
Extrapolative Controlled Sequence Generation via Iterative Refinement

Vishakh Padmakumar 1 Richard Yuanzhe Pang 1 He He 1 Ankur P. Parikh 2

Abstract
We study the problem of extrapolative controlled
generation, i.e., generating sequences with at-
tribute values beyond the range seen in training.
This task is of significant importance in automated
design, especially drug discovery, where the goal
is to design novel proteins that are better (e.g.,
more stable) than existing sequences. Thus, by
definition, the target sequences and their attribute
values are out of the training distribution, pos-
ing challenges to existing methods that aim to
directly generate the target sequence. Instead, in
this work, we propose Iterative Controlled Extrap-
olation (ICE) which iteratively makes local edits
to a sequence to enable extrapolation. Specifically,
we train the model on synthetically generated se-
quence pairs that demonstrate small improvement
in the attribute value. Results on one natural lan-
guage task (sentiment analysis) and two protein
engineering tasks (ACE2 stability and AAV fit-
ness) show that ICE considerably outperforms
state-of-the-art approaches despite its simplicity.1

1. Introduction
Controlled generation, i.e., generating sequences x with a
desired attribute z, is a pervasive problem across multiple
domains. In natural language processing (NLP), z could
represent the sentiment or the style (e.g., formality) of a
sentence. In computational biology, z could represent the
stability, fluorescence, binding affinity, or other properties
of a protein sequence.

Occasionally, abundant supervised data of the form (x, z)
exist, such as Wikipedia domains or Gene Ontology cate-
gories (Keskar et al., 2019; Madani et al., 2020), enabling
direct training of a conditional generation model p(x|z).

1New York University 2Google DeepMind. Correspondence to:
Vishakh Padmakumar <vishakh@nyu.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1Our code and models are available at https://github.com/
vishakhpk/iter-extrapolation.

In cases where the amount of supervised pairs available
is small, it is typical to train a scorer f(x) on this data,
which maps from an input sequence to an output attribute
value. One can then use f(x) to annotate a large corpus for
training (Gehman et al., 2020) or directly use f(x) during
inference to guide the generation process of an uncondi-
tional model p(x) (Dathathri et al., 2020; Yang & Klein,
2021).

In this work, we focus on applications where it is necessary
to generate sequences with attribute values that extrapolate
beyond the training distribution. For example, in biolog-
ical sequence design, the problem of generating de novo
(novel) sequences that are better than existing natural se-
quences with respect to some attribute (e.g., binding affinity
to a specific target) is of critical importance to drug discov-
ery (Arnold, 1998; Romero & Arnold, 2009; Freschlin et al.,
2022). In creative text generation, we want to generate text
that accentuates a stylistic attribute (e.g., humor) beyond
simply imitating existing literature (He et al., 2019; Lyu
et al., 2021).

Existing controlled generation paradigms often extrapolate
poorly when the range of attribute values z in the training
data has limited coverage, as both p(x|z) and the attribute
scorer f(x) may not generalize outside of the training range
of the attribute. For example, consider the ACE2 stability
task (Chan et al., 2021c) shown in Figure 1, where the goal
is to generate mutants of the ACE2 protein that have higher
stability (lower ddG value). The training data contains se-
quences with ddG values varying between −4 and 10, but
during inference, we want to generate more stable proteins
than what we already have, e.g., extrapolate to ddG less than
−5. Since this range of z is not supported on the training
data, directly fitting p(x|z) to the training data will result in
unpredictable performance for z < −4.

Our main assumption is that even though sequences with
different target values, such as stable and unstable proteins,
have distinct distributions, the process of transforming one
sequence into a slightly improved version is applicable to
different ranges of attribute values. For instance, in drug
design, better proteins are often achieved by evolving from
successive mutants, and in text generation, the sentiment
can be strengthened by adding adverbs of degree. Therefore,
we propose to the problem into a series of local improve-

1

https://github.com/vishakhpk/iter-extrapolation
https://github.com/vishakhpk/iter-extrapolation

Extrapolation in Controlled Sequence Generation via Iterative Refinement

Training Inference

S T I E E […] E Q S T I A Q M F P L Q E
I Q N M T V K L Q L Q A L Q

ddG = -0.53

Wildtype (ddG = 0)

 Learn to improve a sequence
with local edits

 Iteratively edit a sequence to improve
its attribute value

S T I E E […] E Q S T L A Q M Y
P L Q E I Q N L T V K L Q L Q A L Q

S T I E E […] E Q S T L A Q M Y
P L Q E I Q N L T V K L Q L Q G L M

S T I E E […] E Q S T L A Q M Y
P L Q E I Q N L T V K L M L Q A L M

S T I E E […] E M S T L A Q M Y
P L Q E I Q N L T V K L Q L Q E L M

Repeat for k iterations

Training range
-4 < ddG < 10

Extrapolation
ddG < -4

Iteration 0

Iteration 1

Iteration 2

ddG: -5.57

<dec>

<dec>

<dec>

S T I E E […] E Q S T L A Q M Y
P L Q E I Q N L T V K L Q L Q A L Q<dec>

Wildtype
ddG = 0

local improvement
ddG from 0 to 0.53

Figure 1: An overview of the approach, Iterative Controlled Extrapolation (ICE), on the ACE2 stability task. Our initial
dataset only contains proteins with ddG values (lower means more stable) between -4 and 10. During training, we generate
perturbations of protein sequences and learn a generator to make local edits of a base sequence to reduce its ddG value.
At inference time, we iteratively apply the trained generator which achieves a ddG value of -5.57 after 10 iterations, more
stable than the mutations seen during training.

ments made to a base sequence x0. Our intuition is that this
local improvement is stable across attribute values. Thus
we can learn these local edits (or mutants) on the training
distribution and apply it in succession at inference time to
extrapolate to new ranges of attribute values.2

As shown in Figure 1, to train the local editor, we synthet-
ically generate close pairs of sequences using a masked
language model (Devlin et al., 2019), such that they differ
marginally in attribute values. During inference, our model
uses two control tags, <inc> for increment and <dec> for
decrement, to locally improve a sequence in the desired
direction. Increasing the number of edits on the sequence
enables extrapolation. We call our approach Iterative Con-
trolled Extrapolation (ICE).

We evaluate our approach in both the natural language
and protein domains. For text generation, we generate re-
views with a sentiment either more positive or negative
than seen in the training data. For protein engineering,
we present results on two tasks—generating mutations of
the ACE2 protein that have higher stability measured by
FoldX (Schymkowitz et al., 2005) and generating mutations
of an adeno-associated virus (AAV) capsid protein (Bryant

2These iterative improvements are internal to our model and
thus not analogous to rounds in directed evolution (Arnold, 1998),
which typically require access to a wet lab experiment (or oracle)
after each round.

et al., 2021) with a higher fitness value. ICE achieves con-
sistent extrapolation on these three tasks, outperforming
both standard methods for controlled generation such as
PPLM (Dathathri et al., 2020) and a state-of-the-art extrap-
olative controlled generation method, Genhance (Chan et al.,
2021a). In particular, in the AAV task, despite seeing zero
sequences that are better than the wildtype AAV sequence
during training, our model is able to generate a diverse range
of better candidates as judged by an oracle model.

2. Related Work
2.1. Controlled Generation

While controlled generation has been studied extensively
in the literature, most of these methods do not focus on the
extrapolation setting. We present an overview here situating
our method and setup amongst prior work.

Methods using control codes Keskar et al. (2019) and
Madani et al. (2020; 2023) learn a conditional sequence
model p(x|c) where c is the control code, encoding either
a discrete or scalar value specifying the target attribute.
However, these models may struggle when conditioning
on unseen attribute values outside the training data range.
Instead of conditioning on absolute target values, Lu et al.
(2022) attempt to overcome this limitation by sampling
generations from a model, iteratively quantizing these into

2

Extrapolation in Controlled Sequence Generation via Iterative Refinement

more fine-grained control codes and then using the highest
bucket for controlled generation.

Iterative editing methods Our approach is also related
to edit-based approaches (Guu et al., 2018; Mallinson et al.,
2022; Novak et al., 2016), and closely connected to concur-
rent work, Welleck et al. (2023), that samples and scores
generations from a model in order to learn edits in various
NLP tasks. The key distinction to our work is that we focus
on extrapolation. In the setup of Welleck et al. (2023), the
model learns by seeking feedback on all generated pairs.
However, we are explicitly interested in the case where the
model is required to generate sequences outside the range
where it is able to obtain feedback.

Latent variable models Another approach to achieve con-
trol is to model the attribute as a latent variable (Mueller
et al., 2017; Gligorijević et al., 2021; Chan et al., 2021a;b).
For example, Genhance (Chan et al., 2021a) proposes to
represent the latent vector as a sum of attribute-relevant and
attribute-irrelevant components. They then perturb the for-
mer to achieve extrapolation with applications to both NLP
and biology. However, latent variable models on discrete
sequence data are known to suffer from stability issues. In
contrast, our approach makes edits in the text space, bypass-
ing the problem of mapping from continuous latent spaces
to discrete sequences.

