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Abstract

With the rapid advancement of generative AT (GenAl), mechanism design adapted to its
unique characteristics poses new theoretical and practical challenges. Unlike traditional
goods, content from one domain can enhance the training and performance of GenAl mod-
els in other domains. For example, OpenAl’s video generation model Sora (Liu et al.|
2024b)) relies heavily on image data to improve video generation quality. In this work,
we study nonlinear procurement mechanism design under data transferability, where online
platforms employ both human creators and GenAl to satisfy cross-domain content demand.
We propose optimal mechanisms that maximize either platform revenue or social welfare and
identify the specific properties of GenAl that make such high-dimensional design problems
tractable. Our analysis further reveals which domains face stronger competitive pressure
and which tend to experience overproduction. Moreover, the growing role of data interme-
diaries, including labeling companies such as Scale Al and creator organizations such as The
Wall Street Journal, introduces a third layer into the traditional platform—creator structure.
We show that this three-layer market can result in a lose-lose outcome, reducing both plat-
form revenue and social welfare, as large pre-signed contracts distort creators’ incentives
and lead to inefficiencies in the data market. These findings suggest a need for government
regulation of the GenAl data ecosystem, and our theoretical insights are further supported
by numerical simulations.

1 Introduction

Large models have entered the era of multimodality (Yin et al., [2023). Modern commercial systems such as
GPT-4 (Achiam et al.|2023)), Gemini (Team et al., [2023), and Claude (Anthropic,|2024]) are trained on diverse
types of data, including text, images, audio, and video. These modalities are not isolated; transferability
among them is well established both theoretically and empirically through transfer learning (Howard &
Ruder}, [2018). Just as film directors may draw inspiration from Shakespeare’s works, image datasets can
enhance the performance of video generation models. This interdependence links the valuation of data across
domains into a unified economic problem and naturally raises the question:

How do we price content across different domains?

The answer depends on the degree of transferability, a feature absent from traditional goods. Bricks, for
instance, can only build houses but not chips, while data can improve the performance of models across
tasks. Data with high transferability should therefore command a higher price, whereas specialized data
that benefits only a single task should be valued lower. In this paper, we incorporate parameters capturing
data transferability into a formal production model to analyze how this property shapes market outcomes.

The transferability of data also raises important ethical concerns. Recent debates have centered on whether
GenAl will cause certain professions to vanish, alongside growing discussions on the implications of artificial
general intelligence (George et al.l [2023)). We want to ask:

From an economic perspective, will any domains disappear?
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In Section[2.2] we show that although GenAl may reduce employment in some domains, it cannot completely
replace them. This result follows from the principles of diminishing marginal returns and increasing marginal
costs. Moreover, in domains with high data transferability, we observe a tendency toward overproduction,
which distorts the allocation of creative effort. Such imbalances highlight the need for regulatory oversight
and further research on how GenAl reshapes data generation markets.

The growing demand for data to train large models has driven many Al companies to purchase high-quality
datasets. For example, OpenAl reportedly spent about $250 million acquiring data from The Wall Street
Journal (WSJ, 2024). Industry forecasts further predict that the global generative AI market for content
creation will expand from USD 15.2 billion in 2024 to USD 175.3 billion by 2033 (Market.us, 2024). This
surge in data demand can be traced back to the creation of ImageNet (Deng et al.l 2009)), which catalyzed the
modern data economy. The emergence of specialized data annotation companies such as Scale Al, Lionbridge,
Aurora Al, and Amazon Mechanical Turk has since transformed the landscape, pushing the market from
a two-layer structure toward a three-layer structure that includes professional data brokers. This evolution
raises a key question:

How does the three-layer market impact revenue and social welfare?

In Section [3] we examine two types of platforms—those that maximize revenue and those that maximize
social welfare—and show that in the three-layer market, both platform revenue and social welfare decline
relative to the two-layer setting, resulting in a clear lose-lose outcome. The presence of data brokers distorts
creators’ incentives and reduces overall efficiency, highlighting the need for regulatory oversight to address
inefficiencies in the data market.

1.1 Our Contributions

We summarize our contributions in three main aspects and elaborate on each below.

Mechanism design with competition between humans and generative AI. Recent studies have
begun examining market equilibria that arise from competition between AI content generators and human
creators (Yao et al., 2024). Our work is the first to approach this problem from the buyer’s perspective.
We study online sharing platforms that rely on both human creators and GenAl for content production,
situating the analysis within the broader framework of procurement mechanism design. Going beyond the
classical single-dimensional setting (Myerson, [1981)), we derive optimal mechanisms for five of six multi-
dimensional environments and establish tight upper and lower bounds for revenue and social welfare in
the remaining case. Our results show that although GenAl reduces the overall demand for human-created
content, human creators remain indispensable from an economic standpoint. Their outputs not only satisfy
subscriber preferences but also provide essential data for GenAl training. Furthermore, in domains with high
data transferability, we find that overproduction is more likely to occur, reflecting the complex interactions
between human and algorithmic production incentives.

Distinguishing between two/three-layer markets regarding data brokers. Finding an efficient
market structure has been a long-standing goal in digital economics (Liang et al) [2018; [Agarwal et al.|
2019). For online platforms, a central question is whether to buy content directly from human creators as
crowdsourcing, or through data companies. Our analysis shows that the latter, a three-layer market where
the platform purchases data from a broker who sources it from humans, leads to a lose-lose outcome: both
platform revenue and social welfare decline. The inefficiency stems from asymmetric information. Large,
transparent contracts reveal the platform’s and broker’s valuations to creators, making price discrimination
impossible and weakening incentives for efficient production. As a result, both welfare and revenue fall,
underscoring the need for policy intervention.

Numerical experiments validate the conclusions about market dynamics. Finally, we validate our
theoretical results using simulated data. In the two-layer market, the experiments reveal content overproduc-
tion in specific domains. We also compare platform revenue and social welfare across the two- and three-layer
settings, illustrating the “lose-lose” outcome in the latter. These numerical experiments offer valuable inspi-
ration and insights for future real-world mechanism design and implementation using real data.
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1.2 Related Works

Our work is closely related to the literature on procurement mechanism design (Myerson, |1981; [McAfee &
McMillan| [1987; [Laffont & Tirole, [1993)), data pricing (Jia et al.l|2019; |Ghorbani & Zou, 2019} [Schoch et al.
2022; |Ai et all, 2024), human vs. GenAI competition (Esmaeili et al.l 2024; [Yao et al 2024; [Fish et al., 2024
Duetting et al., 2024) and multi-layer markets (Fallah et al.,|2024; Xu et al., 2020). We generalize physical
goods procurement to transferable digital content and analyze the ensuing human—GenAl competition across

multi-layer markets. A thorough comparison and additional related work are provided in Appendix

2 Content Procurement in (Two-Layer) Platform-Creator Markets

We begin with the two-layer market, in which online platforms procure content directly from human creators.
For example, platforms such as YouTube invite creators to upload content in exchange for monetary rewards,
providing a representative case of this market structure.

2.1 A Model of Content Procurement in the GenAl Era

An online platform features K domains (e.g., sports, pop music, knowledge sharing), denoted by [K] =
1,2,..., K. To serve its user base, the platform requires dy € R units of content in each domain k € [K],
produced by human creators and/or GenAls. We assume that each human creator specializes in a single
domairﬂ For instance, Dream has attracted over 30 million YouTube subscribers through Minecraft challenge
videos. For analytical convenience, each domain k is represented by a single creator who incurs a cost ¢yt
to produce zj, units of content, following standard models of the creator economy (Hu et al.| [2023; |Jagadeesan|
let al., [2024; [Yao et all [2024). We interpret zy, as a calibrated quantity, meaning that production is weighted
by quality metrics such as click-through rate or content accuracy (Radlinski et al., [2008). The parameter cy
captures the creator’s production efficiency, which is private information, while pj reflects the population-
level growth speed of the production cost and is assumed to be publicly known, as it can be inferred from
market data. This representative-creator assumption is without loss of generality: when multiple creators
exist in the same domain with heterogeneous cost parameters c, they can be aggregated into a single “meta”
creator with an effective cost coefficient ¢; (see Appendix for details). Consistent with prior work, we
assume pg > 1 to reflect increasing marginal costs . This captures the empirical observation
that creative ideas become progressively harder to generate over given time, resulting in a convex production
cost function.
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Figure 1: @mkbhd focuses on tech reviews, and @markiplier is dedicated to gaming content, especially
horror-themed Let’s Plays.

To meet its demand requirements (di,...,dr), the platform (e.g., a video-sharing site such as YouTube)
asks human creators to report their private cost parameters ¢ = (ci1,...,¢x). To account for possible
misreporting, let ¢ = (¢1,...,Ck) denote the reported costs. The mechanism then proceeds according to the

standard timeline in mechanism design (Hart & Tirole, |1988} |Salant), [1989)):

1Although some creators may produce content across domains, most major creators focus on one area in practice; see Figure
for examples.
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1. The platform commits to a mechanism z(-) and p(-);

The creators’ costs ¢ are then elicited;

3. The platform implements “allocation outcomes” x(¢) = (x1(¢), ..., xx (¢)) by procuring xx(¢) amount
of domain-k content from creator k for each k;

4. The payments p(¢) = (p1(¢), ...,px(¢)) is then executed by paying px(¢) to creator k.

o

While procurement auctions have been extensively studied in prior work (Laffont & Tirole, [1993)), our setting
differs by incorporating the platform’s ability to use GenAl to augment content creation at negligible cost
(We discuss the non-negligible case in Appendix|C.1)). Specifically, we assume that the platform can employ
GenAl, together with human-created content, to partially meet demand with minimal additional expense
relative to human creation. Motivated by the scaling laws of GenAT’s creative capacity (Kaplan et al.
2020; Yao et al., |2024), we model this process as follows: x; units of content in domain i enable GenAl
to generate p;pxz])™™ units of essentially new content in domain k, where pu;; captures the transferability
from domain i to domain k, and ~y;; represents the capability of employed GenAl tool. |Yao et al.| (2024)
adopts a similar assumption to analyze the symbiosis or conflict between GenAl and human creators. This
formulation highlights three key distinctions between GenAl, human creators, and traditional machines.
First, GenAl exhibits transferability, allowing knowledge from one domain to benefit others with varying
efficiency. Second, its marginal cost of production is negligible compared with human effort. Third, GenAl’s
productivity depends on human creation, unlike traditional machines. The power-law relationship between
model capability and training data is well documented in the GenAl literature (Kaplan et al.l 2020), and we
assume that these capability parameters are known, as they can be empirically estimated (Alabdulmohsin
et al., [2022; |Goyal et al. 2024} [Lin et al.| [2024). Finally, as is standard, we restrict v;; € [0, 1] to reflect the
diminishing efficiency of data. Accordingly, given reported costs ¢, the platform’s design must satisfy the
following demand constraints:

Demand: 21,(€) + Y1, puirai (€)% > dy for any k € [K].

