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Abstract

Deep neural networks trained to predict neural activity from visual input and be-
haviour have shown great potential to serve as digital twins of the visual cortex.
Per-neuron embeddings derived from these models could potentially be used to map
the functional landscape or identify cell types. However, state-of-the-art predictive
models of mouse V1 do not generate functional embeddings that exhibit clear
clustering patterns which would correspond to cell types. This raises the question
whether the lack of clustered structure is due to limitations of current models or a
true feature of the functional organization of mouse V1. In this work, we introduce
DECEMber — Deep Embedding Clustering via Expectation Maximization-based
refinement — an explicit inductive bias into predictive models that enhances clus-
tering by adding an auxiliary ¢-distribution-inspired loss function that enforces
structured organization among per-neuron embeddings. We jointly optimize both
neuronal feature embeddings and clustering parameters, updating cluster centers
and scale matrices using the EM-algorithm. We demonstrate that these modifica-
tions improve cluster consistency while preserving high predictive performance and
surpassing standard clustering methods in terms of stability. Moreover, DECEM-
ber generalizes well across species (mice, primates) and visual areas (retina, V1,
V4). The code is available at https://github.com/Nisone2000/DECEMber,
https://github.com/ecker-lab/cnn-training.

1 Introduction

Understanding whether neurons form discrete cell types or lie on a continuum is a fundamental
question in neuroscience [1]. Previous research has extensively investigated the morphological
and electrophysiological properties of neurons in the visual cortex. While discrete anatomical and
transcriptomic classifications have been proposed [2—4], recent work on the mouse brain suggests a
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more continuous organization [5, 6]. Significantly less attention has been devoted to the neurons’
functional properties. Each neuron can be characterized by a function that maps high-dimensional
sensory inputs to its one-dimensional neuronal response. These functions are highly non-linear,
making their analysis complex. Discrete functional cell types are well established in the retina [7] but
their existence remains unclear in the mouse visual cortex.

Recently, deep networks showed great potential for predicting neural activity from sensory input
[8—15] and also in inferring novel functional properties [16—18]. These networks learn per-neuron
vectors of parameters, which are interpreted as neuronal functional embeddings. There were several
attempts to use these embeddings to reveal the underlying structure of neuronal population functions
through unsupervised clustering [13, 19-21]. However, in none of these studies well-separated
clusters emerged, raising the question of whether distinct functional cell types exist among excitatory
neurons in the mouse visual cortex. A central challenge is cluster consistency: How reliably are
neurons grouped into the same cluster across different model runs? Clustering metrics such as the
Adjusted Rand Index (ARI) [22], which evaluates cluster assignment agreement across different seeds
or clustering methods and similarity metrics between individual neurons’ remained relatively low
[13]. These low scores show that clustering results lack the stability and distinctiveness necessary to
making strong claims about biological interpretations.

In this work, we incorporate an explicit clustering bias into the training of neuronal embeddings to
improve the identifiability of functional cell types, One could view it as model-driven hypothesis
testing: if clear functional cell types exist then such bias should improve the model performance,
embeddings structure and/or cluster consistencies.

To improve the cluster separability of neuronal embeddings we took inspiration from Deep Embedding
Clustering (DEC) [23] and introduced a new clustering loss, which combines updating clusters’
locations and shapes along with learning feature representations. We measured the consistency of
clustered features across models fitted on different seeds by computing ARI on their clustering results.
Additionally, we examined how the clustering loss strength influenced models’ performance.

Our contributions are

* We adapted the DEC-loss [23] to allow for non-isotropic multivariate clusters of different sizes by
learning a multivariate ¢ mixture model [24].

* We improved cluster consistency while maintaining a state-of-the-art predictive model performance.

* We showed that our method generalizes well, improving cluster consistency across different species,
visual areas, and model architectures.

2 Background and related work

Predictive models for visual cortex. In comparison to task-driven networks [25-28], pioneering
data-driven population models [10, 29, 30] introduced the core-readout framework, which separates
the stimulus-response functions of neurons into a shared nonlinear feature space (core) and per-neuron
specific set of linear weights — the readout. The core is shared among all neurons and outputs a
nonlinear set of basis functions spanning the feature space of the neuronal nonlinear input-output
functions of dimension (height x width x feature channels). The early models were extended by
including behavioral modulation [17, 31], latent brain state [11, 32] or the perspective transformations
of the eye [12]. The core architecture was improved by introducing biological biases such as a
rotation-equivariant core [14] to account for orientation selectivity in V1 neurons [33], extending to
dynamic models with video input [9, 12, 15, 18, 31] or using transformer architectures [34].

Klindt et al. [35] introduced a factorized readout for each neuron, comprising a spatial mask M,
specifying its receptive field (RF) position and feature weights. This approach was refined by Lurz et
al. [36], who proposed the Gaussian readout, replacing the full spatial mask with a pair of coordinates
(Zn,Yn) drawn from a learned normal distribution. To predict the neuronal response the model
computes the dot product between the neuron’s weight vector (per-neuron embedding) and each
feature map at the RF location. For later visual layers, like V4, the receptive field location is not
necessarily fixed. Therefore, Pierzchlewicz et al. [37] introduced an attention readout, which indicates
the most important feature locations for a neuron n depending on the input image.

While different readouts exist, few works have examined their consistency. Turishcheva et al. [13]
showed that factorized readouts produced more consistent neuronal clusters than Gaussian readouts,
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Figure 1: A: Model architecture: The model consists of a neuronwise shared core outputting a
feature map of size (height x width x feature channels) and neuron specific Gaussian readouts. They
consist of a receptive field position and a weight vector. The RF position chooses the vector in the
feature map which is then combined with the neuron’s weight vector by a dot product to get the
neuron’s response. B: Clustering procedure: We're clustering the readouts with an additional loss
to incorporate the cluster bias into the features. We update the clustering parameters (cluster centers
and scale matrices) with an EM step of a ¢ mixture model as in Alg. 1.

despite lower predictive performance. They addressed this by introducing adaptive log-norm regular-
ization to balance model expressiveness and feature consistency. However, the ARI scores were still
not high enough to claim distinct cell types. Moreover, their work involved a rotation-equivariant
convolutional core and required a post-hoc alignment procedure [38] to interpret the cluster structures.

