acc TFR

LLaMA-3.2-1B-Instruct 42.00 5.00 37.00 88.10 20.97 1.61 19.35 92.31 51.92 16.96 34.96 67.33
Gemma-2-2B-IT 48.00 21.00 27.00 56.25 35.48 6.45 29.03 81.82 58.31 34.60 23.71 40.67
LLaMA-3-8B-Instruct 69.00 47.00 22.00 31.88 61.29 17.74 43.55 71.05 75.84 51.32 24.52 32.33
DeepSeek-R1-Distill-LLaMA-8B 88.00 58.00 30.00 34.09 78.13 34.90 43.23 55.33 79.07 26.62 52.45 66.33

Test Cost Analysis In Section 4.3, we investigate the impact of varying the number of streams N
and iterations K on the efficacy of AR-CHECKER. To further quantify the computational demands
of AR-CHECKER when using N = 5 and K = 3, we calculated the average seconds taken to
complete the robustness testing per sample and the average number of queries needed to find a
failed test case for each target model on the GSM8K and MATH-500 datasets, as shown in Table 8. It
should be noted that the testing time is hardware-dependent, and all our experiments were conducted
utilizing 4 NVIDIA 4090 GPUs.

Table 8: Test cost of different target models when applying AR-CHECKER on GSM8K and MATH-
500 datasets.

Target model GSM8K MATH-500

Avg. Time (s) Avg. Queries Avg. Time (s) Avg. Queries

LLaMA-3.2 31.9 4.4 27.4 4.0
Gemma-2 45.7 7.5 41.0 5.7
LLaMA-3 48.8 12.2 31.7 5.9
DeepSeek-R1 61.3 11.6 63.6 11.1

Weakness Analyses To better understand the robustness issues of LLMs in solving math prob-
lems, we analyze samples that fail in the AR-CHECKER test for the target LLMs. We first manually
summarize six weakness types as seeds and then use LLMs to classify these samples into the existing
weakness types or generate new weakness types. Specifically, we instruct Qwen2.5-32B-Instruct to
(1) classify the samples into the existing weakness types, (2) generate a new weakness type if the
sample does not fit any of the existing ones, and (3) merge the newly generated weakness types with
existing ones if they are similar, or keep them as new types if distinct. See Appendix D.2 for detailed
prompt.

As shown in Figure 5 of Appendix C.4, different LLMs exhibit a similar distribution of weaknesses,
with the most common weakness being the breakdown in sequential reasoning during multi-step
problem-solving. Together with excessive reliance on irrelevant contextual and peripheral details,
insufficient information extraction from distracting and superfluous details, and over-sensitivity to
numerical variations leading to miscalculations, these top four weaknesses account for 80% of the
observed cases. This similar distribution of weaknesses across different models suggests that the
robustness issues may not be model-specific but rather could be inherent challenges in the current
generation of LLMs. We provide examples for different weakness types in Appendix C.4.

6 CONCLUSION

In this paper, we propose AR-CHECKER, a novel framework for automatic evaluation of the robust-
ness of LLMs as mathematical problem solvers. Our approach leverages an LLM-based rewriter
to create diverse variants of mathematical problems, while an LLM-based verifier assesses the core
meaning and correctness of the answers. We conduct extensive experiments on two widely used
datasets, GSM8K and MATH-500, and demonstrate that our framework is effective in evaluating
the robustness of LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

AI@Meta. Llama 3.2: Revolutionizing edge ai and vision with open, customizable models, 2024.

Anthropic. Introducing claude, 2023. URL https://www.anthropic.com/index/
introducing-claude.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
transactions on intelligent systems and technology, 15(3):1–45, 2024.

Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J Pappas, and Eric
Wong. Jailbreaking black box large language models in twenty queries. arXiv preprint
arXiv:2310.08419, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Jiale Cheng, Yida Lu, Xiaotao Gu, Pei Ke, Xiao Liu, Yuxiao Dong, Hongning Wang, Jie
Tang, and Minlie Huang. AutoDetect: Towards a unified framework for automated weak-
ness detection in large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp.
6786–6803, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.397. URL https://aclanthology.org/2024.
findings-emnlp.397/.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Peng Ding, Jun Kuang, Dan Ma, Xuezhi Cao, Yunsen Xian, Jiajun Chen, and Shujian Huang. A
wolf in sheep’s clothing: Generalized nested jailbreak prompts can fool large language models
easily. In Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp.
2136–2153, 2024.

Zhichen Dong, Zhanhui Zhou, Chao Yang, Jing Shao, and Yu Qiao. Attacks, defenses and eval-
uations for LLM conversation safety: A survey. In Kevin Duh, Helena Gomez, and Steven
Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies (Volume 1: Long Pa-
pers), pp. 6734–6747, Mexico City, Mexico, June 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.naacl-long.375. URL https://aclanthology.org/2024.
naacl-long.375/.

Aryan Gulati, Brando Miranda, Eric Chen, Emily Xia, Kai Fronsdal, Bruno de Moraes Dumont,
and Sanmi Koyejo. Putnam-axiom: A functional and static benchmark for measuring higher level
mathematical reasoning. In The 4th Workshop on Mathematical Reasoning and AI at NeurIPS’24,
2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021.

10

https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://aclanthology.org/2024.findings-emnlp.397/
https://aclanthology.org/2024.findings-emnlp.397/
https://aclanthology.org/2024.naacl-long.375/
https://aclanthology.org/2024.naacl-long.375/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kaixuan Huang, Jiacheng Guo, Zihao Li, Xiang Ji, Jiawei Ge, Wenzhe Li, Yingqing Guo, Tianle
Cai, Hui Yuan, Runzhe Wang, et al. Math-perturb: Benchmarking llms’ math reasoning abilities
against hard perturbations. arXiv preprint arXiv:2502.06453, 2025.

Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu, Qihui Zhang, Yuan Li, Chujie Gao, Yixin
Huang, Wenhan Lyu, Yixuan Zhang, Xiner Li, Hanchi Sun, Zhengliang Liu, Yixin Liu, Yi-
jue Wang, Zhikun Zhang, Bertie Vidgen, Bhavya Kailkhura, Caiming Xiong, Chaowei Xiao,
Chunyuan Li, Eric P. Xing, Furong Huang, Hao Liu, Heng Ji, Hongyi Wang, Huan Zhang,
Huaxiu Yao, Manolis Kellis, Marinka Zitnik, Meng Jiang, Mohit Bansal, James Zou, Jian Pei,
Jian Liu, Jianfeng Gao, Jiawei Han, Jieyu Zhao, Jiliang Tang, Jindong Wang, Joaquin Van-
schoren, John Mitchell, Kai Shu, Kaidi Xu, Kai-Wei Chang, Lifang He, Lifu Huang, Michael
Backes, Neil Zhenqiang Gong, Philip S. Yu, Pin-Yu Chen, Quanquan Gu, Ran Xu, Rex Ying,
Shuiwang Ji, Suman Jana, Tianlong Chen, Tianming Liu, Tianyi Zhou, William Yang Wang,
Xiang Li, Xiangliang Zhang, Xiao Wang, Xing Xie, Xun Chen, Xuyu Wang, Yan Liu, Yan-
fang Ye, Yinzhi Cao, Yong Chen, and Yue Zhao. Trustllm: Trustworthiness in large lan-
guage models. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=bWUU0LwwMp.

Zhen Ming Jiang and Ahmed E Hassan. A survey on load testing of large-scale software systems.
IEEE Transactions on Software Engineering, 41(11):1091–1118, 2015.

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng Kong, and Wei Bi. GSM-plus: A compre-
hensive benchmark for evaluating the robustness of LLMs as mathematical problem solvers. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2961–2984,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.163. URL https://aclanthology.org/2024.acl-long.163/.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024.

llama3. Introducing meta llama 3: The most capable openly available llm to date, 2024. URL
https://ai.meta.com/blog/meta-llama-3.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models. arXiv preprint arXiv:2410.05229, 2024.