The revelation principle (Roughgarden,[2010) implies that, without loss of generality, we can restrict attention
to incentive-compatible (IC) mechanisms in which truthful reporting constitutes a Nash equilibrium (Myer-
sonl [1986). In Appendix we provide illustrations about the economic background for these and other
relevant terms. Accordingly, the incentive-compatibility condition is given by

1C: E_k[fckxzk (¢) + p(c)] > E_k[fckxzk (Ck, c—k) + pr(Ck, c—k)] for any k € [K],

where c_j is ¢ except the k-th entry. The expectation is taken over domains i # k. The nonlinearity of
the cost function hinders the application of existing methods (Myerson, [1981). We first focus on the Nash
equilibrium (Nash Jr, [1950), assuming no collusion, so it suffices to consider one-shot deviations. We will
later extend the analysis to more complex settings involving creator union and data brokers. An interesting
future direction is to extend it to correlated equilibrium and coarse correlated equilibrium (Aumann, [1987)
with limited signals.

Moreover, since human creators can always reject any allocation—payment pair offered by the platform and
quit the market, the mechanism must also satisfy the individual rationality (IR) condition:

IR: E_j[—crat*(c) + pr(c)] > 0 for any k € [K].

We consider the following class of allocation rules, which are natural when items are substitutable, as in
content production. In a valid mechanism, a creator’s production xj decreases with her own cost and
increases weakly as the costs of other creators rise.

Definition 2.1 (Valid Mechanisms). We say a mechanism is valid if its allocation rule satisfies

o xp(ck,c_k) > xp(Ck, c—k) for any ¢ > ¢ and
o xp(ck,c ) < apler,cp) if ¢ > ¢; for any i # k.

In practice, platforms typically pursue one of two objectives. Some aim to maximize revenue, or equivalently,
minimize total cost. Others, such as large technology firms like Google (Googlel 2024]) and Meta (Meta,
2024)), emphasize social welfare, defined as the aggregate utility of all market participants, or equivalently,
the minimization of creators’ total costs, since monetary transfers do not affect overall welfare. These
considerations motivate the two optimization objectives:
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e Type 1: min,, Ec[zllle pr(c)];
e Type 2: min, , IEC[Zf:l cpatt (c)].

For the second objective, when multiple mechanisms yield the same level of social welfare, we select the one
with the minimum total payment, breaking ties in favor of the platform.

For simplicity, we impose the following assumption on the distribution of cost parameter c.

Assumption 2.1 (Independent cost). We assume that the cost components ¢y, ..., cx are independent with
p.d.f. fi(er), ..., fr(ck) and corresponding c.d.f. as Fi(c1),..., Fx(ck), respectively. Additionally, we define

£(e) =TTiey frlen), Fo) = TTiey Fulen), fi(c—i) = Tl fr(cx) and F_j(c_;) = [T} Frlck)-

To avoid lengthy discussions of corner cases, we impose standard regularity assumptions on the above
distributions, as commonly adopted in both the economics and machine learning literature (Myerson, (1981}
Wang et al 2019; |Ai et al., [2022]).

Assumption 2.2 (Bounded cost and density). We assume that for any k € [K], ¢ is bounded, say ¢ €
[ak, bi], and fi(ck) is lower bounded from 0.

Assumption 2.3 (Monotone reverse hazard rate). We assume that for all k € [K], it holds that F(-) is

log-concave, in other words, the ratio {,’;(()) is monotone decreasing.

Assumption [2.2] can always be ensured through distribution truncation, while Assumption [2.3]is a standard
and widely popular assumption in economics (Kleiber, 2003} [Bagnoli & Bergstrom, 2006; |Wang et al., |2024)).
These assumptions are mild and hold for many commonly used distributions, such as the truncated Gaussian
and the uniform distribution (Golrezaei et al., [2019).

2.2 The Optimal Mechanism M; for Revenue-Maximizing Procurement

We first consider the case in which the platform aims to maximize its own revenue. Accordingly, the platform
faces the following revenue-maximization (or cost-minimization) problem:

Rev; =max, , E.[— Zszl pr(c)]
st. xp(c) + Zszl pirxi(c)¥* > dy, and zx(c) > 0 for any k € [K] (1)
E_k[—cex*(c) + pr(c)] = E_p[—crap® (Cr, c—r) + pr(Chs c—k)]
E_i[—cuzy*(c) + pr(c)] 2 0,

where the expectation is taken over ¢ ~ F(c¢). In addition, the corresponding social welfare is SW; =
E.[- Zle crzh® (c)]. We now present the optimal mechanism M; under information asymmetry between
human creators and the platform in Algorithm

Algorithm 1 Mechanism M for revenue-maximizing platforms without union in the two-layer market.

Input: Report c.

o~

Calculate virtual cost: veg(¢) = ¢ + ?’C(%’“)) for any k € [K].
k(Ck

Call some oracle to solve the auxiliary optimization problem
K
y = argmin Z veg (€)Y
v k=1
K
s.t. yi/p’“ + Zuiky;”k/pi > dj, and yi > 0 for any k € [K].
i=1

Calculate the allocations: zx(¢) = y,i/p’“ for any k € [K].
Calculate the payments: py(¢) = Cryr + f;b: Yk (Cly ooy Ck—1, iy Chit 1, ---, Crc )dty, for any k € [K].
Output: Allocation-payment pair (z(c),p(c)) = ((z1(¢), ...,k (¢)), (p1(C), ..., pK (€))).
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Theorem 2.1. Mechanism My is a valid mechanism satisfying IC and IR conditionﬂ and achieves the
highest expected revenue/lowest cost for the platform.

While Theorem [2.1] is formulated in a single-parameter mechanism design setting, the main challenge in its
proof arises from the nonlinearity of the designer’s allocation constraint, namely y,t/ P +Z¢K:1 ,uikyzi’“/ Pi > dy
in Algorithm[I] This constraint, induced by the nonlinear cost function and data transferability, prevents the
direct application of the standard analysis by Myerson| (1981f). We address this difficulty in two steps. First,
by applying a nonlinear transformation, we replace the search for the optimal allocation z(-) with that for
y(-), a monotonic transformation of z(-), which linearizes the cost term. Second, we show that the nonlinear
constraints introduced by GenAl still preserve convexity. Together, these steps reformulate Problem [1| into

a convex optimization problem, for which we establish the existence of an efficient solution algorithm.

Proposition 2.1. Algorithm |1 can be implemented to output an e-optimal mecham’snﬂ mn O(E%) time.
Furthermore, if max;{I1%} <1 for any k € [K], the computational complexity reduces to O(%).

Randomized payments can further reduce the computational complexity to O(1/€e2) and O(1/e), as detailed in
Proposition of Appendix These results demonstrate that online platforms can efficiently maximize
revenue even when incorporating GenAl into content creation. This extends the scope of procurement
mechanism design and provides a theoretical foundation for pricing in the rapidly evolving GenAl economy.

Furthermore, we derive the following corollary from Theorem [2:I] which shows that original human-created
content remains essential in every domain and that complete substitution does not occur. However, unlike
markets without GenAl, overproduction may emerge as a new phenomenon.

Corollary 2.2. Assuming data has transferability, i.e., all p;i and ~;; are not zero, then no domain will
disappear, i.e., all x(c) will be positive, no matter the value of c. However, some demand constraints will be
non-binding, i.e., some xy(c) + Efil wikx;(c)* > dy. It shows that with the development of GenAl, some
domains will be overproduced to augment knowledge transfer.

2.3 The Optimal Mechanism M, for Welfare-Maximizing Procurement

To maximize social welfare, an intuitive way is to allocate = corresponding to argmin, Y, ¢,z (c) for each c.
This yields the following optimization formulation and the corresponding revenue for such kind of platforms
. K

is Revy = B[ 324 pr(c)].

SWy =max,, E.[— ZkK:l crah® ()]
s.t. xp(c) + Zf; pigei(c)¥* > dy and zx(c) > 0 for any k € [K] 2)
E_y[—ckxy" (c) + pr(c)] > E_g[—crap* (Cr, c—k) + pr(Ch, c—)]
E_g[—ckzy*(c) + pr(c)] = 0

However, two key challenges arise in deriving the optimal design: (a) incentivizing each creator to report
their cost truthfully, and (b) identifying a payment rule p(-) that satisfies both IR and validity constraints.
We resolve both challenges in the affirmative and derive the optimal mechanism My for this setting by
substituting ve(¢) with ¢. Details are provided in Algorithm 4] of Appendix

We conclude this section with our main result, which establishes the optimality of Algorithm [] i.e., mecha-
nism M. The availability of the optimal mechanism also explains the rationale for the presence of companies
in the market that pursue social welfare maximization.

Theorem 2.2. Mechanism My is a valid mechanism satisfying IC and IR conditions and achieves the
highest social welfare with polynomial time complexitgﬂ.

2Since Algorithm [1]is a valid mechanism, it actually satisfies ex-post IC and IR conditions.

31t means compared to the optimal mechanism, the extra loss is at most e.

4In application, it is also known as Fully Polynomial-Time Approximation Scheme (FPTAS), which means that we can find
an e-optimal solution within polynomial time with respect to 1/e.
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2.4 Creator Union and Optimal Procurement Mechanism Design

Recently, OpenAl and The Wall Street Journal reached a data agreement valued at up to $250 million (WSJ,
2024). At the same time, data-selling companies such as Scale Al have experienced rapidly rising valua-
tions, driven by the growing demand for high-quality data to fine-tune large language models (The Scale
Team| [2023). Economically, these intermediaries can be viewed as aggregating data from human creators
and repackaging it for sale, similar to a creator union. We defer the analysis of the case in which such
intermediaries secure contracts before sourcing data from creators to Section [3] This raises a key question:
when a creator union appears, represented by a single agent producing content across all K domains, how
will the revenue of data-obsessing platforms and social welfare be affected?

We retain the setting from Section [2.I] except that the representative creator now has a cost vector ¢ =
(c1,...,¢K). We also let a = (a1,...,ax) and b = (by,...,bx). Unlike before, one-shot deviations are
insufficient to capture strategic behavior, as the creator may misreport multiple entries simultaneously. This
possibility of collusion complicates the mechanism design problem by introducing correlations, analogous to
the distinction between Nash and correlated equilibria (Gilboa & Zemel, [1989)).