Deep embedding clustering. Deep Embedding Clustering (DEC) [23] combines clustering with
representation learning. It introduced a clustering loss that simultaneously drives learning the cluster
centroids and encourages the feature representation to separate the clusters. After pretraining a deep
autoencoder without the clustering loss, the cluster centers fi; are initialized using k-means [39]. DEC
then minimizes a Kullback-Leibler (KL) divergence of soft cluster assignments () and an auxiliary
target distribution P defined as follows:
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The ¢;;s are the probabilities of sample z; belonging to cluster j and are represented by a Student’s

t-distribution with unit scale and degree of freedom v being set to 1. The target distribution P
(Eq. (2.2)) is chosen such that it:

* “strengthens predictions.” Original values g;; denote the soft assignment probability of a data
point ¢ belonging to cluster j. Squaring ¢;; and then re-normalizing makes high-confidence
assignments more dominant while further diminishing the influence of low-confidence ones.
“emphasizes high-confidence data points.” A high ¢;; dominates qu / f;» meaning that points
strongly associated with a cluster contribute more to p;;.

“normalizes loss contribution of each centroid to prevent large clusters from distorting the
hidden feature space.”” Without f;, larger clusters could dominate the feature space since they
would contribute disproportionately to the loss. By dividing by f; the impact of each cluster is
normalized, ensuring that smaller clusters are not overshadowed by larger ones.

Guo et al. [40] extended this approach by jointly optimizing the clustering objective and the
autoencoder’s reconstruction loss, enabling the model to learn clusters while preserving the local
structure of the feature space.

3 DECEMber - Deep Embedding Clustering via Expectation
Maximization-based refinement

DECEMber combines training a predictive model of neuronal responses with the learning of a
clustered feature embeddings by optimizing a loss inspired by Deep Embedding Clustering and
iteratively updating cluster parameters using the EM algorithm. We now describe our approach
(illustrated in Fig. 1, described in Alg. 1).



Algorithm 1 Model Training with clustering loss

Inputs: Degrees of freedom v, clustering weight 3, core parameters 6, neuronal embeddings
(readout) Z
Output: Parameters y;, %5, 6 and Z
Pretraining: Train the predictive model by optimizing Lyeqe] W.I.t. 8 and Z for m epochs
Initialize: Cluster centers y; with k-means and diagonal scale matrix X; as within-cluster variance
for epocht = 1to T do

for minibatch b in dataset do

(1) E-step (Expectation): Compute

. - fi(zisp5,55,v)
1.1 Soft assignments ¢ LA A ETRS ) 3.2)
1.2 Latent scales u;; = v+ K (3.3)

u+(zq,—p,j)’2j 1 (zi—py)
(2) M-step (Maximization): Update parameters
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(3) Gradient step: Optimize predictive model parameters
3.1 Minimize L = Lyodel + SKL(Q||P) wrt 0, Z
with Pij = >k Qik;flc and fj = ZZ qij

return p, 3,60, 7

Predictive model for visual cortex. We build on a state-of-the-art predictive model [8] for responses
r; of neurons i = 1, ..., N to visual stimuli s € RE *W'*TxC Here H' and W' are height and width
of the input, 7" time if the input is a video and C' is the amount of channels: C' = 1 for grayscale or
C = 3 for RGB. For static visual input (images), 7' = 1 and could be ignored. If behavior variables —
such as pupil size, locomotion speed, and changes in pupil size — are present, they are concatenated to
the stimuli as channels [8]. The model combines a shared convolutional core ¢ with neuron-specific
Gaussian readouts 9); (Fig. 1A). The core outputs a feature space ®(s) € RH*W>K We denote the
core’s parameters by 6. The readout [36] ; : REXWXE |, R first selects the features from ® at the
neuron’s receptive field location (x;, y;) using bilinear interpolation, which we write with a slight
abuse of notation as <I>(§)T7y7 € RX, resulting in a feature vector ¢; € R¥. 1t then computes the
predicted neuronal response 7; = 2z ¢;, where z; € R¥ is the neuron-specific readout weight (its
functional embedding), overall

7i(s) = i(®(s)) = 2] B(5)a,y,- 3.1)

EM step to update cluster parameters. Instead of directly learning the cluster centroids via
gradient descent, we updated them after each batch using the EM algorithm applied to the Student’s
t-mixture model, frym(z:; ©) = % Z}']:1 fe(zi5 1y, 25, v), [24] where degree of freedom v controls
the probability mass in the tails (if ¥ — oo the t-distribution becomes Gaussian). The density of the
multivariate Student’s ¢-distribution is:
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with the latter being the so-called shape-rate form of the ¢-distribution [41]. This interpretation
is useful because introducing the Gamma-distributed latent variable u allows closed-form M-step
updates for p; and 35, whereas direct likelihood optimization in a ¢-mixture model does not generally
admit closed-form solutions.

The full procedure is summarized in Alg. 1 and alternates between: (1) E-Step: Compute soft cluster
assignments g;; (Eq. (3.2)) — the probability of feature 7 belonging to cluster j — and the latent scaling
factors u;; (Eq. (3.3)). (2) M-Step: Update cluster means ; (Eq. (3.4)) and (diagonal) scale matrices



Y (Eq. (3.5)). (3) Gradiet step: Update the parameters of the core and readout via one iteration of
stochastic gradient descent.