OpenAI. Introducing chatgpt, 2022. URL https://openai.com/blog/chatgpt.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H. Chi, Nathanael
Schärli, and Denny Zhou. Large Language Models Can Be Easily Distracted by Irrelevant Con-
text. In Proceedings of the 40th International Conference on Machine Learning, pp. 31210–
31227. PMLR, July 2023.

Saurabh Srivastava, Anto PV, Shashank Menon, Ajay Sukumar, Alan Philipose, Stevin Prince,
Sooraj Thomas, et al. Functional benchmarks for robust evaluation of reasoning performance,
and the reasoning gap. arXiv preprint arXiv:2402.19450, 2024.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 4149–4158, 2019.

11

https://openreview.net/forum?id=bWUU0LwwMp
https://aclanthology.org/2024.acl-long.163/
https://ai.meta.com/blog/meta-llama-3
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2412.15115

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan, Yu Cheng, Jianfeng Gao, Ahmed Hassan
Awadallah, and Bo Li. Adversarial glue: A multi-task benchmark for robustness evaluation of
language models. In Advances in Neural Information Processing Systems, 2021.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024.

Zihao Xu, Yi Liu, Gelei Deng, Yuekang Li, and Stjepan Picek. A comprehensive study of jailbreak
attack versus defense for large language models. In Findings of the Association for Computational
Linguistics ACL 2024, pp. 7432–7449, 2024.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

Jiahao Yu, Xingwei Lin, Zheng Yu, and Xinyu Xing. GPTFUZZER: Red Teaming Large Language
Models with Auto-Generated Jailbreak Prompts, October 2023.

Tong Yu, Yongcheng Jing, Xikun Zhang, Wentao Jiang, Wenjie Wu, Yingjie Wang, Wenbin Hu,
Bo Du, and Dacheng Tao. Benchmarking reasoning robustness in large language models. arXiv
preprint arXiv:2503.04550, 2025.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The Eleventh Interna-
tional Conference on Learning Representations, 2022.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang, Hao Chen, Yidong Wang, Linyi Yang, Wei
Ye, Neil Zhenqiang Gong, Yue Zhang, et al. Promptbench: Towards evaluating the robustness of
large language models on adversarial prompts. arXiv preprint arXiv:2306.04528, 2023.

Kaijie Zhu, Jindong Wang, Qinlin Zhao, Ruochen Xu, and Xing Xie. Dynamic evaluation of large
language models by meta probing agents. In Proceedings of the 41st International Conference on
Machine Learning, ICML’24. JMLR.org, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

We used LLMs only for text polishing and code assistance, and they did not contribute substantially
to the research.

B ETHICS STATEMENT

Our research focuses on evaluating the robustness of LLMs as mathematical problem solvers. The
proposed approach and findings of our study can be beneficial for the development of more robust
and reliable LLMs, which can have positive implications in various fields, including education,
finance, and healthcare. All experiments utilize publicly available datasets, and we do not collect
any private data from other sources. All used LLMs are open-sourced models, except for GPT-
4o-mini, which we access via the OpenAI APIs. However, it is important to acknowledge that the
misuse of LLMs can have negative consequences. Therefore, it is crucial to ensure that LLMs are
used responsibly and ethically, with appropriate safeguards in place to mitigate potential risks.

C MORE EXPERIMENT DETAILS

C.1 HUMAN ANNOTATION DETAILS

For each of the two verifier models, Qwen2.5-32B-Instruct and GPT-4o-mini, we randomly select
150 samples that are judged as test failures by them. Three graduate-level annotators are then en-
gaged to manually evaluate these samples. Each sample consists of the following components:
⟨original question, modified question, the ground-truth answer and the answer provided by the tar-
get LLM⟩. Each annotator independently assesses the samples based on two criteria: 1) The core
meaning of the modified question preserves the core meaning of the original question. This criterion
ensures that the ground-truth answer to the modified question remains unchanged. 2) The answer
provided by the target model is inconsistent with the ground-truth answer. A sample is assigned
a label of ‘true’ when both criteria are met; otherwise, it is labeled ‘false’. Finally, we employ a
majority voting approach to determine the label for each sample.

