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Abstract

Currently, pre-trained models can be consid-001
ered the default choice for a wide range of002
NLP tasks. Despite their SoTA results, there003
is practical evidence that these models may re-004
quire a different number of computing layers005
for different input sequences, since evaluating006
all layers leads to overconfidence on wrong007
predictions (namely overthinking). This prob-008
lem can potentially be solved by implementing009
adaptive computation time approaches, which010
were first designed to improve inference speed.011

Recently proposed PonderNet may be a012
promising solution for performing an early013
exit by treating the exit layer’s index as a la-014
tent variable. However, the originally pro-015
posed exit criterion, relying on sampling from016
trained posterior distribution on the probabil-017
ity of exiting from i-th layer, introduces major018
variance in model outputs, significantly reduc-019
ing the resulting model’s performance.020

In this paper, we propose Ponder ALBERT021
(PALBERT) – an improvement to PonderNet022
with a novel deterministic Q-exit criterion and023
a revisited model architecture. We compared024
PALBERT with recent methods for perform-025
ing an early exit. We observed that the pro-026
posed changes can be considered significant027
improvements on the original PonderNet ar-028
chitecture and outperform PABEE on a wide029
range of GLUE tasks. In addition, we also030
performed an in-depth ablation study of the031
proposed architecture to further understand032
Lambda layers and their performance.033

1 Introduction034

These days, fine-tuning pre-trained models on035

downstream tasks became a de facto standard tech-036

nique for training NLP models. One model that037

is widely used in real-world applications is AL-038

BERT (Lan et al., 2020), which is based on the039

Transformer architecture (Vaswani et al., 2017)040

with shared layers (i.e., the same layer is evalu-041

ated several times to provide an output).042

Figure 1: A comparison of the original sampling exit
criterion of PonderNet (on the top) and the proposed
Q-exit criterion (on the bottom). PonderNet performs
sampling from the Bernoulli distribution obtained from
the Lambda layer at each step, possibly exiting a model
too early or too late. For Q-exit, we evaluate the Cumu-
lative distribution function (CDF) of the probability of
exiting at layer i. Once CDF becomes greater than the
threshold value (0.5 in this example), we perform an
early exit. With such a deterministic criterion, we can
perform an early exit from a model more robustly with-
out introducing variance in the exit layer’s index during
inference.

While ALBERT-Base evaluates the Transformer 043

block 12 times, layer sharing makes it possible to 044

evaluate it an arbitrary number of times. Zhou et al. 045

(2020) showed that running ALBERT-Base block 046

for a fixed number of times (10) could increase 047

the accuracy of the fine-tuned model on specific 048

tasks (e.g., MRPC). This phenomenon is called 049

overthinking. Because of this fact, making mod- 050

els perform an early exit is not only done to in- 051
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Figure 2: An estimation of Ex∼D

[
p(i|x)

]
, where p(i|x) is a trained posterior probability of exiting from layer i

of PALBERT models across different tasks, and D is the distribution of the training dataset. We took 5 models
trained on these tasks and sampled exit layer indices for the training dataset’s inputs. We smoothed the obtained
probabilities for visibility.