2.4.1 Revenue-Maximizing Procurement Mechanism M3 with a Creator Union

Pessimistically, general high-dimensional mechanism design problems remain open and agnostic (Briest et al.,
2010; Hart et al., [2013} Daskalakis| 2015; [Hart & Nisan), [2017)). Therefore, we formulate the corresponding
optimization problem and derive bounds on platform revenue and social welfare, leaving explicit analytical
solutions for future research. The revenue-maximizing platform now faces the following optimization problem
(Mechanism M3), where the payment rule p(-) is a scalar function and the corresponding social welfare is

SWy = Ee[~ S5, exaf*(c)]:

Revs = max, , E.[—p(c)]

s.t. xp(ec) + Zz 1 Miki (€)Y > dj, and xp(c) > 0 for any k € [K]
(¢) = Zk 10k$k (0) = ( &) — Y e (@)
(¢) =

Zk L kTR (e) >0

3)

c

!

plc

The main challenge in this problem is that the union may misreport multiple components of the cost vector ¢
simultaneously. The resulting correlations make the optimization problem effectively contain infinitely many
constraints and require the use of path integrals in defining the payment rule. Finding the optimal solution
remains a difficult open problem in economics. In contrast, as shown in the next section, a platform that
maximizes social welfare can efficiently obtain the optimal solution, highlighting a notable advantage.

2.4.2 Welfare-Maximizing Procurement Mechanism M, under a Creator Union

The main obstacle to obtaining explicit solutions in high-dimensional mechanism design lies in the IC con-
dition. To ensure truthful reporting by the creator union, the payment rule must involve a high-dimensional
integral, and it is generally difficult to construct one that is independent of the integration path.

In this section, we turn to studying the properties of social welfare maximizers who aim to minimize total
social cost E.[>, cxzi*(c)]. Similarly, we use Revy = E.[—p(c)] to denote corresponding platform revenue.

SWy =maxy, E.]—> . czi’(c)]
st xx(e) + ZZK:1 ,uikxi(c)’”k > dj, and xk( ) > 0 for any k € [K]
ple) = Xy Ckxk (o) = ( ) = Yo ol (@)
)

p(c) — Zszl crapt(c) >0

Nonetheless, the analysis shows that the optimal mechanism can be derived in an explicit form and computed
in polynomial time. This may explain why some companies choose to maximize social welfare, as the
corresponding mechanism is easier for customers to understand and involves only a small loss in revenue.
We now present the optimal mechanism M, under this setting in Algorithm 2]
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Algorithm 2 Mechanism My for Type 2 platforms with union in the two-layer market.

Input: Report ¢.

Replace virtual cost: ve(c) by ¢.

Call Algorithm [] for y.

Calculate the allocations: zx(¢) = y/p’c for any k € [K].

Calculate the payment: p(¢) =¢- + f/j\’ y(t) - dt.

Output: Allocation-payment pair (z(¢), p(¢)) = ((z1(¢), ..., zx (€)), p(C)).

Note that calculating the payment involves an integration path. A natural question is whether p(-) is well-
defined, that is, independent of the chosen path. We answer the question in the following Lemma [2:3]

Lemma 2.3. The payment p(-) in Algorithm |2 is path independent and so well-defined.

We now state the main theorem establishing the optimality of our Algorithm [2}

Theorem 2.3. Mechanism My is a valid mechanism satisfying IC and IR conditions and achieves the
highest social welfare with polynomial time complexity.

This theorem reveals a surprising result: despite the high-dimensional setting, the welfare-maximizing mech-
anism can be computed efficiently. The proof is constructive, identifying an optimal payment rule p(-) that
is independent of the integration path. The distinctive properties of GenAl are crucial to this result. Since
GenAl introduces only convex demand constraints, the allocation, whether at a vertex or along a smooth
segment, remains orthogonal to cost after transformation. We construct a potential function ¥(c), detailed
in Appendix and establish the relationship between its gradient and the allocation rule. This approach
provides a new method for addressing high-dimensional mechanism design problems, distinct from cycle
monotonicity (Lavi & Swamy, 2007)), and advances understanding of this open question. Building on the
above results, the next section presents a partial comparison of Rev;_4 and SWi_4.

2.5 Comparison of Revenue and Social Welfare for Mechanisms M;_,

Intuitively, a revenue-maximizing platform (Type 1) should generate lower social welfare than a welfare-
maximizing platform (Type 2) under the same setting, while a Type 2 platform typically earns less revenue.
Regarding the creator union, since it aggregates information from all human creators, it is expected to
possess greater market power, potentially leading to higher total utility for creators. The following theorem
formalizes these comparison results.

Theorem 2.4. Let Rev; and SW; denote the revenue and welfare of valid mechanism M,;. For the revenue
objective, we have Revy > Revs and Revy > Revs > Revy. For the social welfare objective, we have
SWQ = SW4 Z max{SWl,SW;;}.

The most technically interesting comparison lies between Revs and Revy. Since the payment rule of My
involves a path integral, we select a specific integration path and, using the validity of the mechanism, show
that Revs > Rev,. The complete proof is provided in Appendix [C.7]

As shown in Theorem [2.4] we establish the comparative rankings of revenue and social welfare among Al-
gorithms [T} 2] and {4 and provide upper bounds for M3 under mild assumptions, since it lacks an explicit
solution. We find that the presence of a creator union reduces platform revenue by weakening its pricing
power. In contrast, for a social welfare-maximizing platform, the union does not affect the outcome. Intu-
itively, social welfare depends solely on the creators’ total production cost, so while the union may alter the
payment rule, it has no incentive to distort the allocation. As social welfare is allocation-dependent only, its
optimality remains preserved.

5The symbol - represents the dot product.



Under review as submission to TMLR

3 Content Procurement in Platform-Broker-Creator Markets

In this section, we extend our analysis beyond the union case and consider a three-layer market (Fallah
et al.} [2024)). In this setting, the platform first offers a contract (z,t) to a data broker (Liu et al [2021)), who
decides whether to accept it. The broker then engages with human creators and faces a mechanism design
problem similar to that in Section [2.1} Unlike the union, which max1mlzes the total utility of creators, the
broker focuses solely on profit, deﬁned as the difference between z and Z w1 Pk~ In practice, companies such
as SchoolDigger and Datarade serve as examples of data brokers (Zhang et al., [2024al). To build intuition,
Figure [7] in Appendix [D-]] illustrates the timeline of this mechanism design setting.

3.1 Revenue-Maximizing Procurement Mechanism M; with a Data Broker

We first consider the scenario in which the platform seeks to maximize its revenue. To identify the optimal
mechanism, we begin by formulating the broker’s optimization problem given (z,¢). Since both the allocation
and payment rules depend on (z,t), we denote them by z(-; z, ) and p(-; 2, ), respectively. Because the broker
signs the contract with the platform in advance, the credibility constraint (Akbarpour & Lil 2020]) imposes
an additional condition that, for any report ¢,

xi(€) > 2y, for any k € [K].
Consequently, the broker needs to solve the following optimization problem:
K
maxy, E.[t— Zk:l pr(c; z,t))
st. E_g[— ckmk *(e; 2, t) + pr(c; 2, t)]

E_i[—ckat® (c; z,t) + pr(c; 2, t)]
xg(c; 2, t) > 2, for any k € [K],

Z k[—Ck,ZCZk(/C\k7C,k;Z,t) +pk(/c\k7cfkt;z7t)] (4)
>0

where ¢ is a fixed constant and z is a fixed K-dimensional nonnegative vector. Let z*(+; z,t) and p*(-; 2, 1)
denote the optimal allocation and payment rules of Problem [d] The platform’s objective is then given by

Revs =max,; E.[—t]
st oz + Zf; wikz]™ > di and z > 0 for any k € [K] (5)
Eelt = Y Piles 2, 0] 2 0.

The second constraint ensures the participation of the data broker in the market, serving as the broker’s IR
condition. Moreover, the corresponding social welfare is given by SW5 = E.[— Zszl ek (5 (c; 2, 8))P*].

A natural question is whether optimal mechanisms for both (z,t) and (x,p) can be derived in polynomial
time. The following Algorithm [3|and Theorem establish their optimality and computational complexity.

Algorithm 3 Mechanism Mj for Type 1 platforms with data broker in the three-layer market.

# First-stage mechanism design.

Replace virtual cost: ve(c) by b.

Call Algorithm [I] for y.

Calculate the allocations: zj = y;/ P* for any k € [K].

Output: Allocation-payment pair (z,t) = ((z1,...,2K),b - y).

# Second-stage mechanism design.

Input: Allocation z, payment ¢ and report ¢.

Calculate the payment: py(¢) = bpzy".

Output: Allocation-payment pair (z(¢),p(c)) = (2, (b121", ..., bx 255)).

Theorem 3.1. Mechanism Ms is a valid optimal solution to Problems []] and [J and achieves the highest
expected revenue/lowest cost for the platform with polynomial time complexity.
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3.2  Welfare-Maximizing Procurement Mechanism Mg with a Data Broker

We now turn to platforms that aim to maximize social welfare. The first-stage optimization problem is
formulated as follows, while the second-stage problem remains the same as Problem [d] The corresponding
platform revenue is Revg = E.[—t].

SWe =max,; E.[— Zszl e (25 (c; 2, 1)) Px]
s.t. 2+ Zf{zl pikz;™* > di and 2z, > 0 for any k € [K] (6)
Eclt — Ypoy pi(ei2,1)] > 0.

Since the platform must determine z prior to the revelation of ¢, the optimal solution is expected to depend
on E[c]. Formally, we substitute b in Algorithm [3| with E[c] and derive the mechanism Mg, presented in
Algorithm [f] of Appendix [B] and Theorem [3:2]

Theorem 3.2. Mechanism Mg is a valid optimal solution to Problems [} and [0 and achieves the highest
social welfare with polynomial time complexity.

3.3 The Lose-Lose Effect in Three-Layer Markets

Finally, we compare the platform’s revenue and social welfare in the three-layer market with those in the two-
layer setting. We show that both revenue and social welfare decline relative to Ms and My, indicating that
the presence of data brokers distorts allocations and reduces market efficiency. Public contracting further
hinders the effective incentivization of downstream creators and prevents the platform from optimizing
social welfare based on realized types. This finding highlights the growing need for government oversight
and regulation of data markets (Brooks, [2024)).