C.2 DETAILS OF SELECTING CORRECT SAMPLES

Table 9: Influence of the rewriter model.

Metric / Verifier Rule-based LLM-based

Precision 99.60 98.90
Recall 93.40 95.60
F1-score 96.40 97.20
TPR 93.40 95.60
FPR 0.80 2.40

Our experiments run in a zero-shot setting. The
model responses are not always in a standard-
ized format. Traditional rule-based methods
usually select the last number in the response.
This approach introduces some errors. To ad-
dress this, we design a dedicated verifier to
judge the correctness of the answers in the orig-
inal dataset. To quantify the performance of
the LLM verifier, we randomly select 100 sam-
ples from each open-source model, totaling 400
samples. We compare the rule-based screening
method and the LLM-based screening method against human judgment. The results are shown in
the Table 9.

Although the rule-based method achieves slightly higher precision, our LLM-based method attains
higher recall and F1-score. This indicates that our approach captures more correct positive samples
and reduces false negatives. Despite a slightly higher false positive rate, our method delivers a more
balanced overall performance that aligns better with human judgment.

C.3 SUMMARIZED REWRITING PRINCIPLES

Table 10 shows the manually summarized rewriting principles used in Section 5.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 10: Summarized rewriting principles.

Rewriting Principles Explanation

Spelling errors Spelling errors can interfere with the model’s recognition of words, lead-
ing to semantic misinterpretation.

Synonym replacement Replacing words with synonyms may not change the meaning, but can
impact word vector matching and contextual associations.

Ordering changes Reordering words or sentences can disrupt logical understanding, espe-
cially in cause-and-effect relationships.

Inaccurate knowledge integra-
tion

By deliberately introducing incorrect or misleading external knowledge,
the model may be led to generate responses based on false premises,
resulting in factual errors or logical inconsistencies.

Removing peripheral informa-
tion

Omitting peripheral details can break contextual integrity, making it
harder for the model to fully understand the content.

Adding extraneous information Introducing irrelevant or excessive details can obscure the core informa-
tion, leading the model to focus on less important aspects and potentially
misinterpret the main point.

Question paraphrasing Rewriting questions with different phrasing can introduce ambiguities,
altering how the model interprets the query.

Rearrange time order Incorrect sequencing of events can mislead the model in understanding
temporal relationships.

Causal relationship alterations Changing how causal relationships are expressed may lead to incorrect
logical inferences.

Introducing contradictory situ-
ations

Contradictory information can confuse the model’s logic, leading to in-
consistent outputs.

Comparative information inter-
ference

When comparative statements are present, the model may focus exces-
sively on the contrast rather than the main question.

C.4 RESULTS OF WEAKNESS ANALYSES

Figure 5 shows the distribution of weaknesses for different target LLMs. Table 11 presents rep-
resentative examples of weakness analyses using LLaMA-3.2 as the target model. Each example
includes the original and modified questions, the model’s response, and a brief analysis highlighting
the primary rewriting components and underlying error causes.

28%

20%20%

13%

9%

7%
3%

Gemma-2-2B-IT

1

23

4

5

6
7

28%

26%
20%

11%

10%
5%

Llama-3.2-1B-Instruct

1

2
3

4

5
7

27%

17%

19%

25%

12%

LLaMA-3-8B-Instruct

1

2

3

4

7

 Breakdown in sequential reasoning during multi-step problem-solving Excessive reliance on irrelevant contextual and peripheral details Insufficient information extraction from distracting and superfluous details
 Over-sensitivity to numerical variations leading to miscalculations Inflexible parsing of structural variations and reordering Conditional exclusion failure Erroneous generalization of logic across varied contexts

1 2 3
4 5 6 7

30%

22%
18%

18%

9%
3%

DeepSeek-R1-Distill-Llama-8B

1

2
3

4

5
7

Figure 5: Distribution of weaknesses in different target LLM.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 11: Weakness analyses examples with LLaMA-3.2 as the target LLM. Primary rewriting part
and error causes are highlighted in orange and red.