crease inference speed but also to make them052

more accurate. A recent PABEE (Zhou et al.,053

2020) solution was designed to overcome this issue054

by performing an early exit based on the consensus055

between different classifier heads from different056

layers. The model stops evaluating when several057

classifiers in a row produce the same result.058

An orthogonal way to perform an early exit from059

a model is PonderNet (Banino et al., 2021) – a vari-060

ational approach that treats the exit layer’s index as061

a latent variable. By maximizing the lower bound062

of the likelihood of the training data, PonderNet063

trains a model which can predict whether it is neces-064

sary to exit from a specific layer during evaluation.065

However, Banino et al. (2021) proposed to sample066

from the trained posterior distribution of exiting067

from each layer during inference, which leads to068

major variance in model outputs.069

This paper proposes Ponder ALBERT (PAL-070

BERT) – an improvement to PonderNet adapted071

for ALBERT fine-tuning. Instead of performing072

an early exit by sampling from the trained poste-073

rior distribution during evaluation, we used a novel074

zero-variance exit criterion, namely Q-exit, which075

evaluates the CDF of the exit layer’s probability dis- 076

tribution and perform a deterministic early exit. We 077

also revisited the architectural choices of Lambda 078

layers used to predict the probability of exiting 079

from the current layer in order to make them aware 080

of dynamics in hidden states across previous layers 081

and the number of currently running layers. 082

We experimented with PALBERT on the GLUE 083

Benchmark datasets (Wang et al., 2018). The abla- 084

tion study showed that PALBERT produced signif- 085

icantly better results than the original PonderNet 086

architecture adapted for ALBERT fine-tuning. Fur- 087

thermore, PALBERT outperformed PABEE and is 088

comparable to plain ALBERT fine-tuning, while 089

also exceeding it in speeds. We also analyzed the 090

trained model and provided insights on further im- 091

provement of the variational approach for early 092

exiting. 093

2 Related Work 094

Most of the approaches used to perform an early 095

exit from a model are based on the probability 096

distribution of predictions: BranchyNet (Teerapit- 097

tayanon et al., 2016), FastBERT (Liu et al., 2020), 098
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Figure 3: PALBERT score dependency on the Q-exit threshold. We report the mean and std values of task metrics
across 5 trained models. See section 4.2 for more details

DeeBERT (Xin et al., 2020), which can be seen099

as an entropy criterion. However, there is strong100

practical evidence that classification models’ over-101

thinking causes a reduction in predictions’ entropy,102

making these methods difficult to use (Zhou et al.,103

2020). Furthermore, it is unclear how to adapt104

entropy methods for regression tasks (Zhou et al.,105

2020).106

Zhou et al. (2020) proposed PABEE – a method107

to perform an early exit based on several classifiers108

from the different levels of a model. Once several109

classifiers in a row (the number of these classifiers110

is determined by the patience hyperparameter t)111

produce the same result, we can perform an early112

exit. LeeBERT (Zhu, 2021) also uses the idea of a113

consensus-based exiting strategy augmenting the114

training algorithm with the self-distillation tech-115

nique and cross-level optimization. Self-distillation116

is orthogonal to the early exit approach and can be117

combined with PALBERT. Because of this, we did118

not include LeeBERT in our experiments and only119

used PABEE as a consensus-based method.120

An alternative way to perform an early exit is the121

Ponder architecture (Banino et al., 2021), which122

uses auxiliary Lambda layers to predict whether a123

model should exit from a specific layer during the124

runtime. Inputs to Lambda layers used in Ponder- 125

Net are hidden states from the current layer of a 126

model. PonderNet can be seen as a model with the 127

latent variable in the face of the exit layer index, 128

which is trained by maximizing the lower bound of 129

the marginalized likelihood of the data. 130

During inference, PonderNet authors proposed 131

to sample from the trained posterior distribution 132

of exit layer probabilities. However, this exit cri- 133

terion can lead to uncertainty in outputs for the 134

same input. Even if the Lambda layer produced 135

probability equal to 0.1 of exiting from the first 136

layer, we could still exit a model too early in one 137

of ten, cases even though the probability was small. 138

We also hypothesize that predicting exiting from a 139

layer based entirely on a single hidden state could 140

be sub-optimal since performing early exit could 141

also depend on the dynamics in hidden states across 142

layers (i.e., Lambda layer should know how hidden 143

states change during the evaluation). 144

3 Ponder ALBERT 145

The usual ALBERT evaluation can be defined as a 146

computation of n hidden states hi = S(hi−1) from 147

the input embeddings h0 of an input sequence x, 148

where i ∈ [1;n]. Once hn is obtained, it is passed 149
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to a classifier block C(hn) to get the parameters150

