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Abstract
World models represent a promising approach for
training reinforcement learning agents with signif-
icantly improved sample efficiency. While most
world model methods primarily rely on sequences
of discrete latent variables to model environment
dynamics, this compression often neglects critical
visual details essential for reinforcement learning.
Recent diffusion-based world models condition
generation on a fixed context length of frames
to predict the next observation, using separate
recurrent neural networks to model rewards and
termination signals. Although this architecture
effectively enhances visual fidelity, the fixed con-
text length approach inherently limits memory
capacity. In this paper, we introduce EDELINE,
a unified world model architecture that integrates
state space models with diffusion models. Our
approach demonstrates superior performance on
the memory-demanding Crafter benchmark.

1. Introduction
World models (Ha & Schmidhuber, 2018) constitute a foun-
dational element of modern reinforcement learning (RL)
by simulating environment dynamics for agent planning
and reasoning. The capacity to learn environment repre-
sentations (Hafner et al., 2024; Schrittwieser et al., 2020)
facilitates policy optimization through imagined trajectories,
which substantially enhances sample efficiency (Ye et al.,
2021) relative to conventional RL approaches. This capa-
bility is especially valuable for real-world applications in
robotics and autonomous systems.

Existing world models fall into two principal paradigms:
latent-space models and generative models. Latent-space
approaches (Hafner et al., 2020; 2021; 2024) employ recur-
rent neural networks (RNNs) or variants to predict future
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states within a compressed latent space for efficient pol-
icy optimization. This compression, however, introduces
information loss that compromises generality and recon-
struction quality. Generative models, particularly diffusion-
based approaches (Alonso et al., 2024), have transformed
world modeling through high-fidelity visual predictions via
noise-reversal processes. Nevertheless, prior generative
models depend on fixed-length observation-action windows
that truncate historical context and fail to capture extended
temporal dependencies. This limitation presents a chal-
lenge especially in partially observable environments where
agents must retain and reason over prolonged observation se-
quences for informed decisions. Moreover, the architectural
segregation of reward prediction, termination signals, and
observation modeling in existing frameworks can potentially
lead to suboptimal representation sharing and optimization
conflicts that further impair performance.

In order to mitigate long sequence dependency issues, re-
cent state space models (SSMs) (Gu et al., 2022a;b; Smith
et al., 2023; Gu & Dao, 2024b;a) provide a complemen-
tary advantage through their capacity to model long-term
dependencies efficiently. With linear-time complexity and
selective state updates (Gu & Dao, 2024b), SSMs can pro-
cess theoretically unbounded sequences while preserving
critical historical information. This capability is particu-
larly valuable for world modeling, where accurate trajectory
prediction often necessitates retention and reasoning across
extended observation-action histories.

Based on these considerations, we introduce EDELINE
(Enhancing Diffusion-basEd World Models via LINEar-
Time Sequence Modeling), a unified framework that inte-
grates the advantages of diffusion models and SSMs. EDE-
LINE advances the state-of-the-art (SOTA) through three
key innovations: (1) Memory Enhancement: A recurrent
embedding module (REM) based on Mamba SSMs that pro-
cesses unbounded observation-action sequences to enable
adaptive memory retention beyond fixed-context limitations,
(2) Unified Framework: Direct conditioning of reward and
termination prediction on REM hidden states that eliminates
separate networks for efficient representation sharing, and
(3) Dynamic Loss Harmonization: Adaptive weighting
of observation and reward losses that addresses scale dis-
parities in multi-task optimization. To validate EDELINE’s
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effectiveness, we conduct evaluation on Crafter (Hafner,
2022), a procedurally generated survival environment specif-
ically designed to evaluate ”wide and deep exploration, long-
term reasoning and credit assignment, and generalization”.
The complete technical details and extended experimental
analysis are available in the full paper (Lee et al., 2025).

2. Background
In this Section, we focus on the essential concepts necessary
for understanding our EDELINE framework. We provide
additional background material on score-based diffusion
models and multi-task world model learning in Appendix A.