Attribute control via a scorer model Another line of
work (Dathathri et al., 2020; Yang & Klein, 2021; Li et al.,
2022) adds attribute information via a scorer model p(z|x)
to guide an unconditional language model p(x) at inference
time. Because this approach heavily relies on the scorer
model which is a trained classifier, it is not often conducive
to extrapolation beyond the training data distribution, as
we will show in our experiments. Alternatively, one could
use the classifier as a reward model for reinforcement learn-
ing (Gong et al., 2019; Angermueller et al., 2020b) which
suffers from similar shortcomings as the generator can ex-
ploit and amplify imperfections in the reward (Amodei et al.,
2016; Ibarz et al., 2018; Pang et al., 2022).

2.2. Biological Sequence Design

The problem of generating de novo sequences that improve
upon natural sequences is of massive value to drug discov-
ery, healthcare, and agriculture, as signified by the 2018
Nobel Prize in Chemistry on directed evolution (Arnold,
1998). As a result, there has been a growing interest in
using machine learning for this problem (Yang et al., 2019;
Angermueller et al., 2020a; Freschlin et al., 2022; Ren et al.,
2022). Brookes et al. (2019) tackle extrapolation via a se-
ries of importance sampling distributions, in contrast to our
controlled generation approach.

The iterative nature of ICE is internal to our modeling ap-
proach and thus not analogous to rounds in directed evo-
lution which typically require access to an oracle (or wet
lab experiment) after each round. Rather, at each round of
directed evolution, ICE could potentially be (iteratively) run
and its final output interpreted as the proposed candidates
for validation.

Generating and experimentally validating novel sequences
from large pretrained protein language models is also an
exciting but nascent area. These approaches (Madani et al.,
2021; Verkuil et al., 2022) typically generate sequences by
conditioning on broad categories or backbone structures,
rather than optimizing towards a specific target attribute
(e.g., stability or fluorescence) as we seek to do.

3. Our Approach
Problem setup We denote an input sequence with ℓ to-
kens as x = (x1, ..., xℓ) and an attribute value as z ∈ R.
Here x can represent a protein sequence of ℓ amino acids,
where z represents its stability, or a textual restaurant review
of ℓ tokens, where z corresponds to the associated senti-
ment score. During training, we are typically given a large
unsupervised corpus Dunsup = {x(m)}Munsup

m=1 of size Munsup
and a much smaller supervised corpus of sequences paired
with attribute values, Dsup-train = {(x(m), z(m))}Msup-train

m=1 of
size Msup-train. Let α− and α+ denote the lower and upper
bound of z in Dsup-train respectively, i.e., z ∈ [α−, α+] for
all z in the training examples. We refer to this region as the
training region of scores.

Our goal is to generate sequences that have an attribute value
greater than (or less than) a target attribute value z∗. In
particular, we aim to extrapolate beyond the training region,
i.e., z∗ < α− or z∗ > α+ depending on the application. We
refer to these regions as the extrapolation region of scores.

Further, we assume that we have access to a scorer fs that
is trained on Dsup-train to predict the attribute value of each
sequence, i.e., ẑ = fs(x). While fs may achieve high
performance on the training region of z, it is not trained on
data from the extrapolation region and hence it can perform
poorly when scoring examples in this range. Thus fs should
not be regarded as an oracle.

3.1. Overview

The core component of ICE is a local editor that modifies a
short span within a sequence to improve its attribute value.
Specifically, it takes in an input sequence x and a control
token c that specifies whether to increase (c = <inc>) or
decrease (c = <dec>) the attribute value, and outputs an
improved sequence x̃. We model the local editor pθ(x̃ |
x, c) using a Transformer encoder-decoder model (Vaswani

3

Extrapolation in Controlled Sequence Generation via Iterative Refinement

et al., 2017). We train the editor by synthesizing pairs of
sequences with a small difference in attribute value using
masked language modeling (Section 3.2).

At inference time, starting with an initial sequence x0, we
edit it iteratively until some stopping criteria is reached.
Specifically, in iteration k, we edit the current sequence xk

to produce xk+1 by:
xk+1 ∼ pθ(· | xk, c) (1)

Each iteration is expected to move the attribute value of
xk toward z∗. We explore different ways of selecting the
best candidate at each step of the inference as well as the
stopping criteria of the inference process in Section 3.3.

3.2. Learning Local Edits from Perturbations

To train the local editor, we perturb examples from Dsup-train
to generate training pairs with a small improvement toward
the target value.

Specifically, given a sequence from the training region,
Dsup-train, we mask random tokens in it,3 and use a masked
language model to infill these to produce its perturbation
(Figure 1). The masked language model is trained on the
unsupervised data Dunsup such that the infill produces a valid
sequence. To ensure that we make only small improvements,
we predict the attribute value of each sequence using the
scorer fs, and retain only those pairs where the absolute
difference in the attribute value is below a threshold δ.

Each pair of the original sequence and its perturbation gives
us two examples for the editor: generating the perturbed
sequence from the original sequence, and vice versa. Recall
that the editor also takes in a control token that specifies
whether the edit should increase or decrease the attribute
value. For each input-output pair, we set the control code to
be <inc> if the attribute value of the input sequence is less
than that of the output sequence measured by the scorer fs,
and <dec> otherwise.

Given tuples of the input sequence, the output sequence, and
the control code, we then train the editor pθ on this dataset.

3.3. Inference

At inference time, we run the editor iteratively as described
in Eq. (1).

Decoding method During each iteration, we experiment
with two different ways in which to select the best candidate
out of a set of generated sequences:

• Scorer-free generation: At each iteration of Equa-
tion (1), we perform generation using beam search

3The specific masking strategy varies depending on the task
and is specified in each of the experiment sections (Section 5,
Section 6, Section 7).

relying on the ICE model likelihood to control the
generation process.

• Scorer-guided generation: At each iteration, we gen-
erate a set of sequences via top-k sampling, score these
with fs and select the sequence assigned the highest
(or lowest) score depending on the desired target value.
While fs is reliable in the training region, it is unclear
if the guidance provided is beneficial to the ICE model
as it generates sequences having attribute value in the
extrapolation region.

Stopping criteria The objective of the task is to edit the
input sequence to have an attribute value greater than (or
less than) the target value z∗. However, reliably identifying
when the inference process has reached z∗ is difficult as it
lies in the extrapolation region. In this work, we run infer-
ence for a constant number of iterations. We include addi-
tional discussion on the stopping condition in Appendix C.4.

4. Experimental Setup
We evaluate our approach on one NLP task and two protein
design tasks—sentiment controlled generation (Section 5),
the ACE2 stability task (Section 6), and the AAV fitness
task (Section 7).

4.1. Evaluation

We are interested in measuring the ability of a model to suc-
cessfully edit a sequence to have an attribute value greater
than (or lesser than) a target value z∗. In our experiments,
we report the success rate or the fraction of sequences that
the model is able to edit to meet this criterion as determined
by an oracle model. The oracle varies based on the task and
is detailed in each of the experiment sections (Section 5,
Section 6, Section 7).

4.2. Baselines

We benchmark the performance of our method against the
following baselines. (a) Sampling: A simple baseline is to
directly edit sequences using a masked language model. Mir-
roring the synthetic data creation process from Section 3.2,
we mask and infill a random span within the initial sequence
to change its attribute value. (b) Iterative Sampling: To ab-
late the contribution of the editor model in ICE, we replace
it with a mask-and-infill editor using a masked language
model; the rest of the iterative algorithm is the same as ICE
with the Scorer-Guided inference method. (c) Genhance:
We compare to Genhance (Chan et al., 2021a), an extrap-
olative baseline which performs controlled generation by
making perturbations in a latent space learned to encode the
attribute value. Increasing the size of these perturbations
during inference enables extrapolation.

4

Extrapolation in Controlled Sequence Generation via Iterative Refinement

For the NLP task, we compare to two additional baselines.
(d) PPLM (Dathathri et al., 2020) is a controlled genera-
tion method that guides the generation of an autoregressive
language model at inference time using a scorer, p(z|x).
We use fs as the scorer to guide the generation. We in-
clude the baseline to evaluate if the guidance from the
scorer trained on the training region allows for extrapola-
tion. (e) Score-Conditioned Generator: We also compare
to a score-conditioned model, which generates the output
sequence given the input and the target attribute value.4 To
train the score-conditioned model, we use the same syn-
thetic data (Section 3.2) but replace the control code with
the attribute value of the output sequence measured by fs
appended as a string token. At inference time, we append
the desired target score and evaluate if the model generalizes
to the unseen score values.5

5. Sentiment Control
In this task, the objective is to control the sentiment asso-
ciated with a short paragraph of text (2–3 sentences). We
use the Yelp dataset for this task (Zhang et al., 2015), which
consists of 650K training examples and 50K test examples,
evenly divided into sentiment scores from 1 to 5. We define
the training region as the range of sentiment scores from 2
to 4 and the extrapolation region as the range of scores from
1 to 2 and 4 to 5. For this task, we are interested in measur-
ing the ability of the model to extrapolate in both directions,
i.e., increase and decrease the associated sentiment of an ex-
ample. To measure this, we report the success rate of editing
the sentiment beyond the following target values—1.5 and
2.5 in the negative direction and 3.5 and 4.5 in the positive
direction. 1.5 and 4.5 belong to the extrapolation region.

