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ABSTRACT

Cropping high-resolution document images into multiple sub-images is the most
widely used approach for current Multimodal Large Language Models (MLLMs)
to do document understanding. Most of current document understanding meth-
ods preserve all tokens within sub-images and treat them equally. This neglects
their different informativeness and leads to a significant increase in the number
of image tokens. To perform a more adaptive and efficient document understand-
ing, we propose Token-level Correlation-guided Compression, a parameter-free
and plug-and-play methodology to optimize token processing. Firstly, we pro-
pose an innovative approach for assessing the pattern repetitiveness based on the
correlation between each patch tokens. This method identifies redundant tokens,
allowing for the determination of the sub-image’s information density. Secondly,
we present a token-level sampling method that efficiently captures the most infor-
mative tokens by delving into the correlation between the [CLS] token and patch
tokens. By integrating these strategies, we develop a plug-and-play Token-level
Correlation-guided Compressor module that can be seamlessly incorporated into
MLLMs utilizing cropping techniques. This module not only enhances the pro-
cessing speed during training and inference but also maintains comparable perfor-
mance. We conduct experiments with the representative document understanding
model mPLUG-DocOwl1.5 and the effectiveness is demonstrated through exten-
sive comparisons with other compression methods.

1 INTRODUCTION

Document understanding is a vital and complex task that combines computer vision with natural
language processing. The challenge arises from dealing with high-resolution document images with
diverse aspect ratios, and parsing sparse or dense text with varied formats such as graphic or table.
Recently, the rapid development of Multimodal Large Language Models (MLLMs) has demon-
strated significant capabilities in image comprehension and instruction following (Bati et al., |2023;
Dai et al.|[2024; [Liu et al., | 2024a3b; |Ye et al.| [2023c}; [2024} [Zhang et al., 2024a). Some work further
enhanced these models by incorporating high-resolution image processing and document parsing ca-
pabilities, leading to the development of sophisticated document understanding models (Feng et al.,
2023 [Hu et al.| 2024; [Liu et al., [2024c; Ye et al., [2023a:b).

Despite their impressive achievements, current MLLMs still struggle with efficient document un-
derstanding. As shown in Figure 1| (a), these models crop the original high-resolution image into
multiple non-overlapping low-resolution sub-images (Dong et al.,|2024; [Hu et al., 2024} [Liu et al.,
2024c}; [ Xu et al.l [2024; Ye et al.,|2023b). A large number of visual tokens are encoded by a vision
encoder from all sub-images, and then collectively fed into a Large Language Model (LLM). This
paradigm makes it hard for MLLMs to scale up to higher resolution documents as a dramatically
growing number of visual tokens have to be dealt with. This significantly hinders the scalability and
deteriorates the efficiency of current document understanding MLLMs.

To efficiently process high-resolution images, it is commonly believed that tokens within sub-images
have different degrees of informativeness (Kong et al.,|2022; |Liu et al.|[2024c; Zhang et al., 2024b),
allowing for the compression of sub-images. Therefore, instead of simply feeding all tokens into
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Figure 1: Comparison between (a) existing pipeline for cropping-based high-resolution processing
methods and (b) proposed method. We can adaptively retain informative tokens, making models
more efficient.

MLLMs, we could further delve into each sub-image and adaptively select the most informative
tokens, as shown in Figure|l| (b). This would significantly decrease the number of tokens and con-
tribute to a more efficient document understanding model. Based on the above idea, two challenges
arise: 1) how to adaptively determine the compression ratio for each sub-image, and 2) how to
design a adaptive compression strategy for sampling informative tokens.

To address these challenges, it is essential to measure the informativeness of each token. In this
paper, we try to leverage the correlation between tokens to reflect the relative degree of informative-
ness. Specifically, we propose a Token-level Correlation-guided Compression method and explore
the token-level correlations from two aspects, patch-patch and CLS-patch. 1) Using patch-patch
correlation to determine the compression ratio. We observe that some tokens within a sub-image
exhibit repeated patterns and can be regarded as relatively less informative. To identify such less
informative tokens, we investigate the patch-patch correlation to quantify the degree of the pattern
repetitiveness regarding each token, and define the information density of a sub-image by the pro-
portion of highly repetitive tokens. This information density could be subsequently utilized as the
cues to determine compression ratio for each sub-image. 2) Exploiting CLS-patch correlation to
sample tokens. The [CLS] token can aggregate and summarize descriptive global information of
an image when it exhibits a higher correlation with the informative patch tokens. Consequently, we
might detect and sample the most informative patch tokens based on the correlation between [CLS]
and patch tokens. Based on this idea, to effectively sample the most informative tokens, we analyze
the CLS-patch correlation and form a probability distribution to guide the sampling process.