WEAKNESS - BREAKDOWN IN SEQUENTIAL REASONING DURING MULTI-STEP PROBLEM-SOLVING

Initial question: In a dance class of 20 students, 20% enrolled in contemporary dance, 25% of the remain-
ing enrolled in jazz dance, and the rest enrolled in hip-hop dance. What percentage of the entire students
enrolled in hip-hop dance?
Response to initial question: There are 20 x 20/100 = 4 students who enrolled in contemporary
dance...#### 60
Modified question: A dance class comprises 20 students. If 20% of these students opted for contemporary
dance, and 25% of those who didn’t choose contemporary dance enrolled in jazz dance, the remaining
students chose hip-hop dance. Calculate the percentage of the total students who selected hip-hop dance.
Response to modified question: To find the percentage of students who chose hip-hop dance, we need
to calculate the number of students who chose contemporary dance and jazz dance, and then add them
together. 20% of 20 students chose contemporary dance: 20% of 20 = 0.20 x 20 = 4 students Now, let’s find
the number of students who chose jazz dance: 25% of the students who didn’t choose contemporary dance
enrolled in jazz dance: 25% of 20 - 20% of 4 = 0.25 x 20 - 0.20 x 4 = 5 - 0.8 = 4.2 students Now, let’s add
the number of students who chose contemporary dance and jazz dance: 4 + 4.2 = 8.2 students To find the
percentage of students who chose hip-hop dance, we’ll divide the number of students who chose hip-hop
dance by the total number of students and multiply by 100: (8.2 / 20) x 100 = 41% So, approximately 41%
of the total students chose hip-hop dance.
Weakness analysis: The LLM correctly calculates the number of students who enrolled in contemporary
dance (4 students) but fails to accurately calculate the remaining students who did not choose contemporary
dance before finding those who chose jazz dance. Instead of correctly calculating 25% of the remaining 16
students, it incorrectly calculates 25% of the total 20 students, leading to an erroneous result.

WEAKNESS - EXCESSIVE RELIANCE ON IRRELEVANT CONTEXTUAL AND PERIPHERAL DETAILS

Initial question: A candle melts by 2 centimeters every hour that it burns. How many centimeters shorter
will a candle be after burning from 1:00 PM to 5:00 PM?
Response to initial question: The candle burns for 5 - 1 = 4 hours... #### 8
Modified question: A candle, which was originally 20 centimeters tall, melts by 2 centimeters for every
hour it is burning. If the candle starts burning at 1:00 PM and is left to burn until 5:00 PM, considering
that the burning process is consistent throughout the entire duration, how many centimeters shorter will the
candle be by the end of the burning period?
Response to modified question: To find out how many centimeters the candle will melt, we need to cal-
culate the total melting time. Since the candle melts 2 centimeters per hour, we can divide the total time
by 2 to get the total melting time. The candle burns from 1:00 PM to 5:00 PM, which is 4 hours. So, the
total melting time is 4 hours * 2 centimeters/hour = 8 centimeters. Now, let’s calculate the original height
of the candle. Since it was 20 centimeters tall and melted 8 centimeters, we can subtract the melting time
from the original height to get the new height. New height = Original height - Melting time New height =
20 centimeters - 8 centimeters New height = 12 centimeters So, the candle will be 12 centimeters shorter
by the end of the burning period.
Weakness analysis: The LLM correctly calculates the total melting but misinterprets the question by fo-
cusing on the original height of the candle instead of just how much shorter it will become.