of an output distribution p(y|x). A common way151

to fine-tune this architecture on downstream tasks152

is to initialize the embeddings and the S layer by153

using ALBERT (pre-trained on Masked Language154

Modelling) while initializing C randomly and then155

optimizing all parameters by maximizing the likeli-156

hood of the training data.157

While plain ALBERT performs a fixed number158

of computational steps, it is possible to perform159

an arbitrary number of evaluations of the layer S.160

Banino et al. (2021) proposed to extend each Trans-161

former layer with a shared Lambda layer. More162

precisely, for each layer i, after S outputs a new163

hi, it is then passed to the classifier and Lambda164

layers to get parameters C(hi) of output distribu-165

tions p(y|x, i) and the probability of exiting from166

the i-th layer λi = Λ(hi), which induces a gen-167

eralized geometric distribution on probability of168

exiting from layer i equal to169

p(i|x) = λi

i−1∏
j=1

(1− λj). (1)170

Then, having the probability distribution from171

each layer p(y|x, i), the parameters of the model172

are optimized to maximize173

L(x, y) = Ei∼p(i|x)

[
p(y|x, i)

]
−

−βKL
(
p(·|x)||p(·|λ)

)
≤ p(y|x)

(2)174

Here, p(·|λ) is a prior distribution of exiting175

from each layer, parametrized by the hyperparame-176

ter λ, and Ei∼p(i|x)

[
p(y|x, i)

]
is evaluated analyti-177

cally by averaging likelihoods from different layers178

with posterior exit probabilities. If we treat the exit179

layer index as a latent variable, then optimizing L180

from the Equation 2 could be seen as maximizing181

the lower bound of marginalized likelihood p(y|x)182

(Kingma and Welling, 2014).183

Note that the probability of exiting from the last184

layer n is normalized as p(n|λ) = 1−
∑n−1

i=1 p(i|λ)185

in order to make p(i|λ) sum into 1 with a finite186

number of steps. The same is true for p(i|x).187

3.1 Exit Criterion188

During inference, Banino et al. (2021) proposed189

to sample the exit layer index from p(i|x) (i.e.,190

by sampling iteratively from a Bernoulli distribu-191

tion with parameter λi). While a sampling-based192

exit criterion correlates with the variational view 193

of PonderNet’s training objective (it can be seen as 194

performing a single sample Monte-Carlo estima- 195

tion of Ei∼p(·|x)

[
p(y|x, i)

]
); such estimation has 196

major variance, which introduces the randomness 197

in the inference process of PonderNet (see Figure 198

2). 199

To overcome the issue of randomness, we pro- 200

pose Q-exit1: a novel deterministic criterion of 201

performing early exit, which we used for PAL- 202

BERT. Instead of sampling from the distribution 203

p(i|x) during inference, we evaluate its CDF by 204

accumulating p(i|x) from each layer. Once the 205

CDF is greater than the threshold hyperparameter 206

q, we perform an early exit. See Figure 1 for a 207

schematic comparison of the sampling criterion 208

with Q-exit. Threshold q can be seen as a trade-off 209

between underthinking and overthinking. There- 210

fore, q should be selected during the validation 211

of the trained model in order to choose the best- 212

performing value. 213

Based on our experiments, we found that the 214

proposed criterion produced significantly better ac- 215

curacy on various tasks compared to the original 216

sampling criterion (see Sections 4.1, 4.4), while 217

also being more practical than the original sam- 218

pling criterion. 219

3.2 Lambda Layer Architecture 220

While the original PonderNet used a single layer 221

MLP to obtain logit of exiting probability, we hy- 222

pothesize that making the Lambda layer understand 223

the dynamics of changing ALBERT hidden states 224

is crucial for achieving good performance. To do 225

so, instead of passing a single hidden state hi from 226

the i-th layer in Λ, we concatenate it with hi−1. 227

I.e., for PALBERT, we evaluate the probability of 228

exiting from i-th layer as 229

λi = Λ([hi, hi−1]). (3) 230

We used a 3 layer MLP with tanh activation for 231

the Lambda layer to operate with more complex in- 232

put. Based on the ablation study, we observed that 233

increasing the capacity improves the accuracy of 234

the trained model (See section 4.1). We also found 235

it beneficial to fine-tune the Lambda layer with a 236

different learning rate than all other parameters. 237

1Q-exit stands for Quantile
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Method Speed-up SST-2 RTE QNLI CoLA MRPC MNLI QQP STS-B Macro
Dev set

