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Abstract

With the rapid advancement of generative AI (GenAI), mechanism design adapted to its
unique characteristics poses new theoretical and practical challenges. Unlike traditional
goods, content from one domain can enhance the training and performance of GenAI mod-
els in other domains. For example, OpenAI’s video generation model Sora (Liu et al.,
2024b) relies heavily on image data to improve video generation quality. In this work,
we study nonlinear procurement mechanism design under data transferability, where online
platforms employ both human creators and GenAI to satisfy cross-domain content demand.
We propose optimal mechanisms that maximize either platform revenue or social welfare and
identify the specific properties of GenAI that make such high-dimensional design problems
tractable. Our analysis further reveals which domains face stronger competitive pressure
and which tend to experience overproduction. Moreover, the growing role of data interme-
diaries, including labeling companies such as Scale AI and creator organizations such as The
Wall Street Journal, introduces a third layer into the traditional platform–creator structure.
We show that this three-layer market can result in a lose-lose outcome, reducing both plat-
form revenue and social welfare, as large pre-signed contracts distort creators’ incentives
and lead to inefficiencies in the data market. These findings suggest a need for government
regulation of the GenAI data ecosystem, and our theoretical insights are further supported
by numerical simulations.

1 Introduction

Large models have entered the era of multimodality (Yin et al., 2023). Modern commercial systems such as
GPT-4 (Achiam et al., 2023), Gemini (Team et al., 2023), and Claude (Anthropic, 2024) are trained on diverse
types of data, including text, images, audio, and video. These modalities are not isolated; transferability
among them is well established both theoretically and empirically through transfer learning (Howard &
Ruder, 2018). Just as film directors may draw inspiration from Shakespeare’s works, image datasets can
enhance the performance of video generation models. This interdependence links the valuation of data across
domains into a unified economic problem and naturally raises the question:

How do we price content across different domains?

The answer depends on the degree of transferability, a feature absent from traditional goods. Bricks, for
instance, can only build houses but not chips, while data can improve the performance of models across
tasks. Data with high transferability should therefore command a higher price, whereas specialized data
that benefits only a single task should be valued lower. In this paper, we incorporate parameters capturing
data transferability into a formal production model to analyze how this property shapes market outcomes.

The transferability of data also raises important ethical concerns. Recent debates have centered on whether
GenAI will cause certain professions to vanish, alongside growing discussions on the implications of artificial
general intelligence (George et al., 2023). We want to ask:

From an economic perspective, will any domains disappear?
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In Section 2.2, we show that although GenAI may reduce employment in some domains, it cannot completely
replace them. This result follows from the principles of diminishing marginal returns and increasing marginal
costs. Moreover, in domains with high data transferability, we observe a tendency toward overproduction,
which distorts the allocation of creative effort. Such imbalances highlight the need for regulatory oversight
and further research on how GenAI reshapes data generation markets.

The growing demand for data to train large models has driven many AI companies to purchase high-quality
datasets. For example, OpenAI reportedly spent about $250 million acquiring data from The Wall Street
Journal (WSJ, 2024). Industry forecasts further predict that the global generative AI market for content
creation will expand from USD 15.2 billion in 2024 to USD 175.3 billion by 2033 (Market.us, 2024). This
surge in data demand can be traced back to the creation of ImageNet (Deng et al., 2009), which catalyzed the
modern data economy. The emergence of specialized data annotation companies such as Scale AI, Lionbridge,
Aurora AI, and Amazon Mechanical Turk has since transformed the landscape, pushing the market from
a two-layer structure toward a three-layer structure that includes professional data brokers. This evolution
raises a key question:

How does the three-layer market impact revenue and social welfare?

In Section 3, we examine two types of platforms—those that maximize revenue and those that maximize
social welfare—and show that in the three-layer market, both platform revenue and social welfare decline
relative to the two-layer setting, resulting in a clear lose-lose outcome. The presence of data brokers distorts
creators’ incentives and reduces overall efficiency, highlighting the need for regulatory oversight to address
inefficiencies in the data market.

1.1 Our Contributions

We summarize our contributions in three main aspects and elaborate on each below.

Mechanism design with competition between humans and generative AI. Recent studies have
begun examining market equilibria that arise from competition between AI content generators and human
creators (Yao et al., 2024). Our work is the first to approach this problem from the buyer’s perspective.
We study online sharing platforms that rely on both human creators and GenAI for content production,
situating the analysis within the broader framework of procurement mechanism design. Going beyond the
classical single-dimensional setting (Myerson, 1981), we derive optimal mechanisms for five of six multi-
dimensional environments and establish tight upper and lower bounds for revenue and social welfare in
the remaining case. Our results show that although GenAI reduces the overall demand for human-created
content, human creators remain indispensable from an economic standpoint. Their outputs not only satisfy
subscriber preferences but also provide essential data for GenAI training. Furthermore, in domains with high
data transferability, we find that overproduction is more likely to occur, reflecting the complex interactions
between human and algorithmic production incentives.

Distinguishing between two/three-layer markets regarding data brokers. Finding an efficient
market structure has been a long-standing goal in digital economics (Liang et al., 2018; Agarwal et al.,
2019). For online platforms, a central question is whether to buy content directly from human creators as
crowdsourcing, or through data companies. Our analysis shows that the latter, a three-layer market where
the platform purchases data from a broker who sources it from humans, leads to a lose-lose outcome: both
platform revenue and social welfare decline. The inefficiency stems from asymmetric information. Large,
transparent contracts reveal the platform’s and broker’s valuations to creators, making price discrimination
impossible and weakening incentives for efficient production. As a result, both welfare and revenue fall,
underscoring the need for policy intervention.

Numerical experiments validate the conclusions about market dynamics. Finally, we validate our
theoretical results using simulated data. In the two-layer market, the experiments reveal content overproduc-
tion in specific domains. We also compare platform revenue and social welfare across the two- and three-layer
settings, illustrating the “lose-lose” outcome in the latter. These numerical experiments offer valuable inspi-
ration and insights for future real-world mechanism design and implementation using real data.
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1.2 Related Works

Our work is closely related to the literature on procurement mechanism design (Myerson, 1981; McAfee &
McMillan, 1987; Laffont & Tirole, 1993), data pricing (Jia et al., 2019; Ghorbani & Zou, 2019; Schoch et al.,
2022; Ai et al., 2024), human vs. GenAI competition (Esmaeili et al., 2024; Yao et al., 2024; Fish et al., 2024;
Duetting et al., 2024) and multi-layer markets (Fallah et al., 2024; Xu et al., 2020). We generalize physical
goods procurement to transferable digital content and analyze the ensuing human–GenAI competition across
multi-layer markets. A thorough comparison and additional related work are provided in Appendix A.1.

2 Content Procurement in (Two-Layer) Platform-Creator Markets

We begin with the two-layer market, in which online platforms procure content directly from human creators.
For example, platforms such as YouTube invite creators to upload content in exchange for monetary rewards,
providing a representative case of this market structure.

2.1 A Model of Content Procurement in the GenAI Era

An online platform features K domains (e.g., sports, pop music, knowledge sharing), denoted by [K] =
1, 2, . . . , K. To serve its user base, the platform requires dk ∈ R units of content in each domain k ∈ [K],
produced by human creators and/or GenAIs. We assume that each human creator specializes in a single
domain1. For instance, Dream has attracted over 30 million YouTube subscribers through Minecraft challenge
videos. For analytical convenience, each domain k is represented by a single creator who incurs a cost ckxρk

k

to produce xk units of content, following standard models of the creator economy (Hu et al., 2023; Jagadeesan
et al., 2024; Yao et al., 2024). We interpret xk as a calibrated quantity, meaning that production is weighted
by quality metrics such as click-through rate or content accuracy (Radlinski et al., 2008). The parameter ck

captures the creator’s production efficiency, which is private information, while ρk reflects the population-
level growth speed of the production cost and is assumed to be publicly known, as it can be inferred from
market data. This representative-creator assumption is without loss of generality: when multiple creators
exist in the same domain with heterogeneous cost parameters ck, they can be aggregated into a single “meta”
creator with an effective cost coefficient ck (see Appendix C.4 for details). Consistent with prior work, we
assume ρk ≥ 1 to reflect increasing marginal costs (Marshall, 2009). This captures the empirical observation
that creative ideas become progressively harder to generate over given time, resulting in a convex production
cost function.

Figure 1: @mkbhd focuses on tech reviews, and @markiplier is dedicated to gaming content, especially
horror-themed Let’s Plays.

To meet its demand requirements (d1, . . . , dK), the platform (e.g., a video-sharing site such as YouTube)
asks human creators to report their private cost parameters c = (c1, . . . , cK). To account for possible
misreporting, let ĉ = (ĉ1, . . . , ĉK) denote the reported costs. The mechanism then proceeds according to the
standard timeline in mechanism design (Hart & Tirole, 1988; Salant, 1989):

1Although some creators may produce content across domains, most major creators focus on one area in practice; see Figure 1
for examples.
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1. The platform commits to a mechanism x(·) and p(·);
2. The creators’ costs ĉ are then elicited;
3. The platform implements “allocation outcomes” x(ĉ) = (x1(ĉ), ..., xK(ĉ)) by procuring xk(ĉ) amount

of domain-k content from creator k for each k;
4. The payments p(ĉ) = (p1(ĉ), ..., pK(ĉ)) is then executed by paying pk(ĉ) to creator k.

While procurement auctions have been extensively studied in prior work (Laffont & Tirole, 1993), our setting
differs by incorporating the platform’s ability to use GenAI to augment content creation at negligible cost
(We discuss the non-negligible case in Appendix C.1). Specifically, we assume that the platform can employ
GenAI, together with human-created content, to partially meet demand with minimal additional expense
relative to human creation. Motivated by the scaling laws of GenAI’s creative capacity (Kaplan et al.,
2020; Yao et al., 2024), we model this process as follows: xi units of content in domain i enable GenAI
to generate µikxγik

i units of essentially new content in domain k, where µik captures the transferability
from domain i to domain k, and γik represents the capability of employed GenAI tool. Yao et al. (2024)
adopts a similar assumption to analyze the symbiosis or conflict between GenAI and human creators. This
formulation highlights three key distinctions between GenAI, human creators, and traditional machines.
First, GenAI exhibits transferability, allowing knowledge from one domain to benefit others with varying
efficiency. Second, its marginal cost of production is negligible compared with human effort. Third, GenAI’s
productivity depends on human creation, unlike traditional machines. The power-law relationship between
model capability and training data is well documented in the GenAI literature (Kaplan et al., 2020), and we
assume that these capability parameters are known, as they can be empirically estimated (Alabdulmohsin
et al., 2022; Goyal et al., 2024; Lin et al., 2024). Finally, as is standard, we restrict γik ∈ [0, 1] to reflect the
diminishing efficiency of data. Accordingly, given reported costs ĉ, the platform’s design must satisfy the
following demand constraints:

Demand: xk(ĉ) +
∑K

i=1 µikxi(ĉ)γik ≥ dk for any k ∈ [K].