5.1. Implementation Details

Training the scorer We fine-tune a RoBERTa-Large
model (Liu et al., 2019) on the examples from the Yelp
dataset in the training region to serve as the scorer, fs. The
scorer is a regression model that takes in the input text and
predicts its sentiment score, a real number between 2 and 4.
Appendix B describes further training details of the scorer.

Training the editor To create the synthetic data through
perturbation, we mask tokens using the strategy described
in Lewis et al. (2020) and infill these with a pre-trained

4This baseline is similar to the methods described in Jain &
Berg-Kirkpatrick (2021) and Chen et al. (2021).

5The score-conditioned baseline is trained on minimal edits and
at test-time, we assess its ability to generalize to larger edits, which
poses a challenge. Altering the training data to incorporate larger
edits could improve the performance of this baseline however in
our problem setting, we do not have pairs of sequences for the
examples in Dsup-train.

BART-Large model.6 We filter the pairs created by setting
the hyperparameter δ = 0.4 (Section 3.2). We fine-tune the
T5-Base model (Raffel et al., 2022) on the synthetic training
data to obtain the local editor. Appendix B describes further
training details.

Inference We run inference using both methods described
in Section 3.3. For scorer-free inference, we use beam
search with a beam size of 5. When performing scorer-
guided inference, at each iteration, we generate 5 sequences
using top-k sampling with k = 5 and a temperature of 0.7;
we then select the best one using fs. We run 10 steps of
iterative editing for both methods.

Evaluation We report results on a random subset of 1831
examples from the test set of the Yelp dataset against all 4
aforementioned targets.7 To evaluate whether the attribute
value of the final generated sequence extrapolates beyond
the training region, we estimate the ground-truth sentiment
scores via an oracle—a RoBERTa-Large model that is fine-
tuned on the entire Yelp dataset, i.e., both the training and
extrapolation regions.

Baselines For sentiment control, we compare our method
to Sampling, Iterative Sampling, Genhance, PPLM, and
the Score-Conditioned Generator. We use T5-Base to train
the Score-Conditioned Generator to match the ICE editor.
The architecture of the Genhance model is also based on
T5-Base, making it comparable in size to ICE editor. At
inference time, for each test example, we sample 50 se-
quences from Genhance and use fs to select the best one to
match the total number of sequences generated by ICE in all
iterations. For Iterative Sampling, we generate 5 sequences
per iteration for 10 iterations and use fs to select the best
one at each iteration, the same as ICE.

5.2. Results

ICE outperforms the baselines in the extrapolation region
From Table 1, we see that the ICE model (when guided by
the scorer) strongly outperforms the baseline methods in
the extrapolation region. Even without the scorer, the ICE
model achieves performance on par with the strongest base-
line, Genhance. Table 7 in Appendix C.2 shows an example
of increasing the sentiment associated with a sentence over
multiple iterations.

6The masking strategy involves sampling a location of the
start of the span from a Bernoulli distribution (p = 0.8) and
then selecting the number of tokens to mask by sampling from a
truncated Poisson distribution (λ = 6). The maximum span size
is set to 12. We report more variants of the masking strategy in
Table 6 in Appendix C.2.

7We ensure that these examples are selected such that the senti-
ment value of the input text is within the training region.

5

Extrapolation in Controlled Sequence Generation via Iterative Refinement

Methods Targets in Training
Region

Targets in
Extrapolation Region

3.5 2.5 Average 4.5 1.5 Average

Sampling 0.362 0.259 0.310 0.061 0.050 0.056
Iterative Sampling 0.668 0.657 0.663 0.320 0.328 0.324
Genhance 0.982 0.833 0.908 0.482 0.291 0.387
Score-Conditioned Model 0.780 0.766 0.773 0.212 0.217 0.215
PPLM 0.534 0.516 0.522 0.081 0.065 0.077

ICE Scorer-Free 0.976 0.918 0.947 0.446 0.305 0.376
ICE w/ Scorer 0.943 0.900 0.921 0.638 0.582 0.610

Table 1: Results on the sentiment control task. We report the success rate measured as the fraction of examples that have a
sentiment value greater than (or less than) a target score as determined by the oracle. Bold values indicate the highest rates
of extrapolation. Iterative Sampling, Genhance, and PPLM use the scorer for inference. ICE achieves the highest success
rate in the extrapolation region compared to the baselines.

Scorer guidance is beneficial We observe that the scorer
helps both the Iterative Sampling baseline and ICE in sen-
timent control. Iterative Sampling benefits from the scorer
with extrapolation performance increasing to 32.4% from
the 5.6% observed in Sampling. The ICE success rate when
guided by the scorer goes up from 37.6% to 61.0%. We do
observe that PPLM extrapolates poorly despite using the
scorer fs. This highlights that fs could be more useful for
guiding inference when used to rank generated sequences,
as in ICE and Iterative Sampling, as opposed to the condi-
tional probabilities from fs being directly used to guide the
generation, as in PPLM.

What does ICE do in each iteration? To analyze how
the sentiment score of the text is changed over iterations,
we plot the difference between the sentiment score of the
output at each iteration and that of the initial sequence. We
randomly sample 100 examples from the test set, and use
ICE to increase their sentiment scores. We collect the output
of ICE at every iteration using the scorer-free inference. We
then plot the histogram of the increase in sentiment score
(with respect to the initial score) for iterations 1, 4, 7, and
10 in Figure 2. As the iteration count increases, we observe
that the increase in sentiment scores also becomes larger
(i.e., the mode of the distribution is moving right), although
the editing is not always successful (the scores of a small
number of outputs decrease from the initial score and fall in
the negative buckets). Overall, this shows that ICE is able to
increase the sentiment score on average via iterative editing.

6. Protein Design on the ACE2 dataset
Developing ways that generate more stable proteins could
benefit drug discovery, as these proteins could potentially
allow easier storage and have more reliable clinical effects
compared to the existing proteins (Wang, 1999; Shire et al.,
2004; Bloom et al., 2006; Deller et al., 2016; Webber et al.,
2016). The objective of this task is to generate mutants of
the human angiotensin-converting enzyme 2 (ACE2) wild-

Change in Sentiment (Generated Score - Source Score)

Fr
ac

tio
n

of
 O

ut
pu

ts

0.0

0.1

0.2

0.3

0.4

-2.5 - -2
.0

-2.0 - -1
.5

-1.5 - -1
.0

-1.0 - -0
.5

-0.5 - 0
.0

0.0 - 0
.5

0.5 - 1
.0

1.0 - 1
.5

1.5 - 2
.0

2.0 - 2
.5

2.5 - 3
.0

3.0 - 3
.5

Iteration 1 Iteration 4 Iteration 7 Iteration 10

Figure 2: We plot the histogram of the increase in sentiment
scores with respect to the initial score at every iteration of
ICE on 100 examples. As the iteration count increases, we
observe that the mode of the distribution moves towards the
positive side, suggesting that more examples are edited to be
increasingly positive, resulting in extrapolation eventually.

type sequence8 that have higher stability. The stability value
of the mutants is measured using the change in free energy
from the wild-type, or ddG, via FoldX (Schymkowitz et al.,
2005).9 The wild-type itself has a ddG value of zero and
more negative values represent more stable mutants. This
synthetic task was created in Chan et al. (2021a) and we
replicate their setup. The proteins are represented by a se-
quence of 83 amino acids out of a vocabulary of 20 different
amino acids. In order to enforce that the mutations do not
diverge too widely from the wild-type, a constant span of 8
amino acids (NTNITEEN) is kept fixed in all mutations. We
view the training region to be the range of ddG values from
−4 to +10. The extrapolation region refers to ddG values
below −4. For this task, we aim to generate mutants having
more negative ddG values. We measure this by reporting
the success rate of generating mutations having ddG below
target values, z∗, in the training region, −1 and −2.5, and

8https://www.uniprot.org/uniprotkb/Q9BYF1/entry
9https://foldxsuite.crg.eu/

6

Extrapolation in Controlled Sequence Generation via Iterative Refinement

the extrapolation region, −5, −6, and −7.