WEAKNESS - INSUFFICIENT INFORMATION EXTRACTION FROM DISTRACTING AND SUPERFLUOUS DE-
TAILS

Initial question: Grace weighs 125 pounds. Alex weighs 2 pounds less than 4 times what Grace weighs.
What are their combined weights in pounds?
Response to initial question: Alex weighs 125*4-2 = 498...#### 623
Modified question: Grace, a marathon runner, weighs exactly 125 pounds. During a training session, her
coach Alex, considering his fitness regimen, weighs 2 pounds less than four times Grace’s weight. If we
also account for the negligible weight of their training gear, which is less than a pound and can be ignored,
what would be their combined weight in pounds for a team event?.
Response to modified question: To find the combined weight, we need to calculate the weight of Alex
and the training gear first. Alex’s weight is 2 pounds less than four times Grace’s weight. Since Grace
weighs 125 pounds, we can calculate Alex’s weight as follows: Alex’s weight = 4 * Grace’s weight - 2
Alex’s weight = 4 * 125 - 2 Alex’s weight = 500 - 2 Alex’s weight = 498 pounds Now, let’s add the weight
of the training gear to Alex’s weight: Combined weight = Alex’s weight + training gear weight Combined
weight = 498 + 0.5 Combined weight = 498.5 pounds So, their combined weight for a team event would be
approximately 498.5 pounds.

Continue on next page

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 11 (continued)

WEAKNESS - INSUFFICIENT INFORMATION EXTRACTION FROM DISTRACTING AND SUPERFLUOUS DE-
TAILS

Weakness analysis: The LLM fails to ignore the additional contextual details (such as Grace being a
marathon runner and the training gear weight) and instead incorporates these irrelevant details into the
calculation, resulting in an incorrect answer.

WEAKNESS - OVER-SENSITIVITY TO NUMERICAL VARIATIONS LEADING TO MISCALCULATIONS

Initial question: The expenditure of Joseph in May was $500. In June, his expenditure was $60 less. How
much was his total expenditure for those two months?
Response to initial question: His expenditure in June was $500 - $60 = $440..#### 940
Modified question: Joseph, a keen observer of his spending habits, noted that in May, his expenditure was
$500, specifically on groceries, fuel, and other essential items. Interestingly, in June, he managed to cut
down his expenditure by $60, largely due to a reduction in fuel costs and some discounts on groceries. De-
spite these changes, how much did Joseph spend in total during these two months, considering all categories
of expenses?
Response to modified question: Hello Joseph, I’m happy to help you with your question. To calculate the
total expenditure, let’s break it down into the categories you mentioned: groceries, fuel, and other essential
items. In May, your expenditure was $500. In June, you managed to cut down your expenditure by $60,
which means your total expenditure for the two months is: $500 (May) + $60 (June) = $560 So, Joseph,
your total expenditure for the two months is $560.
Weakness analysis: The LLM misinterprets the reduction in expenditure by adding it to the initial amount
instead of subtracting, resulting in a miscalculation of the total spent.

WEAKNESS - INFLEXIBLE PARSING OF STRUCTURAL VARIATIONS AND REORDERING

Initial question: John takes care of 10 dogs. Each dog takes .5 hours a day to walk and take care of their
business. How many hours a week does he spend taking care of dogs?
Response to initial question: He spends 10*.5=5 hours per day... #### 35
Modified question: John is responsible for the care of 10 dogs. He dedicates half an hour each day to
walking and attending to the needs of each dog. Considering there are 7 days in a week, how many total
hours per week does John spend on these tasks?
Response to modified question: To find the total hours per week John spends on these tasks, we need to
calculate the hours per day and multiply it by the number of days in a week. John dedicates half an hour
each day to walking and attending to the needs of each dog. Half an hour is equivalent to 30 minutes.
There are 7 days in a week, so the total hours per week John spends on these tasks is: 30 minutes/day * 7
days/week = 210 minutes/week Since there are 60 minutes in an hour, we can convert the total minutes to
hours: 210 minutes/week / 60 minutes/hour = 3.5 hours/week Therefore, John spends 3.5 hours per week
on walking and attending to the needs of each dog.
Weakness analysis: The revised question places ”each dog” at the end of the sentence, causing the model
to lose track of ”each dog” during calculation, and thus failing to multiply by 10.