Clustering loss on readout weights. To encourage a well-clustered structure on the neuron-specific
readout weights, we augment the standard model loss with a clustering objective. Specifically, we
minimize the KL divergence between soft cluster assignments ¢;; (Eq. (3.2)) and target distributions
pij (Eq. (2.2)):

N J B
Loter = KLQ(Z) | P(2)) = 3 3 iy tow (22). (3)

i=1 j=1
This auxiliary loss encourages the embeddings to form .J distinct clusters.

Xie et al. [23] use a pretrained autoencoder with well-separated embeddings and model soft cluster
assignments using a Student’s ¢-distribution with fixed unit scale. However, this setup is too con-
strained for our regression setting, where the mean and scale of the embeddings z; are restricted by
the regression loss. By adopting a TMM, where each cluster is characterized by both its center y;
and scale matrix 3, we allow the clustering structure to adapt more flexibly during training.

4 Experiments

Clustering loss hyperparameters. For the clustering loss, we fixed the degrees of freedom to
v = 2.1, just above the threshold where the variance %53 becomes defined (only for v > 2). To
balance model flexibility and robustness, we allowed each cluster to have its own diagonal scale
matrix X, which alloed for different variances per embedding dimension while preventing overfitting.
For each dataset, we adjusted the clustering strength 8 € R such that it is in the same order of

magnitude as the model loss at initialization.

Pretraining and cluster initialization. Before adding the clustering loss, we pretrained the baseline
model for m epochs, such that the model could already predict the responses reasonably well. We
explored m = 5, ..., 40 to assess how the length of pretraining (PE) affected our results. We followed
Turishcheva et al. [13] for the pretraining procedure, minimizing the following loss:

L N
1 R .
Lmodel = Lp + Lyeg = 5 > > (Fir = 7108 Fit) + Lreg 4.1
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where Lp is the Poisson loss that aligned per-image [ = 1, ..., L model predictions 7;; with observed
neuronal responses 7;; since neuron’s firing rates follow a Poisson process [42], and L,¢s is the
adaptive regularizer that was shown to result in improved embedding consistency [13].

After pretraining, we initialized the cluster centroids p; with k-means [39] and the diagonal scale
matrices X; as the within-cluster variances. We continued training using Ly, oder + B Lcluster, With
L jyster as in Eq. (3.8) and scaled with 3.

Evaluation of model performance. Building on previous research [8, 14, 16, 34, 43, 44], we
evaluated the model’s predictive performance by computing the Pearson correlation (across images in
the test set) between the measured and predicted neural responses, averaged across neurons.

Evaluation of embedding consistency. We wanted to assess the relative structure of the embedding
space: Do the same groups of neurons consistently cluster together across models fit with different
initial conditions? To quantify this notion, we took DECEMber’s cluster assignments and measured
how often neuron pairs are assigned to the same group using the Adjusted Rand Index (ARI) [22],
which quantifies the similarity between two clustering assignments, X and Y. The ARI remains
unchanged under permutations of cluster labels. ARI equals one if and only if the two partitions are
identical and it equals zero when the partitions agreement is no better than random.

To compare DECEMber with a baseline, we extracted neuronal embeddings from the fully converged
default model and fitted Gaussian Mixture Models (GMMs) using the same number of clusters as
DECEMber, diagonal covariance, and a regularization of 10~¢. We then computed the ARI across
three GMM partitions from baseline models initialized with different seeds, using a fixed GMM seed.
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Figure 2: A: PDF of z; (blue) and 25 (orange) of the underlying true normal distribution and ¢-
distribution with unit scale estimated by DEC-loss. The two ¢-distributions as well as the normal
distributions are highly overlapping. B+C ¢-SNE projection of toy data after training with DEC
loss (B) vs DECEMber (C). We first pretrain a simple linear regression model by minimizing an
MSE-loss for 30 epochs. Then we are training jointly with MSE and KL loss. B: Visualization of
clustering with the DEC loss. All features are assigned to one cluster. Clustered structure is still
visible. C: Clustering of the learned features with DECEMber. All features get assigned to the right
cluster. D: Norms of learned cluster centers (i1 and fi for the DEC-loss. It is clearly visible that the
cluster centers collapse after only a few iterations whereas updated cluster centers via DECEMber

(i and fi> are converging towards their true mean p; and po, with ||u1]je = v128 &~ 11.3 and

palla = V128 - 1.52 ~ 17.

Visualization. To visualize the neuronal embeddings, we employed t-SNE [45], following the
guidelines of [46]. Specifically, we set the perplexity to N/100, the learning rate to 1 and early
exaggeration to N/10. To be comparable with prior work [13, 20], we randomly sample 2,000 neurons
from each of the seven mice in the dataset and used the same neurons across all visualizations.

5 Results

DEC-loss needs learned scale: toy example illustration. To assess whether the DEC-loss provides
a useful clustering when applied to model weights that are restricted by a regression loss instead of
autoencoder embeddings, we constructed a simple toy example consisting of linear neurons whose
responses are given as y;; = 2L T; + €;;, where z; are the neurons’ weights, x; the stimuli and
€;; Gaussian noise. We generated 1100 white noise stimuli, each of the form z; € R128 with
xzj ~ N(0,1). We generated 1000 neuronal embeddings z; such that they would naturally form 2
clusters. We created 300 weights of the form z; ~ N (I128), I128) and 700 z; ~ N'(1.51128, I123).
To finally get the neuronal responses we sampled Gaussian noise around O with a variance that
matches a chosen signal to noise ratio (SNR). In the here shown example we used SNR=2. A detailed
discussion about SNR can be found in the Appendix A.1.