Through the guidance of token-level correlation, we construct a plug-and-play high-resolution
Token-level Correlation-guided Compressor module. It can be applied as plug-and-play to high-
resolution MLLMs that use cropping methods, improving training and inference speed with slight
or even no performance loss. We conduct experiments with mPLUG-DocOwl11.5 (Hu et al., |2024),
which is a representative cropping-based model in document understanding. Experimental results
indicate that the proposed method can maintain comparable performance with DocOwl1.5 while
achieving a maximum compression ratio of 11.5%. Further extensive ablation experiments also
verify the effectiveness of the method. Our contributions are summarized as follows:

* We conduct an in-depth study of patch-patch correlation to quantify the pattern repetitiveness of
tokens and introduce the concept of information density of sub-image. Furthermore, we reveal
the distribution of informative tokens with the guidance of CLS-patch correlation and propose a
strategy to effectively sample informative tokens based on the distribution.

* We propose the Token-level Correlation-guided Adaptive Compression method. It aims to adap-
tively compress visual token according to the information density. This adaptation allows for more
efficient understanding of document with diverse types by fitting them into different lengths.

» Comprehensive experiments demonstrate that the proposed approach can significantly compress
image tokens while maintaining comparable performance. The proposed method achieve an av-
erage compression ratio of 66% across different datasets, with a maximum ratio of up to 11.5%,
significantly enhancing the model’s efficiency.

2 RELATED WORK

2.1 DOCUMENT UNDERSTANDING

To enable models to understand document images, a major challenge is the ability to process high-
resolution images. There are currently two main methods for processing: one is to use heuristic crop-
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Figure 2: The illustration of the proposed method. (a) The overall architecture. The Token-level
Correlation-guided Compressor is inserted between vision encoder and vision-to-text, which com-
prises two branches, (b) global information mining branch and (c) local information mining branch.

ping (Liu et al.,2024d; Luan et al., [ 2024; Wu & Xiel [2024} Zhang et al.,|2023)), and another is to crop
high-resolution image to a size that can be properly recognized by vision encoder. Pix2Struct (Lee
et al.| [2023) first proposes a variable-resolution input representation for document understanding.
While exhibiting promising ability in high-resolution perception, its language comprehension abil-
ity is much limited by the usage of a lightweight language decoder. And its vision encoder needs
to be trained from scratch, unable to utilize the existing pre-trained model. To draw these issues,
UReader (Ye et al., 2023b)) further proposes a shape-adaptive cropping module to crop raw images
into multiple non-overlapping sub-images with low-resolution that fit the size of pre-trained vision
encoder, and conducts initial exploration on fine-tuning document understanding tasks based on
MLLMs. Due to the strong high-resolution perception ability and language understanding ability
demonstrated by UReader, the cropping-based high-resolution processing method has been widely
adopted by subsequent works. For example, Monkey (Li et al., 2024) employs a sliding window
technique to crop image and TextMonkey (Liu et al., 2024c) further introduces a shifted window at-
tention mechanism to enable the interaction between different sub-images. mPLUG-Docowl1.5 (Hu
et al.| [2024) utilizes the same shape-adaptive cropping module as UReader and strengthens the doc-
ument understanding ability by unified structure learning, achieving state-of-the-art performance.
Despite their robust capabilities for document understanding, these models remain significantly in-
efficient. We propose token-level correlation-guided compression to enhance the efficiency of doc-
ument understanding in MLLM:s.

2.2 TOKEN COMPRESSION

Introducing high-resolution images into MLLM will significantly increase the number of visual to-
kens, necessitating methods to reduce the length of visual token sequences for efficient training and
inference. Most existing works choose to use vision-to-text modules with compression capabilities,
including using learnable queries along with cross attention mechanism (Bai et al., 2023} |Dai et al.,
2024; Liu et al., [2024c} |Ye et al., [2023bjcf [2024), convolutional layer with strides (Hu et al., 2024;
Lu et al., |2024), or simply concatenate the adjacent tokens into a single new token via the channel
dimension (Dong et al.,[2024). Although these methods demonstrate promising token compression
ability, when it comes to cropping-based high-resolution MLLMs, they are still not efficient due
to the different informativeness of different tokens. Previous studies have explored the token com-
pression for efficient transformer processing within the fields of natural language processing (Goyal
et al.| 2020; Kim & Chol 2021} [Kim et al.| [2022; [Lassance et al.||2021)) and computer vision (Meng
et al., |2022; Rao et al., 2021} |Song et al. 2022} Yin et al., 2022} [Yu & Wul [2023) independently.
However, to our knowledge, investigations into token compression in the multimodal domain remain
relatively limited. Concurrently, [Shang et al.| (2024) propose a PruMerge algorithm to adaptively
select unpruned visual tokens based on their similarity to class tokens and spatial tokens. TextMon-
key (L1u et al.,2024c)) has proposed a Token Filter module that retains the most unique visual tokens
for compression. However, they do not thoroughly consider token-level correlations from different
perspectives, which limits their ability to adaptively compress visual tokens for diverse data types
and their capacity to maintain performance.
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Figure 3: Visualization of token similarity. We select tokens corresponding to visually repetitive
patches and visualize the similarity between the selected tokens and others. It can be observed that
visually repetitive patches exhibit a high degree of similarity between their corresponding tokens.