2.1. Reinforcement Learning and World Models
The problem considered in this study focuses on image-
based reinforcement learning (RL), formulated as a Partially
Observable Markov Decision Process (POMDP) (Åström,
1965) defined by tuple (S,A,O, P,R,O, γ). Our formula-
tion specifically considers high-dimensional image observa-
tions as inputs, as described in Section 1. The state space
S comprises states st ∈ S, while the action space A can be
either discrete or continuous with actions at ∈ A. The obser-
vation space O contains image observations ot ∈ R3×H×W .
A transition function P : S ×A× S → [0, 1] characterizes
the environment dynamics p(st+1|st, at), while the reward
function R : S ×A× S → R maps transitions to scalar re-
wards rt ∈ R. The observation function O : S×O → [0, 1]
establishes observation probabilities p(ot|st). The objec-
tive centers on learning a policy π that maximizes the
expected discounted return Eπ[

∑
t≥0 γ

trt], with discount
factor γ ∈ [0, 1]. Model-based Reinforcement Learning
(MBRL) (Sutton, 1988) achieves this objective by learning
a world model that encapsulates the environment dynamics
p(ot+1, rt|o≤t, a≤t). MBRL enables learning in imagina-
tion through three systematic stages: (1) collecting real
environment interactions, (2) updating the world model, and
(3) training the policy through world model interactions.

2.2. Linear-Time Sequence Modeling with Mamba
SSMs (Gu et al., 2022a) provide an alternative paradigm to
attention-based architectures for sequence modeling. The
Mamba architecture (Gu & Dao, 2024b) introduces a se-
lective state space model that offers linear time complexity
and efficient parallel processing, which employs variable-
dependent projection matrices to implement its selective
mechanism, thus overcoming the inherent limitations of
computational inefficiency and quadratic complexity in con-
ventional SSMs (Gu et al., 2020; 2022a; Smith et al., 2023;
Gu & Dao, 2024b). The foundational mechanism of Mamba
is characterized by a linear continuous-time state space for-
mulation via first-order differential equations as follows:

∂x(t)

∂t
= Ax(t) +B(u(t))u(t),

y(t) = C(u(t))x(t),
(1)

where x(t) represents the latent state, u(t) denotes the input,
and y(t) indicates the output. The matrix A adheres to spec-
ifications from (Gu et al., 2022b). The primary innovation
compared to traditional SSMs lies in B(u(t)) and C(u(t)),
which function as state-dependent linear operators to enable
selective state updates based on input content. For dis-
cretization, the system employs the zero-order-hold (ZOH)
rule (Chifu et al., 2018) to transform the A and B matrices
into Ã = exp(∆A) and B̃ = (∆A)−1(exp(∆A)−I) ·∆B,
where the step size ∆ serves as a variable-dependent parame-
ter. This transformation enables SSMs to process continuous
inputs as discrete signals and converts the original Linear
Time-Invariant (LTI) equation into a recurrence format.

2.3. Diffusion-based World Model Learning
To adapt diffusion models for world modeling, which of-
fers superior sample quality and tractable likelihood es-
timation, a key requirement is modeling the conditional
distribution p(ot+1|o≤t, a≤t), where ot and at represent
observations and actions at time step t. The denoising
process incorporates both the noised next observation and
the conditioning context as input: Dθ(o

τ
t+1, τ, o≤t, a≤t).

While diffusion-based world models (Alonso et al., 2024)
have shown promise, the state-of-the-art approach DIA-
MOND (Alonso et al., 2024) exhibits limitations although
it achieves superior performance on the Atari 100k bench-
mark (Łukasz Kaiser et al., 2020). These models face two
critical limitations. The first limitation stems from their
constrained conditioning context, which typically considers
only the most recent observations and actions. For instance,
DIAMOND restricts its context to the last four observa-
tions and actions in the sequence. This constraint impairs
the model’s capacity to capture long-term dependencies
and leads to inaccurate predictions in scenarios that require
extensive historical context. The second limitation in cur-
rent diffusion-based world models lies in their architectural
separation of predictive tasks. For example, DIAMOND im-
plements a separate recurrent neural network for reward and
termination prediction. This separation prevents the sharing
of learned representations between the diffusion model and
these predictive tasks and results in reduced overall learning
efficiency of the system.

