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Abstract

Fine-tuned Large Language Models (LLMs)001
often demonstrate poor calibration, with their002
confidence scores misaligned with actual per-003
formance. While calibration has been exten-004
sively studied in models trained from scratch,005
the impact of LLMs’ prior knowledge on cali-006
bration during fine-tuning remains understud-007
ied. Our research reveals that LLMs’ prior008
knowledge causes potential poor calibration009
due to the ubiquitous presence of known data in010
real-world fine-tuning, which appears harmful011
for calibration. Specifically, data aligned with012
LLMs’ prior knowledge would induce overcon-013
fidence, while new knowledge improves cali-014
bration. Our findings expose a tension: LLMs’015
encyclopedic knowledge, while enabling task016
versatility, undermines calibration through un-017
avoidable knowledge overlaps. To address this,018
we propose CogCalib, a cognition-aware frame-019
work that applies targeted learning strategies020
according to the model’s prior knowledge. Ex-021
periments across 7 tasks using 3 LLM families022
prove that CogCalib significantly improves cali-023
bration while maintaining performance, achiev-024
ing an average 57% reduction in ECE com-025
pared to standard fine-tuning in Llama3-8B.026
These improvements generalize well to out-of-027
domain tasks, enhancing the objectivity and re-028
liability of domain-specific LLMs, and making029
them more trustworthy for critical human-AI030
interaction applications.031

1 Introduction032

Large Language Models (LLMs) have enabled pow-033

erful domain-specific applications through super-034

vised fine-tuning (Zhuang et al., 2023; Imani et al.,035

2023; Yang et al., 2024a). However, fine-tuning of-036

ten leads to poor-calibrating LLM, where models’037

predictive confidence fails to reflect their true per-038

formance, manifesting as overconfidence (Achiam039

et al., 2023; Zhu et al., 2023; Shen et al., 2024;040

Yang et al., 2023). This is particularly concerning041

in high-stakes scenarios where LLMs’ incorrect042
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Figure 1: LLMs’ prior knowledge leads to poor calibra-
tion. As LLMs grow stronger, lots of domain-specific
fine-tuning data inevitably overlaps with the LLMs’
prior knowledge. We reveal that data aligned with
the model’s prior knowledge (i.e., known data) tend
to cause overconfidence, while data exhibiting bias (i.e.,
unknown data) contribute to better alignment between
confidence and accuracy, resulting in more objective
predictions.

yet confident predictions could lead to reliability 043

and trustworthiness issues, such as medical diag- 044

nosis (Zhu et al., 2018; Li et al., 2019) or safety- 045

critical domain (Sarabadani, 2019). 046

Prior studies (Mukhoti et al., 2020; Wei et al., 047

2022; Guo et al., 2017a) investigating the causes 048

of poor calibration mainly focus on simple mod- 049

els (ResNet) trained from scratch, where prior 050

knowledge is absent. However, in the fine-tuning 051

paradigm of LLMs, the training data is typically 052

domain-incremental (Shi et al., 2024), encompass- 053

ing both knowledge aligned with the pre-training 054

corpus and novel domain-specific information (Gu- 055

rurangan et al., 2020). This knowledge bias be- 056

tween LLMs’ prior knowledge and fine-tuning 057

knowledge has been shown as a critical factor af- 058
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fecting model adaptation (Gekhman et al., 2024;059

Kung et al., 2023; Huang et al., 2024; Seedat et al.,060

2023; Chen et al., 2024). Therefore, we try to ex-061

tend previous research by investigating the underly-062

ing mechanisms of poor calibration specifically in063

the context of fine-tuning, particularly considering064

the impact of models’ prior knowledge.065

We reveal that LLMs’ extensive prior knowledge,066

while enabling remarkable few-shot generalization,067

paradoxically causes their poor calibration in fine-068

tuning paradigms. Through empirical analysis, we069

discover that during fine-tuning, data aligned with070

the model’s prior knowledge (i.e. known data)071

tend to cause overconfidence, while data exhibit-072

ing knowledge bias (i.e. unknown data) contribute073

to better calibration as shown in Figure 1. This074

disparity stems from the distinct learning dynam-075

ics between known and unknown data: the model076

quickly assimilates known data, leading to contin-077

ued confidence growth even after accuracy plateaus.078

In contrast, unknown data, inherently more chal-079

lenging for LLMs to learn (Zhang and Wu, 2024;080

Gekhman et al., 2024), results in more synchro-081

nized increases in both accuracy and confidence.082

This phenomenon becomes increasingly problem-083

atic as LLMs’ prior knowledge expands, making084

it nearly impossible to avoid overlap between fine-085

tuning data and their prior knowledge.086

However, existing approaches (Yang et al., 2023;087

Shen et al., 2024; Liu et al., 2023) are insufficient088

to handle this issue, primarily because they rely on089

post-hoc calibration methods. They typically intro-090

duce additional learnable modules after fine-tuning091

to reconstruct the mapping between model outputs092

and probabilities, which incurs extra computational093

overhead during deployment. On the other hand,094

the influence of LLMs’ prior knowledge on calibra-095

tion provides a promising opportunity to address096

poor calibration during fine-tuning.097

Therefore, we introduce CogCalib, a real-time098

fine-tuning calibration framework compatible with099

various training-based calibration methods. Specif-100

ically, CogCalib dynamically evaluates knowledge101

bias during fine-tuning and applies targeted learn-102

ing strategies accordingly, regulating confidence103

fitting and maintaining task learning. Moreover,104

CogCalib introduces no additional computational105

overhead during deployment.106

We conduct comprehensive experiments across107

7 commonly used downstream tasks (including108

multiple-choice and open-ended QA tasks) using 3109

popular LLM families, to demonstrate CogCalib’s110

effectiveness. CogCalib successfully preserves 111

fine-tuning performance while achieving substan- 112

tial improvements in calibration across all tasks 113

and models, without incurring additional computa- 114

tional overhead during deployment. For instance, 115

Llama3-8B achieves average ECE reductions of 116

55.92% and 65.02% compared to TS and SFT on 117

multiple-choice QA tasks. Notably, these improve- 118

ments generalize well to out-of-domain tasks, in- 119

dicating that models trained with CogCalib con- 120

sistently demonstrate enhanced objectivity across 121

diverse scenarios. The main contributions of our 122

work can be summarized as follows: 123

• As far as we know, we are the first to reveal 124

the neglected negative impacts of LLMs’ prior 125

knowledge on calibration during fine-tuning. 126

Specifically, data aligned with the model’s 127

prior knowledge tends to induce overconfi- 128

dence, while new knowledge is beneficial for 129

calibration. 130

• We propose CogCalib, a real-time calibra- 131

tion framework that employs distinct learning 132

strategies for data with different knowledge 133

biases during fine-tuning, aiming to achieve 134

more objective fine-tuning. 135

• We conduct extensive experiments on domain- 136

specific multiple-choice and open-ended QA 137

tasks with multiple models, using different 138

fine-tuning methods, which demonstrate the 139

effectiveness and generality of CogCalib in 140

enhancing calibration. 141

2 Related Works 142

2.1 Confidence Calibration 143

Confidence calibration methods can be categorized 144

into three main approaches (Gawlikowski et al., 145

2023): post-processing adjustments (Guo et al., 146

2017b), training-based optimization (Szegedy 147

et al., 2016), and uncertainty estimation (Laksh- 148

minarayanan et al., 2017). For LLMs specifically, 149

recent efficient post-processing techniques have 150

emerged, including Bayesian LoRA (Yang et al., 151

2023), LLM-oriented temperature scaling (Shen 152

et al., 2024), and distribution adjustment meth- 153

ods (Liu et al., 2023). While these approaches 154

address calibration computational complexity, they 155

do not investigate the underlying causes of calibra- 156

tion degradation. Previous studies have identified 157

negative log-likelihood (NLL) overfitting as a key 158
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Calibration Deterioration

Figure 2: Accuracy and ECE of Llama3-8B fine-tuned
with different knowledge biases. We fine-tune Llama3-
8B using OBQA, with ARC-C and MathQA as OOD
tests. The ratio varies from 5:0 to 0:5 (unknown
data:known data), with equal dataset sizes. Calibra-
tion deteriorates as the knowledge bias lowers, while a
higher knowledge bias helps improve calibration.