3 PROPOSED METHOD

The overall architecture of the proposed method is presented in Figure 2] Following previous
works (Hu et al} 2024} [Liu et al [2024¢}, [Ye et all, 2023b)), the model begins by cropping high-
resolution input image into multiple non-overlapping sub-images that fit the pre-training size of
vision encoder. All sub-images along with the resized global image are fed into the vision encoder
to get visual tokens. In previous methods, the visual token sequences are aligned with text inputs via
a vision-to-text module. Then all of them would be concatenated with text tokens and collectively
fed into LLM for processing, which is extremely inefficient in the face of high-resolution docu-
ment images. In this work, we introduce Token-level Correlation-guided Compressor module to
adaptively compress visual tokens. The Token-level Correlation-guided Compressor first uses an in-
formation density calculation module to adaptively decide the compression ratio of each sub-image,
which will be discussed in section 3.1} After that, this module utilizes a correlation-guided token
sampling method to sample the most informative tokens, which will be discussed in section[3.2} The
workflow of Token-level Correlation-guided Compressor module will be detailed in section|[3.3]

3.1 PATCH-PATCH CORRELATION-GUIDED INFORMATION DENSITY CALCULATION

Document images often contain large areas of whitespace and color blocks, which visually present
repetitive patterns and can be considered relatively less informative and redundant for understanding
the image. To determine an appropriate compression ratio for a sub-image, it is necessary to identify
the redundant areas and reflect the proportion of unique regions within the image.

Since patch tokens typically contain local information within the image, we believe that the patch
tokens corresponding to visually repetitive patches are highly correlated. This inspires us to explore
patch-patch correlation for identifying redundant tokens. Specifically, we utilize the keys vectors
from attention layers in CLIP to represent each token, denoted as K € RN*Dk where N represents
the number of visual tokens in a image and Dy, represents the dimension. We then calculate the
cosine similarity between pairs of tokens (Bolya et al.,[2022) by the following formula:

K;K;
[alire
As shown in Figure[3] it can be observed that the tokens corresponding to visually repetitive patches

in the image have many highly similar counterparts, which verifies our hypothesis. This finding
enables the differentiation between redundant patch tokens from others.

Based on this finding, we design a method to adaptively calculate the proportion of non-redundant
tokens in a sub-image, termed information density. Specifically, we calculate the cosine similarity
between pairwise tokens S € RY*N using Equation For a given token, if the number of tokens
with a similarity greater than the threshold « exceeds an upper limit %, it will be regarded as redun-
dant. We calculate the proportion of redundant tokens in the sub-image to the total number of tokens
as the information redundancy, noted as r, and d = 1 — r represents the information density. Fi-
nally, we treat the information density as the compression ratio of each sub-image. The patch-patch
correlation-guided information density calculation is detailed in Algorithm [T}

3.2 CLS-PATCH CORRELATION-GUIDED INFORMATIVE TOKEN SAMPLING

In CLIP-ViT (Radford et al.} 2021), a special [CLS] token is introduced to aggregate information
from each patch token, creating a representation of the entire image. Consequently, there should be
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Figure 4: Visualization of the attention maps between the [CLS] token and patch tokens across
different layers of CLIP-ViT-L. (a) Original input image. (b) The attention maps from layers 1 to
12. (c) The attention maps from layers 13 to 24.

a higher correlation between the [CLS] token and the informative tokens. This aggregation process
is achieved through the self-attention mechanism, which can be formulated as:

QK"
VDy,

where value V€ RVN*P+ query and key Q, K € RN*P* are three individual vectors projected

T
from the visual tokens Y € RV*P . The attention map A = Softmax(?/%) € RV*N serves as a
weight matrix for aggregating information from other tokens, thus inherently indicating the extent of
correlation between tokens. To measure the informativeness of each token, we interpret the attention
scores between [CLS] token and patch tokens as a quantification of the relative informativeness of

patch tokens, with higher scores indicating that a patch token is relatively more informative.