Theorem 3.3. Compared with My and My, both My and Mg face a lose-lose situation that Revs > Revy =
Revs > Revg and SWo = SW4 > SWg > SWi.

An interesting result in Theorem is that Revs equals Revs. Recall that My corresponds to a platform
maximizing social welfare, while M5 represents a revenue-maximizing platform. The loss of market power
due to the creator union and the welfare-oriented objective is economically equivalent to the reduction in
price discrimination ability resulting from pre-signed contracts. This phenomenon, observed for the first
time, offers new insights into procurement mechanism design in the era of GenAl. From Theorem we
also observe that the introduction of a data broker reduces both platform revenue and social welfare. More
surprisingly, the revenue of a Type 1 platform in the three-layer market falls below that of a Type 2 platform
in the two-layer market. Moreover, under mechanisms My and Mg, the data broker’s profit is exactly zero,
indicating no benefit even to himself. This outcome arises because, in the three-layer market, the platform
must make decisions before observing creators’ cost reports, leading to conservative and distorted allocations
to satisfy hard demand constraints. These findings underscore the need for stronger government regulation
of third-party data platforms to improve overall social welfare.

Finally, we present the following byproduct as a lower bound on the revenue of Mg, based on M5 and
obtained by constructing a feasible solution to Problem [3]

Corollary 3.1. It holds that Revs > Revs, providing a lower bound of Revs.

4 Empirical Studies

Impact of costs on overproduction. We conduct synthetic experiments to examine the phenomenon
of overproduction under the setting of Section 2.2] For visualization, we consider K = 2 domains. The
hyperparameters ¢, p, and v are drawn from Unif]0, 1], while p follows Unif[1,2]. All hyperparameters are
vector-valued, and subscripts are omitted for clarity. We vary d; and ds between 1 and 20 and plot their
relationship with the optimal allocations x; and xo derived from Algorithm As shown in Figure
when dy is high (e.g., between 15 and 20), x; remains nearly constant regardless of di, indicating that
the constraint x; + 25:1 ,uﬂx;y“ > d; is non-binding and overproduction occurs in the first domain. The
realized costs in this case are 0.035 and 0.992, respectively. Similarly, Figureshows overproduction in the
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Optimal x; for various d

Optimal x; for various d

-]

25 5.0

(a) Optimal z; under different d; and da. (b) Optimal z2 under different d; and da.

Figure 2: The overproduction phenomenon with respect to demand d.

second domain when dy > 12.5, where x5 changes little as ds increases, implying that o +Z?:1 uigx;m > do
becomes loose. The corresponding realized costs are 0.989 and 0.055. When relative production costs are low,
overproduction is more likely to occur. The economic intuition lies in the transferability and substitution
effects across domains: producing low-cost content in one domain can help satisfy demand in others through
data transfer. Although this leads to excessive production and additional expenditure in the low-cost domain,
the resulting savings in high-cost domains can more than offset it. Hence, overproduction in some domains
can ultimately increase platform revenue. Moreover, these experiments empirically support Corollary
confirming that the optimal allocation xj(c) remains positive for all cost realizations c.

Impact of transferability parameters on overproduction. We next examine the specific effects of
the transferability parameters p and «. To isolate their influence, we fix ¢y = ¢; = 0.5, dy = d2 = 10, and
p1 = p2 = 4. We first study the role of p by setting y11 = 712 = Y21 = Y22 = 0.5. Consider an extreme case
where p10 = 1 and p11 = po1 = pez = 0, meaning that only content in domain 1 can facilitate production
in domain 2, but not vice versa. As shown in Figure when ds is high and d; is low, overproduction
occurs in domain 1 indicated by the uniform color in the upper-left region. This happens because domain
1 content has higher transferability, enabling the platform to train GenAl models that generate outputs in
both domains. For instance, when ds = 20 and d; < 10, the optimal z; is around 10, well above the demand
dy, so the constraint z; + Zle ,uﬂacZ“ > dy is non-binding. As d; increases, this constraint becomes binding
and x; rises accordingly. In contrast, Figure shows no such pattern, since the constraint related to ds
remains binding across all parameter combinations. Interestingly, as d; increases, the optimal x5 decreases
because a larger z; transfers more knowledge to domain 2, reducing the need for direct content production
there. These results highlight the asymmetric effect of p. We then turn to the influence of v by fixing
111 = p12 = po1 = po2 = 0.5 and setting v1o = 1, while 11 = 721 = 22 = 0. In this case, domain 1 content
can continuously support the production of domain 2 content, while the reverse effect remains constant.
We again observe overproduction in domain 1. Moreover, when d; is large but dy is small, human-created
content in domain 1 provides sufficient transferable knowledge, keeping xs nearly constant and close to
zero (Figure . Overall, these experiments confirm that higher transferability, whether through u or ~,
increases the likelihood of overproduction across domains.

Experimental evaluation of revenue and welfare among mechanisms. We next conducted a se-
ries of experiments to compare the performance of Algorithms [I] to [3} [] and The results corroborate
Theorems and showing that the empirical rankings of revenue and social welfare align with the
theoretical predictions. As illustrated in Figure [4] mechanism M exhibits more outliers and extreme values
compared with My. This suggests that welfare-maximizing platforms may operate in a more stable market
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Figure 3: The influence of content transferability on the optimal production.

environment, where both social welfare and revenue fluctuate less, offering a possible explanation for why
some companies choose to prioritize social welfare. Detailed results are provided in Appendix

|
]
S

Revenue
Social Welfare

—~30 4

Mechanism 1 Mechanism 2 Mechanism 4 Mechanism 5 Mechanism 6 Mechanism 1 Mechanism 2 Mechanism 4 Mechanism 5 Mechanism 6
Mechanisms Mechanisms

(a) Box plot of revenue. (b) Box plot of social welfare.

Figure 4: Concrete revenue and social welfare of different mechanisms (red: mean; orange: median).

With and Without GenAlI. Finally, we simulate the difference between scenarios with and without
GenAl, that is, with © = 0. Using the same setup as the preceding evaluation and mechanism M; as
an illustrative example, we report detailed results in Table [2] of Appendix [E] In our framework, GenAl
leverages human-created content to generate additional material, allowing platforms to meet total demand
with less direct human creation. Consequently, both revenue and social welfare increase in the presence
of GenAl. Specifically, the sample-averaged revenue rises from —30.90 to —16.52, and sample average social
welfare improves from —5.66 to —4.47, representing gains of 46.54% and 21.02%, respectively. These results
indicate that GenAl enhances production efficiency while increasing both platform revenue and social welfare.
However, as the primary beneficiary of GenAl, the platform enjoys a substantially larger increase in revenue
than the corresponding improvement in social welfare. Although the magnitude of improvement depends
on parameter initialization, the asymmetric growth between revenue and welfare reflects a broader pattern
observed in practice (Hosseini & Khanna), [2025)), highlighting reflections regarding the distributional impact
of GenAl adoption.

5 Conclusion and Discussion

In this paper, we study non-linear procurement mechanism design in markets where human creators coexist
with GenAl. We develop optimal mechanisms for platforms seeking to maximize either revenue or social
welfare across three market structures: two-layer markets (with or without a creator union) and three-layer
markets involving data brokers. Our analysis shows that although the rapid advancement of GenAl substan-
tially affects creators in certain domains, it cannot fully replace them in competitive environments
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& Lee, [2023). Finally, we uncover a striking result: the three-layer market structure leads to a lose-lose
outcome, echoing growing societal concerns over Al regulation and governance (Smuhay, 2021} |de Almeida)
et al.l [2021; Minssen et al.| [2023).

This work leaves open many interesting future directions. For general high-dimensional mechanism design
problems, such as Mechanism M3, can the optimal solution be computed exactly in polynomial time?
Given that our optimization problem retains partial linearity, could approximate solvers be effective when
parameters p and 7 are unknown? Since the three-layer market leads to simultaneous declines in both
revenue and social welfare, how should government intervention be structured, for instance, what constitutes
an appropriate tax rate for data brokers? Furthermore, does competition among human creators yield excess
profits for data intermediaries? Finally, our static model leads to predictions and insights about the ultimate
equilibrium outcomes. How will these insights change in dynamic settings when GenAl and human creators
dynamically interact? In light of the growing demand for data in the AI era and the distinctive nature of
data as an economic good, these questions open several promising directions for future exploration.
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A Omitted Details in Section [1I

A.1 Related Works

We summarize the following four lines of existing literature pertinent to our work.

Procurement Mechanism Design. The topic of optimal mechanism design was introduced by the semi-
nal paper |[Myerson| (1981)). Over decades of academic attention, researchers have not only focused on optimal
mechanism design from the seller’s perspective but have also begun to consider it from the buyer’s perspec-
tive, especially when buyers are either significantly large or even monopolistic, leading to studies on optimal
procurement mechanism design (McAfee & McMillan, (1987} Laffont & Tirole, [1993)). In the economics liter-
ature, Burguet et al.| (2012) examines mechanism design in procurement under limited liability and explores
ways to reduce the sponsor’s cost, while |Gerding et al.| (2010) addresses the service procurement problem in
the presence of uncertain duration. |Garg & Narahari (2008) adopts the framework of a Stackelberg game
to study procurement auction design. In management science and supply chain literature, |Zhang| (2010)
investigates procurement with price-sensitive demand, while |Prasad & Rao| (2013)); Ketankumar et al.| (2015)
focus on the procurement of cloud computing resources. [Jin & Wul (2002); [Huang et al.| (2011) attempt to
design optimal procurement auctions to enhance suppliers’ profit margins. Our paper goes beyond tradi-
tional procurement mechanism design for physical goods by focusing on the digital content market, which
features transferability. This extends the boundaries of procurement mechanism design in this domain.

GenAlI Content Creation and Data Pricing. The development of generative Al has brought Al-
generated content into the economic market, sparking research on the nature of AI products and traditional
goods. [Liu et al.| (2024a)) discusses the impact of large language models (LLM) on traditional search engines,
while |Zhang et al.| (2024b)) explores advertising business in the context of LLMs. [Iyer et al.| (2024]) conducts
a case study on the role of LLMs in e-commerce. |(Chkirbene et al.| (2024]) provides a comprehensive survey of
GenAlT’s applications, challenges, and trends from several aspects, including content creation and marketing.
Meanwhile, due to the enormous data demand for GenAl training, public datasets are becoming insufficient,
leading companies to shift toward private datasets, which has raised concerns about data pricing. Data
Shapley and its variants are the most commonly used methods for data pricing (Jia et al.l 2019; |Ghorbani
& Zou, 2019; |Schoch et al., [2022), while recent |Ai et al.| (2024) proposes a novel data pricing method based
on instrumental value. Our paper studies how much payment is needed to incentivize human creators to
generate sufficient content within an agent-based framework, broadening the perspective on data pricing
related to GenAl.