The revelation principle (Roughgarden, 2010) implies that, without loss of generality, we can restrict attention
to incentive-compatible (IC) mechanisms in which truthful reporting constitutes a Nash equilibrium (Myer-
son, 1986). In Appendix A.2, we provide illustrations about the economic background for these and other
relevant terms. Accordingly, the incentive-compatibility condition is given by

IC: E−k[−ckxρk

k (c) + pk(c)] ≥ E−k[−ckxρk

k (ĉk, c−k) + pk(ĉk, c−k)] for any k ∈ [K],

where c−k is c except the k-th entry. The expectation is taken over domains i ̸= k. The nonlinearity of
the cost function hinders the application of existing methods (Myerson, 1981). We first focus on the Nash
equilibrium (Nash Jr, 1950), assuming no collusion, so it suffices to consider one-shot deviations. We will
later extend the analysis to more complex settings involving creator union and data brokers. An interesting
future direction is to extend it to correlated equilibrium and coarse correlated equilibrium (Aumann, 1987)
with limited signals.

Moreover, since human creators can always reject any allocation–payment pair offered by the platform and
quit the market, the mechanism must also satisfy the individual rationality (IR) condition:

IR: E−k[−ckxρk

k (c) + pk(c)] ≥ 0 for any k ∈ [K].

We consider the following class of allocation rules, which are natural when items are substitutable, as in
content production. In a valid mechanism, a creator’s production xk decreases with her own cost and
increases weakly as the costs of other creators rise.
Definition 2.1 (Valid Mechanisms). We say a mechanism is valid if its allocation rule satisfies

• xk(ck, c−k) ≥ xk(c̃k, c−k) for any c̃k ≥ ck and
• xk(ck, c−k) ≤ xk(ck, c̃−k) if c̃i ≥ ci for any i ̸= k.

In practice, platforms typically pursue one of two objectives. Some aim to maximize revenue, or equivalently,
minimize total cost. Others, such as large technology firms like Google (Google, 2024) and Meta (Meta,
2024), emphasize social welfare, defined as the aggregate utility of all market participants, or equivalently,
the minimization of creators’ total costs, since monetary transfers do not affect overall welfare. These
considerations motivate the two optimization objectives:
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• Type 1: minx,p Ec[
∑K

k=1 pk(c)];
• Type 2: minx,p Ec[

∑K
k=1 ckxρk

k (c)].

For the second objective, when multiple mechanisms yield the same level of social welfare, we select the one
with the minimum total payment, breaking ties in favor of the platform.

For simplicity, we impose the following assumption on the distribution of cost parameter c.
Assumption 2.1 (Independent cost). We assume that the cost components c1, ..., cK are independent with
p.d.f. f1(c1), ..., fK(cK) and corresponding c.d.f. as F1(c1), ..., FK(cK), respectively. Additionally, we define
f(c) =

∏K
k=1 fk(ck), F (c) =

∏K
k=1 Fk(ck), f−i(c−i) =

∏
k ̸=i fk(ck) and F−i(c−i) =

∏
k ̸=i Fk(ck).

To avoid lengthy discussions of corner cases, we impose standard regularity assumptions on the above
distributions, as commonly adopted in both the economics and machine learning literature (Myerson, 1981;
Wang et al., 2019; Ai et al., 2022).
Assumption 2.2 (Bounded cost and density). We assume that for any k ∈ [K], ck is bounded, say ck ∈
[ak, bk], and fk(ck) is lower bounded from 0.
Assumption 2.3 (Monotone reverse hazard rate). We assume that for all k ∈ [K], it holds that Fk(·) is
log-concave, in other words, the ratio fk(·)

Fk(·) is monotone decreasing.

Assumption 2.2 can always be ensured through distribution truncation, while Assumption 2.3 is a standard
and widely popular assumption in economics (Kleiber, 2003; Bagnoli & Bergstrom, 2006; Wang et al., 2024).
These assumptions are mild and hold for many commonly used distributions, such as the truncated Gaussian
and the uniform distribution (Golrezaei et al., 2019).

2.2 The Optimal Mechanism M1 for Revenue-Maximizing Procurement

We first consider the case in which the platform aims to maximize its own revenue. Accordingly, the platform
faces the following revenue-maximization (or cost-minimization) problem:

Rev1 = maxx,p Ec[−
∑K

k=1 pk(c)]
s.t. xk(c) +

∑K
i=1 µikxi(c)γik ≥ dk and xk(c) ≥ 0 for any k ∈ [K]

E−k[−ckxρk

k (c) + pk(c)] ≥ E−k[−ckxρk

k (ĉk, c−k) + pk(ĉk, c−k)]
E−k[−ckxρk

k (c) + pk(c)] ≥ 0,

(1)

where the expectation is taken over c ∼ F (c). In addition, the corresponding social welfare is SW1 =
Ec[−

∑K
k=1 ckxρk

k (c)]. We now present the optimal mechanism M1 under information asymmetry between
human creators and the platform in Algorithm 1.

Algorithm 1 Mechanism M1 for revenue-maximizing platforms without union in the two-layer market.
Input: Report ĉ.
Calculate virtual cost: vck(ĉ) = ĉk + Fk (̂ck)

fk (̂ck)
for any k ∈ [K].

Call some oracle to solve the auxiliary optimization problem

y = argmin
y

K∑
k=1

vck(ĉ)yk

s.t. y
1/ρk

k +
K∑

i=1
µiky

γik/ρi

i ≥ dk and yk ≥ 0 for any k ∈ [K].

Calculate the allocations: xk(ĉ) = y
1/ρk

k for any k ∈ [K].
Calculate the payments: pk(ĉ) = ĉkyk +

∫ bk

ĉk
yk(ĉ1, ..., ĉk−1, tk, ĉk+1, ..., ĉK)dtk for any k ∈ [K].

Output: Allocation-payment pair (x(ĉ), p(ĉ)) = ((x1(ĉ), ..., xK(ĉ)), (p1(ĉ), ..., pK(ĉ))).
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Theorem 2.1. Mechanism M1 is a valid mechanism satisfying IC and IR conditions2 and achieves the
highest expected revenue/lowest cost for the platform.

While Theorem 2.1 is formulated in a single-parameter mechanism design setting, the main challenge in its
proof arises from the nonlinearity of the designer’s allocation constraint, namely y

1/ρk

k +
∑K

i=1 µiky
γik/ρi

i ≥ dk

in Algorithm 1. This constraint, induced by the nonlinear cost function and data transferability, prevents the
direct application of the standard analysis by Myerson (1981). We address this difficulty in two steps. First,
by applying a nonlinear transformation, we replace the search for the optimal allocation x(·) with that for
y(·), a monotonic transformation of x(·), which linearizes the cost term. Second, we show that the nonlinear
constraints introduced by GenAI still preserve convexity. Together, these steps reformulate Problem 1 into
a convex optimization problem, for which we establish the existence of an efficient solution algorithm.

Proposition 2.1. Algorithm 1 can be implemented to output an ϵ-optimal mechanism3 in O( 1
ϵ4 ) time.

Furthermore, if maxi{ γik

ρi
} < 1 for any k ∈ [K], the computational complexity reduces to O( 1

ϵ3 ).

Randomized payments can further reduce the computational complexity to O(1/ϵ2) and O(1/ϵ), as detailed in
Proposition C.1 of Appendix C.2. These results demonstrate that online platforms can efficiently maximize
revenue even when incorporating GenAI into content creation. This extends the scope of procurement
mechanism design and provides a theoretical foundation for pricing in the rapidly evolving GenAI economy.

Furthermore, we derive the following corollary from Theorem 2.1, which shows that original human-created
content remains essential in every domain and that complete substitution does not occur. However, unlike
markets without GenAI, overproduction may emerge as a new phenomenon.

Corollary 2.2. Assuming data has transferability, i.e., all µik and γik are not zero, then no domain will
disappear, i.e., all xk(c) will be positive, no matter the value of c. However, some demand constraints will be
non-binding, i.e., some xk(c) +

∑K
i=1 µikxi(c)γik > dk. It shows that with the development of GenAI, some

domains will be overproduced to augment knowledge transfer.

2.3 The Optimal Mechanism M2 for Welfare-Maximizing Procurement

To maximize social welfare, an intuitive way is to allocate x corresponding to argminx

∑
k ckxρ

k(c) for each c.
This yields the following optimization formulation and the corresponding revenue for such kind of platforms
is Rev2 = Ec[−

∑K
k=1 pk(c)].

SW2 = maxx,p Ec[−
∑K

k=1 ckxρk

k (c)]
s.t. xk(c) +

∑K
i=1 µikxi(c)γik ≥ dk and xk(c) ≥ 0 for any k ∈ [K]

E−k[−ckxρk

k (c) + pk(c)] ≥ E−k[−ckxρk

k (ĉk, c−k) + pk(ĉk, c−k)]
E−k[−ckxρk

k (c) + pk(c)] ≥ 0.

(2)

However, two key challenges arise in deriving the optimal design: (a) incentivizing each creator to report
their cost truthfully, and (b) identifying a payment rule p(·) that satisfies both IR and validity constraints.
We resolve both challenges in the affirmative and derive the optimal mechanism M2 for this setting by
substituting vc(ĉ) with ĉ. Details are provided in Algorithm 4 of Appendix B.

We conclude this section with our main result, which establishes the optimality of Algorithm 4, i.e., mecha-
nism M2. The availability of the optimal mechanism also explains the rationale for the presence of companies
in the market that pursue social welfare maximization.

Theorem 2.2. Mechanism M2 is a valid mechanism satisfying IC and IR conditions and achieves the
highest social welfare with polynomial time complexity4.

2Since Algorithm 1 is a valid mechanism, it actually satisfies ex-post IC and IR conditions.
3It means compared to the optimal mechanism, the extra loss is at most ϵ.
4In application, it is also known as Fully Polynomial-Time Approximation Scheme (FPTAS), which means that we can find

an ϵ-optimal solution within polynomial time with respect to 1/ϵ.
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2.4 Creator Union and Optimal Procurement Mechanism Design

Recently, OpenAI and The Wall Street Journal reached a data agreement valued at up to $250 million (WSJ,
2024). At the same time, data-selling companies such as Scale AI have experienced rapidly rising valua-
tions, driven by the growing demand for high-quality data to fine-tune large language models (The Scale
Team, 2023). Economically, these intermediaries can be viewed as aggregating data from human creators
and repackaging it for sale, similar to a creator union. We defer the analysis of the case in which such
intermediaries secure contracts before sourcing data from creators to Section 3. This raises a key question:
when a creator union appears, represented by a single agent producing content across all K domains, how
will the revenue of data-obsessing platforms and social welfare be affected?

We retain the setting from Section 2.1, except that the representative creator now has a cost vector c =
(c1, . . . , cK). We also let a = (a1, . . . , aK) and b = (b1, . . . , bK). Unlike before, one-shot deviations are
insufficient to capture strategic behavior, as the creator may misreport multiple entries simultaneously. This
possibility of collusion complicates the mechanism design problem by introducing correlations, analogous to
the distinction between Nash and correlated equilibria (Gilboa & Zemel, 1989).

2.4.1 Revenue-Maximizing Procurement Mechanism M3 with a Creator Union

Pessimistically, general high-dimensional mechanism design problems remain open and agnostic (Briest et al.,
2010; Hart et al., 2013; Daskalakis, 2015; Hart & Nisan, 2017). Therefore, we formulate the corresponding
optimization problem and derive bounds on platform revenue and social welfare, leaving explicit analytical
solutions for future research. The revenue-maximizing platform now faces the following optimization problem
(Mechanism M3), where the payment rule p(·) is a scalar function and the corresponding social welfare is
SW3 = Ec[−

∑K
k=1 ckxρk

k (c)]:

Rev3 = maxx,p Ec[−p(c)]
s.t. xk(c) +

∑K
i=1 µikxi(c)γik ≥ dk and xk(c) ≥ 0 for any k ∈ [K]

p(c) −
∑K

k=1 ckxρk

k (c) ≥ p(ĉ) −
∑K

k=1 ckxρk

k (ĉ)
p(c) −

∑K
k=1 ckxρk

k (c) ≥ 0.