Self-Attention(Q, K, V') = Softmax(

W 2)

To unveil the underlying patterns of the CLS-patch correlation presented by the self-attention mech-
anism, we conduct an in-depth study of the attention maps across different layers of CLIP-ViT. As
shown in Figure ] the low layer attention maps highlight the visually informative regions in the
image, aligning with the consensus that patch tokens hold local information. Nevertheless, the at-
tentions in deep layers exhibit several irregular outliers. This phenomenon can be attributed to the
model’s tendency to gradually integrate image information at multiple locations, facilitating the ag-
gregation of global information into the [CLS] token. As suggested by |Darcet et al.|(2023)), the
outlier can be considered to hold global information while containing minimal local information.
These distribution patterns of CLS-patch correlation in both deep and low layers inspire a poten-
tial approach to identify tokens that contain both global and local information. More visualization
results can be found in Appendix[A.3.1]

Algorithm 1: Information Density Calculation

Data: Key matrix of attention from CLIP-ViT, K € R™V*P_ Threshold of similarity, c.. Upper
limit of similarity tokens k. The number of tokens /N. The dimension of embeddings D.

Result: The information density d of the sub-image.

Normalize each key vector of attention: K; < Hllg—qu,z =1,2,---,N

Calculate the similarity between pairwise tokens: S = KKT € RNXN
Initialize the number of redundant tokens with: N < 0.
fori =11t N do
n<+0
for j =1t0 N do
if Si,j > « then
| n<n+1
end
end
if n > k then
‘ Nr <+ Nrp+1
end

end

Calculate information redundancy: r = Y&

=&, and information density: d =1 —r
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To effectively sample informative tokens from sub-images, we design methods that respectively
sample tokens with the guidance of CLS-patch correlation from both deep and low layers. Lever-
aging the CLS-patch correlation from deep layers, we adopt the Interquartile Range (IQR) method
to distinguish outliers (Boukerche et al.,|2020) for preserving informative tokens with global infor-
mation. Specifically, IQR calculates the first quartile (Q1) and the third quartile (Q3) in a set of
numbers. It considers values that are 1.5 times the IQR above Q3 as upper outliers and values that
are 1.5 times the IQR below Q1 as lower outliers. As a typical outlier recognition method, IQR can
adapt well to different data distributions and determine an adaptive number of outliers. We preserve
tokens identified as upper outliers, thereby retaining informative tokens with global information.

To further preserve informative tokens with local information, we quantify the relative informative-
ness of different tokens through the attention map from low layer. Since the attention map only
displays relative relationships, directly setting a threshold is not feasible. Instead, we treat the at-
tention score as the probability of sampling each token and perform sampling without replacement.
This method ensures that more informative tokens are more likely to be selected.

3.3 TOKEN-LEVEL CORRELATION-GUIDED COMPRESSION

We propose a plug-and-play Token-level Correlation-guided Compressor module by integrating the
information density calculation and informative tokens sampling. As shown in Figure 2] the module
consists of two parallel branches, the global token mining branch and the local token mining branch.
The global token mining branch focuses on selecting and preserving tokens that contain global
information. It utilizes the CLS-patch correlation in the deep layers of CLIP-ViT to adaptively retain
an appropriate number of tokens through IQR. Meanwhile, the local token mining branch aims to
sample tokens that hold local information. To determine the sampling ratio adaptively, we calculate
the information density of the sub-image with the guidance of patch-patch correlation and use it as
the sampling ratio. To effectively sample the most informative tokens, the CLS-patch correlation
in the low layers of CLIP-ViT is leveraged to form the sampling distribution. Consequently, tokens
are sampled without replacement based on the token-level correlation-guided sampling ratio and
distribution. All sampled tokens are then concatenated as the preserved tokens.

Algorithm 2: Token-level Correlation-guided Compression

Data: The output visual tokens from the last layer, selected deep layer and low layer of
CLIP-ViT, Y, Yy, Y, € RN*P N is the number of visual tokens and D is dimension.

Result: Compressed visual tokens Y’ € R"*P_ where n < N.

(Preliminary) Calucate attention key, query matrix and attention map of selected deep layer
Qa, K4, Ag, and selected low layer Q;, K;, A;

(Global info mining) Adaptively select s token indices I = {i1,--- ,is} using the IQR
algorithm based on Ay.

(Local info mining) Calucate information density d using K;.