6.1. Implementation Details

Training the scorer To train fs we fine-tune ProtBert
(Elnaggar et al., 2021) on the examples with ddG values in
the training region from the dataset in Chan et al. (2021a).

Training the editor We create pairs of sequences using
the mask-and-infill approach from Section 3.2 using a pre-
trained Prot-T5-XL model (Elnaggar et al., 2021). We
sample token masks from a Bernoulli distribution with
(p = 0.8). To filter small perturbations, we set δ to 1.5.
We then fine-tune Prot-T5-XL on this data to serve as the
ICE editor.

Inference At inference time, we start from the wild-type
and generate mutations with and without the scorer, fs (Sec-
tion 3.3). When using the scorer, we sample 5 sequences at
each step, select the best one using fs, and repeat the pro-
cess for 10 iterations. For scorer-free inference, we generate
sequences with beam size of 5 for 10 iterations.10

Evaluation In the ACE2 task, we are interested in gener-
ating mutants that have a lower ddG value. So we generate
10, 000 mutants of the wild-type from each model and re-
port the success rate of generating mutants that have a ddG
value lower than each of the task targets using FoldX as the
oracle. We match the FoldX evaluation parameters from
Chan et al. (2021a) to evaluate the mutations. We also report
the average score of the Top-100 and Top-1000 mutants as
determined by the oracle to evaluate the quality of the top
candidates in the library of 10,000 produced by each model.

Baselines We compare our approach against Sampling,
Iterative Sampling, and Genhance.11 For Genhance, we re-
port results from the model released by Chan et al. (2021a)
on 10, 000 mutants generated with and without the scorer.
This model is based on Prot-T5-XL as well making it di-
rectly comparable to the ICE model. For Iterative Sampling,
we generate 5 sequences per iteration for 10 iterations.

6.2. Results

ICE outperforms baselines on extrapolation Table 2
shows that ICE consistently outperforms Genhance, Sam-
pling, and Iterative Sampling on all extrapolation targets. In
addition, from Table 3, we see that ICE achieves a lower

10We present further analysis on the variation in performance
based on the hyperparameters of generation in Appendix C.3.

11The ACE2 task requires generating mutants of a specific wild-
type. Pretrained autoregressive language models in the protein do-
main cannot generate mutants directly, only continuing sequences.
As a result, sequence-to-sequence models are more appropriate for
this task. Hence, PPLM, which relies on an autoregressive model,
is not included as a baseline. Also, we do not include the Score-
Conditioned Generator baseline as the vocabulary of Prot-T5-XL
tokenizer solely consists of amino acids, thus it cannot accept the
output score as a token along with the input.

average ddG on the Top-100 and Top-1000 sequences. In-
terestingly, while Iterative Sampling achieves higher extrap-
olation rates than Genhance (Table 2), Genhance achieves
a better average score on the Top-1000 and Top-100 sub-
sets (Table 3) indicating that Genhance produces a smaller
number of slightly more stable mutants (though still outper-
formed by ICE).

The scorer is valuable for all models in ACE2 In this
task, we begin the generation from the wild-type (ddG score
of zero) and the scorer, fs, reliably guides the generation
process until the score of −5. As a result, we see that
all the methods strongly benefit from using the scorer
(Table 2). In Figure 3, we plot the histogram of scores of the
generated mutations from ICE and the reported baselines.
From Figure 3a, we see that the peaks of the distribution
of scores for all models move in the negative direction
to be centered closer to −5 as compared to Figure 3b
highlighting the value of the scorer. We do however note
that our approach is able to achieve some extrapolation
even in the scorer-free regime, far outperforming Sampling
and achieving extrapolation at a higher rate than Genhance.

7. Protein Design on the AAV dataset
The AAV dataset (Bryant et al., 2021) aims to study the
fitness landscape of an adeno-associated virus (AAV) capsid
protein that is a key component of gene therapy (Russell
et al., 2017). Our goal is to obtain mutants of the AAV-2
wild type sequence12 that have a higher fitness value. We use
the splits proposed by the FLIP benchmark (Dallago et al.,
2021) for our experiments. Each mutant is a sequence of
length varying from 734 to 750. Mutations are made on the
wild-type sequence between indices 561 and 588. We use
the provided low-vs-high split of the dataset to demarcate
the training region and extrapolation region. The training
region corresponds to fitness values below zero and the
extrapolation region corresponds to positive fitness values.
At inference time, the generation process begins at the wild-
type, with a fitness score of zero, and the model is expected
to generate mutants that have a positive fitness score. We
evaluate performance against target values, z∗ in the training
region, −1, and in the extrapolation region, 0, 1, and 2.

7.1. Implementation Details

Training the scorer The scorer, fs, is a CNN model
trained on the examples in the training region. The ar-
chitecture and hyperparameters for the CNN were chosen
based on the FLIP benchmark.13 The scorer accepts a string
corresponding to the proteins and outputs a floating-point

12https://www.uniprot.org/uniprotkb/P03135/entry
13On the low-vs-high split, the train correlation of the scorer is

0.82 and the test correlation is 0.34. This matches the best test
correlation on this split obtained as part of the benchmark.

7

Extrapolation in Controlled Sequence Generation via Iterative Refinement

Methods Targets in
Training Region

Targets in
Extrapolation Region

-1 -2.5 -5 -6 -7

Sampling 0.033 0.007 0.000 0.000 0.000
Iterative Sampling 0.998 0.954 0.220 0.079 0.001
Genhance Scorer-Free 0.570 0.219 0.021 0.005 0.001
Genhance w/ Scorer 0.999 0.978 0.159 0.040 0.009

ICE Scorer-Free 0.945 0.598 0.062 0.017 0.002
ICE w/ Scorer 0.998 0.974 0.361 0.098 0.019

Table 2: Results on the ACE2 task. The objective is to generate mutants of the wild-type that have higher stability i.e. lower
ddG value. Each table cell represents the success rate of generating mutations lower than the corresponding target. Bold
values indicate the highest rates of extrapolation. ICE achieves a higher rate of extrapolation than the reported baselines.

Score Buckets (ddG Values of Generated Sequences)

Fr
ac

tio
n

of
 O

ut
pu

ts

0.0

0.1

0.2

0.3

0.4

0.5

-8.
0--

7.0

-7.
0--

6.0

-6.
0--

5.0

-5.
0--

4.0

-4.
0--

3.0

-3.
0--

2.0

-2.
0--

1.0

-1.
0-0

.0

0.0
-1.

0

1.0
-2.

0

2.0
-3.

0

3.0
-4.

0

Genhance ICE Model Iterative Sampling

Distribution of Scores - ACE2 (w/ Scorer)

(a)

Score Buckets (ddG Values of Generated Sequences)

Fr
ac

tio
n

of
 O

ut
pu

ts

0.0

0.1

0.2

0.3

0.4

-8.
0--

7.0

-7.
0--

6.0

-6.
0--

5.0

-5.
0--

4.0

-4.
0--

3.0

-3.
0--

2.0

-2.
0--

1.0

-1.
0-0

.0

0.0
-1.

0

1.0
-2.

0

2.0
-3.

0

3.0
-4.

0

Genhance ICE Model Sampling

Distribution of Scores - ACE2 (Scorer-Free)

(b)

Figure 3: Histograms of ddG scores (lower is better) of the final mutations generated by ICE and the baselines on the ACE2
task. ICE generates higher quality mutations than the baselines both with (Figure 3a) and without the scorer (Figure 3b)
guiding the inference. Further, the scorer significantly improves performance for all methods.

Library Size Iterative
Sampling Genhance ICE

All 10k -4.326 -4.086 -4.660
Top 1k -5.866 -6.030 -6.575

Top 100 -6.413 -7.354 -7.938

Table 3: Average ddG values (lower is better) of muta-
tions generated from Iterative Sampling, Genhance, and
ICE (each with the scorer). We report the average score of
all 10000 mutations, the top 1000, and the top 100 as de-
termined by the oracle. Bold values are the lowest average
ddG value. ICE generates the most stable mutations.

fitness value.

Training the editor We create pairs to train the ICE model
by following the same strategy as in ACE2. We use the Prot-
T5-XL (Elnaggar et al., 2021) model to infill masks in the
mutable region and score pairs with the scorer, fs, to create
the editor training data.14 We then fine-tune Prot-T5-XL on
this dataset. Since the length of the mutants is greater than
the sequence length limit of Prot-T5-XL, we truncate them

14We again set the hyperparameter δ to 1.5.

from the start to the last 512 tokens, which always contain
the entire mutable region of the protein.

Inference We start from the wild-type and run inference
on the ICE model as per Section 3.3. When using the scorer,
we sample 5 generations, score them with fs, select the best
one, and repeat for 10 iterations. For the scorer-free setup,
we generate with a beam size of 5 for 10 iterations.