We pretrained a linear regression model on this data for 30 epochs by minimizing the MSE of
predicted and learned responses. After that we continued training, by jointly minimizing the KL
divergence on the learned centers and the MSE using the DEC-loss versus DECEMber. We used
early stopping as well as a learning rate scheduler. In theory the model should learn the weights of
the two clusters centered at 11 = (1,...,1) € R1?8 and py = (1.5,...,1.5) € R'28 and assign 300
neurons to cluster 1 and 700 neurons to cluster 2.

We found that the vanilla DEC loss fails to identify clusters even in this simple toy example, where
cluster weights are well-separable after pretraining. This is because DEC employs a Student’s-¢
distribution with a fixed unit scale parameter for all clusters, which is too large given how close the
two weight distributions of clusters 1 and 2 are (Fig. 2A). As the magnitude of the weights is given
by the regression problem, the scale of the ¢ distribution needs to be adjusted appropriately during
training. When this is not done (as in vanilla DEC), the cluster centroids i1 and fio rapidly collapse to
a single point after only a few iterations (Fig. 2D). Even though in this toy example the true covariance
of the clusters has unit scale after the short pretraining phase the within cluster variance is much lower
leading to a collapse of the DEC-centers. This happens because there exists a degenerate optimum of
the KL divergence: If all cluster centers are equal py = ... = puj = ¢, plugging them into Eq. (2.1)
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Figure 3: A: RI across 3 seeds for GMM, k-means and DECEMber. B: DECEMber predictions.
Pretraining length: 25 epochs. Corresponding test correlation: 0.805 £ 0.068 (std). C: ARI across 3
seeds for DECEMber over different number of clusters. ARI shows a clear peak at 4 clusters.
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as f; = fjs, (Eq. (2.2)) which means the KL divergence KL(P| Q) = 0, which of course is not a
meaningful solution. In DEC, this minimum is not usually found in practice because clusters are
initialized with sufficient separation after pretraining.

To avoid this collapse, we instead used a multivariate ¢-distribution with (diagonal) scale matrices 3J;
for each cluster, updating both position and scale with an EM step (Alg. 1). On the same toy example,
this approach succeeded in finding good cluster separation (Fig. 2C), and the cluster centers y; and
Lo converged towards the true underlying locations (Fig. 2D).

DECEMber accurately classifies retinal ganglion cells and outperforms conventional clustering
approaches. To check whether DECEMber works on real data, we applied it on marmoset retinal
ganglion cells (RGCs) where the existence of discrete cell types is well established [47]. We used
data from two male marmoset retinas published by Sridhar et al. [48], where the neural activity was
recorded using a micro-electrode array while presenting grayscale natural movies.

As we observed substantial differences between the two retinas’ temporal response features (poten-
tially due to temperature variation [49]), we followed Vystréilova et al. [15] and trained a separate
model for each retina to avoid clustering by retina. We trained the model on all reliably responding
cells (N = 235). However, not all of them corresponded to a known primate RGC type and thus
were not assigned a cell type label. When evaluating DECEMber, we only used the labeled cells. The
first retina contained responses of four cell types (78 midget-OFF-like cells, 40 parasol-OFF-like
cells, 5 ON-like cells, and 22 large-OFF cells, further details on classification are in App. A.2).

We trained a baseline version of a CNN model [15] separately without our proposed clustering loss,
using three random seeds. Baseline clustering was then performed post hoc using GMM and k-means.
Subsequently, we continued training the model with our clustering loss, again using three seeds.

Applied to marmoset retina data, DECEMber achieved reliable classification across cell types, with
high clustering consistency (ARI = 0.96 £0.01) for 4 clusters while maintaining a high predictive
performance of 0.81 0.07. It surpassed both GMM and k-means, (Fig. 3A) effectively separating
even highly unbalanced groups, such as the ON-cells, resulting in an almost perfect confusion matrix
(Fig. 3B). In contrast to k-means, which is sensitive to initialization (Suppl. Fig. 12), DECEMber
exhibited greater robustness and aligned more closely with the ground truth labels while the model
retained high predictive accuracy. When we tested DECEMber for different amount of clusters we
can see a clear peak in ARI at the true number of clusters 4 (Fig. 3C).

DECEMber enhances local structure among embeddings and hurts performance once it domi-
nates the overall model loss. Next, we asked if DECEMber could help to find functional cell types
in a visual area without clear known cluster separation. We used SENSORIUM 2022 dataset and
baseline architecture to train a model to predict responses of mouse primary visual cortex to grayscale
images. for seven mice (more detail on data in App. A.5). Previous work [13, 20] observed density
modes in the functional embeddings of mouse V1 neurons (Fig. 4A) and hypothesized that these
modes may correspond to discrete functional cell types. To investigate whether these patterns reflect
true discrete and distinct cell types, we applied DECEMber (Alg. 1), hypothesizing that if such types
exist, DECEMber would help to separate them. As the number of excitatory cell types in the mouse
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Figure 5: A-B: Learning rate tuning for 5 (A) and length of pretraining (B). We fixed amount of
clusters to 15. If the learning rate is too high the clustering loss starts oscillating due to learning rate
scheduling leading to a massive drop in performance. C ARI for different number of pretraining
epochs vs baseline model. For each number of pretraining epochs we used the optimal learning rate
and set 3 = 10° for all experiments. All settings of DECEMber have better cluster structures after 15
clusters at latest. It is visible that 10 pretraining epochs generate the best clustered embeddings.

visual cortex remains unclear, with estimates ranging from 20 to 50 [20, 50], we considered a range
of j =5, ...,60 in increments of 5.

We tested a wide range of loss strengths [, to find the optimal value to balance the clustering a nd
the model loss. As 3 increases, t-SNE vizualization suggests improved qualitative separation of
clusters in the embedding space (Fig. 4B—E). However, this comes at a cost: when the clustering
loss becomes dominant, the model’s predictive performance drops significantly (Fig. 4F). This made
us question if the qualitative structure in t-SNE plots is meaningful. To answer this question, we
quantified clustering consistency using ARI between three model fits with different seeds and found
that clustering consistency noticeably improved compared to the GMM baseline (Fig. 4H).