factor in poor calibration (Mukhoti et al., 2020;159

Wei et al., 2022; Guo et al., 2017a). However,160

these findings were based on models without prior161

knowledge, whereas the unique pre-trained nature162

of LLMs (Shi et al., 2024) necessitates a fresh ex-163

amination of calibration.164

2.2 Impact of Knowledge Bias in Fine-tuning165

Fine-tuning LLMs presents several critical chal-166

lenges, including hallucinations (Huang et al.,167

2025), generalization problems (He et al., 2021),168

and calibration degradation (Zhu et al., 2023), with169

the bias between LLMs’ prior knowledge and fine-170

tuning knowledge emerging as a contributing fac-171

tor (Kung et al., 2023; Huang et al., 2024; See-172

dat et al., 2023; Yang et al., 2024b). Gekhman173

et al. (Gekhman et al., 2024) demonstrate that in-174

troducing new knowledge during fine-tuning can175

trigger hallucinations. Effective generalization can176

be achieved through knowledge selection strate-177

gies based on knowledge bias (Albalak et al., 2024;178

Chen et al., 2024). Regarding calibration, the im-179

pact of knowledge bias during fine-tuning warrants180

further investigation.181

3 Prior Knowledge Affects Calibration?182

In this section, we investigate how LLMs’ prior183

knowledge affects calibration during fine-tuning.184

To quantify the overlap between fine-tuning data185

and the model’s prior knowledge, we first reintro- 186

duce the concept of knowledge bias, which rep- 187

resents the discrepancy between the model’s prior 188

knowledge domain and the downstream task knowl- 189

edge domain. Following the framework proposed 190

by SliCK (Gekhman et al., 2024) (details shown in 191

Appendix G.1), we categorize the data into two dis- 192

tinct types: known data that aligns with the model’s 193

prior knowledge, and unknown data that deviates 194

from this knowledge base. Finally, we simulate 195

varying knowledge bias by adjusting the ratio be- 196

tween unknown and known data in the fine-tuning 197

dataset, where a higher proportion of known data 198

indicates a lower knowledge bias (i.e., greater align- 199

ment with prior knowledge). 200

3.1 Minimal Bias, Maximal Overconfidence 201

To simulate varying knowledge biases, we con- 202

struct fine-tuning datasets with six ratios of un- 203

known to known data in OBQA. While Figure 2 204

reveals irregular performance trends across knowl- 205

edge bias levels, the calibration exhibits a clear 206

directional pattern: lower knowledge bias consis- 207

tently degrades calibration, whereas higher bias 208

improves it, a phenomenon persistent across both 209

in-domain and out-of-domain (see Appendix B for 210

extended tasks). Notably, the introduction of even 211

a small fraction of known data leads to calibration 212

deterioration (from pure unknown data to 4:1 ratio). 213

This suggests that the model’s pre-existing knowl- 214

edge dominance for calibration begins immediately 215

upon exposure to aligned data. 216

Furthermore, our tracking for accuracy and con- 217

fidence reveals divergent learning dynamics: in 218

low-bias fine-tuning (Figure 3a), accuracy plateaus 219

early (200 steps) while confidence escalates contin- 220

uously, creating widening calibration error. Con- 221

versely, high-bias conditions maintain synchro- 222

nized accuracy-confidence growth, minimizing dis- 223

crepancies — a pattern potentially rooted in gradual 224

new knowledge assimilation (Zhang and Wu, 2024; 225

Gekhman et al., 2024). The different confidence 226

patterns persist in OOD detection (Berger et al., 227

2021) (Figure 3b): low-bias models show com- 228

pressed confidence distributions for correct and in- 229

correct predictions (both correct/incorrect > 85%), 230

whereas high-bias models develop discriminative 231

confidence gaps (AUROC 0.85 vs 0.77 at step 600), 232

enhancing OOD detection. 233

These findings collectively demonstrate how 234

LLMs’ prior knowledge induces poor calibration: 235

pre-existing knowledge enables rapid confidence 236
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AUROC: 0.85

AUROC: 0.77

Figure 3: (a) Accuracy and confidence of Llama3-8B
during fine-tuning on known and unknown data sam-
pled from OBQA. The asymmetric fitting rates between
accuracy and confidence in known fine-tuning result
in model overconfidence. Conversely, unknown fine-
tuning exhibits synchronized fitting of both, minimizing
their disparity. (b) Confidence of correct and incorrect
predictions. Unknown fine-tuning yields distinct confi-
dence separation between correct and incorrect samples,
facilitating OOD detection.

inflation on aligned data, while insufficient ex-237

posure to new knowledge prevents calibration238

improvement — a harmful interaction ampli-239

fied by the near-ubiquitous presence of known240

data in the real-world fine-tuning. Additionally,241

we examine this phenomenon in realistic scenarios242

(details are shown in Figure 13 of Appendix B).243

3.2 Analysis and a Potential Solution244

An intuitive explanation is that known samples245

closely align with pre-trained models’ prior dis-246

tribution, while unknown samples represent the tar-247

get distribution. Therefore, fine-tuning in low-bias248

scenarios leads to rapid confidence overfitting. In249

contrast, high-bias fine-tuning requires the model250

to adjust its decision boundaries to accommodate251

new distributions, resulting in better calibration.252

A potential solution is to increase the bias be-253

tween the fine-tuning data and the model’s prior254

knowledge, specifically by eliminating known data.255

However, we reveal that simple bias adjustment256

through data removal is insufficient, as it fails257

to consistently improve calibration performance258

across different datasets. As shown in Figure 4, re-259

moving 25% of low-bias data improves calibration260

Better

Delete 0%

D
el

et
e 

0%

Figure 4: Differences in ACC and ECE compared
to baseline (delete 0%) under various percentages of
known data deletion. The results from in-domain tests
indicate that simple bias adjustment fails to achieve con-
sistent calibration improvements across all tasks.

in ARC-C but degrades it in OBQA. This inconsis- 261

tency may stem from the inherent characteristics 262

of different datasets, making it challenging to find 263

a universal optimal adjustment ratio. Addition- 264

ally, accuracy consistently improves with known 265

data reduction, aligning with findings new knowl- 266

edge enhances task performance (Kung et al., 2023; 267

Swayamdipta et al., 2020). This necessitates meth- 268

ods that decouple knowledge retention from cali- 269

bration, preserving fine-tuning performance while 270

improving calibration. 271

4 Cognition-aware Calibration 272

In this section, we propose CogCalib, a cognition- 273

aware calibration framework for fine-tuning, de- 274

signed to achieve an optimal balance between fine- 275

tuning performance and calibration. CogCalib is 276

motivated by the above observation that known and 277

unknown data exhibit distinct fitting characteristics 278

during the fine-tuning process, necessitating dif- 279

ferent learning strategies. To develop an effective 280

solution, we mainly address two challenges: (1) 281

How to evaluate knowledge bias, particularly as 282

the model’s internal states are continuously evolv- 283

ing? (2) What specific learning strategies should 284

be applied to achieve objective fine-tuning? 285

4.1 Knowledge Bias Evaluation 286

In section 3, we evaluate knowledge bias based 287

on the correctness of the model’s output through 288

multiple inferences. However, during training, this 289

method faces limitations due to the inability to 290

perform multiple sampling iterations. 291
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Knowledge Bias Evaluation Adaptive Learning Strategy

LLM 𝜽(𝒊)

…
Final ModelBase LLM LLM 𝜽(𝒊$𝟏)

Calibration Set

Threshold (t) Unknown,		𝒊𝒇	𝑳𝑵𝑳𝑳 > 𝒕	

Known, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 𝑳 = 𝑳𝑪𝑬 + 𝜶𝑳𝒄𝒂𝒍

𝑳 = 𝑳𝑪𝑬

Adaptation
Fine-tuning Phase

CogCalib

Figure 5: CogCalib’s framework. CogCalib dynami-
cally assesses knowledge bias during training through
NLL, employing customized learning strategies with
distinct loss functions to enhance calibration. Addition-
ally, CogCalib incorporates a style adaptation process
to improve the knowledge bias evaluation performance.