WEAKNESS - ERRONEOUS GENERALIZATION OF LOGIC ACROSS VARIED CONTEXTS

Initial question: Kyle bought last year’s best-selling book for $19.50. This is with a 25% discount from
the original price. What was the original price of the book?
Response to initial question: Let X be the original price of the book... #### 26
Modified question: Kyle bought last year’s best-selling book at a local bookstore for $19.50 during a
clearance sale. The sale advertised a 25% off the original price,but the store manager hinted that additional
discounts might have been applied. What was the original price of the book before any discounts were
applied, assuming only the advertised discount was used?
Response to modified question: To find the original price of the book, we need to calculate the price after
the 25% discount and then find the original price from that. The price after the 25% discount is $19.50. To
find the discount amount, we multiply the price after the discount by the discount percentage: $19.50 * 0.25
= $4.875 Now, we subtract the discount amount from the price after the discount to find the price before the
discount: $19.50 - $4.875 = $14.625 Since the original price is the price before any discounts were applied,
we can round the price to the nearest cent:$14.63 So, the original price of the book before any discounts
were applied was $14.63.
Weakness analysis: The LLM fails to generalize the correct logic from the initial question to the modified
question. In the initial question, the LLM correctly identified that the book price was after a 25% discount
and calculated the original price. However, in the modified question, it erroneously interpreted the given
price ($19.50) as being after the discount and then incorrectly attempted to find the price before the discount
by subtracting the discount amount, leading to an incorrect result.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D FULL PROMPTS

D.1 PROMPTS OF THE REWRITER AND VERIFIER

Figure 6 shows the system prompt of rewriter, while Figure 7 shows the prompt of verifier.

D.2 PROMPT FOR WEAKNESS ANALYSIS

Figure 8 shows the prompt used for weakness analyses in Section 5.

Rewriter’s system prompt

You are a helpful assistant. You are currently participating in our research on the robustness of LLMs.

SETTING:
This is a chat between you and a prompt evaluator, where you provide a prompt and receive the eval-
uator’s output as the response. Your task is to manipulate some mathematical questions in such a way
that, while keeping the core meaning and answers unchanged, other LLMs are more likely to provide
incorrect answers to these modified questions. The evaluator will then assess and provide feedback on
the effectiveness of the modified prompts (mathematical questions). You should continuously iterate
and refine the modified prompts based on the feedback.
The mathematical question you should focus on now is ’[QUESTION]’, the correct answer to this
question is ’[ANSWER]’.
You should understand and extract the core meaning of the math problem and rewrite the problem and
use creative methods to achieve your goal. No matter what method you use, it MUST be contextually
relevant to the question’s domain and introduce complexity without breaking the logical flow. The
rewritten problem and the original problem should retain the same core idea and answer. The rewritten
problem should remain clear and concise, even with added distractions.

FORMAT:
Format your responses in JSON, with two elements ’improvement’ and ’prompt’. The content of ’im-
provement’ contains a few sentences describing your thoughts on the feedback and how the question
should be modified to make LLMs more likely to provide incorrect answers. The content of ’prompt’
contains the question you rewrote. Your response should **only** contain this JSON element and
nothing else.
Example of output format:
{”improvement”: ”The question I rewrote did not make LLM provide an incorrect answer. My new
prompt could ...”, ”prompt”: ”the rewritten question”}

Figure 6: The system prompt of the rewriter.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Verifier’s prompt