Human vs. Generative AI Competition. With the rapid development of generative Al, competition
between human creators and GenAl has gradually emerged (Esmaeili et al.l [2024). In contrast to traditional
automation (Acemoglu & Restrepo, [2019), GenAl relies on human-created data for training, thereby simul-
taneously complementing and competing with human labor. [Yao et al|(2024) employs the framework of a
Tullock contest to examine the symbiosis and conflict between humans and generative Al [mmorlica et al.
(2024) examines the augmentation of users by Al agents and the corresponding shifts in equilibrium. |Gao
et al.| (2025)), within a game-theoretic framework, investigates the impact of Al tools on market outcomes
and consumer welfare. It highlights that in certain scenarios, both platforms and creators may be reluctant
to adopt GenAI. Moreover, some papers discuss the unique economic characteristics of LLMs, or broadly
GenAT; please refer to |Fish et al.| (2024)); Duetting et al.| (2024)) for further details. Meanwhile, some papers
explore the collaboration between humans and GenAl in various tasks (Fui-Hoon Nah et all 2023; [Singh
et al., 2023; Han et al.l [2024). We adopt a mechanism design perspective to study the collaboration and
competition between human creators and GenAl. GenAl relies on human-created content for training, while
the content generated by Al partially substitutes human-created content, providing a novel approach to
studying the competition between humans and Al.

Three-Layer Markets. The three-layer market offers a more comprehensive framework for characterizing
data markets compared to the two-layer market. For further details, |Zhang et al.| (2024al) provides a survey
on data markets. [Fallah et al.| (2024)) models the three-layer data market as a multistage game and focuses
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on the subgame Nash equilibrium, while [ Xu et al.| (2020) considers a three-layer Stackelberg game in the
car-sharing market. Besides, Reinders et al.| (2018)); |Song & He| (2019) consider three-layer structures in the
domain of supply chain. [Wang et al.| (2023 investigates privacy protection issues in a blockchain-based P2P
three-layer market. Balseiro et al.|(2021));|Zeithammer & Choil (2024) investigate the impact of intermediaries
on the payoffs of buyers and sellers in auctions, as well as the phenomenon of double-shading in the market.
We compare the impacts of two-layer and three-layer markets, within the framework of competition between
humans and GenAl, on both platform revenue and social welfare. We theoretically demonstrate that the
three-layer structure would lead to a lose-lose outcome, offering a novel perspective for future Al data
regulation.

A.2 Relative Terms

We use this subsection to illustrate some terminology used in this paper for readers with less economic
background. These terms are definitional, but we also provide the economic intuition behind them to assist
the reader’s understanding.

e Virtual costs: A variant of the original cost, formally defined as ¢ + £ . Because the platform must

incentivize creators to report their true costs, the effective cost the platform faces is the human

creator’s production cost ¢ plus the incentive-related virtual cost ?

e Reverse hazard rates: Originating from survival analysis (Kalbfleisch & Prentice, |2002)), and defined
in this paper as % It is used to characterize the log-concavity of F.

e Incentive compatibility: The terminology for a desirable mechanism property that for any creator
with private cost ¢, truthfully reporting ¢ to the platform always maximizes the creator’s expected
utility (payment minus cost). Hence incentive incentive-compatible mechanisms can help avoid
dishonest agent behaviors during information elicitation.

e Individual rationality: The terminology of another desirable mechanism property that human cre-
ators always have non-negative expected utility (so they prefer to stay in the market than to exit).

e Path independence: When payments are defined through a path integral (e.g., ftb y(t) - dt in Mech-
anism My), we require that the integral yields the same value for any path from ¢ to b.

e Myerson’s analysis: This refers to a classic and well-known analysis framework of (1981))
that converts payments into integrals of the allocation functions, which reduces mechanism design
to allocation rule design.

e Convex procurement: We hope the feasible set induced by demand constraints to be convex, so that
the optimal mechanism can be computed efficiently in practice.

e Valid mechanisms: A creator’s higher cost should lead the platform to procure less from them, while
other creators’ higher costs should lead the platform to procure more from this creator. This reflects
substitutability in production.

B Omitted Optimal Mechanisms and Algorithms

We now detail the concrete implementation of mechanisms My and M.

C Omitted Details in Section

C.1 Including GenAl Costs

In practice, the generation cost of GenAl is typically negligible compared to that of human creators. For
example, once a large model such as Sora 2 is already trained, producing a new video takes only a few
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Algorithm 4 Mechanism Ms for welfare-maximizing platforms without union in the two-layer market.

Input: Report ¢.
Replace virtual cost: ve(c) by ¢.
Call Algorithm [] for y.

Calculate the allocations: zx(¢) = y,i/p’“ for any k € [K].
Calculate the payments: py(¢) = Cryr + fgb: Yk (Cly ooy Ch—1, thy Chit 1, --, Crc )dty, for any k € [K].
Output: Allocation-payment pair (z(¢),p(c)) = ((z1(¢), ...,k (¢)), (p1(C), ..., pK (€))).

Algorithm 5 Mechanism Mg for Type 2 platforms with data broker in the three-layer market.
# First-stage mechanism design.
Replace virtual cost: ve(c) by E[c].
Call Algorithm [1] for y.
Calculate the allocations: zj = y;/p’“ for any k € [K].
Output: Allocation-payment pair (z,t) = ((z1,...,2K),b - y).
# Second-stage mechanism design.
Input: Allocation z, payment ¢ and report c.
Calculate the payment: py(¢) = bpzp".
Output: Allocation-payment pair (z(¢),p(¢)) = (z, (b121", ..., bx 285)).

minutes of computation, whereas professional human creators require substantial compensation and effort
to produce comparable content.

However, our model can naturally extend to settings with small but non-zero GenAl training costs. We
assume the training cost of GenAl is proportional to human production cost, and the training cost parameter
of GenAl is ckG in domain k. In other words, the platform needs to pay ckazk to obtain a GenAlI agent for
domain k. Consider Mechanism M as an example: our transformation is derived entirely from IC and IR
constraints, independent of the objective function. Therefore, incorporating GenAl costs is equivalent to
adding Zle ¢ yi, to the platform’s objective. The optimization problem in Algorithm [I|becomes as follows:

K

y = argmin Z(vck @) + cHyr
Yoo k=1

K
s.t. yi/p’”’ + Zuiky:i’“/”" >dy, and yi > 0 for any k € [K].
i=1

As a result, we only need to adjust the virtual cost from wvcy to veg + c,? to recover the optimal mechanism
under non-zero GenAl costs.

The same modification applies to other mechanisms as well. For instance, in Mechanism Ms, replacing ¢,
with ¢, + ckG leaves the structure and insights unchanged. For other kinds of GenAl costs, we can similarly
include the cost in the objective without modifying the demand constraints, with or without access to a
closed-form solution, depending on the concrete cost form.

C.2 Further Complexity Reduction

Note that we adopt a deterministic payment rule in Algorithm|[I] However, we can move to a random manner
as follows to reduce the computational complexity in Proposition Here, yr(¢1, ..., Ck—1,Ck, Ckt1,CK )
indicates that the input report is (¢1, ..., Ck—1, Ck, Ck+1, Ck ) Without ambiguity.

Sample ¢ ~ Unif(Ck, bx) and py(€) = Cxyx(C) + (b — Ck)Yk(C1s -+, Ch—1, Chy Cht1, CK ) (7)

Proposition C.1. Replacing the payment rule in Algorithm (1| by Equation , using the subgradient
method as the oracle, the computational complexity of getting a e-optimal mechanism is (9(6%) Specially, if

max;{ L=} <1 for any k € [K], the computational complexity reduces to o).
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C.3 Omitted Proof in Section [2.2)

C.3.1 Proof of Theorem 2.1

Recall Problem (1| and we use yi(c) = z7*(c) to simplify the notations. Besides, we use Q(y,c;) and

uk(y,p, cx) to denote [yi(c)fog(c—k)de—y and [[pr(c) — ckyr(c)]f—k(c—k)dc_i respectively. Therefore, Q
represents the units human creators will produce and u represents their expected utility.

Then, we have the following propositions regarding Q.(-,) and w.(-, -, ).
Proposition C.2. We have that

e for any ci € |ag, bx], it holds that uk(y, p,cx) = uk(y, p, br) + fcb: Qr(y, tr)dy, -
o for any k € [K], it holds that uy(y,p,br) > 0.

o for any ty > cx, it holds that Qk(y, tr) < Qk(y, ck).

Proof. From the individual rationality condition, we know that the expected utility for human creators in
domain k at every time is no less than zero. Then, it holds especially when the cost corresponds to b. It
immediately leads to ug(y,p, bg) > 0.

Assuming the real cost parameter is t; but the human report ¢. Assume ¢ < t; without loss of generality.
From the incentive compatibility condition, it holds that

ur(y, p, tr) > /[pk(ck) — teyr ()] for(t_p)dt g

= /[pk(ck) — ey (O] for(t—p)dt_p + (cx — tx) /yk(c)f—k(t—k)dt—k
= ur(y,p,cx) + (cx — tk)Qk(ya Ck)-

Then, we know that ux(y, p, trx) — ur(y, p, cx) > (ck — tn)Qr (Y, ck)-

Similarly, we have that ux(y,p,tr) — ur(y,p,ck) < (cx — tx)Qx(y,tr) by changing the order of t; and cg.
Thus, it holds that

(cr — te)Qr(y, ) < ur(y, p,te) — ur(y, p,cr) < (ck — te)Qr(y, tr).

Since ¢ < tg, we know that Qx(y, tx) < Qk(y, ck).

In addition, dividing ¢y — ¢, it holds that g%: = —Qr(y, cx). Here we use the fact that Qx(y, -) is continuous
which will be shown soon. Otherwise, we can still get the following from the definition of Riemann integral.
We then obtain that u(y,p, cx) + f:: —Qu(y, tg)dty, = ug(y, p, tx). Therefore, with simple algebra, we have

that
b

uk(y, ps ck) = uk(y, p, br) + Qr(y, tr)ds,

Ck

which ends the proof. O

Now, let’s turn to the problem of how to maximize content creation platforms’ expected revenue (minimize

expected cost). We use ug(y,p) = 22{:1 J —pi(c)f(c)de to denote the expected revenue for shorthand.
Recall that the demand constraints are now

K
v/ () + D i) > d
i=1

and
yr(c) >0
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for any k € [K].