Therefore, we propose a more efficient method292

for knowledge bias assessment based on negative293

log-likelihood (NLL). Our hypothesis posits that294

known data aligns with the pre-trained model’s295

prior knowledge bias, while unknown data repre-296

sents novel information from the target distribu-297

tion. From a distributional perspective, as shown298

in Equation (1), known data should exhibit lower299

NLL values compared to unknown data:300

LNLL = Eq [p] = −
C∑

k=1

qk log pk, (1)301

where q is the target one-hot distribution, p is the302

vocabulary distribution output by LLM, and pk and303

qk represent the probabilities for the k-th class in304

p and q, respectively. Based on this, we evaluate305

knowledge bias during training, using Equation (2),306

I(p,q) =

{
1, if LNLL ≤ t

0, otherwise
, (2)307

where t denotes the threshold, and I = 1 indicates308

the model has already mastered this knowledge. In309

Addition, t requires adjustment to accommodate310

the evolving knowledge distribution during train-311

ing. To solve this, we establish a calibration set312

to identify the optimal t that maximizes the sum313

of the true negative rate and the true positive rate314

between fixed steps.315

However, the discrepancy in LLMs’ linguistic316

style and label formats prevents NLL from accu-317

rately assessing knowledge bias. Thus, the model318

requires a style adaptation process for calculating319

the initial threshold t0, based on findings (Zhang320

and Wu, 2024; Mai et al., 2024) that LLMs rapidly321

adapt to downstream task syntax during early fine-322

tuning (details are shown in Appendix D).323

4.2 Adaptive Learning Strategy 324

Our previous analysis reveals that during fine- 325

tuning, model confidence increases rapidly for 326

known data, while unknown data contributes posi- 327

tively to both calibration and downstream task per- 328

formance. Therefore, we moderate confidence fit- 329

ting for known data while preserving the learning 330

dynamics for unknown data as Equation (3), 331

L = LCE + I(p,q) · αLcal, (3) 332

where α represents the regularization strength 333

and Lcal denotes the calibration loss during train- 334

ing. The calibration term could be Label Smooth- 335

ing (LS) (Szegedy et al., 2016), Margin-based 336

Label Smoothing (MbLS) (Liu et al., 2022), or 337

ECP (Pereyra et al., 2017), which have been proved 338

to be helpful for confidence overfitting (details 339

shown in Appendix C). In CogCalib, we call these 340

methods CoLS, CoMbLS, and CoECP. 341

4.3 Integrated Framework 342

Building on our previous analysis, we propose an 343

integrated framework aiming to achieve objective 344

fine-tuning. Figure 5 illustrates the architecture 345

of CogCalib. Initially, LLM undergoes style adap- 346

tation to align with the grammatical patterns of 347

downstream tasks. Subsequently, CogCalib dy- 348

namically assesses knowledge bias using NLL and 349

adaptive t. For low-bias data, we incorporate a 350

calibration term to mitigate confidence overfitting, 351

while cross-entropy loss is applied to new knowl- 352

edge to maintain task alignment. 353

Type Dataset Accuracy TPR TNR

Multi-Choice

OBQA 99.44 99.44 99.52
ARC-C 99.51 99.54 99.15
WG-S 98.83 98.77 99.52
WG-M 99.13 99.10 99.55
BoolQ 98.69 98.63 98.21

Open-End HotpotQA 83.64 79.43 90.59
MedMCQA 83.69 79.77 87.78

Table 1: Accuracy, True Positive Rate (TPR), and True
Negative Rate (TNR) for identifying known/unknown
data using NLL in the fine-tuning process of Llama3-
8B.

5 Experiments 354

In this section, we will evaluate the universality of 355

CogCalib across 3 aspects: diverse datasets (from 356

multiple-choice to open-ended), various LLM fam- 357

ilies and sizes, and different fine-tuning approaches 358
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Dataset Metric Vanilla SFT MCD Ensemble TS CoLS (∆TS) CoMbLS (∆TS) CoECP (∆TS)

OBQA ACC↑ 84.80 83.60 88.00 84.80 85.60 (+0.80) 86.20 (+1.40) 86.20 (+1.40)
ECE↓ 11.20 9.10 6.02 9.90 2.50 (-7.40) 3.70 (-6.20) 7.30 (-2.60)

ARC-C ACC↑ 81.40 80.70 81.14 81.40 81.60 (+0.20) 81.70 (+0.30) 81.60 (+0.20)
ECE↓ 16.50 13.80 13.08 12.30 4.80 (-7.50) 4.20 (-8.10) 7.40 (-4.90)

WG-S ACC↑ 78.00 78.21 80.27 78.00 80.10 (+2.10) 79.20 (+1.20) 80.30 (+2.30)
ECE↓ 20.50 17.77 14.81 15.40 8.90 (-6.50) 9.40 (-6.00) 7.00 (-8.40)

WG-M ACC↑ 84.50 84.37 85.16 84.50 84.50 (+0.0) 84.70 (+0.20) 84.70 (+0.20)
ECE↓ 14.80 13.51 10.09 11.50 4.10 (-7.40) 3.10 (-8.40) 1.00 (-10.50)

BoolQ ACC↑ 90.09 90.15 90.86 90.09 90.15 (+0.06) 89.63 (-0.46) 89.54 (-0.55)
ECE↓ 9.54 8.95 6.69 7.70 1.97 (-5.73) 2.36 (-5.34) 7.68 (-0.02)

Table 2: Comparison of our method’s performance against baselines on in-domain (ID) datasets. Results are
evaluated on Llama3-8B model fine-tuned by LoRA on 5 widely used domain-specific datasets. We integrate LS,
MbLS, and ECP as calibration terms in CogCalib, resulting in 3 variants: CoLS, CoMbLS, and CoECP.

(LoRA and FFT). Complete experimental results359

are presented in Appendix F, and hyperparameters360

settings are shown in Appendix G.3.361

5.1 Experimental Setup362

Datasets. To ensure the universality of CogCalib,363

we select a wide range of tasks, including Hot-364

potQA (Yang et al., 2018) MedMCQA (Pal et al.,365

2022) for open-ended QA tasks, while utilizing366

OpenBookQA (OBQA) (Mihaylov et al., 2018),367

ARC-Challenge (ARC-C) (Clark et al., 2018),368

Winogrande-small (WG-S), Winogrande-medium369

(WG-M) (Sakaguchi et al., 2021) and BoolQ (Clark370

et al., 2019) for multiple-choice QA scenarios. Ad-371

ditionally, we extend our evaluation of CogCalib to372

various OOD tasks, including MMLU (Hendrycks373

et al., 2021) and ARC-E (Clark et al., 2018). See374

Appendix A for more details.375

Models. We validate CogCalib across models of376

diverse families and scales, including Llama3-8B,377

Llama2-13B, Mistral-7B, and Qwen2.5-7B.378

Evaluation Metrics. In addition to evaluating the379

accuracy of fine-tuned models, we also select ECE380

with a bin size of 10 to assess calibration. See381

Appendix E for more details of ECE.382

Baselines. We consider 4 baseline methods: (1)383

Vanilla SFT: We use standard LoRA or FFT as384

a lower performance bound. (2) MC-Dropout385

(MCD) (Gal and Ghahramani, 2016): We use a386

dropout rate of 0.02 during fine-tuning and per-387

form sampling 4 times. (3) Deep Ensemble (En-388

semble) (Lakshminarayanan et al., 2016): We389

use 3 fine-tuned LLMs. (4) Temperature Scaling390

(TS) (Guo et al., 2017b): The optimal temperature391

is calculated on the ID validation set and applied to392

both the ID and OOD datasets. See Appendix G.2393

for more details. 394

5.2 Main Results 395

In this section, we validate the effectiveness of Cog- 396

Calib through comprehensive experiments. First, 397

we demonstrate the validity of using NLL for as- 398

sessing knowledge bias, which enhances the inter- 399

pretability of our framework. Subsequently, we 400

evaluate CogCalib’s performance on both multiple- 401

choice and open-ended tasks, showing that it not 402

only maintains fine-tuning performance but also 403

significantly improves calibration. 404

5.2.1 Effectiveness Evaluation of Knowledge 405

Bias via NLL 406

In this section, we aim to validate the effective- 407

ness of using NLL for evaluating knowledge bias. 408

Table 1 presents accuracy in distinguishing be- 409

tween unknown/known data using NLL during 410

training (average accuracy throughout the training 411

process). The high accuracy proves NLL-based 412

method aligns well with SliCK (Gekhman et al., 413

2024), validating NLL as an effective knowledge 414

bias evaluation metric. Moreover, we demonstrate 415

our threshold calculation method outperforms al- 416

ternative approaches in Appendix F.8. 417

5.2.2 Calibration of Multi-Choice Task 418

To verify CogCalib’s robustness and generalizabil- 419

ity, our evaluation for CogCalib consists of two 420

dimensions: in-domain performance assessment 421

and out-of-domain evaluation. 422

In-Distribution Performance. We first conduct in- 423

domain tests on CogCalib across 5 commonsense 424

reasoning datasets. On the one hand, our cognitive 425

methods maintain competitive accuracy compared 426

to baselines as shown in Table 2, such as CoECP 427
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Metric Methods In Domain Smaller Distribution Shift Larger Distribution Shift
OBQA ARC-C ARC-E Business Culture History Psychology

ECE↓

Vanilla SFT 11.20 18.00 13.50 18.40 17.61 19.22 23.38
MCD 9.10 14.56 11.11 13.54 15.70 17.87 20.42

Ensemble 6.02 14.59 8.92 14.09 15.33 15.99 18.76
TS 9.90 15.90 10.40 16.10 16.70 17.40 21.30

CoLS (∆TS) 2.50 (-7.4) 7.50 (-8.4) 2.40 (-8.0) 9.80 (-6.3) 10.30 (-6.4) 12.07 (-5.3) 14.75 (-6.6)
CoMbLS (∆TS) 3.70 (-6.2) 5.80 (-10.1) 1.40 (-9.0) 8.20 (-7.9) 9.48 (-7.2) 9.83 (-7.6) 14.41 (-6.9)
CoECP (∆TS) 7.30 (-2.6) 2.80 (-13.1) 4.90 (-5.5) 3.80 (-12.3) 3.46 (-13.2) 6.27 (-11.1) 9.51 (-11.8)

ACC↑

Vanilla SFT 84.80 79.10 84.10 79.20 79.52 77.63 73.47
MCD 83.60 78.92 84.22 80.78 79.22 76.24 73.38

Ensemble 88.00 79.35 87.37 80.32 79.52 78.39 75.11
TS 84.80 79.10 84.10 79.20 79.52 77.63 73.47

CoLS (∆TS) 85.60 (+1.8) 79.30 (+0.2) 86.30 (+2.2) 79.40 (+0.2) 78.92 (-0.6) 76.24 (-1.4) 73.64 (+0.2)
CoMbLS (∆TS) 86.20 (+2.4) 80.00 (+0.9) 86.70 (+2.6) 81.70 (+2.5) 80.12 (+0.6) 78.92 (+1.3) 74.50 (+1.0)
CoECP (∆TS) 86.20 (+2.4) 79.00 (-0.1) 84.60 (+0.5) 80.80 (+1.6) 81.02 (+1.5) 77.96 (+0.3) 74.50 (+1.0)

Table 3: Comparison of our method’s performance against baselines on distribution shift datasets is presented.
Results are evaluated on Llama3-8B model which is fine-tuned on the OBQA dataset.