(Local info mining) Use A; as the probability distribution and perform sampling without

replacement, obtaining d’ = |d x N | tokens indices J = {j1, -+, ja }-
(Aggregation) Merge I and J, remove duplicates and sort, resulting L = {l,--- ,1,,}.
(Aggregation) for [ in L do
Calculate the distance between selected token y; and other tokens y(1,...x} /15
Use k-nearest neighbor algorithm to find & similar tokens, with indices P = {p1, -, pr };
Update y; by weighted sum: y; = >°  p Adp - Yp.
end

To prevent the unintended discarding of important information, we adopted a token aggregation
method as an alternative to directly discarding unsampled tokens (Bolya et al |2022; [Marin et al.,
2021). Specifically, this method utilizes keys of attention to calculate the similarity between tokens
as a distance metric. Each sampled token is grouped with other tokens using k-nearest neighbors.
Then the representations of each group are updated through a weighted sum, with attention scores
serving as the weights. A similar approach has also been employed by [Shang et al.| (2024). Fi-
nally, the aggregated tokens are fed into the vision-to-text module and LLM as a compressed input.
Specifically, to keep the overall information of the image, we do not compress the global image. The
complete procedure of the Token-level Correlation-guided Compression is detailed in Algorithm
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Table 1: Comparison with existing document understanding models. The scores marked with an
underline represent the state-of-the-art (SOTA) performance. Although the proposed method ex-
hibits a slight degradation compared to the SOTA, it achieves an average compression rate of 66%
across various datasets, enhancing efficiency significantly. * The methods of PruMerge, PruMerge+
and Token Filter are both tested with DocOwl1.5 in plug-and-play mode.  We replace the global
and local information mining modules in our proposed method with the Token Filter module from
TextMonkey and the compression ratio is set to 50%.

Doc Info Deep Tab Chart Text Text Visual

Model VQA VQA Form KM€ WTQ gci oA VQA Caps MRC

\ Without compression

DocPeida (Feng et al.,[2023) 47.1 152 - - - - 469 602 - -
Monkey (L1 et al.|[2024) 66.5 36.1 40.6 32.8 253 - - 67.6 932 -
DocOwl (Hu et al., [2024) 62.2 38.2 42.6 30.3 269 60.2 574 526 111.9 188.8
UReader (Ye et al.| 2023b) 654 422 495 32.8 294 67.6 59.3 57.6 1184 221.7

CogAgent (Hong et al.,[2024) |81.6 445 - - - - 684 76.1 - -

TextMonkey (Liu et al., 2024c) |71.5 - 61.6 37.8 306 - 655 68.0 - -
DocOwl11.5 (Hu et al.| 2024) 81.6 504 68.8 379 39.8 80.4 70.5 68.8 132.0 239.5

| Compression without considering token-level correlation

*Prumerge (Shang et al.,[2024) | 53.6 29.6 9.3 28.3 23.7 71.4 558 60.0 120.7 125.9
*Prumerge+ (Shang et al., [2024) | 55.0 33.2 26.7 30.8 24.6 709 58.3 62.3 124.8 185.0

*#+Token Filter (Liu et al|; 2024c)1] 69.9 41.7 52.9 358 30.5 72.5 65.1 - - 2099
\ Adaptive Compression guided by token-level correlation

Ours (plug-and-play) 72.6 49.6 632 34.6 352 752 64.0 68.0 132.1 254.3
Ours (finetuning) 78.3 50.2 65.7 359 38.6 79.3 68.9 66.6 1259 243.7

Through the token-level correlation-guided compression, all sub-images are compressed into differ-
ent lengths adaptively. The method maximally retains information while concurrently minimizing
the number of visual tokens for all sub-images, thus significantly enhancing model efficiency. We
would like to emphasize the distinction between the proposed method and the Token Filter intro-
duced by TextMonkey |Liu et al| (2024c). While the Token Filter relies on similarity to identify
tokens for pruning, requiring manual specification of how many tokens to remove, the proposed
method uses similarity to assess information density, allowing for an adaptive determination of the
compression ratio. Additionally, the Token Filter assumes that tokens with similar counterparts carry
less information and prunes them directly. In contrast, the proposed approach focuses on mining in-
formative tokens based on the CLS-patch correlation. Experimental results in Section [4.1|highlight
the superiority of the proposed method.