(3)

The main challenge in this problem is that the union may misreport multiple components of the cost vector c
simultaneously. The resulting correlations make the optimization problem effectively contain infinitely many
constraints and require the use of path integrals in defining the payment rule. Finding the optimal solution
remains a difficult open problem in economics. In contrast, as shown in the next section, a platform that
maximizes social welfare can efficiently obtain the optimal solution, highlighting a notable advantage.

2.4.2 Welfare-Maximizing Procurement Mechanism M4 under a Creator Union

The main obstacle to obtaining explicit solutions in high-dimensional mechanism design lies in the IC con-
dition. To ensure truthful reporting by the creator union, the payment rule must involve a high-dimensional
integral, and it is generally difficult to construct one that is independent of the integration path.

In this section, we turn to studying the properties of social welfare maximizers who aim to minimize total
social cost Ec[

∑
k ckxρk

k (c)]. Similarly, we use Rev4 = Ec[−p(c)] to denote corresponding platform revenue.

SW4 = maxx,p Ec[−
∑

k ckxρk

k (c)]
s.t. xk(c) +

∑K
i=1 µikxi(c)γik ≥ dk and xk(c) ≥ 0 for any k ∈ [K]

p(c) −
∑K

k=1 ckxρk

k (c) ≥ p(ĉ) −
∑K

k=1 ckxρk

k (ĉ)
p(c) −

∑K
k=1 ckxρk

k (c) ≥ 0.

Nonetheless, the analysis shows that the optimal mechanism can be derived in an explicit form and computed
in polynomial time. This may explain why some companies choose to maximize social welfare, as the
corresponding mechanism is easier for customers to understand and involves only a small loss in revenue.
We now present the optimal mechanism M4 under this setting in Algorithm 2.
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Algorithm 2 Mechanism M4 for Type 2 platforms with union in the two-layer market.
Input: Report ĉ.
Replace virtual cost: vc(ĉ) by ĉ.
Call Algorithm 1 for y.
Calculate the allocations: xk(ĉ) = y

1/ρk

k for any k ∈ [K].
Calculate the payment: p(ĉ) = ĉ · y5 +

∫ b

ĉ
y(t) · dt.

Output: Allocation-payment pair (x(ĉ), p(ĉ)) = ((x1(ĉ), ..., xK(ĉ)), p(ĉ)).

Note that calculating the payment involves an integration path. A natural question is whether p(·) is well-
defined, that is, independent of the chosen path. We answer the question in the following Lemma 2.3.

Lemma 2.3. The payment p(·) in Algorithm 2 is path independent and so well-defined.

We now state the main theorem establishing the optimality of our Algorithm 2.

Theorem 2.3. Mechanism M4 is a valid mechanism satisfying IC and IR conditions and achieves the
highest social welfare with polynomial time complexity.

This theorem reveals a surprising result: despite the high-dimensional setting, the welfare-maximizing mech-
anism can be computed efficiently. The proof is constructive, identifying an optimal payment rule p(·) that
is independent of the integration path. The distinctive properties of GenAI are crucial to this result. Since
GenAI introduces only convex demand constraints, the allocation, whether at a vertex or along a smooth
segment, remains orthogonal to cost after transformation. We construct a potential function Ψ(c), detailed
in Appendix C.6, and establish the relationship between its gradient and the allocation rule. This approach
provides a new method for addressing high-dimensional mechanism design problems, distinct from cycle
monotonicity (Lavi & Swamy, 2007), and advances understanding of this open question. Building on the
above results, the next section presents a partial comparison of Rev1−4 and SW1−4.

2.5 Comparison of Revenue and Social Welfare for Mechanisms M1−4

Intuitively, a revenue-maximizing platform (Type 1) should generate lower social welfare than a welfare-
maximizing platform (Type 2) under the same setting, while a Type 2 platform typically earns less revenue.
Regarding the creator union, since it aggregates information from all human creators, it is expected to
possess greater market power, potentially leading to higher total utility for creators. The following theorem
formalizes these comparison results.

Theorem 2.4. Let Revi and SWi denote the revenue and welfare of valid mechanism Mi. For the revenue
objective, we have Rev1 ≥ Rev3 and Rev1 ≥ Rev2 ≥ Rev4. For the social welfare objective, we have
SW2 = SW4 ≥ max{SW1, SW3}.

The most technically interesting comparison lies between Rev2 and Rev4. Since the payment rule of M4
involves a path integral, we select a specific integration path and, using the validity of the mechanism, show
that Rev2 ≥ Rev4. The complete proof is provided in Appendix C.7.

As shown in Theorem 2.4, we establish the comparative rankings of revenue and social welfare among Al-
gorithms 1, 2 and 4, and provide upper bounds for M3 under mild assumptions, since it lacks an explicit
solution. We find that the presence of a creator union reduces platform revenue by weakening its pricing
power. In contrast, for a social welfare–maximizing platform, the union does not affect the outcome. Intu-
itively, social welfare depends solely on the creators’ total production cost, so while the union may alter the
payment rule, it has no incentive to distort the allocation. As social welfare is allocation-dependent only, its
optimality remains preserved.

5The symbol · represents the dot product.
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3 Content Procurement in Platform-Broker-Creator Markets

In this section, we extend our analysis beyond the union case and consider a three-layer market (Fallah
et al., 2024). In this setting, the platform first offers a contract (z, t) to a data broker (Liu et al., 2021), who
decides whether to accept it. The broker then engages with human creators and faces a mechanism design
problem similar to that in Section 2.1. Unlike the union, which maximizes the total utility of creators, the
broker focuses solely on profit, defined as the difference between z and

∑K
k=1 pk. In practice, companies such

as SchoolDigger and Datarade serve as examples of data brokers (Zhang et al., 2024a). To build intuition,
Figure 7 in Appendix D.1 illustrates the timeline of this mechanism design setting.

3.1 Revenue-Maximizing Procurement Mechanism M5 with a Data Broker

We first consider the scenario in which the platform seeks to maximize its revenue. To identify the optimal
mechanism, we begin by formulating the broker’s optimization problem given (z, t). Since both the allocation
and payment rules depend on (z, t), we denote them by x(·; z, t) and p(·; z, t), respectively. Because the broker
signs the contract with the platform in advance, the credibility constraint (Akbarpour & Li, 2020) imposes
an additional condition that, for any report ĉ,

xk(ĉ) ≥ zk for any k ∈ [K].

Consequently, the broker needs to solve the following optimization problem:

maxx,p Ec[t −
∑K

k=1 pk(c; z, t)]
s.t. E−k[−ckxρk

k (c; z, t) + pk(c; z, t)] ≥ E−k[−ckxρk

k (ĉk, c−k; z, t) + pk(ĉk, c−k; z, t)]
E−k[−ckxρk

k (c; z, t) + pk(c; z, t)] ≥ 0
xk(c; z, t) ≥ zk for any k ∈ [K],

(4)

where t is a fixed constant and z is a fixed K-dimensional nonnegative vector. Let x∗(·; z, t) and p∗(·; z, t)
denote the optimal allocation and payment rules of Problem 4. The platform’s objective is then given by

Rev5 = maxz,t Ec[−t]
s.t. zk +

∑K
i=1 µikzγik

i ≥ dk and zk ≥ 0 for any k ∈ [K]
Ec[t −

∑K
k=1 p∗

k(c; z, t)] ≥ 0.

(5)

The second constraint ensures the participation of the data broker in the market, serving as the broker’s IR
condition. Moreover, the corresponding social welfare is given by SW5 = Ec[−

∑K
k=1 ck(x∗

k(c; z, t))ρk ].

A natural question is whether optimal mechanisms for both (z, t) and (x, p) can be derived in polynomial
time. The following Algorithm 3 and Theorem 3.1 establish their optimality and computational complexity.

Algorithm 3 Mechanism M5 for Type 1 platforms with data broker in the three-layer market.
# First-stage mechanism design.
Replace virtual cost: vc(ĉ) by b.
Call Algorithm 1 for y.
Calculate the allocations: zk = y

1/ρk

k for any k ∈ [K].
Output: Allocation-payment pair (z, t) = ((z1, ..., zK), b · y).
# Second-stage mechanism design.
Input: Allocation z, payment t and report ĉ.
Calculate the payment: pk(ĉ) = bkzρk

k .
Output: Allocation-payment pair (x(ĉ), p(ĉ)) = (z, (b1zρ1

1 , ..., bKzρK

K )).

Theorem 3.1. Mechanism M5 is a valid optimal solution to Problems 4 and 5 and achieves the highest
expected revenue/lowest cost for the platform with polynomial time complexity.
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3.2 Welfare-Maximizing Procurement Mechanism M6 with a Data Broker

We now turn to platforms that aim to maximize social welfare. The first-stage optimization problem is
formulated as follows, while the second-stage problem remains the same as Problem 4. The corresponding
platform revenue is Rev6 = Ec[−t].

SW6 = maxz,t Ec[−
∑K

k=1 ck(x∗
k(c; z, t))ρk ]

s.t. zk +
∑K

i=1 µikzγik

i ≥ dk and zk ≥ 0 for any k ∈ [K]
Ec[t −

∑K
k=1 p∗

k(c; z, t)] ≥ 0.

(6)

Since the platform must determine z prior to the revelation of c, the optimal solution is expected to depend
on E[c]. Formally, we substitute b in Algorithm 3 with E[c] and derive the mechanism M6, presented in
Algorithm 5 of Appendix B, and Theorem 3.2
Theorem 3.2. Mechanism M6 is a valid optimal solution to Problems 4 and 6 and achieves the highest
social welfare with polynomial time complexity.

3.3 The Lose-Lose Effect in Three-Layer Markets

Finally, we compare the platform’s revenue and social welfare in the three-layer market with those in the two-
layer setting. We show that both revenue and social welfare decline relative to M2 and M4, indicating that
the presence of data brokers distorts allocations and reduces market efficiency. Public contracting further
hinders the effective incentivization of downstream creators and prevents the platform from optimizing
social welfare based on realized types. This finding highlights the growing need for government oversight
and regulation of data markets (Brooks, 2024).
Theorem 3.3. Compared with M2 and M4, both M5 and M6 face a lose-lose situation that Rev2 ≥ Rev4 =
Rev5 ≥ Rev6 and SW2 = SW4 ≥ SW6 ≥ SW5.

An interesting result in Theorem 3.3 is that Rev4 equals Rev5. Recall that M4 corresponds to a platform
maximizing social welfare, while M5 represents a revenue-maximizing platform. The loss of market power
due to the creator union and the welfare-oriented objective is economically equivalent to the reduction in
price discrimination ability resulting from pre-signed contracts. This phenomenon, observed for the first
time, offers new insights into procurement mechanism design in the era of GenAI. From Theorem 3.3, we
also observe that the introduction of a data broker reduces both platform revenue and social welfare. More
surprisingly, the revenue of a Type 1 platform in the three-layer market falls below that of a Type 2 platform
in the two-layer market. Moreover, under mechanisms M5 and M6, the data broker’s profit is exactly zero,
indicating no benefit even to himself. This outcome arises because, in the three-layer market, the platform
must make decisions before observing creators’ cost reports, leading to conservative and distorted allocations
to satisfy hard demand constraints. These findings underscore the need for stronger government regulation
of third-party data platforms to improve overall social welfare.