Figure 6: Comparison of our method’s performance against baseline approaches on OOD datasets is presented. The
results are evaluated on the Llama3-8B model, which is fine-tuned on the open-ended HotpotQA dataset.

achieving 86.20% and 80.30% accuracy on OBQA428

and WG-S datasets, respectively. On the other429

hand, our cognitive methods achieve substantial430

calibration improvements across all datasets. These431

indicate that CogCalib achieves more objective fine-432

tuning on ID tasks.433

Performance Under Distribution Shift. Real-434

world applications demand robust model perfor-435

mance across different scenarios. We evaluate Cog-436

Calib under various distribution shifts, including437

ARC-C and ARC-E datasets for smaller shifts, and438

4 MMLU subjects (Business, Culture, History, Psy-439

chology) for larger domain shifts. Table 3 indi-440

cates that CogCalib maintains competitive accuracy441

compared to the baselines under distribution shifts442

and achieves overall superior ECE. These findings443

demonstrate the robustness of the CogCalib in tasks444

with distribution shifts.445

More experiments based on other LLMs. To val- 446

idate the generalizability of CogCalib, we also con- 447

duct experiments on Mistral-7B, Qwen2.5-7B, and 448

Llama2-13B in Appendix F. The results demon- 449

strate that CogCalib consistently achieves signifi- 450

cant calibration improvements across these models 451

while maintaining fine-tuning performance, prov- 452

ing the cross-model generalizability of CogCalib. 453

More experiments based on FFT. To explore the 454

applicability of CogCalib to other fine-tuning meth- 455

ods, we validate CogCalib with FFT on Llama3- 456

8B, demonstrating its effectiveness beyond LoRA- 457

based approaches (see Appendix F.5). 458

5.2.3 Calibration of Open-End Task 459

In addition, we evaluate CogCalib on open-ended 460

datasets HotpotQA (experiments on MedMCQA 461

are presented in Appendix F.1). As shown in Fig- 462
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Figure 7: Comparison of CogCalib against baselines
(Vanilla and Dynamic random) in terms of fine-tuning
performance and calibration. Since a lower ECE is bet-
ter, we normalize ECE to [0, 1] using ECEmax−ECE

ECEmax−ECEmin

(ECEmax = 0.2, ECEmin = 0.01). ECP’s results are
shown in Figure 16 of Appendix F.7.

ure 6, CogCalib maintains accuracy on ID and463

OOD tasks while providing larger accuracy gains464

on some datasets, e.g., the CoECP shows a 10.8%465

ACC gain over Vanilla SFT on ARC-C. Regarding466

calibration, our cognitive methods exhibit compre-467

hensive improvement. These further demonstrate468

the task-agnostic nature of CogCalib.469

5.3 Ablation Study470

Comparision to Vanilla and Random Calibra-471

tion. In this section, we validate the necessity of472

employing different learning strategies for known473

and unknown data within CogCalib. As baseline474

methods, we select (1) Vanilla calibration, which475

uniformly applies calibration loss to all data. (2)476

Random calibration, which randomly distinguishes477

between known and unknown data while maintain-478

ing a consistent number of known samples.479

As shown in Figure 7, in these tasks, our cogni-480

tive methods achieved optimal results in both fine-481

tuning performance and calibration, thereby vali-482

dating the necessity of employing distinct learning483

strategies within CogCalib. Whether using Vanilla484

Calibration or Random Calibration, the accuracy485

of downstream tasks declined (see more results in486

Appendix F.7). Further research revealed that ap-487

plying calibration loss to unknown data impairs488

the model’s performance on downstream tasks (de-489

Figure 8: Sensitivity to Hyperparameters. We adjust
the hyperparameters of CogCalib and compare its per-
formance with the temperature scaling baseline on both
ARC-C and WG-S datasets. The experimental results
demonstrate the robustness of our method, showing con-
sistent gains across various configurations.

tailed analysis is presented in the Appendix F.6), 490

namely that unknown data are critical for aligning 491

the model with downstream tasks. 492

Sensitivity to Hyperparameters We investigate 493

the impact of hyperparameter choices for CogCalib 494

on performance. As illustrated in Figure 8, both 495

LS and MbLS consistently demonstrate lower ECE 496

across various hyperparameter configurations com- 497

pared to the temperature scaling baseline, while 498

maintaining comparable accuracy. More results 499

regarding ECP are provided in the Appendix F.9. 500

These findings demonstrate the robustness of Cog- 501

Calib, with multiple hyperparameter configurations 502

yielding calibration improvements. 503

6 Conclusion 504

In this work, we reveal that LLMs’ prior knowledge 505

causes potential poor calibration due to the ubiq- 506

uitous presence of known data in real-world fine- 507

tuning, which we discover would induce overcon- 508

fidence. To address this, we propose CogCalib, a 509

real-time cognition-aware calibration, which could 510

achieve more objective fine-tuning. Through exten- 511

sive experiments, we demonstrate that CogCalib 512

effectively improves calibration while maintaining 513

model performance without additional computa- 514

tional overhead during deployment, enabling more 515

objective and trustworthy fine-tuning in safety- 516

critical applications. 517
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Limitations518

Our research focuses on how prior knowledge in519

large language models (LLMs) leads to poor cali-520

bration during the fine-tuning process, and we pro-521

pose a real-time calibration framework to address522

this issue. However, our study has only investi-523

gated models up to 13B parameters, and larger-524

scale models remain unexplored. Given additional525

GPU resources, we can conduct more comprehen-526

sive experiments to validate our findings on larger527

models. Furthermore, our framework incorporates528

some calibration terms, and new calibration terms529

may potentially achieve better performance in the530

future. Nevertheless, our research provides a novel531

perspective on the problem of poor calibration dur-532

ing fine-tuning and offers a real-time solution.533

Ethics Statement534

In this work, ethical considerations have been care-535

fully addressed, and all research activities were536

conducted in strict compliance with the ACL Ethics537

Guidelines. The primary focus of this study is to538

investigate the impact of LLM prior knowledge on539

calibration while proposing a real-time calibration540

framework. All models and datasets utilized in541

this research are publicly available and have been542

widely adopted by the research community. The543

experimental results presented herein have been544

rigorously validated for accuracy and reproducibil-545

ity. Based on these considerations, we assert that546

this research does not raise any ethical concerns.547
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A Details of Datasets and Calibration Set778

Dataset Train Test Val Calibration

HotpotQA 16k 2k 1k 1k
MedMCQA 10k 2k 1k 1k

OBQA 4452 500 500 500
BoolQ 8427 3270 1k 1k
ARC-C 1119 1172 299 200
WG-S 580 1267 80 80
WG-M 2258 1267 300 300

Table 4: Configuration of datasets for fine-tuning. The
validation set is utilized for Temperature Scaling to
search for optimal temperature for calibration, while
the calibration set is employed for threshold updating
during finetuning.

We present detailed statistics of the finetuning tasks779

in Table 4. For test-only tasks, including MMLU780

subtasks (Business, Culture, History, Psychology,781

Physics, Economics, Health, and Law) and the782

ARC-E task, we strictly adhered to their official783

dataset configurations. For datasets that originally784

lacked validation sets in Table 4, we partitioned a785

portion of their training data to create validation786

sets specifically for Temperature Scaling. The cal-787

ibration set was designed to have a comparable788

size to the validation set, with samples randomly789

selected from the training set at fixed intervals for790

threshold updates. Notably, MedMCQA (Pal et al.,791

2022), a comprehensive medical multiple-choice792

dataset, was restructured into an open-ended format793

where option texts were directly used as answers,794

following the same question-answering format as795

HotpotQA.796

B More Results of Section 3797

In Section 3.1, we demonstrated that low-bias leads798

to overconfidence, while high-bias data contributes799

to better calibration. This section presents addi-800

tional experimental evidence supporting this phe-801

nomenon across multiple datasets, following the802

experimental protocol established in Section 3.1.803

Figure 9 illustrates the ECE metrics and fine-804

tuning performance obtained from experiments on805

MathQA, where we constructed scenarios with806

varying degrees of knowledge bias. Figure 10807

presents our test results on MedMCQA, a domain-808

specific open-ended dataset which is restructured809

by us as explained in Appendix A. Both figures810

clearly demonstrate that calibration performance811

deteriorates significantly as bias decreases. These812

findings further corroborate our conclusion from813

Calibration Deterioration

Figure 9: Accuracy and ECE of Llama3-8B fine-tuned
with different knowledge biases in MathQA. The ra-
tio varies from 5:0 to 0:5 (unknown data:known data),
with equal dataset sizes. Calibration deteriorates as the
knowledge bias lowers, while higher knowledge bias
helps improve calibration aligning with findings in Sec-
tion 3.1.