3. Methodology
Conventional diffusion-based world models (Alonso et al.,
2024) demonstrate promise in learning environment dynam-
ics yet face fundamental limitations in memory capacity and
horizon prediction consistency. To address these challenges,
this paper presents EDELINE, as illustrated in Fig 1, a uni-
fied architecture that integrates state space models (SSMs)
with diffusion-based world models. EDELINE’s core inno-
vation lies in its integration of SSMs for encoding sequential
observations and actions into hidden embeddings, which
a diffusion model then processes for future frame predic-
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Figure 1: Framework Overview of EDELINE.
The model integrates three principal compo-
nents: (1) An U-Net-like Next-Frame Predic-
tor enhanced by adaptive group normalization
and cross-attention mechanisms, (2) A Recurrent
Embedding Module built on Mamba architecture
for temporal sequence processing, and (3) A Re-
ward/Termination Predictor implemented through
linear layers. The EDELINE framework uses
shared hidden representations across the compo-
nents for efficient world model learning.

tion. This hybrid design maintains temporal consistency
while generating high-quality visual predictions. A Convolu-
tional Neural Network based actor processes these predicted
frames to determine actions, thus enabling autoregressive
generation of imagined trajectories for policy optimization.

3.1. World Model Learning

The core architecture of EDELINE consists of a Recurrent
Embedding Module (REM) fϕ that processes the history of
observations and actions (o0, a0, o1, a1, ..., ot, at) to gen-
erate a hidden embedding ht through recursive computa-
tion. This embedding enables the Next-Frame Predictor
pϕ to generate predictions of the subsequent observation
ôt+1. The architecture further incorporates dedicated Re-
ward and Termination Predictors to estimate the reward r̂t
and episode termination signal d̂t respectively. The trainable
components of EDELINE’s world model are formalized as:

• Recurrent Embedding Module: ht = fϕ(ht−1, ot, at)

• Next-Frame Predictor: ôt+1 ∼ pϕ(ôt+1|ht)

• Reward Predictor: r̂t ∼ pϕ(r̂t|ht)

• Termination Predictor: d̂t ∼ pϕ(d̂t|ht)

3.1.1. RECURRENT EMBEDDING MODULE

While DIAMOND, the current state-of-the-art in diffusion-
based world models, relies on a fixed context window of
four previous observations and actions sequence, the pro-
posed EDELINE architecture advances beyond this limi-
tation through a recurrent architecture for extended tem-
poral sequence processing. At each timestep t, the Recur-
rent Embedding Module processes the current observation-
action pair (ot, at) to update a hidden embedding ht =
fϕ(ht−1, ot, at). The implementation of REM utilizes
Mamba (Gu & Dao, 2024b), an SSM architecture that offers
distinct advantages for world modeling.

3.1.2. NEXT-FRAME PREDICTOR

While motivated by DIAMOND’s success in diffusion-
based world modeling, EDELINE introduces significant
architectural innovations in its Next-Frame Predictor to en-
hance temporal consistency and feature integration. At

time step t, the model conditions on both the last L frames
and the hidden embedding ht from the Recurrent Embed-
ding Module to predict the next frame ôt+1. The predictive
distribution pϕ(o

0
t+1|ht) is implemented through a denois-

ing diffusion process, where Dϕ functions as the denois-
ing network. Let yτt = (τ, o0t−L+1, ..., o

0
t , ht) represent

the conditioning information, where τ represents the dif-
fusion time. The denoising process can be formulated as
o0t+1 = Dϕ(o