4 EXPERIMENTS

We conduct experiments with mPLUG-DocOwl1.5 (Hu et al. [2024). For more implementation
details, please refer to Appendix[A.T]

4.1 EXPERIMENTAL RESULTS

We evaluate the proposed method on 10 datasets with diverse types, including text-rich datasets like
DocVQA (Mathew et al.} 2021), InfoVQA (Mathew et al., |2022), DeepForm (Svetlichnaya, |2020),
KLC (Stanistawek et al.l [2021), table datasets like WTQ (Pasupat & Liang} 2015)), TabFact (Chen
et al.,[2019)), chart datasets like chartQA (Masry et al., 2022), natural datasets like TextVQA (Singh
et al.,2019), TextCaps (Sidorov et al.,|2020), and webpage screenshots dataset VisualMRC (Tanaka
et al., 2021). The results are compared with previous OCR-free methods (Feng et al., 2023} |Hong
et al.l 2024} [Li et al.| 2024} [Liu et al., |2024c} |Ye et al.l [2023aib) and other token compression
methods (Shang et al., [2024; |Liu et al.| 2024c).

"Due to the official evaluation portals for TextVQA and TextCaps Challenges being unavailable at the time
of writing, we are unable to provide the results for Token Filter.
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Figure 5: Boxplot visualization of the compression ratio achieved by different compression methods
across various datasets. The median numbers is presented adjacent to the boxes.

Table 2: We conducted an experiment to estimate the inference speed improvement of DocOwl1.5
after incorporating our method. 100 samples are randomly selected from each dataset and the total
inference time is recorded. On average, the speed has improved by 13.0%.

Dataset ‘DOCVQA InfoVQA Deepform KLC ChartQA VisualMRC
Docowl-1.5 77.04s  57.56s  95.24s 94.27s 58.20s 124.53s
Ours 66.88s  52.21s  87.82s 79.03s 44.78s 113.79s

Speed Improvement 1| 13.2% 9.3% 78% 16.2% 23.1% 8.6%

As shown in Table[T] our method performs better than many previous OCR-free methods. Compared
to the baseline model DocOwl11.5, the proposed method achieves comparable performance in plug-
and-play mode, with an average compression ratio of 66%. In contrast, PruMerge, PruMerge+
algorithm (Shang et al., 2024) and Token Filter module from TextMonkey (Liu et al., 2024c) result
in significant performance degradation.

We further investigate the token compression ratio of different adaptive compression methods on
various datasets. Each cropped sub-image is treated as an individual sample, and we calculate
the compression ratio for all sub-images. Here, the compression ratio is defined as the number
of tokens after compression divided by the original number of tokens. A lower compression ratio
indicates a more effective compression. As shown in Figure [5] and Figure [6] on different datasets,
the compression ratios resulted from PruMerge and PruMerge+ (Shang et al., 2024)) algorithms
remain within a relatively fixed interval, while the proposed method exhibits significantly different
compression ratios on different datasets. This result demonstrates that the proposed method can
adaptively recognize the information distribution patterns of different datasets and identify the most
appropriate compression ratio. More results on different datasets can be found at Appendix [A.2.2]
As a summary, the proposed method achieves an average compression ratio of 66% across different
datasets, with a maximum ratio of up to 11.5%, significantly enhancing the model’s efficiency.

To validate the acceleration effects of the proposed method in practical applications, we conduct
experiments to assess the speed improvement. As shown in Table |2} after integrating the proposed
method, Docowl 1.5 Hu et al.|(2024) achieves an average inference speed increase of 13% across
different datasets. The acceleration effects varied among the datasets, further demonstrating the
adaptive compression capability of the proposed method for different data distributions. Note that by
adjusting the hyperparameters « and k, the acceleration effects can be further enhanced, as detailed
in the ablation results in Appendix[A.2.4]

4.2 ABLATION STUDY

We perform a comprehensive ablation study to validate the effectiveness of CLS-patch correlation-
guided token sampling, information density-based sampling ratio and global/local information min-
ing. These experiments are conducted in plug-and-play mode for comparison.

Effectiveness of CLS-patch correlation-guided token sampling. For the sampling strategy in
local information mining, we compare the CLS-patch correlation-guided sampling with uniform and
random sampling under the same sampling ratio. As shown in Table[3] the token correlation-guided
sampling significantly outperforms both uniform and random sampling.
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Figure 6: Histogram visualization of the compression ratio achieved by different compression meth-
ods across various datasets.
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Figure 7: Comparisons between our adaptive compression ratio and fixed compression ratios. We
set the sampling ratio at multiple fixed values and tested these on various datasets. Despite the higher
average compression ratios resulted by fixed ratios, the evaluation scores are unable to surpass those
of our adaptive compression method.

Table 3: Comparison between different methods Table 4: Effectiveness of the global and local in-

in local information mining branch. formation mining branch.