We see the ARI improvement as long as 3 does not hurt performance (3 < 10%; Fig. 4G. However,
once 3 > 10%, performance starts suffering (Fig. 4F) and the ARI does not improve anymore
(Fig. 4G), suggesting that the qualitative structure is created by removing functionally relevant
heterogeneity between neurons. While ARI values double compared to the baseline model, there is
no clear peak around a certain number of clusters. We would expect ARI to peak noticeably at the
“true” number of clusters as shown for the retina ganglion cells (Fig. 3C) if such a structure existed.
This suggests that mouse V1 likely lacks discrete functional cell types. Still, the clear improvement
indicates meaningful local structure in functional embeddings.



Consistency of embeddings depends on length of pretraining. To validate our conclusions that
mouse V1 lacks discrete functional cell types, we performed extensive tuning of DECEMber by using
different numbers of pretraining epochs before turning on the clustering loss, different clustering
strengths 3 and tuned learning rates to optimize model predictive performance.

Across all settings, DECEMber achieved higher ARI scores than ~_°**®
the baseline, indicating better consistency of embeddings (Fig. 4H,
Fig. 5C).

We found that the optimal learning rate varied depending on the
number of pretraining epochs (Fig. 5A), and also depended on the ‘ ‘ ‘ ‘ ‘ ‘
clustering loss strength 3 (Fig. 5B). Importantly, the choice of the % preroningepoch
number of pretraining epochs had minimal effect on the overall
predictive performance if the learning rate was optimally chosen,
with differences staying within the standard deviation across runs.
We tuned on the validation set (Fig. 5B), and checked on the test
set (Fig. 6). However, we observed a distinct peak in ARI for 10
pretraining epochs in the case of the mouse visual cortex (Fig. 5C). While the ARI improved across a
range of cluster settings, we did not observe a sharp maximum at any specific cluster count.

""" Baseline
B: 10°

Test Correlation
e o o
woow W
© © ©
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0.388-

Figure 6: The choice of pretrain
epoch doesn’t influence perfor-
mance when we’re using an op-
timal learning rate.

DECEMber improves embeddings across different datasets and model architectures. To ensure
that DECEMber generalizes across architectures, modalities, and species, we additionally tested
it on data from the mouse retina and macaque visual cortex area V4. We did not extensively tune
hyperparameters, we only decreased the learning rate (Ir) to stabilize the baseline model training for
both datasets, and set 5 as described in Sec. 4 (exact settings in App. A.15). More extensive tuning of
the Ir, 5 or the number of pretraining epochs can lead to better results. For both datasets we preserved
the performance of the original models (App. A.9).

For the mouse retina we used both the data and the models from Hofling et al. [18]. As for the
marmoset retina, we trained a separate model for each retina to account for the temperature differences
between retinas. Given the limited availability of cell-type labels, we included all cells in our analysis
and evaluated cluster consistency across varying numbers of clusters. For details on dataset averaging
and per-dataset analysis, see App. A.10.

For macaque V4 data we

used spiking extracellular multi- A, _ — baseline B
electrode recorded responses — PES5
of neurons to gray-scale nat- 05 = - EE;S

04 - :

ural images shown to awake )
macaque monkeys [51] and the 0.3 -
model from Pierzchlewicz et
al. [37], which had a differ-
ent readout architecture — an at-
tention readout instead of the
previously used Gaussian read-
?880 Y:Hga;ﬁd Iil ee a;ﬁ?gg ! tﬁg Figure 7: ARI on A mouse retina [18], weighted across six models.
ARI across three model seeds. B monkeys V4 [51].

The embedding consistency doubled using our method (Fig. 7B). This shows that DECEMber is
robust not only across different data modalities but also across architectures. For more analysis of the
monkey dataset see App. A.11.

ARI

0.2 -

01- 1 1 1 1 1 1 1
20 40 60 0 20 40 60
Number of clusters

6 Discussion

In this work we introduced DECEMber, an additional training loss with explicit clustering bias for
predictive models of neuronal responses. DECEMber enhances cluster consistency, while keeping
state-of-the-art predictive performance. It is robust across different data modalities (electrophysiology
and calcium imaging), species (mice, primates) and visual areas (retina, V1, V4). We also showed
that DECEMber is robust across both static (mouse V1, macaque V4) and dynamic (retinas) cores
and multiple readout architectures — the Gaussian readout and the attention readout.



We see DECEMber as a model-driven hypothesis test: if clear functional cell types exist, then
incorporating this bias should improve model performance and/or the embedding structure, which we
measure as cluster consistency. While improvements are observed across datasets and architectures,
our main focus was mouse V1, where the existence of discrete excitatory cell types remains debated.
Our results support the idea that excitatory neurons in mouse visual cortex form a functional con-
tinuum rather than discrete clusters. This finding is consistent with recent work studying different
modalities by Weiler et al. [52], Tong et al. [19], and Weis et al. [6], who independently found
no clear boundaries in morphological or electrophysiological features. In line with Zeng [1], we
argue that future efforts to define mouse V1 cell types should emphasize multi-modality combining
functional, morphological, and genetic data. This approach has proven fruitful in the retina, where
functional types alone are coarser than those derived from multiple modalities [7, 21].

Given the generality of our clustering loss, which is model-agnostic and not tied to a specific
architecture, we believe it holds promise for use in multi-modal models aiming to define cell types or
in broader unsupervised representation learning contexts.