Finally, we present the following byproduct as a lower bound on the revenue of M3, based on M5 and
obtained by constructing a feasible solution to Problem 3.
Corollary 3.1. It holds that Rev3 ≥ Rev5, providing a lower bound of Rev3.

4 Empirical Studies

Impact of costs on overproduction. We conduct synthetic experiments to examine the phenomenon
of overproduction under the setting of Section 2.2. For visualization, we consider K = 2 domains. The
hyperparameters c, µ, and γ are drawn from Unif[0, 1], while ρ follows Unif[1, 2]. All hyperparameters are
vector-valued, and subscripts are omitted for clarity. We vary d1 and d2 between 1 and 20 and plot their
relationship with the optimal allocations x1 and x2 derived from Algorithm 1. As shown in Figure 2(a),
when d2 is high (e.g., between 15 and 20), x1 remains nearly constant regardless of d1, indicating that
the constraint x1 +

∑2
i=1 µi1xγi1

i ≥ d1 is non-binding and overproduction occurs in the first domain. The
realized costs in this case are 0.035 and 0.992, respectively. Similarly, Figure 2(b) shows overproduction in the
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(a) Optimal x1 under different d1 and d2. (b) Optimal x2 under different d1 and d2.

Figure 2: The overproduction phenomenon with respect to demand d.

second domain when d1 ≥ 12.5, where x2 changes little as d2 increases, implying that x2 +
∑2

i=1 µi2xγi2
i ≥ d2

becomes loose. The corresponding realized costs are 0.989 and 0.055. When relative production costs are low,
overproduction is more likely to occur. The economic intuition lies in the transferability and substitution
effects across domains: producing low-cost content in one domain can help satisfy demand in others through
data transfer. Although this leads to excessive production and additional expenditure in the low-cost domain,
the resulting savings in high-cost domains can more than offset it. Hence, overproduction in some domains
can ultimately increase platform revenue. Moreover, these experiments empirically support Corollary 2.2,
confirming that the optimal allocation xk(c) remains positive for all cost realizations c.

Impact of transferability parameters on overproduction. We next examine the specific effects of
the transferability parameters µ and γ. To isolate their influence, we fix c1 = c2 = 0.5, d1 = d2 = 10, and
ρ1 = ρ2 = 4. We first study the role of µ by setting γ11 = γ12 = γ21 = γ22 = 0.5. Consider an extreme case
where µ12 = 1 and µ11 = µ21 = µ22 = 0, meaning that only content in domain 1 can facilitate production
in domain 2, but not vice versa. As shown in Figure 3(a), when d2 is high and d1 is low, overproduction
occurs in domain 1 indicated by the uniform color in the upper-left region. This happens because domain
1 content has higher transferability, enabling the platform to train GenAI models that generate outputs in
both domains. For instance, when d2 = 20 and d1 ≤ 10, the optimal x1 is around 10, well above the demand
d1, so the constraint x1 +

∑2
i=1 µi1xγi1

i ≥ d1 is non-binding. As d1 increases, this constraint becomes binding
and x1 rises accordingly. In contrast, Figure 3(b) shows no such pattern, since the constraint related to d2
remains binding across all parameter combinations. Interestingly, as d1 increases, the optimal x2 decreases
because a larger x1 transfers more knowledge to domain 2, reducing the need for direct content production
there. These results highlight the asymmetric effect of µ. We then turn to the influence of γ by fixing
µ11 = µ12 = µ21 = µ22 = 0.5 and setting γ12 = 1, while γ11 = γ21 = γ22 = 0. In this case, domain 1 content
can continuously support the production of domain 2 content, while the reverse effect remains constant.
We again observe overproduction in domain 1. Moreover, when d1 is large but d2 is small, human-created
content in domain 1 provides sufficient transferable knowledge, keeping x2 nearly constant and close to
zero (Figure 3(d)). Overall, these experiments confirm that higher transferability, whether through µ or γ,
increases the likelihood of overproduction across domains.

Experimental evaluation of revenue and welfare among mechanisms. We next conducted a se-
ries of experiments to compare the performance of Algorithms 1 to 3, 4 and 5. The results corroborate
Theorems 2.4 and 3.3, showing that the empirical rankings of revenue and social welfare align with the
theoretical predictions. As illustrated in Figure 4, mechanism M1 exhibits more outliers and extreme values
compared with M2. This suggests that welfare-maximizing platforms may operate in a more stable market

11



Under review as submission to TMLR

(a) Optimal x1 under differ-
ent d1 and d2 when µ12 = 1.

(b) Optimal x2 under differ-
ent d1 and d2 when µ12 = 1.

(c) Optimal x1 under differ-
ent d1 and d2 when γ12 = 1.

(d) Optimal x2 under differ-
ent d1 and d2 when γ12 = 1.

Figure 3: The influence of content transferability on the optimal production.

environment, where both social welfare and revenue fluctuate less, offering a possible explanation for why
some companies choose to prioritize social welfare. Detailed results are provided in Appendix E.

(a) Box plot of revenue. (b) Box plot of social welfare.

Figure 4: Concrete revenue and social welfare of different mechanisms (red: mean; orange: median).

With and Without GenAI. Finally, we simulate the difference between scenarios with and without
GenAI, that is, with µ = 0. Using the same setup as the preceding evaluation and mechanism M1 as
an illustrative example, we report detailed results in Table 2 of Appendix E. In our framework, GenAI
leverages human-created content to generate additional material, allowing platforms to meet total demand
with less direct human creation. Consequently, both revenue and social welfare increase in the presence
of GenAI. Specifically, the sample-averaged revenue rises from –30.90 to –16.52, and sample average social
welfare improves from –5.66 to –4.47, representing gains of 46.54% and 21.02%, respectively. These results
indicate that GenAI enhances production efficiency while increasing both platform revenue and social welfare.
However, as the primary beneficiary of GenAI, the platform enjoys a substantially larger increase in revenue
than the corresponding improvement in social welfare. Although the magnitude of improvement depends
on parameter initialization, the asymmetric growth between revenue and welfare reflects a broader pattern
observed in practice (Hosseini & Khanna, 2025), highlighting reflections regarding the distributional impact
of GenAI adoption.

5 Conclusion and Discussion

In this paper, we study non-linear procurement mechanism design in markets where human creators coexist
with GenAI. We develop optimal mechanisms for platforms seeking to maximize either revenue or social
welfare across three market structures: two-layer markets (with or without a creator union) and three-layer
markets involving data brokers. Our analysis shows that although the rapid advancement of GenAI substan-
tially affects creators in certain domains, it cannot fully replace them in competitive environments (Chiang
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& Lee, 2023). Finally, we uncover a striking result: the three-layer market structure leads to a lose-lose
outcome, echoing growing societal concerns over AI regulation and governance (Smuha, 2021; de Almeida
et al., 2021; Minssen et al., 2023).

This work leaves open many interesting future directions. For general high-dimensional mechanism design
problems, such as Mechanism M3, can the optimal solution be computed exactly in polynomial time?
Given that our optimization problem retains partial linearity, could approximate solvers be effective when
parameters ρ and γ are unknown? Since the three-layer market leads to simultaneous declines in both
revenue and social welfare, how should government intervention be structured, for instance, what constitutes
an appropriate tax rate for data brokers? Furthermore, does competition among human creators yield excess
profits for data intermediaries? Finally, our static model leads to predictions and insights about the ultimate
equilibrium outcomes. How will these insights change in dynamic settings when GenAI and human creators
dynamically interact? In light of the growing demand for data in the AI era and the distinctive nature of
data as an economic good, these questions open several promising directions for future exploration.
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A Omitted Details in Section 1

A.1 Related Works

We summarize the following four lines of existing literature pertinent to our work.

Procurement Mechanism Design. The topic of optimal mechanism design was introduced by the semi-
nal paper Myerson (1981). Over decades of academic attention, researchers have not only focused on optimal
mechanism design from the seller’s perspective but have also begun to consider it from the buyer’s perspec-
tive, especially when buyers are either significantly large or even monopolistic, leading to studies on optimal
procurement mechanism design (McAfee & McMillan, 1987; Laffont & Tirole, 1993). In the economics liter-
ature, Burguet et al. (2012) examines mechanism design in procurement under limited liability and explores
ways to reduce the sponsor’s cost, while Gerding et al. (2010) addresses the service procurement problem in
the presence of uncertain duration. Garg & Narahari (2008) adopts the framework of a Stackelberg game
to study procurement auction design. In management science and supply chain literature, Zhang (2010)
investigates procurement with price-sensitive demand, while Prasad & Rao (2013); Ketankumar et al. (2015)
focus on the procurement of cloud computing resources. Jin & Wu (2002); Huang et al. (2011) attempt to
design optimal procurement auctions to enhance suppliers’ profit margins. Our paper goes beyond tradi-
tional procurement mechanism design for physical goods by focusing on the digital content market, which
features transferability. This extends the boundaries of procurement mechanism design in this domain.

GenAI Content Creation and Data Pricing. The development of generative AI has brought AI-
generated content into the economic market, sparking research on the nature of AI products and traditional
goods. Liu et al. (2024a) discusses the impact of large language models (LLM) on traditional search engines,
while Zhang et al. (2024b) explores advertising business in the context of LLMs. Iyer et al. (2024) conducts
a case study on the role of LLMs in e-commerce. Chkirbene et al. (2024) provides a comprehensive survey of
GenAI’s applications, challenges, and trends from several aspects, including content creation and marketing.
Meanwhile, due to the enormous data demand for GenAI training, public datasets are becoming insufficient,
leading companies to shift toward private datasets, which has raised concerns about data pricing. Data
Shapley and its variants are the most commonly used methods for data pricing (Jia et al., 2019; Ghorbani
& Zou, 2019; Schoch et al., 2022), while recent Ai et al. (2024) proposes a novel data pricing method based
on instrumental value. Our paper studies how much payment is needed to incentivize human creators to
generate sufficient content within an agent-based framework, broadening the perspective on data pricing
related to GenAI.

Human vs. Generative AI Competition. With the rapid development of generative AI, competition
between human creators and GenAI has gradually emerged (Esmaeili et al., 2024). In contrast to traditional
automation (Acemoglu & Restrepo, 2019), GenAI relies on human-created data for training, thereby simul-
taneously complementing and competing with human labor. Yao et al. (2024) employs the framework of a
Tullock contest to examine the symbiosis and conflict between humans and generative AI. Immorlica et al.
(2024) examines the augmentation of users by AI agents and the corresponding shifts in equilibrium. Gao
et al. (2025), within a game-theoretic framework, investigates the impact of AI tools on market outcomes
and consumer welfare. It highlights that in certain scenarios, both platforms and creators may be reluctant
to adopt GenAI. Moreover, some papers discuss the unique economic characteristics of LLMs, or broadly
GenAI; please refer to Fish et al. (2024); Duetting et al. (2024) for further details. Meanwhile, some papers
explore the collaboration between humans and GenAI in various tasks (Fui-Hoon Nah et al., 2023; Singh
et al., 2023; Han et al., 2024). We adopt a mechanism design perspective to study the collaboration and
competition between human creators and GenAI. GenAI relies on human-created content for training, while
the content generated by AI partially substitutes human-created content, providing a novel approach to
studying the competition between humans and AI.