Evaluation We generate 10, 000 mutants with each
method and report the success rate of generating mutations
that are above the target scores, z∗. In lieu of a wet-lab
experiment, we obtain fitness scores for each generated se-
quence via an oracle model, which is a CNN trained on the
sampled (i.i.d.) split of the AAV dataset.15 This was chosen
as the examples from the sampled split span fitness values
across both the training region and extrapolation region.

Baselines We compare our approach to the Sampling and
Iterative Sampling baselines.16

15We select the CNN architecture as it has the highest spearman
correlation with the gold fitness values on the benchmark (Dallago
et al., 2021). The model obtains a train spearman correlation of
0.93 and a test correlation of 0.92 on this split.

16As mentioned earlier, the PPLM and Score-Conditioned Gen-
erator baselines are not well suited for the protein tasks.

8

Extrapolation in Controlled Sequence Generation via Iterative Refinement

Methods Targets in
Training Region

Targets in
Extrapolation Region

-1 0 1 2

Sampling 0.058 0.018 0.011 0.000
Iterative Sampling w/ Scorer 0.524 0.064 0.017 0.000

ICE Scorer-Free 0.481 0.188 0.033 0.001
ICE w/ Scorer 0.521 0.223 0.036 0.002

Table 4: Results on the AAV task. The objective is to generate mutations of the source protein that have a higher fitness
value. We report the success rate of generating mutations with fitness values higher than the corresponding targets. Bold
values indicate the highest extrapolation rates. ICE achieves a higher rate of extrapolation than the baselines.

Library
Size

Samp-
ling

Iterative
Sampling

ICE
Scorer-

Free

ICE
w/ Scorer

All 10k -3.450 -1.390 -1.150 -1.040
Top 1k -0.567 -0.584 0.403 0.918

Top 100 1.605 1.550 1.452 1.750

Table 5: Average fitness values (higher is better) of mu-
tations generated from Sampling, Iterative Sampling, and
ICE. We report the average score of all 10000 mutations,
the average of the top 1000, and the top 100 as determined
by the oracle. Bold values are the highest average fitness
value. ICE generates the highest quality mutations.

Score Buckets (Fitness Values of Generated Sequences)

Fr
ac

tio
n

of
 O

ut
pu

ts

0.0

0.1

0.2

0.3

0.4

-6.0 - -5
.5

-5.5 - -5
.0

-5.0 - -4
.5

-4.5 - -4
.0

-4.0 - -3
.5

-3.5 - -3
.0

-3.0 - -2
.5

-2.5 - -2
.0

-2.0 - -1
.5

-1.5 - -1
.0

-1.0 - -0
.5

-0.5 - 0
.0
0.0 - 0

.5
0.5 - 1

.0
1.0 - 1

.5
1.5 - 2

.0
2.0 - 2

.5

Sampling Iterative Sampling ICE Model (Scorer-free) ICE Model (w/ Scorer)

Distribution of Scores - AAV

Figure 4: Histogram of fitness values of mutants generated
by each approach on the AAV Task (higher scores are better).
ICE generates outperforms Sampling and Iterative Sampling.

7.2. Results

ICE model extrapolates better than Iterative Sampling
From Table 4, we see that ICE with Scorer-Free and Scorer-
Guided inference achieves a higher success rate of extrap-
olation than Sampling and Iterative Sampling respectively.
We also observe that ICE with Scorer-Guided inference
achieves a higher average fitness score than the baselines
on the total library of 10000 mutations as well as the sub-
sets of Top-100 and Top-1000 mutations generated by each
method. Lastly, it is also desirable to generate a library of
mutations that not only achieves high fitness values but also

exhibits diversity (Calcedo et al., 2009). We observe that
ICE generates diverse and high-quality mutations by exam-
ining the edit distance between the mutations generated and
the wild-type in Appendix C.1.

The scorer is less effective on AAV From Table 4, we
see that the performance of both methods on the training re-
gion and extrapolation region targets when using the scorer
improves only marginally over the scorer-free setups. The
distribution of scores (Figure 4) also shows a similar trend.
We see that, for both methods, the mode of the distribution
of scores is within the training region itself, close to the
boundary of the extrapolation region (Figure 4). The dis-
tribution for ICE is much flatter, which is why it achieves
higher extrapolation success rates compared to Iterative
Sampling. Since the generation process begins at the edge
of the training region (zero), we expect the scorer to not
offer much reliable guidance in AAV.

8. Conclusion
We presented Iterative Controlled Extrapolation (ICE), an
iterative approach to extrapolative controlled generation.
Our method considerably outperforms existing approaches
to controllable generation and more complex extrapolative
techniques on both NLP and protein design tasks. Potential
future directions include extending the iterative approach to
multiple attributes to generate sequences that compose them
in novel ways, training scorers that generalize to the extrap-
olation region, and improving our synthetic data creation
techniques by incorporating additional domain knowledge.

Acknowledgements
We thank David Belanger, Lucy Colwell, and Nitish Joshi
for their valuable discussion and feedback during the course
of the project. This work was undertaken as part of the
Google Research Collabs program. This work is also sup-
ported by the Samsung Advanced Institute of Technology
(Next Generation Deep Learning: From Pattern Recognition
to AI), the National Science Foundation under Grant No.
1922658, and a gift from AWS AI.

9

Extrapolation in Controlled Sequence Generation via Iterative Refinement

References
Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schul-

man, J., and Mané, D. Concrete problems in ai safety.
arXiv preprint arXiv:1606.06565, 2016.

Angermueller, C., Belanger, D., Gane, A., Mariet, Z.,
Dohan, D., Murphy, K., Colwell, L., and Sculley, D.
Population-based black-box optimization for biological
sequence design. In International Conference on Machine
Learning, pp. 324–334. PMLR, 2020a.

Angermueller, C., Dohan, D., Belanger, D., Deshpande, R.,
Murphy, K., and Colwell, L. Model-based reinforcement
learning for biological sequence design. In International
Conference on Learning Representations, 2020b. URL
https://openreview.net/forum?id=HklxbgBKvr.

Arnold, F. H. Design by directed evolution. Accounts of
Chemical Research, 31(3):125–131, 1998.

Bloom, J. D., Labthavikul, S. T., Otey, C. R., and Arnold,
F. H. Protein stability promotes evolvability. Proceedings
of the National Academy of Sciences, 103(15):5869–5874,
2006. doi: 10.1073/pnas.0510098103. URL https://
www.pnas.org/doi/abs/10.1073/pnas.0510098103.

Brookes, D., Park, H., and Listgarten, J. Conditioning by
adaptive sampling for robust design. In International
conference on machine learning, pp. 773–782. PMLR,
2019.

Bryant, D. H., Bashir, A., Sinai, S., Jain, N. K., Ogden, P. J.,
Riley, P. F., Church, G. M., Colwell, L. J., and Kelsic,
E. D. Deep diversification of an aav capsid protein by
machine learning. Nature Biotechnology, 39(6):691–696,
2021.

Calcedo, R., Vandenberghe, L. H., Gao, G., Lin, J., and
Wilson, J. M. Worldwide epidemiology of neutralizing
antibodies to adeno-associated viruses. The Journal of
infectious diseases, 199(3):381–390, 2009.

Chan, A., Madani, A., Krause, B., and Naik, N. Deep ex-
trapolation for attribute-enhanced generation. In Beygelz-
imer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.
(eds.), Advances in Neural Information Processing Sys-
tems, 2021a. URL https://openreview.net/forum?
id=NCDMYD2y5kK.

Chan, A., Ong, Y.-S., Pung, B., Zhang, A., and Fu, J. Cocon:
A self-supervised approach for controlled text generation.
In International Conference on Learning Representations,
2021b. URL https://openreview.net/forum?id=VD
ozqvBy4W.

Chan, H. P., Wang, L., and King, I. Controllable summariza-
tion with constrained Markov decision process. Transac-
tions of the Association for Computational Linguistics,

9:1213–1232, 2021c. doi: 10.1162/tacl a 00423. URL
https://aclanthology.org/2021.tacl-1.72.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I.
Decision transformer: Reinforcement learning via se-
quence modeling. In Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W. (eds.), Advances in Neu-
ral Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=a7APmM4B9d.

Dallago, C., Mou, J., Johnston, K. E., Wittmann, B., Bhat-
tacharya, N., Goldman, S., Madani, A., and Yang, K. K.
FLIP: Benchmark tasks in fitness landscape inference
for proteins. In Thirty-fifth Conference on Neural Infor-
mation Processing Systems Datasets and Benchmarks
Track, 2021. URL https://openreview.net/forum?
id=p2dMLEwL8tF.

Dathathri, S., Madotto, A., Lan, J., Hung, J., Frank, E.,
Molino, P., Yosinski, J., and Liu, R. Plug and play lan-
guage models: A simple approach to controlled text gen-
eration. In International Conference on Learning Rep-
resentations, 2020. URL https://openreview.net/
forum?id=H1edEyBKDS.