ALBERT ×1.0 92.7 76.5 91.5 56.6 90.5 84.8 88.9 90.6 84.0
PABEE ×1.41 92.7 76.9 91.5 55.6 88.3 84.5 88.9 89.9 83.5

PonderNet ×1.48 91.3 74.0 88.3 51.3 87.1 81.7 87.7 88.2 81.2
PALBERT ×1.29 93.1 78.3 91.0 58.1 89.3 84.7 88.9 89.9 84.2

Test set
ALBERT ×1.0 93.4 70.0 92.1 50.5 85.6 79.0 84.7 87.4 80.3
PABEE ×1.39 92.7 71.1 91.3 46.0 84.3 79.2 83.7 86.5 79.3

PALBERT ×1.26 93.0 73.5 91.7 48.6 87.1 79.8 84.4 86.5 80.6

Table 1: A comparison of PALBERT with recent approaches on the GLUE benchmark. Each result for the dev set
is a median task score across 5 runs. We report the two metrics’ mean for the MRPC, QQP, and STS-B tasks. For
the MNLI task, we report the mean accuracy across matched and mismatched datasets. For the test set, we used
the best model according to the dev score. In the Macro column, we present the average results across tasks. We
bolded the best results and underlined the second-best results.

4 Experiments238

4.1 Ablation Study239

We performed an ablation study of the proposed240

changes in PonderNet architecture. We experi-241

mented with adding the proposed Q-exit criterion,242

Lambda layer architecture, and fine-tuning strate-243

gies. We also compared the proposed changes with244

fine-tuning vanilla ALBERT. These methods were245

benchmarked on SST-2, RTE, and CoLA tasks246

from the GLUE Benchmarking dataset (Wang et al.,247

2018).248

For evaluation, we performed a grid hyperparam-249

eter search on an appropriate metric score on the250

dev split for each dataset. Following the PABEE251

training setup, we trained all models with a fixed252

learning rate until validation metrics stopped in-253

creasing for 5 epochs. We used a fixed q = 0.5 for254

all experiments on models with the Q-exit criterion.255

We trained each model 5 times with the best256

hyperparameters and reported the mean and std257

values. A full list of the methods’ hyperparameter258

ranges can be found in Table 3.259

See Table 2 for the full list of the results of our260

ablation study. Based on these experiments, Pon-261

derNet architecture is seen as performing signifi-262

cantly worse than vanilla ALBERT fine-tuning. At263

the same time, the deterministic Q-exit criterion264

dramatically improves PonderNet accuracy when265

compared to a random sampling of the exit layer.266

A more complex Lambda layer that can handle hid-267

den state changes’ dynamics can further improve268

model accuracy when compared to the original Pon-269

derNet.270

4.2 Understanding the Threshold of Q-exit 271

As noted previously in Section 3.1, we treat the 272

threshold value q of the Q-exit criterion as a trade- 273

off between underthinking and overthinking, where 274

increasing q forces a model to evaluate more layers, 275

and vice versa. 276

Therefore, it is necessary to find the best- 277

performing threshold for each task where a model 278

has the highest accuracy. To do so, we evaluated 279

trained PALBERT models from the ablation study 280

(see Section 4.1) on dev splits of tasks with differ- 281

ent values of q. We then averaged obtained metrics 282

and reported the mean and std values for various 283

thresholds (See Figure 3 for the results). 284

We observed that exiting models with q = 0.5 285

shows the best overall performance for different 286

tasks. Making q greater than 0.5 leads to a re- 287

duction in accuracy and can often force models to 288

evaluate all 12 layers of ALBERT-Base. 289

We associate such behavior of trained models 290

with the fact that the huge probability mass of 291

trained posterior probability p(i|x) is concentrated 292

near the last layers of models (see Figure 2). We hy- 293