We first decompose ug(y, p) as follows, namely,

o(y,p) Z/ —pr(c) + cryi(c dC—Z/Ckyk

q1 q2

Then, it holds that

- Z uk(yapa Ck)fk(ck)dck
k

bx
== Z/[uk(yapa br) + Qr(y, tr)dtr] fi.(cr)dey,
k Ck

b b
= Z —ur(y, p, br) — / Jr(cr)Qr(y, tr)dtrdey,
k ag Ck
by
= Z —ur(y, p, br) — Fi(te) Qi (y, tr)dts,
ag

(. br) / Fi(t) / Y (O) (i)t

“uslpib) [ @)

™ M -

The third equation holds due to the property of p.d.f. while the fourth equation holds because we change
the order of integration.

Combining g3, it holds that

K
=3 i) = [la+ TEH o)
k=1

By defining the virtual cost veg(c) = ¢x + ?’”((z’“)), then we have

K
wo(y8) = 3~y ) — [ veu(enn(e)f(e)de

k=1

Note that in Algorithm we minimize Ele veg(cr)yr(c) subject to yk/p’“( )—I—Zfil piryi(c)1*/Pi > dj, and
yr(c) > 0 for any k € [K], so we only need to prove that the payment rule indeed results in uy(y, p, bx) = 0.
Here, since we consider an IC mechanism, we have naturally ¢ = ¢.

Recall that from Proposition it holds that

by
ur(y, p, br) = ur(y, p, cx) — Qr(y, tr)dts

Cck

b
=- /[Ckyk(c) —pr(e)]for(c_r)dc_y */ /yk(tk,C—k)f—k(c—k)dc—kdtk

by
= /[—Ckyk(c) + pi(c) —/ Yk (tks ek )dty] f-r(c—k)de_y.

Ck

Here, we use (tg,c_x) to represent (c17 eeey Ck—1, bk, Cea1, -y Cic) With a little abuse of notation. Since we set
the payment rule pg(c) = cryx(c) + fc;c Yi (tg, c—g )dty in Algorlthm we know that ug(y, p, bx) = 0 exactly.
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Together with Proposition we know that the first term in uo(y, p) is maximized as well. Therefore, since
two parts in ug(y, p) are maximized simultaneously, ug(y,p) takes its maximum using Algorithm [} which
shows the optimality of our mechanism.

Additionally, since yg(+,+) > 0, we know that —ciyx(c) + px(c) > 0 for every c¢. Thus, we actually obtain
a much stronger individual rationality condition, say —cga"(c) + pr(c) > 0. In other words, the utility
of human creators is non-negative for any k € [K| and cost vector ¢ € [a1,b1] X -+ X [ag,bi]. As for
the incentive compatibility condition, we first show that veg(c) is increasing with respect to c¢g. Since
we have Assumption we know that log(Fy(-)) is concave, it holds that % is decreasing. Therefore,

it holds that vek(c) = ¢ + ?]’:((2:)) is increasing for all k¥ € [K]. Together with the implementation of

Algorithm [ we know the objective function is linear, and from the following Lemma we will see
the feasible region is convex, then we can actually derive similarly a stronger version of the IC condition,
namely, —cpal*(c) + pr(c) > —cpal* (Ck, c—k) + pr(Cr,c—k). Similarly, we get that Qp(y,-) is continuous

almost everywhere and M is valid for the same reason.

C.3.2 Proof of Proposition 2]

We first prove the convexity of the area and then give the computational complexity.

Lemma C.3. y,i/p’“ + Zfil uiky;”"'/pi > dy and 0 < y, < di¥ for any k € [K]| construct a convex set.

Specially, when maxi{vpjf“} < 1, it becomes a strongly convex set.

Proof. Assuming fi(y) = yi/f’k + Zfil Miky7i’“/pi7 it holds that

K2

; Yik Vik ko 1 1 L2
vgfk(y) = dlagi{ﬂikf(f —1)y,” + —(——-1y* 1{i=Fk}}.
Pi  Pi Pk Pk

Since we have pr > 1 and 7, < 1, it holds that V2f(y) is a diagonal matrix and all components are
non-positive due to 0 < y; < d*. Hence, we know that fi(y) is a concave function, showing that fi(y) > dj
is a convex set.

When maXi{VPj:’} < 1, it holds that all components of V2 f;(y) are negative. Therefore, we have that f.(z)

is a strongly concave function, and similarly, fi(y) > dj yields a strongly convex set.

Note that the intersection of (strongly) convex sets is also a (strongly) convex set. We know that constraints
y,i/p’“ +yE pikyl P > dy and 0 < yp < df* for any k € [K]| yield a convex set. In the meanwhile, we

know that if maxi{z;_k} < 1, the set will become a strongly convex set, which ends the proof. O

With Lemma in hands, we know that the computational complexity of Algorithm [I] equalling finding
the minimum of a (strongly) convex function with primal-dual methods. Therefore, using the subgradient
method (Nesterov, 2009; 2014) and constraining 0 < y; < di* lead to an (9(}2) complexity to calculate
one allocation y immediately. When maxi{”p’iik} < 1, the strongly convexity leads to (9(%) complexity
instantly (Nesterov, [2005)).

For the price vector p(¢), we use the Monte Carlo method to estimate the second term, i.e., fcb: yi (g, c—g ) ditg.
Since from the implementation of Algorithm |1} we know that yj is bounded by d}*. Then, Rubinstein &
Kroese| (2016) tells us that we need (’)(}2) times of simulation to estimate it with tolerance e. Therefore, the

total computational complexity is O(Z) for general cases and O(Z%) when max; {25} < 1 respectively.

C.3.3 Proof of Proposition [C.]]

Due to the linearity of p(+), we only need to prove that Equation gives an unbiased estimator of the optimal

. e o . b n o N N
payment rule, i.e., Ex [(bx — Ck)yr(C, .., Co1, Chy Ch1, oy Ci)] = f?: Yk(Cly ooy Cho—1, Loy Chit 1y vy Crc )l
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It holds that

1
bk—ck

b
E’gk[(bk 7zc\k)yk(51, ~--7€k—1agk7€k+17 ,EK)] = (bk — /C\k)/\ yk(Ely ~-~7Ek—17tk78k+17 ...,A ) dtk

Ck

by
Z/A Yk (Cly oy Cl—1, they Chg 15 -y Crc )i,

Ck
where the first equation holds because ¢ follows an uniform distribution over [¢, bg].

Therefore, we know that we give an IC,JR and e-optimal mechanism with only one sample, namely
Yk(Cly ooy Ch—1, Chis Chit 1, -, Cxc ). With the proof of Proposition we know that the computational com-
plexity is O(%) for general cases and O(1) when max; {1+ } <1 for any k € [K].

Nonetheless, the variance of the payment increases from O(€%) to O(1) as we decrease the number of
samples when using the Monte Carlo method from O(Z%) to constant. To better balance the tradeoff
between computational complexity and variance, i.e., uncertainty, we may need n samples to estimate

f?ik Yk(@1s s Gt b Chp, oo, O )y, yielding O(3) variance and O(7%)/O(%) complexity.

C.3.4 Proof of Corollary [2.2]

From the constraint y;/p’“ + ZZK:1 ik y]““/pl > dj, we know that when 13, = 0, the corresponding slope is
infinity. Besides, from the knowledge of convex optimization, we know that (veq, ..., veg) is associated with
the corresponding subgradient. However, due to Assumption [2.2] vcy, is upper bounded and finite. Therefore,
the solution of y is strictly positive in all components given p;; # 0 and ~; # 0, which ends the proof.

Since the feasible area is an intersection of K convex sets, when the optimal y is located on the boundary
of the k-th set, the k-th demand constraint will be tight, i.e., binding. Otherwise, it will be loose, i.e.,
non-binding. Then, we know that although all domains still exist, some will experience overproduction and
it completes our analysis.

C.4 Extension to Multiple Human Creators in Each Domain

We conclude that the extension will retain the convexity of the optimization problem, hence preserving the
validity of Theorem [2.I] and Proposition [2.1]

We first write down the revenue- maximizing problem as Problem |1} We assume there are nj human creators
in the k-th domain and we use z% (ci, pt resp.) for the i-th creators where i € [ng]. We assume these n;
humans have i.i.d. cost function. We stack ¢} as ¢ and we use y. to denote ()" as before. With these
preparations, we have the following optimization problem,

s.t. Zwk +Zu]k2x )]Y7* > dj, for any k € [K]

. hol-ch(eh () +54(0) 2 B ook @@ + )
E_ (i) [— ¢, (23 (€))7 + pj.(c)] > 0
zi(c) > 0 for any (k,4) € [K] x [ng],

where (k,4) means taking expectation over all other human creators.

Since the IC and IR conditions hold individually, we know the optimization goal becomes y(c) =

argmin,, Zk DA I;:((zk))]yk accordingly. We are now ready to prove that the constraints still in-

duce a convex set.
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By replacing (x}c)’)k by yi, the last constraint turns to yi > 0. The first constraint is now Z?:’“l(y,i)l/pk +
Zle ujk[zyil(y;)l/f’f]”ﬁk > di. Note that pp > 1 for any k € [K] and vj, € [0,1]. We know that
S (Y)Y + ZjK:l k[0 (yi)/Pi]7% is a concave function with respect to y. Therefore, the area
corresponding to larger than dj is a convex set. It soon holds that y belongs to a convex set because the
intersection of convex sets is still a convex set.

We conclude that even with multiple human creators in each domain, the revenue-maximizing problem is
still a convex optimization problem. We can find the optimal mechanism by solving

s.t. Z(yi)l/f’k + Zujk[Z(y;)l/Pj]m > dy, for any k € [K]

i=1 j=1 i=1
yi >0 for any (k,i) € [K] x [ng].

Additionally, the proofs of Theorem and proposition still hold as they are applicable for general
convex optimization problems, so the optimality and the complexity results remain valid. Moreover, we can
choose a different ¢j, for each domain and then allocate assignments among human creators, showing the
equivalence of considering only one content creator.

Moreover, we remark that we assume creators in domain k share a common py to reflect the similar eco-
nomic characteristics of creators within the same domain. Mathematically, our results do not rely on the
homogeneity of pi. Suppose that the i-th creator in domain k has cost ¢} (2% )?x. By defining yi = (21 )°*,
the optimization problem can be rewritten as

) nj ) ;
st D (W) + D kY ()] > dy for any k € (K]
yh > 0 for any (ki) € [K] x [n4],

which still preserves convexity after the transformation. This illustrates the generality of our model.