Section 3.1, supporting the principle of "minimal 814

bias, maximal overconfidence". 815

To examine whether this phenomenon extends 816

to Full Fine-Tuning (FFT) scenarios, we conducted 817

additional experiments using Llama3-8B model on 818

both MathQA and ARC-C datasets. The results, 819

visualized in Figure 11 and Figure 12, reveal that 820

the pattern persists in FFT settings. Low-bias data 821

consistently leads to model overfitting, while the 822

introduction of new knowledge helps mitigate this 823

effect and improves calibration. The observation of 824

this pattern in FFT scenarios further strengthens our 825

findings, suggesting that the relationship between 826

bias and calibration is a robust phenomenon that 827

transcends specific training approaches. 828

Additionally, to investigate the potential inter- 829

actions between different knowledge bias levels 830

across datasets in realistic scenarios, we conducted 831

a comparative analysis using the OBQA dataset. 832

We randomly sampled equal portions of pure 833

known data (low bias), pure unknown data (high 834

bias), and mixed data. Figure 13 illustrates the cali- 835

bration results after fine-tuning the model on these 836

3 dataset categories. The ECE curve for models 837

fine-tuned on the mixed dataset consistently main- 838

tains an intermediate position between the other 839

two curves throughout the fine-tuning process. This 840

observation suggests that low-bias data effectively 841

dilutes the calibration benefits achieved through 842
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Calibration Deterioration

Figure 10: Accuracy and ECE of Llama3-8B fine-tuned with different knowledge biases in the open-ended dataset
MedMCQA restructured by us. The ratio varies from 5:0 to 0:5 (unknown data:known data), with equal dataset sizes.
Calibration also deteriorates as the knowledge bias lowers, while higher knowledge bias helps improve calibration
in open-ended fine-tuning scenarios, aligning with findings in Section 3.1.

Calibration Deterioration

Figure 11: Accuracy and ECE of Llama3-8B fine-tuned
with different knowledge biases in MathQA using Full
Fine-Tuning (FFT). The ratio varies from 5:0 to 0:5
(unknown data:known data), with equal dataset sizes.
Calibration deteriorates as the knowledge bias lowers,
while higher knowledge bias helps improve calibration
aligning with findings in Section 3.1.

Calibration Deterioration

Figure 12: Accuracy and ECE of Llama3-8B fine-tuned
with different knowledge biases in ARC-C using Full
Fine-Tuning (FFT). The ratio varies from 5:0 to 0:5
(unknown data:known data), with equal dataset sizes.
Calibration deteriorates as the knowledge bias lowers,
while higher knowledge bias helps improve calibration
aligning with findings in Section 3.1.

13



high-bias fine-tuning.

Figure 13: ECE of Llama3-8B after fine-tuning on
unknown (high-bias), mixed, and known (low-bias)
datasets, where the mixed dataset is randomly sampled
from OBQA with an equal size. ECE curve for models
fine-tuned on the mixed dataset maintains an intermedi-
ate position, indicating low-bias data would dilute the
calibration benefits of high-bias data.

843

C Details of LS, MbLS and ECP844

C.1 Label Smoothing845

Label Smoothing (LS) (Szegedy et al., 2016) re-846

places one-hot encoded labels with smoothed dis-847

tributions by allocating small probabilities to non-848

target classes, effectively reducing model overcon-849

fidence and improving calibration performance in850

deep neural networks, as follows:851

LI.S = −
∑
k

((1− α)qk +
α

K
) log pk, (4)852

where α is label smoothing factor, K denotes the853

numbers of total classes, p is the softmax proba-854

bility predictions by model, which is computed as855

follows:856

p = (pk)1≤k≤K ∈ RK ; pk =
explk∑K
j explj

, (5)857

where l = (lk)1≤k≤K ∈ RK denotes logits vectors.858

Furthermore, the loss function of LS can be written859

as (Liu et al., 2022):860

LLS ≜ LCE +
α

1− α
DKL (u||p) , (6)861

where LCE denotes Cross-Entropy loss, u denotes862

uniform distribution u = 1
K , ≜ stands for equality863

up to additive and/or nonnegative multiplicative864

constants.865

C.2 Margin-based Label Smoothing866

Margin-based Label Smoothing (MbLS) (Liu et al.,867

2022) addresses the calibration issue in deep neu-868

ral networks by imposing inequality constraints on869

logit distances, unlike traditional methods that use 870

equality constraints. This approach provides a bet- 871

ter balance between model discrimination and cali- 872

bration performance. MbLS introduces inequality 873

constraints with controllable margins as follows: 874

LMbLS = LCE+α
∑
k

max(0,max
j

(lj)−lk−m),

(7) 875

where α is the label smoothing factor, and m is the 876

logits margin. 877

C.3 ECP 878

ECP (Pereyra et al., 2017) is a neural network 879

regularization technique that works by penalizing 880

low entropy output distributions as follows: 881

LECP = LCE − αH(p), (8) 882

where H denotes the Shannon entropy of the soft- 883

max prediction given by: 884

H(p) = −
∑
k

pk log(pk). (9) 885

D Details of Style Adaptation 886

As shown in Table 5, the AUROC scores for t0 dis- 887

crimination demonstrate significant improvement 888

with style adaptation. This improvement can be 889

attributed to better alignment between the model’s 890

output style and fine-tuning data patterns after style 891

adaptation, which enhances the model’s capability 892

to utilize NLL for distinguishing between known 893

and unknown samples. 894

Dataset t0 w/o sa t0 w/ sa

HotpotQA 0.729 0.888
MedMCQA 0.712 0.908

Table 5: AUROC scores for t0 discrimination in Llama3-
8B with/without style adaptation (sa) on Open-End
tasks.

E Details of ECE and Reliability Diagram 895

Expected Calibration Error (ECE) serves as one of 896

the primary metrics for assessing calibration, mea- 897

suring the alignment between model confidence 898

and accuracy. As demonstrated in Equation (10), 899

ECE operates by partitioning model confidence 900

(maximum output probabilities) into m bins, then 901

computing a weighted sum of the discrepancies 902
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(a) known, OBQA, ECE=0.134 (b) known, ARC-C, ECE=0.148 (c) known, MathQA, ECE=0.330

(d) unknown, OBQA, ECE=0.047 (e) unknown, ARC-C, ECE=0.032 (f) unknown, MathQA, ECE=0.102

Figure 14: Reliability diagrams of models fine-tuned on OBQA known data or unknown data, evaluated on both
ID test and OOD test (ARC-C, MathQA). Models trained on unknown data demonstrate better alignment between
confidence and accuracy, further validating the conclusions drawn in Section 3.1.

between accuracy and confidence across all bins.903

ECE =

M∑
m=1

|Bm|
N

|acc(Bm)− conf(Bm)|,

(10)904

where |Bm| represents the number of samples in905

bin m, N denotes the total number of samples,906

while acc(Bm) and conf(Bm) are the average ac-907

curacy and average confidence in bin m, respec-908

tively.909

In addition to ECE, calibration property can be910

visualized through Reliability Diagram (Bröcker911

and Smith, 2007). As illustrated in the Figure 14,912

there are significant differences in the reliability di-913

agrams between models fine-tuned with unknown914

data versus known data. This distinction is evident915

in both ID and OOD scenarios, further corroborat-916

ing the findings presented in Section 3.917

F Additional Experimental Analysis918

In this section, we demonstrate the versatility of919

the CogCalib through extensive experiments across920

a broader range of models and fine-tuning ap-921

proaches. Our experiments encompass models of922

varying architectures and sizes, along with full- 923

parameter fine-tuning methods (FFT). Addition- 924

ally, we present supplementary experiments that 925

evaluate the potential damage of calibrating un- 926

known data on downstream tasks performance and 927

assess the robustness of our method under different 928

hyperparameter settings and threshold computa- 929

tion. Meanwhile, we provide complementary re- 930

sults comparing CoECP with Vanilla and Random 931

Calibration approaches there. 932

F.1 Results of Llama3-8B on MedMCQA 933

We modified the question-answering format of 934

MedMCQA and transformed it into an open-ended 935

dataset for the medical domain, as explained in Ap- 936

pendix A. Table 6 presents the comprehensive ex- 937

perimental results of Llama3-8B on OOD datasets. 938

The cognitive methods demonstrated superior cal- 939

ibration performance while maintaining compara- 940

ble accuracy relative to baseline approaches. Dif- 941

ferent cognitive methods exhibited varying advan- 942

tages across distinct datasets. Specifically, CoECP 943

achieved optimal ECE on 4 datasets: Physics, Eco- 944

nomics, Health, and Law. Meanwhile, CoMbLS 945
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Metric Methods Physics Economics Health Law OBQA ARC-C

ECE↓

Vanilla SFT 22.87 18.44 20.00 28.82 12.71 15.87
MCD 18.15 15.44 15.94 24.88 6.93 10.72

Ensemble 20.43 15.52 17.68 25.45 7.49 10.11
TS 25.22 28.53 26.17 21.39 40.71 37.89

CoLS 11.51 7.88 8.89 15.14 5.39 4.24
CoMbLS 18.52 14.14 14.26 22.28 3.83 2.99
CoECP 9.14 6.26 6.58 14.89 11.50 13.49

ACC↑

Vanilla SFT 55.78 67.78 68.70 52.30 59.20 64.84
MCD 55.46 65.22 67.43 49.63 59.00 64.50

Ensemble 55.00 67.78 68.90 50.70 64.00 69.02
TS 55.78 67.78 68.70 52.30 59.20 64.84

CoLS 54.37 66.30 68.35 51.27 67.00 70.64
CoMbLS 55.15 66.84 69.08 50.31 70.60 74.57
CoECP 56.71 68.46 69.69 50.76 71.00 75.60

Table 6: Comparison of our method’s performance against baseline approaches on out-of-domain (OOD) datasets is
presented. The results are evaluated on the Llama3-8B model, which is fine-tuned on the open-ended HotpotQA
dataset.