Three-Layer Markets. The three-layer market offers a more comprehensive framework for characterizing
data markets compared to the two-layer market. For further details, Zhang et al. (2024a) provides a survey
on data markets. Fallah et al. (2024) models the three-layer data market as a multistage game and focuses
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on the subgame Nash equilibrium, while Xu et al. (2020) considers a three-layer Stackelberg game in the
car-sharing market. Besides, Reinders et al. (2018); Song & He (2019) consider three-layer structures in the
domain of supply chain. Wang et al. (2023) investigates privacy protection issues in a blockchain-based P2P
three-layer market. Balseiro et al. (2021); Zeithammer & Choi (2024) investigate the impact of intermediaries
on the payoffs of buyers and sellers in auctions, as well as the phenomenon of double-shading in the market.
We compare the impacts of two-layer and three-layer markets, within the framework of competition between
humans and GenAI, on both platform revenue and social welfare. We theoretically demonstrate that the
three-layer structure would lead to a lose-lose outcome, offering a novel perspective for future AI data
regulation.

A.2 Relative Terms

We use this subsection to illustrate some terminology used in this paper for readers with less economic
background. These terms are definitional, but we also provide the economic intuition behind them to assist
the reader’s understanding.

• Virtual costs: A variant of the original cost, formally defined as c + F
f . Because the platform must

incentivize creators to report their true costs, the effective cost the platform faces is the human
creator’s production cost c plus the incentive-related virtual cost F

f .

• Reverse hazard rates: Originating from survival analysis (Kalbfleisch & Prentice, 2002), and defined
in this paper as f

F . It is used to characterize the log-concavity of F .

• Incentive compatibility: The terminology for a desirable mechanism property that for any creator
with private cost c, truthfully reporting c to the platform always maximizes the creator’s expected
utility (payment minus cost). Hence incentive incentive-compatible mechanisms can help avoid
dishonest agent behaviors during information elicitation.

• Individual rationality: The terminology of another desirable mechanism property that human cre-
ators always have non-negative expected utility (so they prefer to stay in the market than to exit).

• Path independence: When payments are defined through a path integral (e.g.,
∫ b

ĉ
y(t) · dt in Mech-

anism M4), we require that the integral yields the same value for any path from ĉ to b.

• Myerson’s analysis: This refers to a classic and well-known analysis framework of Myerson (1981)
that converts payments into integrals of the allocation functions, which reduces mechanism design
to allocation rule design.

• Convex procurement: We hope the feasible set induced by demand constraints to be convex, so that
the optimal mechanism can be computed efficiently in practice.

• Valid mechanisms: A creator’s higher cost should lead the platform to procure less from them, while
other creators’ higher costs should lead the platform to procure more from this creator. This reflects
substitutability in production.

B Omitted Optimal Mechanisms and Algorithms

We now detail the concrete implementation of mechanisms M2 and M6.

C Omitted Details in Section 2

C.1 Including GenAI Costs

In practice, the generation cost of GenAI is typically negligible compared to that of human creators. For
example, once a large model such as Sora 2 is already trained, producing a new video takes only a few
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Algorithm 4 Mechanism M2 for welfare-maximizing platforms without union in the two-layer market.
Input: Report ĉ.
Replace virtual cost: vc(ĉ) by ĉ.
Call Algorithm 1 for y.
Calculate the allocations: xk(ĉ) = y

1/ρk

k for any k ∈ [K].
Calculate the payments: pk(ĉ) = ĉkyk +

∫ bk

ĉk
yk(ĉ1, ..., ĉk−1, tk, ĉk+1, ..., ĉK)dtk for any k ∈ [K].

Output: Allocation-payment pair (x(ĉ), p(ĉ)) = ((x1(ĉ), ..., xK(ĉ)), (p1(ĉ), ..., pK(ĉ))).

Algorithm 5 Mechanism M6 for Type 2 platforms with data broker in the three-layer market.
# First-stage mechanism design.
Replace virtual cost: vc(ĉ) by E[c].
Call Algorithm 1 for y.
Calculate the allocations: zk = y

1/ρk

k for any k ∈ [K].
Output: Allocation-payment pair (z, t) = ((z1, ..., zK), b · y).
# Second-stage mechanism design.
Input: Allocation z, payment t and report ĉ.
Calculate the payment: pk(ĉ) = bkzρk

k .
Output: Allocation-payment pair (x(ĉ), p(ĉ)) = (z, (b1zρ1

1 , ..., bKzρK

K )).

minutes of computation, whereas professional human creators require substantial compensation and effort
to produce comparable content.

However, our model can naturally extend to settings with small but non-zero GenAI training costs. We
assume the training cost of GenAI is proportional to human production cost, and the training cost parameter
of GenAI is cG

k in domain k. In other words, the platform needs to pay cG
k xρk

k to obtain a GenAI agent for
domain k. Consider Mechanism M1 as an example: our transformation is derived entirely from IC and IR
constraints, independent of the objective function. Therefore, incorporating GenAI costs is equivalent to
adding

∑K
k=1 cG

k yk to the platform’s objective. The optimization problem in Algorithm 1 becomes as follows:

y = argmin
y

K∑
k=1

(vck(ĉ) + cG
k )yk

s.t. y
1/ρk

k +
K∑

i=1
µiky

γik/ρi

i ≥ dk and yk ≥ 0 for any k ∈ [K].

As a result, we only need to adjust the virtual cost from vck to vck + cG
k to recover the optimal mechanism

under non-zero GenAI costs.

The same modification applies to other mechanisms as well. For instance, in Mechanism M2, replacing ĉk

with ĉk + cG
k leaves the structure and insights unchanged. For other kinds of GenAI costs, we can similarly

include the cost in the objective without modifying the demand constraints, with or without access to a
closed-form solution, depending on the concrete cost form.

C.2 Further Complexity Reduction

Note that we adopt a deterministic payment rule in Algorithm 1. However, we can move to a random manner
as follows to reduce the computational complexity in Proposition 2.1. Here, yk(ĉ1, ..., ĉk−1, c̃k, ĉk+1, ĉK)
indicates that the input report is (ĉ1, ..., ĉk−1, c̃k, ĉk+1, ĉK) without ambiguity.

Sample c̃k ∼ Unif(ĉk, bk) and pk(ĉ) = ĉkyk(ĉ) + (bk − ĉk)yk(ĉ1, ..., ĉk−1, c̃k, ĉk+1, ĉK). (7)

Proposition C.1. Replacing the payment rule in Algorithm 1 by Equation (7), using the subgradient
method as the oracle, the computational complexity of getting a ϵ-optimal mechanism is O( 1

ϵ2 ). Specially, if
maxi{ γik

ρi
} < 1 for any k ∈ [K], the computational complexity reduces to O( 1

ϵ ).
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C.3 Omitted Proof in Section 2.2

C.3.1 Proof of Theorem 2.1

Recall Problem 1 and we use yk(c) = xρk

k (c) to simplify the notations. Besides, we use Qk(y, ck) and
uk(y, p, ck) to denote

∫
yk(c)f−k(c−k)dc−k and

∫
[pk(c) − ckyk(c)]f−k(c−k)dc−k respectively. Therefore, Q

represents the units human creators will produce and u represents their expected utility.

Then, we have the following propositions regarding Q·(·, ·) and u·(·, ·, ·).
Proposition C.2. We have that

• for any ck ∈ [ak, bk], it holds that uk(y, p, ck) = uk(y, p, bk) +
∫ bk

ck
Qk(y, tk)dtk

.

• for any k ∈ [K], it holds that uk(y, p, bk) ≥ 0.

• for any tk ≥ ck, it holds that Qk(y, tk) ≤ Qk(y, ck).

Proof. From the individual rationality condition, we know that the expected utility for human creators in
domain k at every time is no less than zero. Then, it holds especially when the cost corresponds to bk. It
immediately leads to uk(y, p, bk) ≥ 0.

Assuming the real cost parameter is tk but the human report ck. Assume ck ≤ tk without loss of generality.
From the incentive compatibility condition, it holds that

uk(y, p, tk) ≥
∫

[pk(ck) − tkyk(c)]f−k(t−k)dt−k

=
∫

[pk(ck) − ckyk(c)]f−k(t−k)dt−k + (ck − tk)
∫

yk(c)f−k(t−k)dt−k

= uk(y, p, ck) + (ck − tk)Qk(y, ck).

Then, we know that uk(y, p, tk) − uk(y, p, ck) ≥ (ck − tk)Qk(y, ck).

Similarly, we have that uk(y, p, tk) − uk(y, p, ck) ≤ (ck − tk)Qk(y, tk) by changing the order of tk and ck.
Thus, it holds that

(ck − tk)Qk(y, ck) ≤ uk(y, p, tk) − uk(y, p, ck) ≤ (ck − tk)Qk(y, tk).

Since ck ≤ tk, we know that Qk(y, tk) ≤ Qk(y, ck).

In addition, dividing ck − tk, it holds that ∂uk

∂ck
= −Qk(y, ck). Here we use the fact that Qk(y, ·) is continuous

which will be shown soon. Otherwise, we can still get the following from the definition of Riemann integral.
We then obtain that uk(y, p, ck) +

∫ tk

ck
−Qk(y, tk)dtk = uk(y, p, tk). Therefore, with simple algebra, we have

that

uk(y, p, ck) = uk(y, p, bk) +
∫ bk

ck

Qk(y, tk)dtk
,

which ends the proof.

Now, let’s turn to the problem of how to maximize content creation platforms’ expected revenue (minimize
expected cost). We use u0(y, p) =

∑K
k=1

∫
−pk(c)f(c)dc to denote the expected revenue for shorthand.

Recall that the demand constraints are now

y
1/ρk

k (c) +
K∑

i=1
µikyi(c)γik/ρi ≥ dk

and
yk(c) ≥ 0
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for any k ∈ [K].

We first decompose u0(y, p) as follows, namely,

u0(y, p) =
K∑

k=1

∫
[−pk(c) + ckyk(c)]f(c)dc︸ ︷︷ ︸

q1

−
K∑

k=1

∫
ckyk(c)f(c)dc︸ ︷︷ ︸

q2

.

Then, it holds that

q1 = −
∑

k

uk(y, p, ck)fk(ck)dck

= −
∑

k

∫
[uk(y, p, bk) +

∫ bk

ck

Qk(y, tk)dtk]fk(ck)dck

=
∑

k

−uk(y, p, bk) −
∫ bk

ak

∫ bk

ck

fk(ck)Qk(y, tk)dtkdck

=
∑

k

−uk(y, p, bk) −
∫ bk

ak

Fk(tk)Qk(y, tk)dtk

=
∑

k

−uk(y, p, bk) −
∫

Fk(tk)
∫

yk(t)f−k(t−k)dt

=
∑

k

−uk(y, p, bk) −
∫

Fk(tk)
fk(tk) yk(t)f(t)dt.

The third equation holds due to the property of p.d.f. while the fourth equation holds because we change
the order of integration.

Combining q2, it holds that

u0(y, p) =
K∑

k=1
−uk(y, p, bk) −

∫
[ck + Fk(ck)

fk(ck) ]yk(c)f(c)dc.

By defining the virtual cost vck(c) = ck + Fk(ck)
fk(ck) , then we have

u0(y, p) =
K∑

k=1
−uk(y, p, bk) −

∫
vck(ck)yk(c)f(c)dc.