pothesize that the reason for this is that the param- 294

eterization of prior probability p(i|λ) as geometric 295

distribution with normalized last layer, proposed 296

with PonderNet (Banino et al., 2021), leads to a 297

huge prior probability of exiting on the last layers 298

(See Section 3). For MRPC, we observe a huge 299

variance in the probabilities of exiting from differ- 300

ent models on the first layers, which we believe 301

leads to poor performance on this task. Note that 302

these plots could be seen as an estimation of proba- 303
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Figure 4: A comparison between PALBERT and PABEE models on CoLA and SST-2 tasks. We varied the thresh-
old value of Q-exit for PALBERT and the patience hyperparameter for PABEE to obtain the plots of task scores
of inference increasing in speed. 1x stands for plain ALBERT inference without performing an early exit. The
horizontal line corresponds to plain ALBERT fine-tuning. See Section 4.3 for the analysis of these plots.

bilities of exiting from each layer with vanilla Pon-304

derNet sampling exit criterion. For the RTE task,305

layers i ∈ [1; 10] have approximately the same306

probability of exiting with total probability mass307

close to 0.5, introducing huge variance in model308

outputs.309

It is also notable that PALBERT, with a large310

threshold value q that performs constant exit on the311

last layer, has better accuracy than vanilla ALBERT312

fine-tuning for the SST-2 task.313

314

4.3 Speed Analysis315

While making q < 0.5 improves inference speed,316

it can also lead to underthinking and lower accu-317

racy (see Figure 4). We compared PALBERT using318

different threshold values q to PABEE with differ-319

ent patience values t, which stands for the number320

of layers necessary to output the same result in a321

row to perform an early exit. We trained a PABEE322

model following the setup from the ablation study323

(see Section 4.1). We evaluated task scores for the324

specified hyperparameters as well as the increase325

in speed when compared to vanilla ALBERT infer-326

ence of a full model with 12 layers. 327

Overall, we observed that PALBERT produced 328

higher scores on different tasks while also being 329

slightly faster than PABEE. For the CoLA and 330

MRPC datasets, PALBERT performed significantly 331

better. The proposed method outperformed PABEE 332

by a large margin while achieving the same in- 333

crease in speed. 334

We observed questionable results for the SST- 335

2 dataset: the best score for the PABEE model 336

is slightly higher than for PALBERT. However, it 337

was obtained with a negligible increase in speed, 338

because the best-performing patience for this setup 339

is 11 layers (while the whole model has only 12 340

layers). 341

Furthermore, unlike PALBERT, PABEE per- 342

formed significantly worse than plain ALBERT 343

fine-tuning on the CoLA and RTE tasks. We hy- 344

pothesize that the reason for this is that separated 345

classifiers for each layer Ci in PABEE were not 346

able to train well enough on such small datasets as 347

CoLA and RTE. Therefore, we can assume that per- 348

forming an early exit to avoid overthinking is not 349

the main feature of fine-tuning a well-performing 350
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Method SST-2 RTE CoLA
ALBERT 92.7 ± 0.3 77.0 ± 1.9 57.0 ± 2.1
PonderNet 91.1 ± 0.6 73.5 ± 1.9 50.8 ± 2.2

Q-exit Lambda LR 3-Layer Lambda hidden concat.
+ - - - 92.2 ± 0.3 77.3 ± 1.4 55.7 ± 0.9
+ + - - 92.7 ± 0.4 77.3 ± 1.4 56.5 ± 1.2
+ + + - 92.6 ± 0.3 77.0 ± 1.4 56.3 ± 2.4
+ + - + 93.0 ± 0.3 76.5 ± 1.6 56.9 ± 1.9
+ + + + 92.9 ± 0.2 77.8 ± 1.2 57.4 ± 1.7