Deller, M. C., Kong, L., and Rupp, B. Protein stability: a
crystallographer’s perspective. Acta Crystallographica
Section F: Structural Biology Communications, 72(2):
72–95, 2016.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 4171–4186,
Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://aclanthology.org/N19-1423.

Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G.,
Wang, Y., Jones, L., Gibbs, T., Feher, T., Angerer, C.,
Steinegger, M., et al. Prottrans: Toward understanding the
language of life through self-supervised learning. IEEE
transactions on pattern analysis and machine intelligence,
44(10):7112–7127, 2021.

Freschlin, C. R., Fahlberg, S. A., and Romero, P. A. Ma-
chine learning to navigate fitness landscapes for pro-
tein engineering. Current Opinion in Biotechnology, 75:
102713, 2022.

Gehman, S., Gururangan, S., Sap, M., Choi, Y., and
Smith, N. A. RealToxicityPrompts: Evaluating neu-
ral toxic degeneration in language models. In Find-
ings of the Association for Computational Linguis-

10

https://openreview.net/forum?id=HklxbgBKvr
https://www.pnas.org/doi/abs/10.1073/pnas.0510098103
https://www.pnas.org/doi/abs/10.1073/pnas.0510098103
https://openreview.net/forum?id=NCDMYD2y5kK
https://openreview.net/forum?id=NCDMYD2y5kK
https://openreview.net/forum?id=VD_ozqvBy4W
https://openreview.net/forum?id=VD_ozqvBy4W
https://aclanthology.org/2021.tacl-1.72
https://openreview.net/forum?id=a7APmM4B9d
https://openreview.net/forum?id=a7APmM4B9d
https://openreview.net/forum?id=p2dMLEwL8tF
https://openreview.net/forum?id=p2dMLEwL8tF
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://aclanthology.org/N19-1423

Extrapolation in Controlled Sequence Generation via Iterative Refinement

tics: EMNLP 2020, pp. 3356–3369, Online, Novem-
ber 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.findings-emnlp.301. URL https:
//aclanthology.org/2020.findings-emnlp.301.

Gligorijević, V., Berenberg, D., Ra, S., Watkins, A.,
Kelow, S., Cho, K., and Bonneau, R. Function-
guided protein design by deep manifold sampling.
bioRxiv, 2021. doi: 10.1101/2021.12.22.473759. URL
https://www.biorxiv.org/content/early/2021/
12/23/2021.12.22.473759.

Gong, H., Bhat, S., Wu, L., Xiong, J., and Hwu, W.-M.
Reinforcement learning based text style transfer with-
out parallel training corpus. In Proceedings of the 2019
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp.
3168–3180, 2019.

Guu, K., Hashimoto, T. B., Oren, Y., and Liang, P. Generat-
ing sentences by editing prototypes. Transactions of the
Association for Computational Linguistics, 6:437–450,
2018.

He, H., Peng, N., and Liang, P. Pun generation with sur-
prise. In North American Chapter of the Association for
Computational Linguistics (NAACL), 2019.

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and
Amodei, D. Reward learning from human preferences and
demonstrations in atari. Advances in neural information
processing systems, 31, 2018.

Jain, A. and Berg-Kirkpatrick, T. An empirical study of
extrapolation in text generation with scalar control. arXiv
preprint arXiv:2104.07910, 2021.

Keskar, N. S., McCann, B., Varshney, L. R., Xiong, C.,
and Socher, R. CTRL: A conditional transformer lan-
guage model for controllable generation. arXiv preprint
arXiv:1909.05858, 2019.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L.
Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pp. 7871–7880,
2020.

Li, X. L., Thickstun, J., Gulrajani, I., Liang, P., and
Hashimoto, T. Diffusion-LM improves controllable text
generation. In Advances in Neural Information Process-
ing Systems, 2022. URL https://openreview.net/
forum?id=3s9IrEsjLyk.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Lu, X., Welleck, S., Hessel, J., Jiang, L., Qin, L., West,
P., Ammanabrolu, P., and Choi, Y. Quark: Controllable
text generation with reinforced unlearning. Advances in
neural information processing systems, 35:27591–27609,
2022.

Lyu, Y., Liang, P. P., Pham, H., Hovy, E., Póczos, B.,
Salakhutdinov, R., and Morency, L.-P. StylePTB: A
compositional benchmark for fine-grained controllable
text style transfer. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, pp. 2116–2138, Online, June 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/
v1/2021.naacl-main.171. URL https://aclanthology.
org/2021.naacl-main.171.

Madani, A., McCann, B., Naik, N., Keskar, N. S., Anand,
N., Eguchi, R. R., Huang, P.-S., and Socher, R. ProGen:
Language modeling for protein generation. arXiv preprint
arXiv:2004.03497, 2020.

Madani, A., Krause, B., Greene, E. R., Subramanian, S.,
Mohr, B. P., Holton, J. M., Olmos, J. L., Xiong, C., Sun,
Z. Z., Socher, R., Fraser, J. S., and Naik, N. Deep neu-
ral language modeling enables functional protein gen-
eration across families. bioRxiv, 2021. doi: 10.1101/
2021.07.18.452833. URL https://www.biorxiv.org/
content/early/2021/07/18/2021.07.18.452833.

Madani, A., Krause, B., Greene, E. R., Subramanian, S.,
Mohr, B. P., Holton, J. M., Olmos Jr, J. L., Xiong, C.,
Sun, Z. Z., Socher, R., et al. Large language models gen-
erate functional protein sequences across diverse families.
Nature Biotechnology, pp. 1–8, 2023.

Mallinson, J., Adamek, J., Malmi, E., and Severyn, A.
EdiT5: Semi-autoregressive text editing with t5 warm-
start. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pp. 2126–2138, Abu
Dhabi, United Arab Emirates, December 2022. Asso-
ciation for Computational Linguistics. URL https:
//aclanthology.org/2022.findings-emnlp.156.

Mueller, J., Gifford, D., and Jaakkola, T. Sequence to better
sequence: continuous revision of combinatorial structures.
In International Conference on Machine Learning, pp.
2536–2544. PMLR, 2017.

Novak, R., Auli, M., and Grangier, D. Iterative refinement
for machine translation. arXiv preprint arXiv:1610.06602,
2016.

11

https://aclanthology.org/2020.findings-emnlp.301
https://aclanthology.org/2020.findings-emnlp.301
https://www.biorxiv.org/content/early/2021/12/23/2021.12.22.473759
https://www.biorxiv.org/content/early/2021/12/23/2021.12.22.473759
https://openreview.net/forum?id=3s9IrEsjLyk
https://openreview.net/forum?id=3s9IrEsjLyk
https://aclanthology.org/2021.naacl-main.171
https://aclanthology.org/2021.naacl-main.171
https://www.biorxiv.org/content/early/2021/07/18/2021.07.18.452833
https://www.biorxiv.org/content/early/2021/07/18/2021.07.18.452833
https://aclanthology.org/2022.findings-emnlp.156
https://aclanthology.org/2022.findings-emnlp.156

Extrapolation in Controlled Sequence Generation via Iterative Refinement

Pang, R. Y., Padmakumar, V., Sellam, T., Parikh, A. P., and
He, H. Reward gaming in conditional text generation.
arXiv preprint arXiv:2211.08714, 2022.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21
(1), June 2022. ISSN 1532-4435.

Ren, Z., Li, J., Ding, F., Zhou, Y., Ma, J., and Peng, J.
Proximal exploration for model-guided protein sequence
design. In International Conference on Machine Learn-
ing, pp. 18520–18536. PMLR, 2022.

Romero, P. A. and Arnold, F. H. Exploring protein fitness
landscapes by directed evolution. Nature Reviews Molec-
ular Cell Biology, 10(12):866–876, 2009.

Russell, S., Bennett, J., Wellman, J. A., Chung, D. C., Yu, Z.-
F., Tillman, A., Wittes, J., Pappas, J., Elci, O., McCague,
S., et al. Efficacy and safety of voretigene neparvovec
(aav2-hrpe65v2) in patients with rpe65-mediated inher-
ited retinal dystrophy: a randomised, controlled, open-
label, phase 3 trial. The Lancet, 390(10097):849–860,
2017.

Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau,
F., and Serrano, L. The foldx web server: an online force
field. Nucleic Acids Research, 33(suppl 2):W382–W388,
2005.

Shire, S. J., Shahrokh, Z., and Liu, J. Challenges in the
development of high protein concentration formulations.
Journal of pharmaceutical sciences, 93(6):1390–1402,
2004.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

Verkuil, R., Kabeli, O., Du, Y., Wicky, B. I., Milles, L. F.,
Dauparas, J., Baker, D., Ovchinnikov, S., Sercu, T., and
Rives, A. Language models generalize beyond natural
proteins. bioRxiv, 2022.