C.5 Omitted Proof in Section [2.3]
C.5.1 Proof of Theorem

From the proof of Theorem we know that to satisfy IC, the payment rule has to be pi(c) = cryr +
fcb: yg(c—p, tg)dty, + C where c_j means all costs except the k-th entry and C' is a global constant. To
guarantee the participation or the IR constraint, we need that pg(c) > cryr because of the parameter
transformation yi(c) = xk(c)?*. From the implementation of Algorithm |1, we know that for any positive
virtual cost, yi(+) is larger than zero letting alone ¢. Thus, it holds that fcb: yp(c—p, tg)dty + C > C. It C
is not negative, we know that the IR constraint is satisfied. Considering the corner case that ¢ = b, we find
that the integral is zero, so we need C to be no smaller than zero. Combining these two results, we know
that C' = 0 is the optimal choice. This shows the feasibility and the optimality of our payment rule.

As we have shown that for every allocation rule, we can find a corresponding payment to motivate its
implementation, we know that we only need to set the virtual cost equaling to the true cost ¢ noting that we
hope to obtain the lowest social cost, namely min, >, cxz?* (¢) = min, Y, cxyr(c). It yields the optimality
of Algorithm [4 as it satisfies both IC and IR, and achieves the highest social welfare while fulfilling all
demands. Since we only need veg(+) to be increasing to obtain the validity and ¢y is of course increasing, it
holds that My is valid.
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As for the complexity, we can inherit the results of Proposition directly as the main computational time
lies in the subroutine Algorithm [1} So, the computational complexity is polynomial and it finishes the proof.

C.6 Omitted Proof in Section [2.4]
C.6.1 Proof of Lemma [2.3]

In order to prove that fcb y(t) - dt is independent of the integration path for any ¢, we first write down how
we decide y(-). From the implementation of Algorithm |1} we know that

y(c) = argmin ¢ -y
y

K
st yi/mc + Z,uiky;ﬁk/m > d,,
i=1
yr > 0 for any k € [K].

From the knowledge of analysis (Griffiths & Schroeter}[2019)), we know that a sufficient condition is V x y(c) =
0. On the other hand, if we can find a potential function ¥(c) such that VU¥(c) = y(c), it holds that
V xy(c) =V x VU(c) =0 due to V x V =0.

¥, V2

1 Y1

Figure 5: When y(c) is a vertex. Figure 6: When y(c) is not a vertex.

We use Z to denote the constrained area that Z = {y : y;/pk + Zfil ,uiky?““/pi > dj and y, > 0 for any k €

[K]}. From Lemma we know that Z is a convex set. Note that ¢ -y is a linear function, then we can
define ¥(c¢) = minyez ¢ - y. Let’s now detail when we change ¢ to ¢ + d., how will y change. There are two
possible outcomes. If y(c) is a non-smooth point, then y(c + 8:) = y(c) (ref. Figure[5). Otherwise, y(c)
is on a smooth segment, and we know that ¢ - Vy(c) - 6. = 0 (ref. Figure [6]). Since d. can be arbitrary,
it holds that ¢ - Vy(c) = 0. Therefore, we know that ¥(c + d.) — ¥(c) = . - y(c) in the first case and
U(c+0c) —¥(c) = e -y(c) + ¢ Vy(c) - §c = 0. - y(c) as 6. — 0 in the second case. We know thereof that
VU (c) = y(c), showing the path independence. Since we have proven the path independence, it holds that
the payment rule p(-) is well-defined which ends the proof.

C.6.2 Proof of Theorem 2.3

From the revelation principle (Roughgarden| [2010), we know the existence of mechanisms satisfying both
IC and IR. Let’s analyze the IC condition first. It holds that p(c) — p(¢) > ¢ - y(c) — ¢ - y(¢). Since ¢ can
approach ¢ from any direction, we know that Vp(c) = ¢ - Vy(c). In practice, applicable mechanisms are
usually smooth, so we assume that these gradients exist. However, as we will see below the payment rule is
indeed a constant, this assumption is not mandatory.
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Consequently, it holds that

b b
pe)=p)~ [ Wyt -de =)+ [ ue)-arrc,

where the second equation holds due to the integration by parts formula and C here is a constant.

We now know we can use this kind of payment rule to induce any allocation rule, which is thereof applied to
social welfare maximizing platforms. Since it contains a family of mechanisms, we use the IR condition to
find the one with the highest revenue. Recall that we need to guarantee p(c) — ¢ y(¢) > 0 for any c¢. Since
there are constraints that yx(-) > 0 for any k € [K], it holds that C' > max.[— fcb y(t) - dt]. When ¢ = b, we
know that the right-hand side takes the maximum zero. Therefore, we know the smallest C' is zero which is
optimal.

The last question is that we only show a necessary condition and we need to prove the IC condition actually
holds. From the proof of Lemma we know that ¢- Vy(¢) = 0. Therefore, we know that p(-) is in fact a
constant, say b - y(b). Then, we only need to show that ¢- y(c) < ¢-y(¢). Note that from Algorithm 2| we
find y(c) to minimize c - y. Thus, it holds that c- y(c) = argmin 7 c-y < c¢-y(c) as y(c) is also a feasible
candidate.

Therefore, we show the payment rule in Algorithm [2] satisfies both IC and IR. Since the objective function is
>k CkUk = Y.k CkYk = ¢y when ¢ = € and yj, = 2", we know that the mechanism My achieves the highest

social welfare. Moreover, since M, has the same allocation rule as My, we know it’s valid immediately.

Note that most of the computational resource consumption comes from calls to Algorithm [T} hence we know
Algorithm [2] is a polynomial algorithm, which ends our proof.

We finally give the following remark. Observe that from the proof of Theorem we don’t need Assump-
tion [2.I] anymore unlike Theorems [2.I] and 2:2] It may suggest the potential success of high-dimensional
mechanism design problems beyond cycle monotonicity (Lavi & Swamy, [2007), which is of independent
interest for future work.

C.6.3 Discussion on Mechanism M3

The difficulty of Mechanism M3 stands in sharp contrast to My, which maximizes social welfare. Un-
der welfare maximization, one can leverage a potential-function-based formulation ¥(c) to construct path-
independent payments. However, this approach does not apply to Mechanism Mj. Specifically, for M3 we
require a path-independent allocation rule y that satisfies y(¢) = argminc -y + fcbt - Vy(t) - dt, which is
fundamentally challenging because the linear objective and the integral term are tightly coupled. Moreover,
enforcing path independence, without access to a potential function (The existence of a potential function
implies that the field is conservative, which naturally leads to path-independent payments), makes identify-
ing such an allocation especially difficult. Specifically, there is no clear evidence showing that naively derived
y(c) = argminc -y + fcbt - Vy(t) - dt naturally satisfies the integral path-independence property.

This comparison highlights an important advantage of social-welfare maximization: it enables simple and
practically implementable mechanisms. Meanwhile, our experiments show that the welfare-maximizing mech-
anism only incurs a minor revenue loss, further supporting its practical relevance.

C.7 Omitted Proof in Section
C.7.1 Proof of Theorem 2.4

First, from the implementation of Algorithms [2] and [f] we know that they achieve social welfare optimum
as the demand constraints are unavoidable. Therefore, we know that SWy = SW, and they are larger than
both SW; and SW3, yielding SWy = SW4 > max{SW;, SW3}.

In the meanwhile, since M7 and My have the same constraints, then the two solutions are both feasible
for each optimization problem. Thus, since M; maximizes the revenue of the platform, we know that
Revy > Revs.
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Now, let’s compare Rewvs and Rev4 Since they have the same allocation rule, we only need to compare
>k f yr(Cc_p, tr)dty and f y(t) - dt. Since we know the latter integral doesn’t depend on the integration
path, we choose a path as follows. We first go from ¢ to (by,ca,...,cx) and then from (by,ca,...,cx) to
(b1, b2, c3, ..., cx) etc. The k-th road is from (by,...,bk—1,ck, ..., k) t0 (b1, ..., bk, Cki1, ..., cx). Therefore, it
holds that fcb y(t)-dt =", fcb: Yk (b1, ey bk—1, th, Cky1, - Cic )dtg. From the implementation of Algorithms
and we know that yg (b1, ..., k-1, tk, Ckt1, -y Cx) > Yr(C1y ooy Cle1, Lk, Clit1, -, Ci) aS the objective function
is linear and the feasible region is a convex set, yielding Zk f::‘ Y (Cc—p, tg)dty < fcb y(t) - dt. Thus, we know
that E.[>", pr(c)] in My is no larger than E.[p(c)] in My and Revs > Rewvy.

Note that M3 and M, have the same constraints though different optimization objectives From the
above proof, we know that if the allocation of Ms is z(-), it holds that p(c) > ¢ y(c) + f y(t) - dt where
yr(+) = zk(-)?*. Here, we also need that ff y(t) - dt is independent of the integration path.

Consequently, as M3 has one more constraint on the integration path than Mj, the allocation of M3 is also
feasible for the optimization Problem [I} Let’s assume the corresponding allocation rule is associated with

y()-
Notice that the payment rule of M3 holds p(c) > ¢ y(c) + f y(t) - dt, we only need to show that ¢ -y +

fb yt)-dt >c-y+3Y, f Yk (tk, c_1)dtg. Since Mj is a valid mechamsm and has path independence, we
choose the following path which goes from the first coordinate to the last one in order. More specifically, the
k-th road is from (b1, ..., bg—1, Ck, Ckt1, - Cx) tO (b1, ..., bp—1, bk, Ck41, ..., Cx ) along the k-th coordinate. Due

to Definition it holds that yg (b1, ..., bg—1,tk, Cht1s -5 Cx) = Yk (tr, c—%), and then we know ffy(t) - dt >
Dok fcbkk Yk (g, c—k )dty, similar to the proof of Theorem yielding p(c) > c-y+ >, fcb: Yi (g, c—g ) dity.

Since the payment of M; is the minimum of ¢-y+ >, fcb: Yk (tk, c—k )dty over all possible allocation rule
z(+) or equivalently y(-), it holds that p(c) is no smaller than the payment of M;. Therefore, the expected
payment of Ms is at least as large as the one of M;. Since the platform’s revenue is equal to the negative
of the payment, it holds that Revs < Rewvi, which ends our proof.

D Omitted Details in Section [3]

D.1 Timeline of the Three-Layer Platform-Broker-Creator Markets Markets

We use the following figure to show the timeline in three-layer markets.