Sampline Method Deep Doc  Visual Global Info Local Info | Deep Doc Visual
plng Form VQA MRC Mining Mining |Form VQA MRC
Random 55.8  69.1 2454 X v 61.0 71.7 2497
Uniform 56.6 700 248.8 v X 93 536 1259

Ours | 632 72.6 2543 v v | 63.2 72.6 2543

Effectiveness of information density calculation. We also conduct another set of experiments to
verify the effectiveness of our adaptive sampling ratio. We set a group of fixed sampling ratios of %,
% and % in local information mining for comparison. As shown in Fi gure for a fixed sampling ratio
setting, even though the fixed sampling ratio settings retain more tokens on average, its performance

still cannot surpass our adaptive sampling ratio method.

Effectiveness of global and local information mining. In Table[d we conduct ablation experiments
on two modules: global information mining and local information mining. As shown in table [4]
simply removing any part here will result in performance degradation.

In order to validate that attention maps from low layers of CLIP-ViT can effectively guide the sam-
pling of informative tokens, we conduct experiments to examine the selection of attention maps from
different layers in local information mining. The results can be found in Appendix[A.2.3]

Furthermore, we conduct experiments to analyze the impact of adjusting the hyperparameters «
and k in the calculation of information density. The results are provided in Appendix [A.2.4] In
summary, by adjusting « and k, the proposed method can further enhance efficiency through more
intense compression or better maintain performance by retaining more tokens, thereby achieving a
desired balance between efficiency and performance.

4.3 VISUALIZATION

To intuitively verify the effectiveness of the proposed method, we conduct several visualization ex-
periments. We first visualize the redundant tokens identified during information density calculation.
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As shown in Figure |§|, the unmasked areas indicate the locations of identified redundant tokens,
which are all concentrated in the visually repetitive regions. These results validate the effectiveness
of our information density calculation method. Simultaneously, the calculated information density
accurately reflects the relative degree of informativeness of different sub-images, thereby demon-
strating the effectiveness of our adaptive compression capability. More visualization results of the
information density calculation on different datasets can be found at Appendix[A.3.2]

We also visualize the tokens sampling results achieved by the CLS-patch correlation-guided sam-
pling method. Several samples with different distribution patterns are selected to verify the effec-
tiveness of our method. In Figure 0] it can be observed that tokens sampled by local information
mining are mainly concentrated in the area of informative areas, which verifies the effectiveness of
our method. More results can be found at Appendix[3.3.3]

|10 081 | DS o.55] [0.31 ] 0%

Figure 8: Visualization of redundant patch tokens. We visualize the redundant tokens identified
during the information density calculation, as represented by the unmasked areas. The calculated
information density is highlighted at the bottom right of each sub-image. It can be observed that the
identified redundant tokens are concentrated in the parts that visually present repetitive patterns.
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Figure 9: Visualization of selected token. The blue parts represent the tokens preserved by global
information mining, while the orange parts represent the sampled tokens in local information mining.

5 CONCLUSION

In this paper, we present a token-level correlation-guided compression method to enhance document
understanding efficiency in MLLMs. Experimental results show significant token sequence length
reduction while maintaining performance comparability. The proposed method still has some lim-
itations, including the necessity for fine-tuning the model to minimize the performance disparity
with the base model. Additionally, a deterministic sampling method can be more robust to diverse
applications. We hope to address these issues in future work.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We conduct experiments with the mPLUG-DocOwl1.5 model (Hu et al.| [2024), which utilizes the
CLIP-ViT/L-14 (Radford et al., 2021) as the vision encoder and 7B LLaMA-2 model (Touvron
et al.l 2023)) with the Modality Adaptive Module (Ye et al.l 2024) as the language decoder. We
keep the adaptive cropping method in mPLUG-DocOwl1.5 with a fixed resolution of 448x448.
The similarity threshold « and upper limit & in information density calculation is set to 0.7 and 50,
respectively. We choose the last layer and the eighth layer to guide global and local information
mining. Note that our method is a parameter-free token compression method. Thus we mainly
conduct our experiment in the plug-and-play manner. We also further finetune mPLUG-Docowl.5
with our method using LoRA (Hu et al.,|2021) and DocDownstream dataset (Hu et al., 2024) for 1
epoch. The initial learning rate for fine-tuning is set to le-4, with a batch size of 256. The vision-
to-text module is frozen, and only the LoRA parameters are trained. We conduct experiments on a
server equipped with four Nvidia A800 GPUs, each with 80GB of VRAM.