τ
t+1, y

τ
t ). To effectively integrate both visual

and hidden information, Dϕ employs two complementary
conditioning mechanisms. First, the architecture incorpo-
rates Adaptive Group Normalization (AGN) (Zheng et al.,
2020) layers within each residual block to condition nor-
malization parameters on the hidden embedding ht and
diffusion time τ , which establishes context-aware feature
normalization (Zheng et al., 2020). This design significantly
extends DIAMOND’s implementation, which limits AGN
conditioning to τ and action embeddings only. The second
key innovation introduces cross-attention blocks inspired by
Latent Diffusion Models (LDMs), which utilize ht and τ
as context vectors. The UNet’s feature maps generate the
query, while ht and τ project to keys and values. This novel
attention mechanism, which is absent in DIAMOND, facil-
itates the fusion of spatial-temporal features with abstract
dynamics encoded in ht. The observation modeling loss
Lobs(ϕ) is defined based on Eq. (7), and can be formulated
as follows:

Lobs(ϕ) = E
[
∥Dϕ(o

τ
t+1, y

τ
t )− o0t+1∥2

]
. (2)

3.1.3. REWARD / TERMINATION PREDICTOR

EDELINE advances beyond DIAMOND’s architectural lim-
itations through an integrated approach to reward and termi-
nation prediction. Rather than employing separate neural
networks, EDELINE leverages the rich representations from
its REM. The reward and termination predictors are imple-
mented as multilayer perceptrons (MLPs) that utilize the
deterministic hidden embedding ht as their conditioning
input. This architectural unification enables efficient rep-
resentation sharing across all predictive tasks. EDELINE
processes both reward and termination signals as proba-
bility distributions conditioned on the hidden embedding:
pϕ(r̂t|ht) and pϕ(d̂t|ht) respectively. The predictors are
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optimized via negative log-likelihood losses, expressed as:

Lrew(ϕ) = − ln pϕ(rt|ht),Lend(ϕ) = − ln pϕ(dt|ht). (3)

This unified architectural design represents an improvement
over DIAMOND’s separate network approach, where re-
ward and termination predictions require independent repre-
sentation learning from the world model. The integration of
these predictive tasks with shared representations enables
REM to learn dynamics that encompass all relevant aspects
of the environment. The architectural efficiency facilitates
enhanced learning effectiveness and better performance.

3.1.4. EDELINE WORLD MODEL TRAINING

The world model integrates an innovative end-to-end train-
ing strategy with a self-supervised approach. EDELINE
extends the harmonization technique from HarmonyDream
(Ma et al., 2024) through the adoption of harmonizers wo

and wr, which dynamically balance the observation mod-
eling loss Lobs(ϕ) and reward modeling loss Lrew(ϕ). This
adaptive mechanism results in the total loss function L(ϕ):

L(ϕ) = w0Lobs(ϕ) + wrLrew(ϕ) + Lend(ϕ)

+ log(w−1
o ) + log(w−1

r )
(4)

3.2. Agent Behavior Learning

To enable fair comparison and demonstrate the effective-
ness of EDELINE’s world model architecture, the agent
architecture adopts the same optimization framework as DI-
AMOND. Specifically, the agent integrates policy πθ and
value Vθ networks with REINFORCE value baseline and
Bellman error optimization using λ-returns (Alonso et al.,
2024). The training framework executes a procedure with
three key phases: experience collection, world model up-
dates, and policy optimization. This method follows the
established paradigms in model-based RL literature (Łukasz
Kaiser et al., 2020; Hafner et al., 2020; Micheli et al., 2023;
Alonso et al., 2024). To ensure reproducibility, we provide
extensive details in the Appendix, with documentation of
objective functions in Appendix B.

4. Experiments
This section presents our experimental results of EDELINE
on the Crafter benchmark.

4.1. Crafter Experiments
To evaluate EDELINE’s memory enhancement capabilities,
we conducted experiments on Crafter (Hafner, 2022), a
procedurally generated survival environment that presents
complex memory challenges. Crafter was specifically de-
signed to assess ”wide and deep exploration, long-term rea-
soning and credit assignment, and generalization” (Hafner
et al., 2024), which establishes it as an ideal benchmark for
the evaluation of an agent’s long-term memory utilization
capabilities.

Table 1: Comparison of different methods on Crafter in
terms of average return and world model parameter count.