Metric Methods Physics Economics Health Law OBQA ARC-C

ECE↓

Vanilla SFT 18.14 14.07 16.49 22.55 8.00 6.87
MCD 15.35 11.16 13.61 19.82 5.81 5.19

Ensemble 15.26 9.27 12.51 21.53 5.60 5.50
TS 34.80 40.10 36.80 34.20 54.80 58.60

CoLS 10.39 6.01 8.84 14.08 4.96 2.75
CoMbLS 9.81 5.28 7.90 14.70 3.11 2.85
CoECP 13.39 7.82 9.42 16.98 5.30 2.44

ACC↑

Vanilla SFT 51.72 59.16 59.21 48.21 65.20 73.55
MCD 53.13 59.03 59.15 48.44 65.20 72.27

Ensemble 53.75 64.02 61.95 48.67 67.60 74.49
TS 51.72 59.16 59.21 48.21 65.20 73.55

CoLS 53.13 59.03 59.15 48.44 65.20 72.27
CoMbLS 51.72 58.63 57.20 47.65 65.00 72.01
CoECP 51.72 60.51 60.49 48.72 65.40 73.46

Table 7: Comparison of our method’s performance against baseline approaches on out-of-domain (OOD) datasets is
presented. The results are evaluated on the Llama3-8B model, which is fine-tuned on the open-ended MedMCQA
dataset.

showed superior ECE on both OBQA and ARC-946

C datasets. Notably, CoECP not only excelled in947

calibration but also maintained leading accuracy948

scores across almost all test sets.949

It’s worth noting that for a fairer comparison of950

all methods in the OOD scenario, the temperature951

scaling baseline uses the best temperature found on952

the ID data when applied to OOD data. For long953

texts, we used the geometric mean of probabilities954

as confidences (Liu et al., 2023) to find the optimal955

calibration temperature.956

Table 7 presents the experimental results of957

Llama3-8B on another open-ended dataset, MedM-958

CQA. Across all OOD test sets, CogCalib demon-959

strates superior calibration performance, achieving960

the ECE compared to all baseline methods. While961

Deep Ensemble maintains a slight lead in ACC, 962

CogCalib achieves comparable accuracy metrics 963

with other baseline approaches. These findings sug- 964

gest that CogCalib exhibits universal applicability 965

across open-ended datasets. 966

F.2 Results of Llama2-13B 967

Table 8 and Table 9 demonstrate the experimental 968

results of CogCalib on the Llama2-13B model. For 969

this model size, CogCalib achieves significant im- 970

provements in calibration performance while main- 971

taining baseline accuracy. Furthermore, it demon- 972

strates superior accuracy across multiple datasets. 973

These experimental findings validate that CogCalib 974

maintains its robustness when applied to larger- 975

scale models, effectively preserving fine-tuning per- 976
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Dataset Metric Vanilla SFT MCD Ensemble TS CoLS CoMbLS CoECP

OBQA ACC↑ 73.60 73.40 77.20 73.60 76.20 78.60 77.40
ECE↓ 20.91 16.70 10.10 18.90 7.55 6.10 2.62

ARC-C ACC↑ 70.90 70.73 72.10 70.90 71.16 71.50 70.56
ECE↓ 25.98 22.14 18.21 24.70 13.34 13.36 14.43

WG-S ACC↑ 74.59 74.35 74.98 74.59 73.56 72.45 72.63
ECE↓ 16.96 15.73 15.95 14.90 7.99 8.34 16.00

WG-M ACC↑ 82.08 81.61 82.40 82.08 80.82 81.22 81.06
ECE↓ 16.63 14.58 12.43 15.60 7.44 7.17 6.71

BoolQ ACC↑ 89.85 89.94 89.85 89.85 89.72 90.06 89.17
ECE↓ 9.59 8.69 7.58 9.40 2.04 2.47 4.49

Table 8: Comparison of our method’s performance against baselines on in-domain (ID) datasets. Results are
evaluated on Llama2-13B model fine-tuned by LoRA on 5 widely used domain-specific datasets.

Metric Methods ID Smaller Distribution Shift Larger Distribution Shift
OBQA ARC-C ARC-E Business Culture History Psychology

ECE↓

Vanilla SFT 20.91 26.93 21.12 20.86 22.41 22.41 30.40
MCD 16.70 23.78 18.07 17.50 20.26 15.41 27.22

Ensemble 10.10 18.87 14.27 17.76 18.26 14.07 25.80
TS 18.90 25.00 19.70 20.90 21.00 22.70 28.80

CoLS 7.55 13.48 8.51 11.65 13.73 12.45 20.78
CoMbLS 6.10 12.10 7.00 11.42 13.90 11.72 19.98
CoECP 2.62 8.60 3.30 12.49 14.63 9.77 19.78

ACC↑

Vanilla SFT 73.60 67.32 74.37 75.06 72.89 69.89 63.61
MCD 73.40 66.72 74.03 75.51 72.89 68.49 63.70

Ensemble 77.20 68.86 76.47 75.51 73.19 67.31 64.30
TS 73.60 67.32 74.37 75.06 72.89 69.89 63.61

CoLS 76.20 68.94 76.18 75.51 74.10 70.97 64.39
CoMbLS 78.60 69.20 76.98 75.51 73.19 71.61 64.30
CoECP 77.40 67.83 75.34 75.29 72.89 71.08 65.25

Table 9: Comparison of our method’s performance against baselines on distribution shift datasets is presented.
Results are evaluated on Llama2-13B model which is fine-tuned on the OBQA dataset.

formance while enhancing calibration under both977

ID and distribution shift scenarios.978

F.3 Results of Qwen2.5-7B979

We conducted comprehensive evaluations on the980

Qwen2.5-7B model, with results presented in Ta-981

ble 10 and Table 11. Although Qwen demon-982

strated superior accuracy across all datasets and983

inherently low ECE compared to other LLMs, our984

CogCalib framework still achieved significant cal-985

ibration improvements over the baseline. In the986

in-distribution (ID) testing (Table 10), both CoLS987

and CoMbLS consistently outperformed other ap-988

proaches, while maintaining accuracy comparable989

to the best-performing Ensemble methods. For out-990

of-distribution (OOD) scenarios (Table 11), CoLS991

and CoMbLS achieved optimal performance across992

all distribution shift conditions. Notably, CoECP993

exhibited competitive accuracy performance under994

multiple larger distribution shift scenarios.995

F.4 Results of Mistral-7B-v0.3 996

We evaluated CogCalib’s performance on Mistral- 997

7B-v0.3, with results presented in Table 12 and 998

Table 13. For in-domain testing (Table 12), our 999

approach demonstrated superior calibration met- 1000

rics compared to all baselines. While the Ensem- 1001

ble method achieved optimal accuracy in most 1002

cases, our method maintained competitive accu- 1003

racy scores. In out-of-distribution (OOD) scenarios 1004

(Table 13), our approach outperformed the base- 1005

lines in both ECE and accuracy metrics. 1006

F.5 Results of Llama3-8B Using FFT 1007

In addition to LoRA, we validated CogCalib using 1008

Full-parameter Fine-Tuning (FFT) on the Llama3- 1009

8B model. Table 14 and Table 15 present the results 1010

for ID and OOD evaluations, respectively, demon- 1011

strating that CogCalib is effectively applicable to 1012

FFT. The method not only significantly enhances 1013
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Dataset Metric Vanilla SFT MCD Ensemble TS CoLS CoMbLS CoECP

OBQA ACC↑ 90.60 90.80 91.80 91.60 91.60 91.80 91.20
ECE↓ 8.48 8.09 5.05 7.50 5.65 3.77 7.51

ARC-C ACC↑ 87.46 88.57 87.54 88.48 87.63 87.97 88.48
ECE↓ 11.41 8.89 9.76 9.90 4.24 3.22 9.37

WG-S ACC↑ 78.37 78.93 79.87 79.40 76.95 78.37 78.45
ECE↓ 19.50 14.84 14.89 14.40 11.06 10.41 13.64

WG-M ACC↑ 83.90 83.50 85.16 83.90 84.53 83.74 84.61
ECE↓ 15.17 11.44 10.21 14.70 4.20 4.84 6.77

BoolQ ACC↑ 89.72 90.28 90.61 90.21 90.37 90.09 89.91
ECE↓ 9.71 7.91 7.10 8.80 1.45 4.22 7.19

Table 10: Comparison of our method’s performance against baselines on in-domain (ID) datasets. Results are
evaluated on Qwen2.5-7B model fine-tuned by LoRA on 5 widely used domain-specific datasets.