The platform The broker The creators generate
announces (z, t). announces (x,p). x(¢) and get p(¢).
l l l 5
I I I "
The broker decides Human creators The broker gives the platform
to accept/reject (z,t). report C. z units of content and gets ¢t.

Figure 7: The timeline of the three-layer market.

D.2 Omitted Proof in Section [3.1]

D.2.1 Proof of Theorem [3.1]

First, as we notice that the final allocation in both stages is constant, we know that M3 is valid.
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We now begin to consider the second-stage mechanism design. Note that in this stage, ¢t and z are fixed
constants. Therefore, changing the objective from E.[t — Y", pi(c; 2,t)] to Ec[— >, pi(c; 2,t)] won’t change
the optimal allocation and payment rule. Comparing Problem[dand Problem[I] we know that the only change
is the demand constraint is now x(c; z,t) > 2k, parallel to other axes. Since we know z;, > 0, we can certainly
omit 2 > 0. From the proof of Theorem 2.1} we know that this optimization problem equaling to minimizing

miny >, (e + ?f((;’:)) )y subject yk/p" > zj, where y, = a*. Since ¢, + F"((C")) > 0, it holds that the optimal

yk(c; z,t) is 21", hence z(c; z,t) = 25, for any ¢. Recall that due to Assumptlon cx + fk( <) g increasing,

so we have validity directly. In the meanwhile, we know that pi(c; 2,t) = cryr(c; 2, 1) +f Yk (T, C—; 2, 1) dTE,
using the fact that yy(c; z,t) = z4* for all ¢, we know that py(c; z,t) = bryr(c; 2, t) = bkz . Since by > ¢y,
the IR constraint is preserved.

The third step is to find the optimal first-stage mechanism. Since we need to satisfy E.[t —>", pj (c; z,t)] >0
and from above we know that pj(c;z,t) = bryk(c; z,t) = brzp*. So, we know that ¢ > Y, bkz . As the
objective is to maximize E.[—t], it equals to minimizing Zk 1 brwy, where we use wy, to denote z . Now we
turn to the constraints. It holds that wl/p’“ + ZZ 1 uzkw%k/”’ > dj and wy, > 0 for any k € [K]. From the

implementation of Algorithm I, we know that we only need to replace ve(€) by by, and w is the output y
of Algorithm [I}

Therefore, we prove the optimality of the second-stage mechanism design using xg(c;z,t) = 2z, and
pr(c; z,t) = brzp®. Also, we know that the allocation rule in Ms is optimal. Since ¢ can be any num-

ber no smaller than Ele biz*, we know that the payment rule in the first stage is optimal as well.

Finally, since the time complexity mainly depends on the call of Algorithm I} we know M3 is polynomial-time
from Proposition [2.I] immediately.

D.3 Omitted Proof in Section

D.3.1 Proof of Theorem

Note that the second-stage optimization problem is the same as the one of Theorem [3.1] We only need to
replace the first-stage problem with Problem @ Now, the objective is to minimize E.[— >, cx (2} (c; 2, t))P*].
Since we know that z(c; z,t) = 2, it holds that we need to minimize E[>", ¢x2,*]. Using wy, to denote z}*,
it holds that the objective is now E[c| - w under the constraints wl/p’”‘ + Zf( 1 uiszi’“/m > dj and wy, > 0 for
any k € [K]. Replacing veg(¢) by E[cg] yields the optimal w 1mmed1ately

Since we need to guarantee ¢t > Y, byzi" so that the broker will participate in the market, we set t =

Z,If:l b - w, which is the lower bound of feasible ¢. Therefore, it holds that (z,t) in Ms is the optimal
first-stage mechanism.

Similarly, we know that the corresponding (z, p) is the optimal second-stage mechanism. Since the allocation
is fixed in each stage, we know that Mg is valid. As for the computational complexity, it’s polynomially dom-
inated by the one of Algorithm[I] Therefore, we know it’s a polynomial-time algorithm from Proposition [2:1]
which ends the proof.

D.4 Omitted Proof in Section 3.3

D.4.1 Proof of Theorem [3.3|

From Theorem [2.4] we know that Reve > Revy. Also, in the proof of Theorem 2.2] we know that the
payment in My is in fact a constant b - y(b) where y(b) is the output of Algorithm [If with input b. From
the implementation of Algorithm [3] we know that the payment of Ms is also b - y(b) thereof Revy = Revs.
Note that M5 and Mg have the same second-stage optimization problem, therefore Mg is also feasible for a
Type 1 platform. Due to the optimality of M5 shown in Theorem we know that Revs > Revg. Hence,
it holds that Revy, > Revy = Revs > Revg.
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Similarly, as M is feasible for a Type 2 platform, we know that SWs > SW; because of Theorem [3.2] Note
that My and My achieve the highest social welfare for each ¢ while SWyg only uses the optimal allocation
with respect to E[c]. Therefore, for each ¢, the allocation of Ma and My is at least as good as the one of
Meg. We then know that SWy = SW, > SWs. To sum up, it holds that SWy = SW, > SWg > SW.

As a result, we’ve shown that the three-layer market will lead to a lose-lose situation that
max{Revs, Revg} < min{Revy, Revs}

and

max{SW5, SWG} < min{SWg, SW4}

D.4.2 Proof of Corollary 3.7]

We only need to construct a mechanism based on Ms which is feasible for Problem [8] We choose the
second-stage mechanism in Algorithm [3] as a candidate. We know that the total payment of M; is now
>k bezlt and the allocation rule is a constant vector z. Then, we choose p(c) = Zle bzt and z(c) = z
for Problem [3l

For Problem (3| since we know z also satisfies demand constraints in all domains, it holds that xzx(c) +
Zfil wikxi(c)¥i > dy also holds. For the IC constraint, we know that p(c) — 25:1 crit(c) = Zszl bzt —
Zle crzyt = p(c)— Zszl crah” (€) so preserved. For the IR constraint, it holds that p(c) —Zszl crah(c) =
S bzt = SR ezl = S8 (b — )2l > 0 as by > ¢ Finally, 2x(c) > 0 for all k € [K] as z > 0
entrywise.

Therefore, we find a feasible solution to Problem[3] Since Revs corresponds to the optimal solution, we know
that Revs > Zszl brzy¥ = Revs, yielding a lower bound for Revs, and it finishes the proof.

E Omitted Details in Section [4

We conduct all the numerical experiments written in Python 3.11.7 running on a laptop with an Apple M2
CPU, and we provide more omitted details as follows.

Experimental evaluation of revenue and welfare among mechanisms. For series of experiments
to compare the performance of Algorithms [1f to and [5] we randomly choose u following Unif]0, 0.5], v
following Unif[0.8,0.9], d following Unif[2, 5] and p following Unif[1, 1.5]. To better visualize our results, we
still set K = 2. We introduce asymmetry that ¢; follows A/(0, 1) truncated by [0,10] and cs is sampled from
Unif[0, 1]. We follow Equation @ and use 100 trials to take the average in order to reduce the variance of our
payment rule. Finally, we sample the cost vector ¢ 1000 times and compare the corresponding revenue and
social welfare. Here, we compare the resulting revenue and social welfare under different market structures
and objective choices, holding the distribution of costs ¢ (i.e., market randomness) and other hyperparameters
fixed across all mechanisms. Therefore, the differences observed are solely caused by structural changes
(e.g., two-layer vs. three-layer, revenue-maximizing vs. welfare-maximizing), which makes the comparison
meaningful.

We first give the following Table[I] to show the average revenue and social welfare of My, My, My, Mj5 and
Mg, and we use Theorem and Corollary to bound the ones with Ms.

Table 1: Revenue and social welfare of our mechanisms.

Ml MQ M3 M4 MS M6
Revenue -15.96 | -20.28 | [-30.68,-15.96] | -30.68 | -30.68 | -34.21
Social Welfare | -5.24 -4.79 <-4.79 -4.79 -9.58 -4.96

Note that the revenue is the negative payment, and the social welfare is the negative total human cost, so they
are both less than zero. The experimental findings corroborate Theorems [2.4] and [3.3] demonstrating that
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the rankings of revenue and social welfare observed in the experiments are consistent with their theoretical
rankings.

We visualize in Figure [ the distributions of revenue and social welfare across different algorithms and
provide further explanation and economic insights. We use a red line to represent the mean and an orange
one for the median. Moreover, we draw the first quantile, the third quantile, and the extension with a 1.5
interquartile range in Figure We find that compared with mechanism My, mechanism M; has more
outliers and extreme points. We also plotted the specific Revy, Revs, SW7 and SWs for the first 100 trials in
Figure[8] which clearly demonstrated the high volatility of mechanism M;. It may hint that the social welfare
maximizer can enjoy a more stable market, say the social welfare and even the revenue are steady, compared
with a revenue maximizer. This could perhaps explain why some companies turn to maximizing social
welfare. Moreover, in the three-layer market, data brokers and online platforms first establish contracts,
which are independent of the realization value of cost ¢, resulting in less volatility. This is also clearly
reflected in the box plot.
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(a) Comparative platform revenue volatility for My and Mz (b) Comparative social welfare volatility for M; and Mz over
over 100 trials. 100 trials.

Figure 8: Volatility comparison between Mechanism 1 and Mechanism 2.

With and Without GenAl. Finally, we provide more details when studying the gap between the presence
and absence of GenAl. Recall that when p = 0 is equivalent to expelling GenAl out of the market. We adopt
the same setup as in the evaluation of the mechanisms. The experiment is repeated 10 times, and the
results are reported in Table Besides, we include bar plots to visualize their gaps in Figure 9. The

Table 2: Revenue and social welfare with and without GenAl in 10 trajectories.

with GenAl Rev | -10.88 | -16.65 | -7.98 | -34.49 | -15.55 | -15.24 | -15.88 | -13.18 | -24.51 | -10.87
SW | -294 | -554 | -1.86 | -9.22 | -4.47 | -5.01 | -4.58 | -3.42 | -4.81 | -2.86

without GenAl Rev | -21.82 | -21.95 | -32.08 | -42.91 | -36.93 | -20.57 | -35.46 | -35.83 | -23.68 | -37.80
SW | -386 | -420 | -493 | -7.13 | -6.54 | -3.40 | -749 | -6.15 | -4.84 | -8.02

average revenue increases from -30.90 to -16.52 while the average social welfare increases from -5.66 to -4.47.
Therefore, the revenue and social welfare increase by 46.54% and 21.02%, respectively. This indicates that
the application of GenAl moderately improves production efficiency, while simultaneously increasing both
the platform’s revenue and overall social welfare.
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Figure 9: Visualization of Rev and SW with and without GenAI (lower values mean worse performance).
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