Method Avg Return #World Model Params

EDELINE 11.5 ± 0.9 11M
DreamerV3 XL 9.2 ± 0.3 200M

∆-IRIS 7.7 ± 0.5 25M
DreamerV3 M 6.2 ± 0.5 37M

IRIS 5.5 ± 0.7 48M
DIAMOND 2.8 ± 0.5 10.4M

Crafter requires substantial memory capabilities due to its
demand for agents to retain information about previously
collected resources, crafted items, and explored territories
for optimal decision-making, which establishes it as an ideal
testbed for the evaluation of our memory-enhanced archi-
tecture. Within a 1M environment step budget, EDELINE
achieves superior performance compared to state-of-the-
art baselines including DIAMOND (Alonso et al., 2024),
DreamerV3 (Hafner et al., 2024), ∆-IRIS (Alonso et al.,
2023), and IRIS (Micheli et al., 2023), despite its relatively
modest parameter count of 11M. These results highlight
the significant advantages resulting from the integration of
Mamba’s memory capabilities with diffusion’s generative
abilities.

Table 1 presents our experimental results with a 1M en-
vironment step budget. The results reveal that EDELINE
significantly outperforms all baselines with 25% higher re-
turns than DreamerV3 XL despite the utilization of 18×
fewer parameters. Most importantly, EDELINE delivers a
4.1× improvement over DIAMOND with a comparable pa-
rameter count, which demonstrates the substantial benefits
of our enhanced memory mechanism.

5. Conclusions
In this work, we addressed the limitations of current
diffusion-based world models in handling long-term depen-
dencies and maintaining prediction consistency. Through
the integration of Mamba SSMs, EDELINE effectively pro-
cessed extended observation-action sequences through its
recurrent embedding module, which enabled adaptive mem-
ory retention beyond fixed-context approaches. The unified
framework eliminated architectural separation between ob-
servation, reward, and termination prediction, which fos-
tered efficient representation sharing. Dynamic loss har-
monization further mitigated optimization conflicts aris-
ing from multi-task learning. Our evaluation on Crafter
demonstrates EDELINE’s superior performance in memory-
demanding environments. The results validate EDELINE’s
ability to maintain long-term spatial awareness and envi-
ronmental consistency, highlighting the effectiveness of
combining state space models with diffusion-based world
modeling for reinforcement learning applications.
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A. Additional Background Material Section
A.1. Score-based Diffusion Generative Models

Diffusion probabilistic modeling (Sohl-Dickstein et al., 2015; Ho et al., 2020; Dhariwal & Nichol, 2021) and score-based
generative modeling (Song & Ermon, 2019; 2020; Chao et al., 2022) can be unified through a forward stochastic differential
equation (SDE) formulation (Song et al., 2021). The forward diffusion process {xτ} with continuous time variable τ
transforms the data distribution p0 = pdata to prior distribution pT = pprior, expressed as:

dx = f(x, τ)dτ + g(τ)dw, (5)

where f(x, τ) represents the drift coefficient, g(τ) denotes the diffusion coefficient, and w is the Wiener process. The
corresponding reverse-time SDE can then be formulated as:

dx =
[
f(x, τ)− g(τ)2∇x log p

τ (x)
]
dτ + g(τ)dw̄, (6)

where w̄ is the reverse-time Wiener process. Eq. (6) enables sampling from p0 when the (Stein) score function ∇x log p
τ (x)

is available. A common approach to estimate the score function is through the introduction of a denoiser Dθ, which is
trained to minimize the following objective:

Eσ∼ptrainEx0∼pdataEn∼N (0,σ2I)

[
∥Dθ(x

0 + n;σ)− x0∥22
]
, (7)

where n is Gaussian noise with zero mean and variance determined by a variance scheduler σ(τ) that follows a noise
distribution ptrain, and (x0 + n) corresponds to the perturbed data xτ . The score function can then be estimated through:
∇x log p

τ (x) = 1
σ2 (Dθ(x;σ) − x). In practice, modeling the denoiser Dθ directly can be challenging due to the wide

range of noise scales. To address this, EDM (Karras et al., 2022) introduces a design space that isolates key design choices,
including preconditioning functions {cskip, cout, cin, cnoise} to modulate the unconditioned neural network Fθ to represent Dθ,
which can be formulated as:

Dθ(x;σ) = cskip(σ)x+ cout(σ)Fθ(cin(σ)x; cnoise(σ)). (8)

The preconditioners serve distinct purposes: cin(σ) and cout(σ) maintain unit variance for network inputs and outputs across
noise levels, cnoise(σ) provides transformed noise level conditioning, and cskip(σ) adaptively balances signal mixing. This
principled framework improves the robustness and efficiency of diffusion models, enabling state-of-the-art performance
across various generative tasks.