Connection to other works learning neuronal embeddings. There are other works [53-59],
which all learn neuronal embeddings in some way, but none of them explicitly enforce or optimize
for clustering, which is the main goal of DECEMber. Specifically, Nemo [53], NeurPIR [54] and
NuCLR [55] are contrastive methods, DECEMber is not. Nemo [53] and NeurPIR [54] embeddings
are functions of input (current activity, autocorrelogram), for DECEMber neuronal embeddings are
time- and input- invariant weights of the predictive model (they embed the neuron’s full input—output
function). Nemo [53], NeuPRINT [56], NetFormer [57] do not model visual stimuli. NeuPRINT,
NetFormer, POYO [58], NEDs [59] have time-invariant model weights, but both predict neuronal
activity based on masked or previous neuronal activity while the regression model in our paper
predicts neuronal activity based on visual stimuli. It might be interesting to integrate DECEMber
clustering loss with these works [56—59] but we leave it for future work.

Limitations. DECEMber requires a predefined number of clusters. When this is unknown, multiple
runs with varying cluster counts and seeds are necessary in combination with an evaluation ARI-like
metric to identify the optimal configuration. This increases the computational cost. Choosing an
appropriate clustering strength (3 is also crucial for balancing ARI and model performance and further
work is needed to determine the optimal pretraining duration.

Moreover, operating in high-dimensional feature spaces introduces an additional challenge: the
cluster covariance matrices can become large and ill-conditioned, with tiny diagonal values, hitting
the limits of numerical stability. We address this issue by clamping small values, though this solution
is heuristic rather than principled. Furthermore, high-dimensional settings require a sufficient number
of data points to prevent overfitting of the scale matrices. Additionally, we currently assume a
t-distributed feature space via a t-mixture model, but this can be adjusted if a more suitable prior
over the embeddings is known.
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A Appendix

A.1 Signal to noise ratio for toy example
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Figure 8: A: Clustering accuracy for predicted vs. ground-truth label for DEC vs. DECEMber
for different Signal-to-Noise ratios. B: Predictive performance on test set. C: The distance of the
norms of the 2 cluster centroids ||u1]| — ||2|| for DEC vs. DECEMber. The ground truth distance is

V128 - 1.52 — /128 ~ 5.66.

Data in mouse V1 is recorded using 2-photon calcium imaging which is known to be noisy. To
investigate how robust DECEMber is towords noise we varied the SNR in the toy example setting.
As described in the toy example we generated clean responses as the dot product of the stimuli and
the created network weights. To simulate noisy observations, we added Gaussian noise independently
for each neuron and stimulus but with the same variance. The noisy responses are thus given by
Yij = 21 xj + €;j, where 2; are the neurons’ weights, z; the stimuli and ¢;; Gaussian noise. Since
both the input and the noise are mean-centered, the Signal-to-Noise Ratio of the neuronal population

T

of N neurons and M stimuli is defined as SNR = & 2N - V;[[“”]]

In this setup, we vary the SNR by adjusting the noise variance, thereby controlling the noise power in
the simulation. We varied the SNR between 0.001 and 10 and trained in the same way as before. We
calculated the Pearson correlation on a left out test set. Both DEC and DECEMber converge to similar
performance since the MSE drives the learning of the model’s weights (Fig. Fig. 8B). We see that
even for low SNR DECEMber successfully separates the clusters (Fig. Fig. 8A), though the distance
is not ideal before SNR is above 0.1. However, for DEC cluster collapse happens independently of
SNR (Fig. Fig. 8C). Since the weights (e.g. neurons) are generated based on predefined clusters
(means of the Gaussians), we know the ground truth label for each neuron. To evaluate the cluster
accuracy of DEC and DECEMber we measure the proportion of neurons that are assigned to the
correct cluster.

A.2 Retina gagnlion cells

To select reliable cells from the marmoset RGCs
dataset [48], we used the same reliability assess- A B

ment of each cell’s responses to visual stimuli as . - Parasol ON
38 :, Parasol OFF

in [60]; only reliable cells were used for model
35 LR

parasol
OFF

training. The model architecture was also taken
from [15]. For clustering evaluations using DE-
CEMber, k-means, and GMM, we considered
only cells for which cell-type labels were avail- S
able. 0 1 Ve

Predicted

True

parasol
ON

The dataset contains recordings from two dif-

ferent retinas of male marmosets. The second  Figure 9: A: DECEMber predictions. Pretraining
retina (not analyzed in the main part of this pa- length: 20 epochs. Same predictions for GMM
per) includes 38 parasol-OFF and 35 parasol- and k-means. All methods have ARI 1. B: ¢t-SNE
ON cells which are well separable (Fig. 9B). projections of the corresponding cells.

We trained our models on all reliable cells from
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this retina as well and tested DECEMber with

varying pretraining lengths (which did not affect cluster consistency). All three clustering meth-
ods—GMM, k-means, and DECEMber—successfully and robustly identified the two cell types, as
visualized in Fig. 9A with ARI=1.

Cell type labels We used the same cell-type classification procedure as in [60] (Methods section
4.5), clustering the cells using the KMeans++ algorithm on features extracted from receptive-field
estimates obtained using spike-triggered averaging from responses to spatiotemporal white-noise, and
from autocorrelograms computed on responses to white-noise and naturalistic movies. The cell-type
labels in our analysis differ from the ones used in the original publication because we did not exclude
cells that violated the tiling of spatial receptive fields.
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Figure 10: All plots show evaluations of seed 4 of the trained marmoset RGC model [15] for retina
1 used in the main part of this paper. A: GMM predictions. B: k-means. C: t-SNE projections of
the corresponding cells. D: ARI for different length of pretraining. Longer pretraining seems to be
beneficial with ARI stabilizing after pretraining of 20 epochs.

A.3 ARI-stability for k-means and GMM on marmoset RGC

1.0-

Figure 11: Clustering stability of k-means and
0.9- GMM on retina 1 for marmoset RGC. We started
with a single baseline RGC model of retina 1 (seed
2) and performed k-means and GMM clustering (4
clusters each), varying the random seed (42, 10, 100)
for both algorithms. Clustering was done on all cells
0.7- the model was trained on, but ARI was calculated
using only labeled cells.