Metric Methods ID Smaller Distribution Shift Larger Distribution Shift
OBQA ARC-C ARC-E Business Culture History Psychology

ACC↑

Vanilla SFT 90.60 87.54 90.82 88.10 85.24 85.48 83.32
MCD 90.80 87.12 90.49 86.96 84.04 84.85 82.89

Ensemble 91.80 88.05 91.04 88.79 83.43 85.48 83.75
TS 91.60 87.54 90.82 88.10 85.24 85.48 83.32

CoLS 91.60 87.63 90.15 87.41 83.73 85.70 82.54
CoMbLS 91.80 87.63 90.91 88.10 81.63 85.27 83.23
CoECP 91.20 87.29 90.99 87.41 85.24 85.91 83.75

ECE↓

Vanilla SFT 8.48 11.51 8.60 10.78 13.66 12.65 15.09
MCD 8.09 7.54 8.29 9.09 9.90 9.00 11.63

Ensemble 5.05 9.27 7.38 8.51 12.17 10.51 13.08
TS 7.50 11.20 8.30 9.90 13.00 12.10 14.60

CoLS 5.05 0.75 2.43 6.34 5.95 4.80 5.10
CoMbLS 3.77 2.56 1.99 6.34 8.17 4.90 6.90
CoECP 7.51 8.36 8.33 7.66 6.18 6.75 6.66

Table 11: Comparison of our method’s performance against baselines on distribution shift datasets is presented.
Results are evaluated on Qwen2.5-7B model which is fine-tuned on the OBQA dataset.

Dataset Metric Vanilla SFT MCD Ensemble TS CoLS CoMbLS CoECP

OBQA ACC↑ 68.40 67.60 65.40 68.40 72.60 70.20 69.00
ECE↓ 25.85 22.65 18.01 23.70 9.61 12.70 14.43

ARC-C ACC↑ 77.13 77.47 79.18 77.13 78.24 77.47 77.30
ECE↓ 20.99 17.86 13.16 20.10 8.22 9.39 8.90

WG-S ACC↑ 77.11 77.43 80.19 77.11 78.06 78.14 77.74
ECE↓ 21.34 19.41 13.36 20.40 11.17 9.48 10.84

WG-M ACC↑ 83.11 83.27 83.90 83.11 82.95 83.35 82.24
ECE↓ 15.47 14.35 10.47 14.70 6.27 4.70 6.10

BoolQ ACC↑ 89.57 89.60 90.89 89.57 89.94 89.48 90.21
ECE↓ 10.22 9.31 6.09 10.00 1.28 0.56 1.45

Table 12: Comparison of our method’s performance against baselines on in-domain (ID) datasets. Results are
evaluated on Mistral-7B model fine-tuned by LoRA on 5 widely used domain-specific datasets.
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Metric Methods ID Smaller Distribution Shift Larger Distribution Shift
OBQA ARC-C ARC-E Business Culture History Psychology

ECE↓

Vanilla SFT 20.91 26.93 21.12 20.86 22.41 22.41 30.40
MCD 16.70 23.78 18.07 17.50 20.26 15.41 27.22

Ensemble 10.10 18.87 14.27 17.76 18.26 14.07 25.80
TS 18.90 25.00 19.70 20.90 21.00 22.70 28.80

CoLS 7.55 13.48 8.51 11.65 13.73 12.45 20.78
CoMbLS 6.10 12.10 7.00 11.42 13.90 11.72 19.98
CoECP 2.62 8.60 3.30 12.49 14.63 9.77 19.78

ACC↑

Vanilla SFT 73.60 67.32 74.37 75.06 72.89 69.89 63.61
MCD 73.40 66.72 74.03 75.51 72.89 68.49 63.70

Ensemble 77.20 68.86 76.47 75.51 73.19 67.31 64.30
TS 73.60 67.32 74.37 75.06 72.89 69.89 63.61

CoLS 76.20 68.94 76.18 75.51 74.10 70.97 64.39
CoMbLS 78.60 69.20 76.98 75.51 73.19 71.61 64.30
CoECP 77.40 67.83 75.34 75.29 72.89 71.08 65.25

Table 13: Comparison of our method’s performance against baselines on distribution shift datasets is presented.
Results are evaluated on Mistral-7B model which is fine-tuned on the OBQA dataset.

Dataset Metric Vanilla SFT MCD TS CoLS CoMbLS CoECP

ARC-C ACC↑ 66.81 65.96 66.81 70.82 72.18 70.22
ECE↓ 29.84 28.31 28.61 13.09 14.19 8.66

ARC-E ACC↑ 75.04 74.71 75.04 72.85 73.99 74.92
ECE↓ 17.38 16.18 14.14 13.04 11.54 4.28

Table 14: Comparison of our method’s performance against baselines on in-domain (ID) datasets. Results are
evaluated on Llama3-8B model using full parameter fine-tuning (FFT) on 2 widely used domain-specific datasets.

Metric Methods ID OOD
ARC-C ARC-E OBQA Business History Psychology

ACC↑

Vanilla SFT 66.81 74.87 68.40 72.31 64.52 55.57
MCD 65.96 74.71 69.40 72.31 63.23 55.14

TS 66.81 74.87 68.40 72.31 64.52 55.57
CoLS 70.82 72.85 73.80 71.85 70.97 67.42

CoMbLS 72.18 73.99 67.60 72.31 72.37 64.82
CoECP 70.22 74.92 65.60 75.74 69.14 66.64

ECE↓

Vanilla SFT 29.84 22.63 27.99 22.29 30.29 40.19
MCD 28.31 20.87 23.59 20.10 28.67 37.72

TS 28.61 21.60 26.20 20.90 28.60 38.40
CoLS 13.09 13.04 8.00 9.60 12.73 16.14

CoMbLS 14.19 11.54 15.72 11.45 13.32 20.69
CoECP 8.66 4.28 9.47 7.90 10.66 11.07

Table 15: Comparison of our method’s performance against baselines on OOD datasets. Results are evaluated on
Llama3-8B model using full parameter fine-tuning (FFT) on OOD scenarios.
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Figure 15: Comparison of accuracy on downstream tasks with and without calibration methods when fine-tuning on
MedMCQA known or unknown data. It is observed that calibrating on unknown data significantly deteriorates the
performance of other out-of-distribution (OOD) tasks.

calibration performance but also improves model1014

generalization. Specifically, the model trained on1015

ARC-C achieved an average accuracy of 70.67%1016

across other tasks, surpassing the conventional SFT1017

baseline (67.13%). We hypothesize that the intro-1018

duction of the calibration term mitigates overfitting1019

during fine-tuning, thereby enhancing the model’s1020

generalization capabilities.1021

F.6 Effects of Calibrating Unknown Data1022

We investigated the impact of calibrating unknown1023

data on the model’s downstream task performance.1024

Beyond the adverse effects on OOD tasks ob-1025

served with multiple-choice data in Section 5.3,1026

we found that this negative impact was even more1027

pronounced when using open-ended data as the1028

fine-tuning dataset.1029

In our experimental setup, we utilized equal1030

amounts (1k samples) of known or unknown data1031

from MedMCQA as fine-tuning datasets, imple-1032

menting various calibration enhancement methods.1033

As illustrated in the Figure 15, while using calibra-1034

tion methods on known data did not significantly1035

affect performance on OOD tasks, applying cali-1036

bration methods to unknown data led to a consis- 1037

tent decline in OOD performance. These findings 1038

underscore the critical importance of thoroughly 1039

learning from unknown data during the fine-tuning 1040

process. 1041

F.7 Comparision to Vanilla and Random 1042

Calibration. 1043

We present a comparative analysis of CoECP 1044

against its corresponding variants: Vanilla calibra- 1045

tion and Random Calibration. As illustrated in 1046

Figure 16, CoECP consistently outperforms both 1047

baseline methods across most datasets in terms of 1048

calibration and fine-tuning performance. These 1049

results further support our findings in Section 3, 1050

which emphasize that unknown data plays a cru- 1051

cial role in aligning the model with downstream 1052

tasks. The effective utilization of such data simul- 1053

taneously enhances fine-tuning performance and 1054

improves calibration metrics. 1055

F.8 Sensitivity to Threshold Computation. 1056

We compare our threshold calculation called Bal- 1057

anced, with the Accuracy-based method seeking 1058
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Dataset argmax(TNR+TPR) argmax(Accuracy)

Accuracy TPR TNR Accuracy TPR TNR

ARC-C 99.51 99.54 99.15 99.58 99.95 95.18
OBQA 99.44 99.44 99.52 99.78 99.91 96.82
WG-S 98.83 98.77 99.52 99.49 99.83 96.41

Table 16: Performance metrics (Accuracy, True Positive Rate (TPR), and True Negative Rate (TNR)) for different
optimization criteria on the ARC-C, OBQA, and WG-S datasets.