Wang, W. Instability, stabilization, and formulation of liq-
uid protein pharmaceuticals. International journal of
pharmaceutics, 185(2):129–188, 1999.

Webber, M. J., Appel, E. A., Vinciguerra, B., Cortinas, A. B.,
Thapa, L. S., Jhunjhunwala, S., Isaacs, L., Langer, R.,
and Anderson, D. G. Supramolecular pegylation of bio-
pharmaceuticals. Proceedings of the National Academy
of Sciences, 113(50):14189–14194, 2016.

Welleck, S., Lu, X., West, P., Brahman, F., Shen, T.,
Khashabi, D., and Choi, Y. Generating sequences by
learning to self-correct. In The Eleventh International
Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=hH36JeQZDaO.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45, Online,
October 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-demos.6. URL https:
//aclanthology.org/2020.emnlp-demos.6.

Yang, K. and Klein, D. FUDGE: Controlled text gen-
eration with future discriminators. In Proceedings of
the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pp. 3511–3535, Online,
June 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.naacl-main.276. URL https:
//aclanthology.org/2021.naacl-main.276.

Yang, K. K., Wu, Z., and Arnold, F. H. Machine-learning-
guided directed evolution for protein engineering. Nature
Methods, 16(8):687–694, 2019.

Zhang, X., Zhao, J., and LeCun, Y. Character-level con-
volutional networks for text classification. Advances in
Neural Information Processing Systems, 28, 2015.

12

https://openreview.net/forum?id=hH36JeQZDaO
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2021.naacl-main.276
https://aclanthology.org/2021.naacl-main.276

Extrapolation in Controlled Sequence Generation via Iterative Refinement

A. Limitations
Creation of synthetic data can introduce hallucinations in natural language Our method relies on masked language
modeling to create minimally perturbed pairs of sequences (Section 3.2). In natural language tasks, this can result in a
perturbed sequence that is slightly different in meaning from the source sequence. As a result, the ICE model when trained
can also alter the meaning of the sequence. In particular, we want to note that certain kinds of hallucinations from text
generation models can be harmful if used without proper consideration. Specifically, in Table 7, it is acceptable for the
model to edit the sentiment associated with the food or ambiance at the restaurant but we want the model to retain the
basic information that the writer and his partner are eating at a sushi restaurant in Scottsdale. Going forward, we intend to
investigate better strategies for synthetic data creation to measure and mitigate this occurrence.

Assumption that edits in the training region generalize to extrapolation region Our work relies on training a model on
perturbations made on sequences belonging to the training region. We then repeatedly make edits to increase or decrease the
score into the extrapolation region. While our experiments show promising results, we believe that this assumption does not
equally hold for all tasks and domains. We intend to study this further going forward.

Relying on trained models to score sequences For evaluation of the sentiment control and the AAV tasks, we train
classifier models to measure the attribute values of the sequences. These models only estimate the ground truth attribute
values and can end up learning spurious correlations from the datasets. We note that these are to be used as a means to
benchmark our method against the various baselines. Particularly in the case of proteins such as AAV, prior to any real-world
usage, a detailed analysis of the oracle models or real-life wet lab experiments should be performed.

Inference for iterative methods is slow By the nature of our method, iteratively editing a sequence is much slower in
terms of inference time as compared to a single-step edit by a model such as Genhance.

B. Additional Model Training Details
We fine-tune all of the language models for our experiments using the HuggingFace library (Wolf et al., 2020). All of the code
used for our experiments and trained models is available at https://github.com/vishakhpk/iter-extrapolation.

Sentiment Control The scorer and oracle model used for evaluation are fine-tuned RoBERTa-Large (Liu et al., 2019)
models. The oracle is trained on the entire Yelp dataset. The scorer is trained on those examples with a sentiment from 2 to
4. Both the scorer and oracle are fine-tuned to optimize the mean-squared error loss on the gold labels from the dataset.
We create paired data to train the ICE generator model using the scorer and a pre-trained T5-Base (Raffel et al., 2022)
model. We create 100K pairs and fine-tune T5-Base to serve as the ICE generator. The hyperparameter δ = 0.4 used
to filter synthetic pairs was selected based on a small internal pilot. We fine-tune T5-Base to generate the output of the
synthetic pairs given the input sequences optimizing the cross-entropy loss on the output tokens. For each of these, we use
the recommended hyperparameters from the HuggingFace repository and sweep learning rates from 1e−6 to 1e−3.

ACE2 For ACE2, we fine-tune a ProtBert (Elnaggar et al., 2021) model, made available via the HuggingFace, to predict
the ddG values given the mutants from the dataset released by Chan et al. (2021a). Here we optimize the mean-squared error
loss on the gold labels, selecting the optimum checkpoint using the validation loss. We use this to create a synthetic dataset
of 1M pairs which is used to fine-tune the ICE generator model. We fine-tune Prot-T5-XL (Elnaggar et al., 2021) on these
pairs to generate the output of the synthetic pairs given the input sequences optimizing the cross-entropy loss on the output
tokens. We again use the recommended hyperparameters from the HuggingFace repository and sweep learning rates from
1e−6 to 1e−3. For scoring with FoldX, we match the parameters from (Chan et al., 2021a).

AAV The scorer and oracle models for the AAV task are CNN models that accept the protein sequence as a string and
output a real number corresponding to the fitness value. We select the model architecture according to the parameters
specified in the FLIP benchmark (Dallago et al., 2021). We follow the same as the obtained the highest test spearman
correlation for the AAV low-vs-high split. Both CNN models are trained from the repository of the benchmark optimizing
the mean squared-error loss on the fitness values. We use the scorer to create 1M synthetic pairs to train the ICE generator
model optimizing the cross-entropy loss of the output tokens given the input protein sequence and corresponding control tag.

13

https://github.com/vishakhpk/iter-extrapolation

Extrapolation in Controlled Sequence Generation via Iterative Refinement

C. Additional Findings
C.1. Exploring Diversity in AAV Mutants

While AAV capsids hold promise for gene therapy, the immunity from prior AAV exposure excludes 20–80% of the
population from such treatments (Calcedo et al., 2009). Thus, it is essential to not only generate AAV mutants of high
fitness, but also of significant diversity from the wild type. To this end, in Figure 4, we analyze the distribution of sequences
generated by our model (in the 10th iteration) as a function of their Levenshtein distance from the wild-type. We see that
while the majority of mutations generated have an edit distance of around 8–10, the model generates mutations having as far
as 25 edits from the wild-type (Figure 5a). However, we see that even when the model makes over 20 edits, the fraction of
examples within this bucket is still 0.2, showing a large diversity in the mutations generated (Figure 5b).

We note that the model generates a mutant at a diverse range of levenstein distances from the wild type (8 to 27). Moreover,
ICE displays strong performance throughout this range according to our oracle (Figure 5b), demonstrating its potential to
generate both viable and diverse mutants of AAV.

Levenshtein Distance to the Wild-Type

D
is

tri
bu

tio
n

of
 G

en
er

at
ed

 M
ut

at
io

ns

0.00

0.05

0.10

0.15

0.20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(a)

Levenshtein Distance to the Wild-Type

Fr
ac

tio
n

of
 m

ut
at

io
ns

 w
ith

 fi
tn

es
s

>
0

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(b)

Figure 5: We plot the fraction of sequences for a given Levenshtein distance away from the wild type (Figure 5a). Figure 5b
shows the fraction of generated sequences that are better than the wild type (according to the oracle) as a function of the
Levenshtein distance, showing the potential of ICE to generate both diverse and viable mutants.

C.2. Additional Results on Sentiment Control

Table 7 shows an example of the editing process, increasing the sentiment score of the input review iteratively. In addition to
the results from Table 1, we report a few variants of ICE and Genhance. For ICE, the masking strategy to create synthetic
paired data involves sampling a location in the sequence to start the mask using a Bernoulli distribution (p = 0.8) and then
selecting the length of the mask (in terms of tokens masked) by sampling from a truncated Poisson distribution. The results
presented in Table 1 correspond to the Super Large variant in Table 6 where λ = 6 and the maximum span size is set to 12.
We also report three other variants of the masking strategy Small (λ = 3, maximum of 6), Medium (λ = 4, maximum of
8) and Large (λ = 5, maximum of 10). We observed the best extrapolation results on the Super Large variant and used
this masking strategy to report the Sampling and Iterative Sampling baselines. We also report two variants of Genhance
where we vary the total number of output sequences generated for each example. As we increase n, the model predictably
performs better at extrapolation but we see that the directly comparable variant, n = 50, is outperformed by ICE.

C.3. Sensitivity to Hyperparameters of Generation

To study the interaction between the generation hyperparameters and the number of iterations at inference time, we ran both
scorer-free inference varying the beam size and scorer-guided inference varying k in top-k for the ACE2 task. In all cases,
we generated 1000 mutations. We present the results at iteration 2,5, and 10 in Table 8. Each cell of the table represents the
fraction of mutations with ddG value lower than the corresponding target rounded off to three decimal places. The rows
corresponding to top-k = 5 and beam size 5 at iteration 10 were included in Table 2.