ARI
=}
©

0.6- i
GMM k-means
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A.4 ARI stability for GMM on mouse V1

1.0-
Figure 12: Clustering stability of GMM on mouse

0.8 V1. We trained a baseline model of mouse V1 for one

seed (42). We then did GMM for clusters ranging

from 5 to 60 as the ground truth is not known varying

0.4- just the seed for the initialization of the GMM. It’s
clearly visible that GMM becomes unstable if the
amount of clusters is large.

10 20 30 40 50 60

Number of clusters

A.5 Sensorium data details.

The model was trained on the SENSORIUM 2022 dataset [8], which contains neural responses to
natural images recorded from seven mice (a total of 54,569 neurons). Recordings were made from
excitatory neurons in layer 2 and 3 of the primary visual cortex using two-photon calcium imaging.
In addition to neural activity, the dataset includes five behavioral variables: locomotion speed, pupil
size, the instantaneous change in pupil size (estimated via second-order central differences), and
horizontal and vertical eye position, all of which are incorporated into the model. Three of them
— locomotion speed, pupil size, and the instantaneous change in pupil size — were appended to the
grayscale images and are used as input to the core, while pupil horizontal and vertical position were
used as input to the shifter — a model part shifting the readout receptive field locations depending on
where the mouse is looking. The validation set contains responses to roughly 500 and test set to 5000
images per mouse.

A.6 Additional clustering metrics show qualitatively consistent results with ARI

Mouse retina Monkey V4
A0.8- —— baseline B C D
— PE:5
0.7~ — PE10
PE:20
£ oo g : W g
I v\,-w_/—/_/_’_h o I = o
©0.5- a 53 ?
e B —— = ; z
> 04- >
& \/\*
0.3 -

!
10 20 30 10 20 30 10 20 10 20
Number of clusters

Figure 13: Different clustering consistency metrics for monkey V4 and mouse retina datasets. Same
as in the main paper, mouse retina is weighted across six models using all neurons, monkey V4 model
is trained on a subset of 1000 neurons. The order of lines is same as for ARI, confirming its results
qualitatively. V-measure is biased towards bigger amount of clusters due to the set-based nature.

Clustering quality can be evaluated using metrics beyond ARI. ARI measures the similarity between
two clusterings by checking whether pairs of points are assigned to the same cluster in both. The
Fowlkes-Mallows index [61] (Fig. 14) also compares two partitions but does not adjust for chance; it
is the geometric mean of precision and recall, based on how consistently point pairs are clustered
together.

Other common metrics — homogeneity, completeness, and V-measure [62] — are asymmetric and
compare one clustering against a reference (typically ground truth). Homogeneity measures whether
each cluster contains only members of a single class, while completeness checks whether all members
of a given class are assigned to the same cluster. Swapping the roles of predicted and true labels inter-
changes homogeneity and completeness. V-measure, equivalent to normalized mutual information
(NMI [63]) and it is the harmonic mean of the two. As in our case we do not have ground truth, we
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Figure 14: V-measure and Fowlkes-Mallows-score for PE 10, 15 clusters.

compute the metrics with all possible seed pairs, which leads to homogeneity, completeness, and
V-measure being equivalent (Fig. 14).

A.7 Influence of Degree of freedom as a hyperparameter

0.44- —e— Clusters: 5 Clusters: 10
0.42-
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0.38-
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0.32-
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0.28-

25 5.0 7.5 10.0 12.5 15.0 17.5 20.0
v

Figure 15: DECEMber, with PE = 10, Ir=0.008, 3 = 10* with different degrees of freedom v.

We’ve tested the influence of the degree of freedom on ARI for both 5 and 10 clusters 15 and can’t
really see a difference.

A.8 Comparison with the rotation equivariant baseline

Turishcheva et al. [13] is the only work to date that specifically addresses neuronal embedding
consistency, and thus serves as our baseline for comparison. We use the Yiognorm = 10 condition from
their paper and compare it to our consistency results in Fig. 16. Our approach achieves comparable
consistency levels while eliminating the need for a rotation-equivariant core, thereby removing the
post-hoc alignment step and improving predictive performance from = 38.1% (Fig. 3 A in [13]) to
~ 39.5% (Fig. 4F).

A.9 Models performances on mouse retina and macaque V4 data

Baseline PE 5 PE 10 PE 20
Mouse retina | 0.4727 £ 0.0008 | 0.4695 4 0.0009 | 0.4732 £ 0.0008 | 0.4727 £ 0.0009
Macaque V4 | 0.308 £ 0.004 0.308 £ 0.006 0.304 £ 0.005 0.305 + 0.003
Table 1: Performances on mouse retina and macaque V4 data for the models reported in the main
paper (Sec. 5). Mouse retina is weighted as described in App. A.10.All performances are on the
held-out test set. The values are averaged across all cluster counts. Seeds were 42, 101 and 7607. For
GMM baseline the seed was 42.
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Figure 16: DECEMber, with PE = 10; DECEMber cluster consitency matches the rotation-equivariant
model from Turishcheva et al. [13].

A.10 Further analysis of mouse retina data

Averaging across datasets For the mean ARI across datasets we weighted ARI lines like jiyo =
Zi wipt;, Where w; = Neur/Myotal With ngy: - the number of neurons in the current model, 1
is the number of neurons in all six models, and p; is the average ARI score across three seeds
for the current model. We used the law of total variance and computed the variance as o2, =

Zi w; [02»2 + (ui — umml)Q] , where the first term captures within-dataset ARI variability and the

second term captures between-dataset ARI variability. Fig. 17 shows the ARIs per models. We can
see that the fewer neurons were present in the models the less the improvement was.