Note that in Algorithm 1, we minimize
∑K

k=1 vck(ck)yk(c) subject to y
1/ρk

k (c)+
∑K

i=1 µikyi(c)γik/ρi ≥ dk and
yk(c) ≥ 0 for any k ∈ [K], so we only need to prove that the payment rule indeed results in uk(y, p, bk) = 0.
Here, since we consider an IC mechanism, we have naturally c = ĉ.

Recall that from Proposition C.2, it holds that

uk(y, p, bk) = uk(y, p, ck) −
∫ bk

ck

Qk(y, tk)dtk

= −
∫

[ckyk(c) − pk(c)]f−k(c−k)dc−k −
∫ bk

ck

∫
yk(tk, c−k)f−k(c−k)dc−kdtk

=
∫

[−ckyk(c) + pk(c) −
∫ bk

ck

yk(tk, c−k)dtk]f−k(c−k)dc−k.

Here, we use (tk, c−k) to represent (c1, ..., ck−1, tk, ct+1, ..., cK) with a little abuse of notation. Since we set
the payment rule pk(c) = ckyk(c) +

∫ bk

ck
yk(tk, c−k)dtk in Algorithm 1, we know that uk(y, p, bk) = 0 exactly.
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Together with Proposition C.2, we know that the first term in u0(y, p) is maximized as well. Therefore, since
two parts in u0(y, p) are maximized simultaneously, u0(y, p) takes its maximum using Algorithm 1, which
shows the optimality of our mechanism.

Additionally, since yk(·, ·) ≥ 0, we know that −ckyk(c) + pk(c) ≥ 0 for every c. Thus, we actually obtain
a much stronger individual rationality condition, say −ckxρk

k (c) + pk(c) ≥ 0. In other words, the utility
of human creators is non-negative for any k ∈ [K] and cost vector c ∈ [a1, b1] × · · · × [ak, bk]. As for
the incentive compatibility condition, we first show that vck(c) is increasing with respect to ck. Since
we have Assumption 2.3, we know that log(Fk(·)) is concave, it holds that fk

Fk
is decreasing. Therefore,

it holds that vck(c) = ck + Fk(ck)
fk(ck) is increasing for all k ∈ [K]. Together with the implementation of

Algorithm 1, we know the objective function is linear, and from the following Lemma C.3 we will see
the feasible region is convex, then we can actually derive similarly a stronger version of the IC condition,
namely, −ckxρk

k (c) + pk(c) ≥ −ckxρk

k (ĉk, c−k) + pk(ĉk, c−k). Similarly, we get that Qk(y, ·) is continuous
almost everywhere and M1 is valid for the same reason.

C.3.2 Proof of Proposition 2.1

We first prove the convexity of the area and then give the computational complexity.

Lemma C.3. y
1/ρk

k +
∑K

i=1 µiky
γik/ρi

i ≥ dk and 0 ≤ yk ≤ dρk

k for any k ∈ [K] construct a convex set.
Specially, when maxi{ γik

ρi
} < 1, it becomes a strongly convex set.

Proof. Assuming fk(y) = y
1/ρk

k +
∑K

i=1 µiky
γik/ρi

i , it holds that

∇2fk(y) = diagi{µik
γik

ρi
(γik

ρi
− 1)y

γik
ρi

−2
i + 1

ρk
( 1
ρk

− 1)y
1

ρk
−2

k 1{i = k}}.

Since we have ρk ≥ 1 and γik ≤ 1, it holds that ∇2fk(y) is a diagonal matrix and all components are
non-positive due to 0 ≤ yk ≤ dρk

k . Hence, we know that fk(y) is a concave function, showing that fk(y) ≥ dk

is a convex set.

When maxi{ γik

ρi
} < 1, it holds that all components of ∇2fk(y) are negative. Therefore, we have that fk(x)

is a strongly concave function, and similarly, fk(y) ≥ dk yields a strongly convex set.

Note that the intersection of (strongly) convex sets is also a (strongly) convex set. We know that constraints
y

1/ρk

k +
∑K

i=1 µiky
γik/ρi

i ≥ dk and 0 ≤ yk ≤ dρk

k for any k ∈ [K] yield a convex set. In the meanwhile, we
know that if maxi{ γik

ρi
} < 1, the set will become a strongly convex set, which ends the proof.

With Lemma C.3 in hands, we know that the computational complexity of Algorithm 1 equalling finding
the minimum of a (strongly) convex function with primal-dual methods. Therefore, using the subgradient
method (Nesterov, 2009; 2014) and constraining 0 ≤ yk ≤ dρk

k lead to an O( 1
ϵ2 ) complexity to calculate

one allocation y immediately. When maxi{ γik

ρi
} < 1, the strongly convexity leads to O( 1

ϵ ) complexity
instantly (Nesterov, 2005).

For the price vector p(ĉ), we use the Monte Carlo method to estimate the second term, i.e.,
∫ bk

ck
yk(tk, c−k)dtk.

Since from the implementation of Algorithm 1, we know that yk is bounded by dρk

k . Then, Rubinstein &
Kroese (2016) tells us that we need O( 1

ϵ2 ) times of simulation to estimate it with tolerance ϵ. Therefore, the
total computational complexity is O( 1

ϵ4 ) for general cases and O( 1
ϵ3 ) when maxi{ γik

ρi
} < 1 respectively.

C.3.3 Proof of Proposition C.1

Due to the linearity of p(·), we only need to prove that Equation (7) gives an unbiased estimator of the optimal
payment rule, i.e., E

c̃k
[(bk − ĉk)yk(ĉ1, ..., ĉk−1, c̃k, ĉk+1, ..., ĉK)] =

∫ bk

ĉk
yk(ĉ1, ..., ĉk−1, tk, ĉk+1, ..., ĉK)dtk.
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It holds that

E
c̃k

[(bk − ĉk)yk(ĉ1, ..., ĉk−1, c̃k, ĉk+1, ..., ĉK)] = (bk − ĉk)
∫ bk

ĉk

yk(ĉ1, ..., ĉk−1, tk, ĉk+1, ..., ĉK) 1
bk − ĉk

dtk

=
∫ bk

ĉk

yk(ĉ1, ..., ĉk−1, tk, ĉk+1, ..., ĉK)dtk,

where the first equation holds because c̃k follows an uniform distribution over [ĉk, bk].

Therefore, we know that we give an IC,IR and ϵ-optimal mechanism with only one sample, namely
yk(ĉ1, ..., ĉk−1, c̃k, ĉk+1, ..., ĉK). With the proof of Proposition 2.1, we know that the computational com-
plexity is O( 1

ϵ2 ) for general cases and O( 1
ϵ ) when maxi{ γik

ρi
} < 1 for any k ∈ [K].

Nonetheless, the variance of the payment increases from O(ϵ2) to O(1) as we decrease the number of
samples when using the Monte Carlo method from O( 1

ϵ2 ) to constant. To better balance the tradeoff
between computational complexity and variance, i.e., uncertainty, we may need n samples to estimate∫ bk

ĉk
yk(ĉ1, ..., ĉk−1, tk, ĉk+1, ..., ĉK)dtk, yielding O( 1

n ) variance and O( n
ϵ2 )/O( n

ϵ ) complexity.

C.3.4 Proof of Corollary 2.2

From the constraint y
1/ρk

k +
∑K

i=1 µiky
γik/ρi

i ≥ dk, we know that when yk = 0, the corresponding slope is
infinity. Besides, from the knowledge of convex optimization, we know that (vc1, ..., vcK) is associated with
the corresponding subgradient. However, due to Assumption 2.2, vck is upper bounded and finite. Therefore,
the solution of y is strictly positive in all components given µik ̸= 0 and γik ̸= 0, which ends the proof.

Since the feasible area is an intersection of K convex sets, when the optimal y is located on the boundary
of the k-th set, the k-th demand constraint will be tight, i.e., binding. Otherwise, it will be loose, i.e.,
non-binding. Then, we know that although all domains still exist, some will experience overproduction and
it completes our analysis.

C.4 Extension to Multiple Human Creators in Each Domain

We conclude that the extension will retain the convexity of the optimization problem, hence preserving the
validity of Theorem 2.1 and Proposition 2.1.

We first write down the revenue-maximizing problem as Problem 1. We assume there are nk human creators
in the k-th domain and we use xi

k (ci
k, pi

k resp.) for the i-th creators where i ∈ [nk]. We assume these ni

humans have i.i.d. cost function. We stack ci
k as c and we use yi

k to denote (xi
k)ρk as before. With these

preparations, we have the following optimization problem,

max
x,p

Ec[−
K∑

k=1

nk∑
i=1

pi
k(c)]

s.t.
nk∑
i=1

xi
k(c) +

K∑
j=1

µjk[
nj∑

i=1
xi

j(c)]γjk ≥ dk for any k ∈ [K]

E−(k,i)[−ci
k(xi

k(c))ρk + pi
k(c)] ≥ E−(k,i)[−ci

k(xi
k(ĉ))ρk + pi

k(ĉ)]
E−(k,i)[−ci

k(xi
k(c))ρk + pi

k(c)] ≥ 0
xi

k(c) ≥ 0 for any (k, i) ∈ [K] × [nk],

where (k, i) means taking expectation over all other human creators.

Since the IC and IR conditions hold individually, we know the optimization goal becomes y(c) =
argminy

∑K
k=1

∑nk

i=1[ci
k + Fk(ci

k)
fk(ci

k
) ]yi

k accordingly. We are now ready to prove that the constraints still in-
duce a convex set.
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By replacing (xi
k)ρk by yi

k, the last constraint turns to yi
k ≥ 0. The first constraint is now

∑nk

i=1(yi
k)1/ρk +∑K

j=1 µjk[
∑nj

i=1(yi
j)1/ρj ]γjk ≥ dk. Note that ρk ≥ 1 for any k ∈ [K] and γjk ∈ [0, 1]. We know that∑nk

i=1(yi
k)1/ρk +

∑K
j=1 µjk[

∑nj

i=1(yi
j)1/ρj ]γjk is a concave function with respect to y. Therefore, the area

corresponding to larger than dk is a convex set. It soon holds that y belongs to a convex set because the
intersection of convex sets is still a convex set.

We conclude that even with multiple human creators in each domain, the revenue-maximizing problem is
still a convex optimization problem. We can find the optimal mechanism by solving

y(c) = argmin
y

K∑
k=1

nk∑
i=1

[ci
k + Fk(ci

k)
fk(ci

k)
]yi

k

s.t.
nk∑
i=1

(yi
k)1/ρk +

K∑
j=1

µjk[
nj∑

i=1
(yi

j)1/ρj ]γjk ≥ dk for any k ∈ [K]

yi
k ≥ 0 for any (k, i) ∈ [K] × [nk].

Additionally, the proofs of Theorem 2.1 and proposition 2.1 still hold as they are applicable for general
convex optimization problems, so the optimality and the complexity results remain valid. Moreover, we can
choose a different ck for each domain and then allocate assignments among human creators, showing the
equivalence of considering only one content creator.

Moreover, we remark that we assume creators in domain k share a common ρk to reflect the similar eco-
nomic characteristics of creators within the same domain. Mathematically, our results do not rely on the
homogeneity of ρk. Suppose that the i-th creator in domain k has cost ci

k(xi
k)ρi

k . By defining yi
k = (xi

k)ρi
k ,

the optimization problem can be rewritten as

y(c) = argmin
y

K∑
k=1

nk∑
i=1

[ci
k + Fk(ci

k)
fk(ci

k)
]yi

k

s.t.
nk∑
i=1

(yi
k)1/ρi

k +
K∑

j=1
µjk[

nj∑
i=1

(yi
j)1/ρi

j ]γjk ≥ dk for any k ∈ [K]

yi
k ≥ 0 for any (k, i) ∈ [K] × [nk],

which still preserves convexity after the transformation. This illustrates the generality of our model.