A.2 MORE QUANTITATIVE EXPERIMENTS

A.2.1 STATISTICAL SIGNIFICANCE ANALYSIS

To mitigate the impact of randomness introduced by the sampling used in the proposed method,
we conducted three repeated experiments across multiple datasets. As shown in Table [3] the ran-
dom errors introduced by sampling are minimal. Even accounting for these errors, the method still
demonstrates significant superiority over PruMerge and PruMerge+ (Shang et al., 2024)).

Table 5: Replicate experiments for mitigating the impact of sampling.

Experiment | DeepForm KLC WTQ ChartQA
PruMerge 9.33 28.25 23.67 55.84
PruMerge+ 26.72 30.84 24.55 58.28

Ours | 62.80+0.29 34.54+0.02 35.32+£0.17 64.38+0.39

A.2.2 COMPARISON TO THE COMPRESSION RATIO

In this section, we present more results of the statistically adaptive compression ratio across addi-
tional datasets. As shown in Figure [T1] and Figure [T2] the PruMerge and PruMerge+ algorithms
maintain relatively fixed compression ratios across various datasets. In contrast, our method adapts
the compression rate based on the distribution pattern of the data, resulting in significant variations
across different datasets.
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A.2.3 ABLATION OF LAYER SELECTION

To demonstrate that attention maps from low layers of CLIP-ViT can effectively guide the sampling
of informative tokens, we conduct experiments to evaluate the use of attention maps from different
layers in local information mining. Specifically, for low layers, we select layers 4 and 8, and for
deep layers, we select the 16th and 24th layers. As shown in Table[6] the performance of selecting
attention maps from the 4th and 8th layers outperforms that of the 16th and 24th layers, demonstrat-
ing that low layer attention maps more accurately measure the distribution of informative tokens
containing local information. Additionally, the superior performance of the 8th layer compared to
the 4th suggests that shallower layers are not always better. This may be due to the inability of
tokens in the very shallow layers to form descriptive representations. Moreover, the performance
drops significantly when selecting the 24th layer compared to the 20th layer, further indicating that
deep layers tend to describe the distribution of tokens with global information.

Table 6: Comparisons of choosing different layers to guide local information mining

Layer | DeepForm  DocVQA  VisualMRC

4 61.6 71.5 251.7
16 60.9 70.9 250.8
24 529 66.8 247.0
8 | 63.2 72.6 254.3

A.2.4 ABLATION OF HYPERPARAMETERS

We provide the ablation results of hyperparameters « and k in Figure In the proposed method,
the average compression ratio can be controlled by adjusting the o and k. Generally, preserving
more tokens lead to greater accuracy. This means that by adjusting « and k&, a desired balance
between efficiency and accuracy can be achieved.

DocVQA DeepForm VisualMRC

alpha=0.5, k=50
@ alpha=0.7, k=25
® alpha=0.7, k=50

alpha=0.7, k=75
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alpha=0.5, k=50
e alpha=0.7, k=25
@ alpha=0.7, k=50

alpha=0.7, k=75
e alpha=0.8, k=50

03 0s s o6 o o8 09 03 o os [ o7 o8 o3

o 7 04 s 06 07
Compression Ratio Compression Ratio Compression Ratio

Figure 10: The ablation study of hyperparameters « and k. The red dots represent the settings we
used in our paper.

A.3 MORE VISUALIZATION RESULTS

A.3.1 ATTENTION MAPS ACROSS DIFFERENT LAYERS OF CLIP-VIT
We show more visualization results of attention maps across different datasets, including various
types of tables, text-rich, and charts. As depicted in Figure [I3] the attention maps generated by

CLIP-ViT exhibit the same distribution patterns in various types of data, which further corroborates
our findings.

A.3.2 REDUNDANT PATCH TOKEN VISUALIZATION

In this section, we will present more visualization results about redundant patch tokens. As shown in
Figure[14] the information density calculated by our method is consistent with the visual perception.
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Figure 11: Boxplot visualization of the compression ratio achieved by different compression meth-

ods across additional datasets. The median numbers is presented adjacent to the boxes.
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Figure 12: Histogram visualization of the compression ratio achieved by different compression

methods across additional datasets.
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A.3.3 SELECTED INFORMATIVE TOKENS VISUALIZATION

In Figure T3] there are more results regarding the informative tokens selected with the guidance of
CLS-patch correlation.
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Figure 15: More visualizations of CLS-patch correlation-based token selection across various
datasets with different distributions.

B BROADER IMPACT AND POTENTIAL RISK

Our approach employs readily available Multimodal Large Language Models (MLLMs), which
means it shares some of their limitations, including the production of biased results. We recom-
mend thoroughly evaluating its safety and fairness for the intended use before applying this method
in practice.
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