You are a meticulous and analytical assistant. You will receive a [Modified question] and an AI [As-
sistant’s response] to the prompt.
Your task is to determine whether the core meaning of the question in the given [Modified question]
has changed compared to the original question ’[QUESTION]’ due to added distracting information.
Additionally, extract the answer provided in the [Assistant’s response] and compare it with the ex-
pected answer ‘[ANSWER]‘.
First, carefully compare the [Modified question] with the original question. Identify if the core math-
ematical meaning has been altered.
Next, check that the answer provided by [Assistant’s response] is consistent with [ANSWER]. Explic-
itly state whether it is consistent.
Based on your analysis, choose the most appropriate verdict from the following options:
- **A** The core meaning of the question has been altered and the answer is not ‘[ANSWER]‘.
- **B** The core meaning of the question has been altered and the answer is ‘[ANSWER]‘.
- **C** The core meaning of the question remains unchanged and the answer is ‘[ANSWER]‘.
- **D** The core meaning of the question remains unchanged and the answer is not ‘[ANSWER]‘.

Finally, clearly state your verdict in this format:: ”Output: [[verdict]]”, e.g., ”Output: [[C]]”

[Modified question]
[MODIFIED QUESTION]
[Assistant’s response]
[TARGET RESPONSE]

Figure 7: The prompt of the verifier.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Prompt for weakness analyses

You are a meticulous and analytical assistant participating in our research on LLM weaknesses. Your
task is to analyze weaknesses in LLM based on the provided mathematical questions, answers, and
weakness library.
SETTING:
You will be provided with the following data:
- [Initial question]: The original question correctly answered by the LLM.
- [Response to initial question]: LLM’s response to [Initial question], which is correct.
- [Modified question]: Rewritten version with carefully designed modifications that induce LLM
errors.
- [Response to modified question]: LLM’s response to the [Modified question], which is incorrect.
- [Weakness library]: Possible weaknesses of LLM
BACKGROUND:
The [Modified question] is a rewritten version of the [Initial question], created by adding extra details,
changing the structural order, altering keywords, etc. While the target LLM can correctly answer the
[Initial question], it fails to provide a correct response to the [Modified question].
TASKS:
1. Identify key differences between [Initial question] and [Modified question].
2. Analyze contrasting outcomes: Explain why the LLM answers [Initial question] correctly
but fails on [Modified question].You can refer to the [Response to initial question] and [Re-
sponse to modified question].
3. Identify LLM weaknesses revealed by this error through root cause analysis.
4. Match/Generate weaknesses: Cross-check the identified weaknesses with [Weakness library]. Use
existing descriptors if matched; otherwise create new weakness with concise phrases.
5. Merge equivalent weaknesses: If the new weakness belongs to the original [Weakness library],
then merge it and only output the one in [Weakness library]. Create new weakness phrases only for
novel weaknesses not in the [Weakness library].
6. Final weaknesses must be presented with: Weakness phrases enclosed in double square brackets
[[]], Corresponding explanations wrapped in angle brackets << >>. Format results as: [[Weak-
ness phrase]] <<Explanation>>

EXAMPLE (Examples are omitted here)

Input
[Initial question]: {org question}
[Response to initial question]:
{correct answer}
[Modified question]: {rev question}
[Response to modified question]:
{target response}
[Weakness library]: {weakness lib}
Output
[[Weakness phrase]] <<Explanation>>

Figure 8: Prompt for weakness analyses.

19

	Introduction
	Related Work
	Robustness Evaluation of LLMs
	LLM-based Prompt Optimization

	Methodology
	Problem Definition
	AR-Checker Framework
	Problem Rewriting
	Verification

	Experiments
	Experiment Setup
	Main Results
	Ablation Study

	Analyses
	Conclusion
	The Use of Large Language Models
	Ethics statement
	More Experiment Details
	Human Annotation Details
	Details of Selecting Correct Samples
	Summarized Rewriting Principles
	Results of Weakness Analyses

	Full Prompts
	Prompts of the Rewriter and Verifier
	Prompt for Weakness Analysis