Overall, we find that the results at the end of the inference process (iteration 10) are largely stable w.r.t. these hyperparameters.
In particular, when increasing k for top-k sampling, we see a slight drop in performance, which might be due to the small
vocabulary size of protein sequences (a total of 20). Similarly, for scorer-free inference, as we decrease beam size to 3 we

14

Extrapolation in Controlled Sequence Generation via Iterative Refinement

Target Sentiment Score Training Region Extrapolation Region
3.5 2.5 Average 4.5 1.5 Average

Score-Conditioned Baseline 0.780 0.766 0.773 0.212 0.217 0.215
PPLM 0.534 0.516 0.522 0.081 0.065 0.077

Sampling 0.362 0.259 0.310 0.061 0.050 0.056
Iterative Sampling 0.668 0.657 0.663 0.320 0.328 0.324

Genhance (n = 1) 0.407 0.167 0.287 0.063 0.025 0.044
Genhance (n = 50) 0.982 0.833 0.908 0.482 0.291 0.387

Genhance (n = 100) 0.995 0.912 0.954 0.670 0.429 0.550

ICE w/ Scorer – Small 0.962 0.98 0.971 0.514 0.344 0.429
Medium 0.945 0.870 0.908 0.636 0.499 0.567

Large 0.953 0.884 0.918 0.649 0.555 0.602
Super Large 0.943 0.900 0.921 0.638 0.582 0.610

ICE Scorer-Free 0.976 0.918 0.947 0.446 0.305 0.376

Table 6: Results on sentiment control in both the training and extrapolation regions including ablations of our model and
Genhance. Evaluation is done by measuring the fraction of examples that have a sentiment value greater than (or less than) a
target score as determined by the oracle scorer. Bold values are the highest success rates for each target. ICE achieves the
highest rate of extrapolation.

obtain slightly better performance in the training region with a small drop-off for extrapolation. Increasing the beam size to
10 mildly decreases performance.

We find that the iteration number is a reliable indicator of the extrapolation performance with little change in performance
observed due to the top-k and beam size hyperparameters (within each specific iteration). At iteration 2, when guided by the
scorer, a higher top-k value results in better performance as the model samples more diverse generations, and the scorer
can reliably select good sequences to obtain better performance on targets in the training region. Similarly, for scorer-free
inference, a higher beam size also improves performance on the targets in the training region. However as we increase the
number of iterations to iteration 5 and 10, this effect largely evens out.

C.4. Stopping Criteria

Reliably identifying when the generation model has reached a target score is difficult due to the extrapolative nature of the
task. Specifically, if we had a way to know when the generator model has achieved a target score in the extrapolation region,
then this supervision could directly be used to train the generator itself. One option is to use the scorer, fs. However, we
observed the output of fs plateau near the boundary of the training region, limiting its reliability as a stopping condition in
the extrapolation region. To illustrate this, we present the average output score in the ACE2 task as a function of 10 iterations
in Table 9. We observed that the output score remained largely constant beyond iteration 7. Hence we settled on setting the
number of iterations to greater than the plateau point of the scorer, such as 10, and found that this worked well across our 3
datasets without further tuning. However, we acknowledge the need for a more principled stopping condition as an open
problem in this setting.

15

Extrapolation in Controlled Sequence Generation via Iterative Refinement

Iteration Text

1 <inc>This place is just okay. The wait is way too long, the counter person is irritating, and the
unsupervised children are disruptive. The fill and nail art are decent, but not worth the wait. Lisa was fast,
and I dried quickly. I found the nail art I wanted on Pinterest, and she did a decent job replicating it. She also
charged my phone, which was thoughtful. If you’re going, try to get there early, as it gets crowded later in

the day. It’s not amazing, but it’s worth checking out.

2 <inc>This place is average at best. The wait is too long, the counter person is annoying, and the
unsupervised children are a problem. The fill and nail art are decent, but nothing special. Lisa was quick,

and I dried quickly. I found the nail art I wanted on Pinterest, and she did a good job replicating it. She also
charged my phone, which was nice. If you’re going, try to get there early, as it gets busier as the day goes on.

It’s worth a visit, but don’t expect anything amazing.

3 <inc>This place is decent, but has some flaws. The wait is long, the counter person is too pushy, and the
unsupervised children are distracting. The fill and nail art are really good, though, and Lisa was super quick.

I found the nail art I wanted on Pinterest, and she replicated it perfectly. Bonus points for charging my
phone. If you’re thinking about going, try to get there early, as the line gets longer later in the day. Despite

the flaws, it’s still worth a visit.

4 <inc>This place is good, but not great. The wait is a bit long, the counter person is pushy, and the
unsupervised children are annoying. However, the fill and nail art are fantastic, so it’s worth it. Lisa was

quick, and I was drying in no time. I found the nail art I wanted on Pinterest, and she copied it perfectly. She
even charged my phone, which was nice. If you plan to visit, go early as it gets busier closer to closing time.

5 <inc>This place is pretty good! The wait, pushy counter person, and unsupervised children are easy to
ignore when I leave with the best fill and nail art ever! Lisa was lightning-fast, and I was drying in under 15
minutes! I found the nail art I wanted on Pinterest, and she copied it flawlessly! As a bonus, she charged my

phone, which was a nice gesture! If you’re planning on going, try to arrive early, as the line gets longer
closer to closing. But trust me, it’s worth the wait!

6 <inc>This place is great! The wait, pushy counter person, and unsupervised children are an easy overlook
when I finally leave with the best fill and nail art I’ve ever had! Lisa was super quick, had me drying in less

than 15 minutes of sitting down in her chair! I found the nail art I wanted (she copied it perfectly, by the
way) on pintrest, but just as I sat down, my phone died. She pulled out her charger, and charged my phone!
Where else has anyone done this? Nowhere. Just a heads up, go early, if you can, as it gets closer to close,

more and more people line up. :) it’s so worth the wait, though!!

Table 7: Trajectory of improving the sentiment associated with a review using ICE.

16

Extrapolation in Controlled Sequence Generation via Iterative Refinement

Target ddG Value Training Region Extrapolation Region
-1 -2.5 -5 -6 -7

ICE w/ Scorer: Varying K for sampling

Iteration = 10
TopK = 15 0.997 0.964 0.249 0.083 0.01
TopK = 10 0.998 0.966 0.283 0.091 0.016

TopK = 5 0.998 0.974 0.362 0.098 0.019

Iteration = 5
TopK = 15 0.982 0.648 0.041 0.004 0.000
TopK = 10 0.981 0.646 0.040 0.004 0.000

TopK = 5 0.978 0.647 0.042 0.005 0.001

Iteration = 2
TopK = 15 0.711 0.093 0.002 0.000 0.000
TopK = 10 0.703 0.090 0.001 0.000 0.000

TopK = 5 0.674 0.086 0.001 0.000 0.000

ICE Scorer-Free: Varying beam size

Iteration = 10
Beam Size = 10 0.930 0.572 0.059 0.013 0.000

Beam Size = 5 0.945 0.598 0.062 0.017 0.002
Beam Size = 3 0.959 0.623 0.060 0.016 0.000

Iteration = 5
Beam Size = 10 0.852 0.440 0.030 0.006 0.000

Beam Size = 5 0.847 0.437 0.026 0.005 0.000
Beam Size = 3 0.844 0.419 0.023 0.004 0.000

Iteration = 2
Beam Size = 10 0.620 0.182 0.001 0.000 0.000

Beam Size = 5 0.567 0.155 0.001 0.000 0.000
Beam Size = 3 0.526 0.143 0.000 0.000 0.000

Table 8: Evaluation on the ACE2 task to study the interaction between the generation hyperparameters and the number
of iterations at inference time. Each table cell represents the fraction of mutations with a ddG value lower than the
corresponding target. We vary k for top-k sampling for scorer-guided inference and vary beam size for scorer-free inference.
We find that the results are largely stable with respect to these hyperparameters at the end of inference (i.e., iteration 10).
Early on during inference (i.e., iteration 2), we find that a higher top-k value and beam size respectively result in better
performance but this largely evens out by iteration 5 and 10.

Iteration Average Score
1 -0.673
2 -2.051
3 -2.879
4 -3.272
5 -3.446
6 -3.522
7 -3.551
8 -3.558
9 -3.555
10 -3.567

Table 9: Average output scores of fs as a function of iterations in the ACE2 task. Each cell is an average of the scores
assigned to the 10, 000 mutants generated with scorer-guided inference in Table 2. We observe that the output of fs plateaus
near the boundary of the training region at around −3.5 making it unreliable as a stopping condition for the generation
process.

17