Dataset 0698360, n=936 Dataset 4fdcebc, n=337 Dataset 562060, n=2787
0.7~ —— baseline N
0.6- — PE:5 B B
R — PE:10

— PE:15

0.5-

Dataset 57ff42f, n=2089 Dataset bOeac5e, n=530

1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25 30 35
Number of clusters

Figure 17: ARI per retina. n is the number of neurons in the model

A.11 Further analysis of monkeys data
For monkey V4, we trained models for 5, 10 to 20 and 25 clusters, as original work reported 12

clusters for 1000 cells. For 144 cells there were no labels and 100 cells ahd a "not properly clustered"
label. Therefore, we decided to use only the 1000 labeled cells. For results of models trained on all
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cells see Fig. 18A. While the trends and values are qualitatively similar to the model trained only
on a 1000 neurons subset, the standard deviation corridor seems to be wider, likely due to some of
the "not properly clustered" neurons being in between the distinct groups. Please note that the labels
from Willeke et al. [51] are rather a suggestion but not ground truth as they were not verified using
independent biological measurements. For the confusion matrix of our labels and labels from Willeke
et al. [51] see Fig. 18A. Same as for Burg et al. [21], our labels do not perfectly match the ones
proposed in Willeke et al. [51].

A.12 Bayesian inference criterion BIC
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Figure 19: A: Log likelihood estimation. B: Calculation of BIC.

As suggested by a reviewer, BIC could be an alternative way to find the underlying number of clusters.
We used a model with 10 pretraining epochs and 3 = 10%.

After training the model, we calculated the log-likelihood of the neurons

N K
1
log £ = E log? E tu(xi | b, k),
i=1 k=1

where ¢, (- | py,, X ) is the multivariate ¢-distribution with mean g, covariance 3, and degrees of
freedom v.

We computed the BIC as BIC = —2log £+ (2% K *d + 1) log(N),

where N is the number of neurons, d is the dimensionality of the embeddings, K is the number of
clusters.

The likelihood grows with the number of clusters whereas BIC falls with the number of clusters (Fig
Fig. 19) indicating the lack of a clear cluster peak, which agrees with ARI (Fig Fig. 4H). BIC also
scales with the number of model parameters which in our case increase a lot when the number of
clusters increases making it not the most suitable measure in our case.
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A.13 Compute requirements

All of our models can be considered light-weight in terms of compute by modern deep learning model
standards. A single mouse retina model requires less the 10Gb of GPU memory and trains under 20
minutes of walltime. A single mouse V1 model requires ~ 12Gb of GPU memory and trains for
under 2 hours of walltime. A single marmoset retina model uses 40Gb GPU and trains for under 16
hours of walltime. A single monkey model requires 24Gb of memory and trains for under 2 hours of
walltime.

We use a local infrastructure cluster with 8 NVIDIA RTX A5000 GPUs with 24Gb of memory each
for mouse experiments. For mouse retina, marmoset retina, and monkey V4 we used 40Gb NVIDIA
A100.

A.14 Broader impact

Our work contributes to building more reproducible models, which are more suitable for making
biologically meaningful statements. It is even more related to derive a functional taxonomy of cell
types in the primary visual cortex, which can enhance our understanding of brain function and support
the development of treatments for neurodegenerative diseases.

A.15 Experimental settings

For marmoset RGC dataset, we used the three layer CNN described in [15]. We trained it for a
maximum of 1000 epochs, stopping early if validation correlation did not improve for 20 epochs. The
learning rate of both pretraining and training with the clustering loss was initially 0.005 and reduced
during training using the ReduceLROnPlateau learning rate scheduler, patience 10 and minimal
learning rate 1e~5.

For SENSORIUM 2022, we used their model and training hyperparameters for the baselines training.
Pretraining duration, learning rates and clustering strength £ is reported in every experiment. For
mouse retina, we followed Hofling et al. [18] model and training hyperparameters, changing only
learning rate from 0.01 to 0.005 to improve baselines stability. Clustering strength was set to 0.001
across all experiments. For monkey V4 data we followed model and training hyperparameters from
[37], again only changing the learning rate from 3 - 107% to 5 - 10~° to improve baselines stability.
Clustering strength was set to 0.001 across all experiments. Changing learning rate in both cases did
not impacted performance in more than std boundaries.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The introduction clearly state the contributions as an bullet point list at the end.
Limitations as discussed in Sec. 6 as a separate paragraph.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we have a limitations paragraph in the Discussion (Sec. 6).
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide code, experiments parameters and use open-source available
datasets (three out of four). In order to access monkey dataset [51], please contact the
original paper authors.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code for repeating experiment in the data and we use open-
source available data for our experiments. The only exception is data from Willeke et al.
[51], which could be available upon request from the original authors.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: App. A.15
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report std corridors or error bars in the vast majority all of our plots.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: App. A.13
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes],

Justification: Our research does not include any human data or experiments. We believe our
research does not have any immediate societal impact and potential harmful consequences
as we are interested in a fundumental biological question and models reproducibility. We
also believe that the research process was done in a harmless way. All the animal datasets
used in this paper were collected primarily for different studies.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Section App. A.14
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original papers that produced the code package or dataset (Hofling
et al. [18] for mouse retina data and models, Willeke for monkey V4 data [51], Pierzchlewicz
et al. [37] for monkey V4 model, Sridhar et al. [48] for marmoset RGC data and Vystrcilova
et al. [15] for the marmoset RGC models.). Openly available assets are Pierzchlewicz et al.
[37] under the CC-BY-NC 4.0 license, which allows non-commercial use, and Hofling et al.

[18] data is under CC BY-NC-SA 4.0 license, again allowing us to use data and models for
research purposes.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release the code for the mouse V1 experiments, which includes our
additional loss. As our code builds upon SENSORIUM 2022 codebase [8], it is well
documented and straightforward to use.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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