C.5 Omitted Proof in Section 2.3

C.5.1 Proof of Theorem 2.2

From the proof of Theorem 2.1, we know that to satisfy IC, the payment rule has to be pk(c) = ckyk +∫ bk

ck
yk(c−k, tk)dtk + C where c−k means all costs except the k-th entry and C is a global constant. To

guarantee the participation or the IR constraint, we need that pk(c) ≥ ckyk because of the parameter
transformation yk(c) = xk(c)ρk . From the implementation of Algorithm 1, we know that for any positive
virtual cost, yk(·) is larger than zero letting alone c. Thus, it holds that

∫ bk

ck
yk(c−k, tk)dtk + C ≥ C. If C

is not negative, we know that the IR constraint is satisfied. Considering the corner case that c = b, we find
that the integral is zero, so we need C to be no smaller than zero. Combining these two results, we know
that C = 0 is the optimal choice. This shows the feasibility and the optimality of our payment rule.

As we have shown that for every allocation rule, we can find a corresponding payment to motivate its
implementation, we know that we only need to set the virtual cost equaling to the true cost c noting that we
hope to obtain the lowest social cost, namely minx

∑
k ckxρk

k (c) = miny

∑
k ckyk(c). It yields the optimality

of Algorithm 4 as it satisfies both IC and IR, and achieves the highest social welfare while fulfilling all
demands. Since we only need vck(·) to be increasing to obtain the validity and ck is of course increasing, it
holds that M2 is valid.
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As for the complexity, we can inherit the results of Proposition 2.1 directly as the main computational time
lies in the subroutine Algorithm 1. So, the computational complexity is polynomial and it finishes the proof.

C.6 Omitted Proof in Section 2.4

C.6.1 Proof of Lemma 2.3

In order to prove that
∫ b

c
y(t) · dt is independent of the integration path for any c, we first write down how

we decide y(·). From the implementation of Algorithm 1, we know that

y(c) = argmin
y

c · y

s.t. y
1/ρk

k +
K∑

i=1
µiky

γik/ρi

i ≥ dk

yk ≥ 0 for any k ∈ [K].

From the knowledge of analysis (Griffiths & Schroeter, 2019), we know that a sufficient condition is ∇×y(c) =
0. On the other hand, if we can find a potential function Ψ(c) such that ∇Ψ(c) = y(c), it holds that
∇ × y(c) = ∇ × ∇Ψ(c) = 0 due to ∇ × ∇ = 0.

Figure 5: When y(c) is a vertex. Figure 6: When y(c) is not a vertex.

We use I to denote the constrained area that I = {y : y
1/ρk

k +
∑K

i=1 µiky
γik/ρi

i ≥ dk and yk ≥ 0 for any k ∈
[K]}. From Lemma C.3, we know that I is a convex set. Note that c · y is a linear function, then we can
define Ψ(c) = miny∈I c · y. Let’s now detail when we change c to c + δc, how will y change. There are two
possible outcomes. If y(c) is a non-smooth point, then y(c + δc) = y(c) (ref. Figure 5). Otherwise, y(c)
is on a smooth segment, and we know that c · ∇y(c) · δc = 0 (ref. Figure 6). Since δc can be arbitrary,
it holds that c · ∇y(c) = 0. Therefore, we know that Ψ(c + δc) − Ψ(c) = δc · y(c) in the first case and
Ψ(c + δc) − Ψ(c) → δc · y(c) + c · ∇y(c) · δc = δc · y(c) as δc → 0 in the second case. We know thereof that
∇Ψ(c) = y(c), showing the path independence. Since we have proven the path independence, it holds that
the payment rule p(·) is well-defined which ends the proof.

C.6.2 Proof of Theorem 2.3

From the revelation principle (Roughgarden, 2010), we know the existence of mechanisms satisfying both
IC and IR. Let’s analyze the IC condition first. It holds that p(c) − p(ĉ) ≥ c · y(c) − c · y(ĉ). Since ĉ can
approach c from any direction, we know that ∇p(c) = c · ∇y(c). In practice, applicable mechanisms are
usually smooth, so we assume that these gradients exist. However, as we will see below the payment rule is
indeed a constant, this assumption is not mandatory.
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Consequently, it holds that

p(c) = p(b) −
∫ b

c

t · ∇y(t) · dt = c · y(c) +
∫ b

c

y(t) · dt + C,

where the second equation holds due to the integration by parts formula and C here is a constant.

We now know we can use this kind of payment rule to induce any allocation rule, which is thereof applied to
social welfare maximizing platforms. Since it contains a family of mechanisms, we use the IR condition to
find the one with the highest revenue. Recall that we need to guarantee p(c) − c · y(c) ≥ 0 for any c. Since
there are constraints that yk(·) ≥ 0 for any k ∈ [K], it holds that C ≥ maxc[−

∫ b

c
y(t) · dt]. When c = b, we

know that the right-hand side takes the maximum zero. Therefore, we know the smallest C is zero which is
optimal.

The last question is that we only show a necessary condition and we need to prove the IC condition actually
holds. From the proof of Lemma 2.3, we know that c · ∇y(c) = 0. Therefore, we know that p(·) is in fact a
constant, say b · y(b). Then, we only need to show that c · y(c) ≤ c · y(ĉ). Note that from Algorithm 2, we
find y(c) to minimize c · y. Thus, it holds that c · y(c) = argminy∈I c · y ≤ c · y(ĉ) as y(ĉ) is also a feasible
candidate.

Therefore, we show the payment rule in Algorithm 2 satisfies both IC and IR. Since the objective function is∑
k ĉkyk =

∑
k ckyk = c · y when c = ĉ and yk = xρk

k , we know that the mechanism M4 achieves the highest
social welfare. Moreover, since M4 has the same allocation rule as M2, we know it’s valid immediately.

Note that most of the computational resource consumption comes from calls to Algorithm 1, hence we know
Algorithm 2 is a polynomial algorithm, which ends our proof.

We finally give the following remark. Observe that from the proof of Theorem 2.3, we don’t need Assump-
tion 2.1 anymore unlike Theorems 2.1 and 2.2. It may suggest the potential success of high-dimensional
mechanism design problems beyond cycle monotonicity (Lavi & Swamy, 2007), which is of independent
interest for future work.

C.6.3 Discussion on Mechanism M3

The difficulty of Mechanism M3 stands in sharp contrast to M4, which maximizes social welfare. Un-
der welfare maximization, one can leverage a potential-function-based formulation Ψ(c) to construct path-
independent payments. However, this approach does not apply to Mechanism M3. Specifically, for M3 we
require a path-independent allocation rule y that satisfies y(c) = arg min c · y +

∫ b

c
t · ∇y(t) · dt, which is

fundamentally challenging because the linear objective and the integral term are tightly coupled. Moreover,
enforcing path independence, without access to a potential function (The existence of a potential function
implies that the field is conservative, which naturally leads to path-independent payments), makes identify-
ing such an allocation especially difficult. Specifically, there is no clear evidence showing that naively derived
y(c) = arg min c · y +

∫ b

c
t · ∇y(t) · dt naturally satisfies the integral path-independence property.

This comparison highlights an important advantage of social-welfare maximization: it enables simple and
practically implementable mechanisms. Meanwhile, our experiments show that the welfare-maximizing mech-
anism only incurs a minor revenue loss, further supporting its practical relevance.

C.7 Omitted Proof in Section 2.5

C.7.1 Proof of Theorem 2.4

First, from the implementation of Algorithms 2 and 4, we know that they achieve social welfare optimum
as the demand constraints are unavoidable. Therefore, we know that SW2 = SW4 and they are larger than
both SW1 and SW3, yielding SW2 = SW4 ≥ max{SW1, SW3}.

In the meanwhile, since M1 and M2 have the same constraints, then the two solutions are both feasible
for each optimization problem. Thus, since M1 maximizes the revenue of the platform, we know that
Rev1 ≥ Rev2.
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Now, let’s compare Rev2 and Rev4. Since they have the same allocation rule, we only need to compare∑
k

∫ bk

ck
yk(c−k, tk)dtk and

∫ b

c
y(t) · dt. Since we know the latter integral doesn’t depend on the integration

path, we choose a path as follows. We first go from c to (b1, c2, ..., cK) and then from (b1, c2, ..., cK) to
(b1, b2, c3, ..., cK) etc. The k-th road is from (b1, ..., bk−1, ck, ..., cK) to (b1, ..., bk, ck+1, ..., cK). Therefore, it
holds that

∫ b

c
y(t) · dt =

∑
k

∫ bk

ck
yk(b1, ..., bk−1, tk, ck+1, ..., cK)dtk. From the implementation of Algorithms 2

and 4, we know that yk(b1, ..., bk−1, tk, ck+1, ..., cK) ≥ yk(c1, ..., ck−1, tk, ck+1, ..., cK) as the objective function
is linear and the feasible region is a convex set, yielding

∑
k

∫ bk

ck
yk(c−k, tk)dtk ≤

∫ b

c
y(t) · dt. Thus, we know

that Ec[
∑

k pk(c)] in M2 is no larger than Ec[p(c)] in M4 and Rev2 ≥ Rev4.

Note that M3 and M4 have the same constraints though different optimization objectives. From the
above proof, we know that if the allocation of M3 is x(·), it holds that p(c) ≥ c · y(c) +

∫ b

c
y(t) · dt where

yk(·) = xk(·)ρk . Here, we also need that
∫ b

c
y(t) · dt is independent of the integration path.

Consequently, as M3 has one more constraint on the integration path than M1, the allocation of M3 is also
feasible for the optimization Problem 1. Let’s assume the corresponding allocation rule is associated with
y(·).

Notice that the payment rule of M3 holds p(c) ≥ c · y(c) +
∫ b

c
y(t) · dt, we only need to show that c · y +∫ b

c
y(t) · dt ≥ c · y +

∑
k

∫ bk

ck
yk(tk, c−k)dtk. Since M3 is a valid mechanism and has path independence, we

choose the following path which goes from the first coordinate to the last one in order. More specifically, the
k-th road is from (b1, ..., bk−1, ck, ck+1, ..., cK) to (b1, ..., bk−1, bk, ck+1, ..., cK) along the k-th coordinate. Due
to Definition 2.1, it holds that yk(b1, ..., bk−1, tk, ck+1, ..., cK) ≥ yk(tk, c−k), and then we know

∫ b

c
y(t) · dt ≥∑

k

∫ bk

ck
yk(tk, c−k)dtk similar to the proof of Theorem 2.4, yielding p(c) ≥ c · y +

∑
k

∫ bk

ck
yk(tk, c−k)dtk.

Since the payment of M1 is the minimum of c · y +
∑

k

∫ bk

ck
yk(tk, c−k)dtk over all possible allocation rule

x(·) or equivalently y(·), it holds that p(c) is no smaller than the payment of M1. Therefore, the expected
payment of M3 is at least as large as the one of M1. Since the platform’s revenue is equal to the negative
of the payment, it holds that Rev3 ≤ Rev1, which ends our proof.