A.2. Multi-task Essence of World Model Learning

Modern world models (Łukasz Kaiser et al., 2020; Hafner et al., 2021; 2024; Alonso et al., 2024) typically address two
fundamental prediction tasks: the modeling of environment dynamics through observations and the prediction of reward
signals. The learning of these tasks requires distinct considerations based on the complexity of the environment. In simple
low-dimensional settings, separate learning approaches suffice for each task. However, the introduction of high-dimensional
visual inputs fundamentally alters this paradigm, as partial observability creates an inherent coupling between state estimation
and reward prediction. This coupling necessitates joint learning through shared representations, an approach that aligns
with established multi-task learning principles (Caruana, 1997). The implementation of such joint learning through shared
representations introduces several technical challenges. The integration of multiple learning objectives requires careful
consideration of their relative importance and interactions. A fundamental difficulty stems from the inherent scale disparity
between high-dimensional visual observations and scalar reward signals. This disparity manifests in the world model
learning objective, which combines observation modeling Lo(θ), reward modeling Lr(θ), and dynamics modeling Ld(θ)
losses with weights wo, wr, wd to control relative contributions:

L(θ) = woLo(θ) + wrLr(θ) + wdLd(θ). (9)

HarmonyDream (Ma et al., 2024) demonstrated that observation modeling tends to dominate this objective due to visual
inputs’ high dimensionality compared to scalar rewards. Their work introduced a variational formulation:

L(θ, wo, wr, wd) =
∑

i∈{o,r,d}

H(Li(θ),
1

wi
) =

∑
i∈{o,r,d}

wiLi(θ) + log(
1

wi
), (10)

where H(Li(θ), wi) = wiLi(θ) + log(1/wi) dynamically balances the losses by maintaining E[w∗ · L] = 1. This
harmonization technique can substantially enhance sample efficiency and performance. Our work extends these insights
through the integration of dynamic task balancing mechanisms into our EDELINE world model architecture.
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B. Actor-Critic Learning Objectives
We follow DIAMOND (Alonso et al., 2024) in the design of our agent behavior learning. Let ot, rt, and dt denote the
observations, rewards, and boolean episode terminations predicted by our world model. We denote H as the imagination
horizon, Vθ as the value network, πθ as the policy network, and at as the actions taken by the policy within the world model.

For value network training, we use λ-returns to balance bias and variance in the regression target. Given an imagined
trajectory of length H , we define the λ-return recursively:

Λt =

{
rt + γ(1− dt)[(1− λ)Vθ(ot+1) + λΛt+1] if t < H

Vθ(oH) if t = H.
(11)

The value network Vθ is trained to minimize LV (θ), the expected squared difference with λ-returns over imagined
trajectories:

LV (θ) = Eπθ

[
H−1∑
t=0

(Vθ(xt)− sg(Λt))
2

]
, (12)

where sg(·) denotes the gradient stopping operation, following standard practice (Hafner et al., 2024; Micheli et al., 2023).

For policy training, we leverage the ability to generate large amounts of on-policy trajectories in imagination using a
REINFORCE objective (Sutton & Barto, 2018). The policy is trained to minimize:

Lπ(θ) = −Eπθ

[
H−1∑
t=0

log(πθ(at|o≤t))sg(Λt − Vθ(ot)) + ηH(πθ(at|o≤t))

]
, (13)

where Vθ(ot) serves as a baseline to reduce gradient variance, and the entropy term H with weight η encourages sufficient
exploration.
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