Figure 16: Comparsion between CogECP, vanilla ECP,
and dynamic random ECP. Our proposed method, Co-
ECP, consistently outperforms all baseline methods in
terms of both calibration and accuracy across multiple
datasets.

threshold t which achieves best known/unknown1059

data classification accuracy using negative log-1060

likelihood.1061

Figure 17 reveals that these 2 calculations have1062

similar calibration effects, but our method attains1063

a higher accuracy. This improvement can be at-1064

tributed to the higher TNR achieved by our ap-1065

proach (Table 16). Accuracy-based calculation1066

tends to misclassify unknown samples, conse-1067

quently applying calibration to these samples as1068

well, which prevents LLM from effectively learn-1069

ing critical knowledge.1070

In detail, Table 16 presents the classification re-1071

sults for both known and unknown data during the1072

fine-tuning under different threshold calculation1073

methods. The results demonstrate that when using1074

our method, both TPR and TNR are well-balanced.1075

In contrast, when employing the highest accuracy1076

for threshold calculation, the TNR exhibits notably1077

lower values. This discrepancy indicates that the1078

latter method incorrectly classifies unknown data1079

as known data and subsequently applies calibration1080

methods, preventing the model from effectively1081

learning crucial patterns in unknown data during1082

the fine-tuning process. This limitation explains the1083

consistently inferior performance of this method1084

compared to the former approach, as illustrated in 1085

Figure 17. 1086

Dataset Metrics ECP factor
0.05 0.075 0.1 0.125

ARC-C ACC 82.20 81.80 81.50 80.90
ECE 15.38 15.66 7.21 15.85

wino-S ACC 80.20 78.70 79.20 79.20
ECE 17.05 18.72 2.38 6.28

Table 17: Performance metrics (ACC and ECE) for dif-
ferent ECP factors on the ARC-C and wino-S datasets.

F.9 Sensitivity to Hyperparameters. 1087

We demonstrated additional robustness results re- 1088

garding CogCalib hyperparameters in Table 17, Ta- 1089

ble 18 and Table 19. By varying the ECP Factor 1090

from 0.05 to 0.125 and MbLS Factor from 0.05 1091

to 0.125 (with margins of 0 and 5), our method 1092

consistently achieved improved calibration perfor- 1093

mance compared to the Temperature Scaling base- 1094

line, which showed ECE values of 12.3 on ARC-C 1095

and 15.4 on Wino-S. These results across multiple 1096

parameter settings validate the robustness of our 1097

approach. However, it is worth noting that the ECP 1098

parameters may require more fine-grained tuning 1099

for optimal performance. 1100

Dataset Metrics MbLS Factor (Margin=0)
0.05 0.075 0.1 0.125

ARC-C ACC 80.30 81.90 81.60 82.30
ECE 12.55 8.87 6.22 2.37

WG-S ACC 77.30 78.10 79.60 78.60
ECE 15.55 12.01 9.94 8.06

Table 18: Performance metrics (ACC and ECE) for
different MbLS factors with Margin=0 on the ARC-C
and WG-S datasets.
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Figure 17: Sensitivity to Threshold Computation. Our
method demonstrates robust performance across dif-
ferent threshold calculation approaches, while employ-
ing our proposed threshold computation methodology
yields superior fine-tuning performance.

Dataset Metrics MbLS Factor (Margin=5)
0.05 0.075 0.1 0.125

ARC-C ACC 81.20 81.10 81.40 82.20
ECE 11.35 9.63 5.86 2.53

WG-S ACC 78.10 78.20 78.80 79.30
ECE 15.09 11.87 11.04 6.19

Table 19: Performance metrics (ACC and ECE) for
different MbLS factors with Margin=5 on the ARC-C
and WG-S datasets.

G Implementation Details1101

In this section, we present a detailed analysis of the1102

SliCK method, the implementation of Temperature1103

Scaling for both open-ended and multiple-choice1104

data, along with our specific hyperparameter con-1105

figurations.1106

G.1 Details of SliCK1107

In Section 3, we employed the SliCK (Gekhman1108

et al., 2024) to classify known and unknown data.1109

Specifically, the SliCK method concatenates 101110

different randomly selected 4-shot prompts for each1111

question-answer pair and performs 16 sampling1112

iterations with temperature settings of either 0 or1113

0.5.1114

The prediction accuracy under greedy decod-1115

ing is denoted as P (T = 0), while P (T > 0)1116

represents the prediction accuracy when T = 0.5.1117

Based on the accuracy calculations from multiple1118

sampling iterations, the data is categorized into1119

4 classes: HighlyKnown, MaybeKnown, Weakly-1120

Known, and Unknown as shown in Table 20. For 1121

the experiments conducted in Section 3, we treated 1122

HighlyKnown samples as known data and main- 1123

tained the Unknown classification as is. 1124

Type Definition

HighlyKnown P (T = 0) = 1
MaybeKnown P (T = 0) ∈ (0, 1)
WeaklyKnown P (T = 0) = 0 ∧ P (T > 0) > 0

Unknown P (T ≥ 0) = 0

Table 20: SliCK’s definition of different type of data.

G.2 Details of Temperature Scaling 1125

For multiple-choice datasets, we employ the max- 1126

imum probability of the first output token as the 1127

confidence. In contrast, for long-text datasets, we 1128

adopt the geometric mean probability as the con- 1129

fidence for long-text generation, following the ap- 1130

proach proposed in LITCAB (Liu et al., 2023), as 1131

illustrated in the Equation (11), 1132

p(y|x) = L

√√√√ L∏
t=1

p(yt|x, y<t). (11) 1133

To determine the optimal temperature for indi- 1134

vidual tokens, we implement the method developed 1135

by Guo et al.1 , which utilizes gradient descent 1136

to minimize the ECE loss and identify the optimal 1137

temperature parameter. For long-text confidence, 1138

we employ a grid search strategy to determine the 1139

optimal temperature. The resulting optimal temper- 1140

ature is then applied to enhance calibration for both 1141

ID and OOD samples, ensuring a fair comparison. 1142

Hyperparamter value

LS α 0.1
MbLS α 0.1

MbLS Margin 0
ECP α 0.1

Table 21: Calibration term’s hyperparameters for multi-
choice QA task.

It is important to note that the optimal tempera- 1143

ture discovered on the validation set typically fails 1144

to improve OOD calibration, which represents a 1145

significant limitation of Temperature Scaling. This 1146

limitation becomes particularly critical in the con- 1147

text of LLMs, which are required to handle diverse 1148

tasks effectively. 1149

1https://github.com/gpleiss/temperature_scaling
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G.3 Hyperparameters1150

In CogCalib‘s framework, we experiment with 31151

calibration losses: Label Smoothing (LS), Margin-1152

based Label Smoothing (MbLS), and ECP. Consid-1153

ering the distinct nature of tasks we experimented1154

on: multiple-choice QA with concentrated proba-1155

bility distributions and open-ended QA with inher-1156

ently higher uncertainty in outputs, we adopted 21157

sets of calibration loss hyperparameters. Specifi-1158

cally, the hyperparameter settings for multi-choice1159

QA and open-ended QA are presented in Table 211160

and Table 22, respectively. All experiments repeat1161

three times, and the average results are recorded.1162

Models smaller than 13B parameters are trained on1163

an NVIDIA RTX-4090 GPU, while the 13B model1164

is trained on an NVIDIA A100 GPU.1165

Hyperparamter value

LS α 0.15
MbLS α 0.15

MbLS Margin 10
ECP α 0.15

Table 22: Calibration term’s hyperparameters for open-
ended QA task.

In our experimental setup, we fine-tune the LLM1166

using both LoRA and FFT approaches. For LoRA1167

implementation, we incorporate LoRA adapters1168

into all linear layers of the LLM, maintaining the1169

default PEFT configurations from Huggingface, as1170

detailed in Table 23. The FFT parameters are1171

specified in Table 24.1172

Hyperparamter value

LoRA r 8
LoRA α 16

LoRA target all
Learning Rate 6.0× 10−5

Batch size 2
Learning Rate scheduler Linear

Max Sequence Length 1024

Table 23: Experimental hyperparameters used for LoRA
fine-tuning.

Hyperparamter value

Learning Rate 1.0× 10−5

Batch size 4
Learning Rate scheduler Cosine

Warmup Ratio 0.1
Max Sequence Length 1024

Table 24: Experimental hyperparameters used for FFT
fine-tuning.
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