D Omitted Details in Section 3

D.1 Timeline of the Three-Layer Platform-Broker-Creator Markets Markets

We use the following figure to show the timeline in three-layer markets.

Figure 7: The timeline of the three-layer market.

D.2 Omitted Proof in Section 3.1

D.2.1 Proof of Theorem 3.1

First, as we notice that the final allocation in both stages is constant, we know that M5 is valid.
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We now begin to consider the second-stage mechanism design. Note that in this stage, t and z are fixed
constants. Therefore, changing the objective from Ec[t −

∑
k pk(c; z, t)] to Ec[−

∑
k pk(c; z, t)] won’t change

the optimal allocation and payment rule. Comparing Problem 4 and Problem 1, we know that the only change
is the demand constraint is now xk(c; z, t) ≥ zk, parallel to other axes. Since we know zk ≥ 0, we can certainly
omit xk ≥ 0. From the proof of Theorem 2.1, we know that this optimization problem equaling to minimizing
miny

∑
k(ck + Fk(ck)

fk(ck) )yk subject y
1/ρk

k ≥ zk where yk = xρk

k . Since ck + Fk(ck)
fk(ck) ≥ 0, it holds that the optimal

yk(c; z, t) is zρk

k , hence xk(c; z, t) = zk for any c. Recall that due to Assumption 2.3, ck + Fk(ck)
fk(ck) is increasing,

so we have validity directly. In the meanwhile, we know that pk(c; z, t) = ckyk(c; z, t)+
∫ bk

ck
yk(τk, c−k; z, t)dτk,

using the fact that yk(c; z, t) = zρk

k for all c, we know that pk(c; z, t) = bkyk(c; z, t) = bkzρk

k . Since bk ≥ ck,
the IR constraint is preserved.

The third step is to find the optimal first-stage mechanism. Since we need to satisfy Ec[t−
∑

k p∗
k(c; z, t)] ≥ 0

and from above we know that p∗
k(c; z, t) = bkyk(c; z, t) = bkzρk

k . So, we know that t ≥
∑

k bkzρk

k . As the
objective is to maximize Ec[−t], it equals to minimizing

∑K
k=1 bkωk where we use ωk to denote zρk

k . Now we
turn to the constraints. It holds that ω

1/ρk

k +
∑K

i=1 µikω
γik/ρi

i ≥ dk and ωk ≥ 0 for any k ∈ [K]. From the
implementation of Algorithm 1, we know that we only need to replace vck(ĉ) by bk, and ω is the output y
of Algorithm 1.

Therefore, we prove the optimality of the second-stage mechanism design using xk(c; z, t) = zk and
pk(c; z, t) = bkzρk

k . Also, we know that the allocation rule in M5 is optimal. Since t can be any num-
ber no smaller than

∑K
k=1 bkzρk

k , we know that the payment rule in the first stage is optimal as well.

Finally, since the time complexity mainly depends on the call of Algorithm 1, we know M5 is polynomial-time
from Proposition 2.1 immediately.

D.3 Omitted Proof in Section 3.2

D.3.1 Proof of Theorem 3.2

Note that the second-stage optimization problem is the same as the one of Theorem 3.1. We only need to
replace the first-stage problem with Problem 6. Now, the objective is to minimize Ec[−

∑
k ck(x∗

k(c; z, t))ρk ].
Since we know that x∗

k(c; z, t) = zk, it holds that we need to minimize E[
∑

k ckzρk

k ]. Using ωk to denote zρk

k ,
it holds that the objective is now E[c] · ω under the constraints ω

1/ρk

k +
∑K

i=1 µikω
γik/ρi

i ≥ dk and ωk ≥ 0 for
any k ∈ [K]. Replacing vck(ĉ) by E[ck] yields the optimal ω immediately.

Since we need to guarantee t ≥
∑

k bkzρk

k so that the broker will participate in the market, we set t =∑K
k=1 b · ω, which is the lower bound of feasible t. Therefore, it holds that (z, t) in M6 is the optimal

first-stage mechanism.

Similarly, we know that the corresponding (x, p) is the optimal second-stage mechanism. Since the allocation
is fixed in each stage, we know that M6 is valid. As for the computational complexity, it’s polynomially dom-
inated by the one of Algorithm 1. Therefore, we know it’s a polynomial-time algorithm from Proposition 2.1
which ends the proof.

D.4 Omitted Proof in Section 3.3

D.4.1 Proof of Theorem 3.3

From Theorem 2.4, we know that Rev2 ≥ Rev4. Also, in the proof of Theorem 2.2, we know that the
payment in M4 is in fact a constant b · y(b) where y(b) is the output of Algorithm 1 with input b. From
the implementation of Algorithm 3, we know that the payment of M5 is also b · y(b) thereof Rev4 = Rev5.
Note that M5 and M6 have the same second-stage optimization problem, therefore M6 is also feasible for a
Type 1 platform. Due to the optimality of M5 shown in Theorem 3.1, we know that Rev5 ≥ Rev6. Hence,
it holds that Rev2 ≥ Rev4 = Rev5 ≥ Rev6.
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Similarly, as M5 is feasible for a Type 2 platform, we know that SW6 ≥ SW5 because of Theorem 3.2. Note
that M2 and M4 achieve the highest social welfare for each c while SW6 only uses the optimal allocation
with respect to E[c]. Therefore, for each c, the allocation of M2 and M4 is at least as good as the one of
M6. We then know that SW2 = SW4 ≥ SW6. To sum up, it holds that SW2 = SW4 ≥ SW6 ≥ SW5.

As a result, we’ve shown that the three-layer market will lead to a lose-lose situation that

max{Rev5, Rev6} ≤ min{Rev2, Rev4}

and
max{SW5, SW6} ≤ min{SW2, SW4}.

D.4.2 Proof of Corollary 3.1

We only need to construct a mechanism based on M5 which is feasible for Problem 3. We choose the
second-stage mechanism in Algorithm 3 as a candidate. We know that the total payment of M5 is now∑

k bkzρk

k and the allocation rule is a constant vector z. Then, we choose p(c) =
∑K

k=1 bkzρk

k and x(c) = z
for Problem 3.

For Problem 3, since we know z also satisfies demand constraints in all domains, it holds that xk(c) +∑K
i=1 µikxi(c)γik ≥ dk also holds. For the IC constraint, we know that p(c)−

∑K
k=1 ckxρk

k (c) =
∑K

k=1 bkzρk

k −∑K
k=1 ckzρk

k = p(ĉ)−
∑K

k=1 ckxρk

k (ĉ) so preserved. For the IR constraint, it holds that p(c)−
∑K

k=1 ckxρk

k (c) =∑K
k=1 bkzρk

k −
∑K

k=1 ckzρk

k =
∑K

k=1(bk − ck)zρk

k ≥ 0 as bk ≥ ck. Finally, xk(c) ≥ 0 for all k ∈ [K] as z ≥ 0
entrywise.

Therefore, we find a feasible solution to Problem 3. Since Rev3 corresponds to the optimal solution, we know
that Rev3 ≥

∑K
k=1 bkzρk

k = Rev5, yielding a lower bound for Rev3, and it finishes the proof.

E Omitted Details in Section 4

We conduct all the numerical experiments written in Python 3.11.7 running on a laptop with an Apple M2
CPU, and we provide more omitted details as follows.

Experimental evaluation of revenue and welfare among mechanisms. For series of experiments
to compare the performance of Algorithms 1 to 3, 4 and 5, we randomly choose µ following Unif[0, 0.5], γ
following Unif[0.8, 0.9], d following Unif[2, 5] and ρ following Unif[1, 1.5]. To better visualize our results, we
still set K = 2. We introduce asymmetry that c1 follows N (0, 1) truncated by [0, 10] and c2 is sampled from
Unif[0, 1]. We follow Equation (7) and use 100 trials to take the average in order to reduce the variance of our
payment rule. Finally, we sample the cost vector c 1000 times and compare the corresponding revenue and
social welfare. Here, we compare the resulting revenue and social welfare under different market structures
and objective choices, holding the distribution of costs c (i.e., market randomness) and other hyperparameters
fixed across all mechanisms. Therefore, the differences observed are solely caused by structural changes
(e.g., two-layer vs. three-layer, revenue-maximizing vs. welfare-maximizing), which makes the comparison
meaningful.

We first give the following Table 1 to show the average revenue and social welfare of M1, M2, M4, M5 and
M6, and we use Theorem 2.4 and Corollary 3.1 to bound the ones with M3.

Table 1: Revenue and social welfare of our mechanisms.
M1 M2 M3 M4 M5 M6

Revenue -15.96 -20.28 [-30.68,-15.96] -30.68 -30.68 -34.21
Social Welfare -5.24 -4.79 ≤ -4.79 -4.79 -9.58 -4.96

Note that the revenue is the negative payment, and the social welfare is the negative total human cost, so they
are both less than zero. The experimental findings corroborate Theorems 2.4 and 3.3, demonstrating that
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the rankings of revenue and social welfare observed in the experiments are consistent with their theoretical
rankings.

We visualize in Figure 4 the distributions of revenue and social welfare across different algorithms and
provide further explanation and economic insights. We use a red line to represent the mean and an orange
one for the median. Moreover, we draw the first quantile, the third quantile, and the extension with a 1.5
interquartile range in Figure 4. We find that compared with mechanism M2, mechanism M1 has more
outliers and extreme points. We also plotted the specific Rev1, Rev2, SW1 and SW2 for the first 100 trials in
Figure 8, which clearly demonstrated the high volatility of mechanism M1. It may hint that the social welfare
maximizer can enjoy a more stable market, say the social welfare and even the revenue are steady, compared
with a revenue maximizer. This could perhaps explain why some companies turn to maximizing social
welfare. Moreover, in the three-layer market, data brokers and online platforms first establish contracts,
which are independent of the realization value of cost c, resulting in less volatility. This is also clearly
reflected in the box plot.

(a) Comparative platform revenue volatility for M1 and M2
over 100 trials.

(b) Comparative social welfare volatility for M1 and M2 over
100 trials.

Figure 8: Volatility comparison between Mechanism 1 and Mechanism 2.

With and Without GenAI. Finally, we provide more details when studying the gap between the presence
and absence of GenAI. Recall that when µ = 0 is equivalent to expelling GenAI out of the market. We adopt
the same setup as in the evaluation of the mechanisms. The experiment is repeated 10 times, and the
results are reported in Table 2. Besides, we include bar plots to visualize their gaps in Figure 9. The

Table 2: Revenue and social welfare with and without GenAI in 10 trajectories.

with GenAI Rev -10.88 -16.65 -7.98 -34.49 -15.55 -15.24 -15.88 -13.18 -24.51 -10.87
SW -2.94 -5.54 -1.86 -9.22 -4.47 -5.01 -4.58 -3.42 -4.81 -2.86

without GenAI Rev -21.82 -21.95 -32.08 -42.91 -36.93 -20.57 -35.46 -35.83 -23.68 -37.80
SW -3.86 -4.20 -4.93 -7.13 -6.54 -3.40 -7.49 -6.15 -4.84 -8.02

average revenue increases from -30.90 to -16.52 while the average social welfare increases from -5.66 to -4.47.
Therefore, the revenue and social welfare increase by 46.54% and 21.02%, respectively. This indicates that
the application of GenAI moderately improves production efficiency, while simultaneously increasing both
the platform’s revenue and overall social welfare.
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Figure 9: Visualization of Rev and SW with and without GenAI (lower values mean worse performance).
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