Table 2: An ablation study of the proposed PALBERT architecture. "Lambda LR" corresponds to fine-tuning the
Lambda layer with its own learning rate, "3-layer Lambda" refers to making the Lambda layer have three MLP
layers instead of one, and "hidden concat." stands for concatenation of two hidden states as input to the Lambda
layer.

model. Instead, it might be possible to simply focus351

on improving the training process (e.g., by adding352

auxiliary tasks on each layer).353

4.4 GLUE Experiments354

Finally, we compared PALBERT with different355

baseline models on all GLUE tasks.356

We re-implemented PABEE according to the357

original work (Zhou et al., 2020) and used a fixed358

patience value t = 6. We also compared PALBERT359

with PonderNet architecture adapted for ALBERT360

fine-tuning. We trained 5 models with the best hy-361

perparameters across the hyperparameter search362

and reported the median task score on the dev set.363

We evaluated the test scores on the best models,364

selected based on their dev scores.365

See Table 1 for the full list of results. We ob-366

served that PALBERT significantly outperformed367

PABEE on a wide range of tasks. Vanilla Ponder-368

Net with the sampling exit criterion performed the369

worst. Vanilla ALBERT outperformed PABEE on370

most tasks and is comparable to PALBERT, while371

the latter has the higher score averaged across all372

tasks (see Macro column in Table 1).373

PABEE showed the highest increase in speed and374

is faster than vanilla ALBERT fine-tuning ×1.41375

times. PALBERT is still ×1.29 times faster than376

vanilla ALBERT, while also significantly outper-377

forming PABEE on most tasks.378

Note that for tasks with a small dataset (e.g.,379

CoLA, RTE), PABEE is performing poorly. We380

hypothesize that this is caused by several indepen-381

dent classifiers at each layer Ci failing to train well382

enough, whereas PALBERT was capable of utiliz-383

ing knowledge sharing between layers.384

Parameter Values range
Learning rate [1e-5, 2e-5, 3e-5, 5e-5]
Batch size [16, 32, 128]
Lambda learning rate [1e-5, 2e-5, 3e-5]
β [0.5]
λ [0.1]
Optimizer [Adam]
Classifier dropout [0.1]

Table 3: Hyperparameter search ranges used in all of
our experiments. Vanilla ALBERT and PABEE only
used batch size and learning rate parameters, while the
PonderNet model avoids finding the best Lambda layer
learning rate. Weight β of KL used in Equation 2 has a
fixed value of 0.5, while prior exit probability distribu-
tion parameter λ is fixed to 0.1 and following original
PonderNet (Banino et al., 2021).

5 Conclusion and Future Work 385

In this paper, we proposed improving the Ponder- 386

Net architecture in order to perform an early exit 387

using a fine-tuned ALBERT model with the novel 388

Q-exit criterion and a revisited Lambda layer ar- 389

chitecture. While PALBERT outperformed some 390

recent State-of-The-Art methods used for early exit, 391

there is a clear direction for further improvement of 392

this method, as it was not capable of outperforming 393

plain ALBERT on some GLUE tasks. 394

We believe that PALBERT could benefit from 395

the development of new parameterization of the 396

prior distribution on exiting from each layer since 397

it directly affects the resulting posterior distribution 398

used to perform an early exit (see Figure 2). 399

In addition, adding more auxiliary tasks could 400

also make it possible to improve PALBERT further. 401

This way, training of PALBERT can be made more 402
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PABEE-like by making independent classifiers on403

each layer of the model or adding self-distillation404

across layers.405

Finally, there is still no theoretical justification406

for the Q-exit threshold value. Although we ob-407

served that q = 0.5 performed best, it is without a408

clear explanation as to why that is so. We hypoth-409

esize that bringing more insights into developing410

deterministic exit criteria could further improve the411

proposed method.412
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