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ABSTRACT

This paper extensively investigates the effectiveness of synthetic training data
to improve the capabilities of vision-and-language models for grounding textual
descriptions to image regions. We explore various strategies to best generate
image-text pairs and image-text-box triplets using a series of pretrained models
under different settings and varying degrees of reliance on real data. Through
comparative analyses with synthetic, real, and web-crawled data, we identify
factors that contribute to performance differences, and propose SynGround, an
effective pipeline for generating useful synthetic data for visual grounding. Our
findings show that SynGround can improve the localization capabilities of off-
the-shelf vision-and-language models and offers the potential for infinite data
generation. Particularly, SynGround improves the pointing game accuracy of
pretrained ALBEF and BLIP models by 4.81% and 17.11% absolute percentage
points, respectively, across the RefCOCO+ and the Flickr30k benchmarks.

1 INTRODUCTION

Vision-and-language models pretrained on large-scale image and text pairs have become exceedingly
accurate across various tasks (Lu et al., 2019; Li et al., 2019; Jia et al., 2021; Li et al., 2021; 2022b;
Radford et al., 2021; Ma et al., 2023; Bitton-Guetta et al., 2023; Paiss et al., 2023). By leveraging
web-sourced datasets, these models showcase a strong ability to comprehend and process an extensive
vocabulary of objects and scenes, demonstrating remarkable performance. Our work focuses on the
task of visual grounding, which consists of mapping arbitrary input text to image regions. Recent
methods finetune vision-and-language models pretrained on web-scale image-text pairs with a large
but more modest number of images annotated with bounding boxes or other region annotations;
alternatively, these methods leverage pretrained object detectors that have been trained on such
annotated data (Chen et al., 2020; Dou & Peng, 2021; Gupta et al., 2020; Yang et al., 2023; Li
et al., 2022b; Kamath et al., 2021; Yang et al., 2022; Chen et al., 2023; Jiang et al., 2022). The
resulting vision-and-language models can then be used to perform visual grounding over an arbitrary
vocabulary of objects.

Collecting annotations for tasks that require localizing objects is considerably more expensive than
for other tasks. Region annotations in the form of bounding boxes or segments can not be easily
obtained from the web in the same way that image-text pairs can be found, and require more cognitive
effort to annotate manually than just providing a textual label. Recent work has advocated for the
use of synthetic data – learning from models – even for tasks that require only image-text pair
supervision (Tian et al., 2023) due to the poor scalability of large-scale uncurated data (Schuhmann
et al., 2022). Our work takes this paradigm one step further by investigating whether synthetic data
obtained from models is ready to make significant improvements for the visual grounding task, where
we need to obtain high-quality samples in the form of image-text-region triplets.

In this paper, we take advantage of recent advancements in text-to-image generation (Nichol et al.,
2021; Rombach et al., 2022; Saharia et al., 2022), large language models (Touvron et al., 2023;
Chiang et al., 2023) and models for other vision-and-language tasks (Liu et al., 2024; Li et al., 2023a;
2022b) to design an effective pipeline to supervise vision-and-language models for visual grounding.
We refer to this pipeline as SynGround and present a systematic analysis to justify each stage of our
data generation process. While there have been several attempts in training visual recognition models
with synthetic data by leveraging automatically generated image-text pairs (He et al., 2022a; Azizi
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et al., 2023; Fan et al., 2023; Tian et al., 2023; 2024; Sariyildiz et al., 2023), our work is the first
to also leverage generative models for synthesizing grounded image data. Moreover, we assess the
efficacy of synthetic data by comparing it to real and web-crawled data, identifying specific factors
that limit its performance. We also investigate whether synthetic data can augment real data and
examine its scalability.

Our key findings and contributions are summarized as follows: (1) For a text-to-image generative
model, detailed prompts obtained from image captioners yield the most effective synthetic image-text
pairs for visual grounding, surpassing those generated from concatenated region descriptions or LLM-
generated text. (2) To obtain synthetic image-text-boxes, both layout-conditioned generative models
and object detectors using synthetic image-text pairs show promise. However, layout-conditioned
models are more limited due to the observed non-overlap and natural input layout requirements. (3)
We use our findings to propose SynGround, an effective pipeline to generate data for visual grounding
through image-text-box synthesis. This method leverages exhaustive image descriptions for image
synthesis, an LLM for text synthesis from phrase extraction, and an open-vocabulary object detector
for bounding box generation. (4) Our results show that using our generated synthetic data outperforms
using web-crawled data (Sec. 3.9). Additionally, our synthetic data can effectively augment real data
(Sec. 3.4) and shows an upward trend in terms of scalability (Sec. 3.8).

2 RELATED WORK

Visual Grounding. Visual grounding associates textual descriptions with relevant regions within
images. Supervised methods are typically trained with image-text-box pairs (Deng et al., 2018;
2021; Dou & Peng, 2021; Kamath et al., 2021; Yang et al., 2023), or integrate pretrained object
detectors (Ren et al., 2015; He et al., 2017) to identify the most relevant regions with respect to
textual descriptions (Chen et al., 2020; Datta et al., 2019; Gomel et al., 2023; Gupta et al., 2020; Lu
et al., 2020; Wang & Specia, 2019). While weakly-supervised methods bypass the need for bounding
boxes (Arbelle et al., 2021; Shaharabany & Wolf, 2023; Shaharabany et al., 2022; He et al., 2023),
they rely on datasets such as Visual Genome (Krishna et al., 2017), which provides multiple phrases
describing various regions in each image. However, the process of manually annotating dense textual
descriptions and their corresponding boxes is time-consuming. Although some studies collect more
data (Xiao et al., 2023) or generate annotations for existing image-text datasets (Peng et al., 2023; You
et al., 2023; Wang et al., 2023), we posit that our contribution is orthogonal as we aim to investigate
the feasibility and limitations of generating and using synthetic data. Related to grounding methods
incorporating tuning of visual explanations (Xiao et al., 2017; Li et al., 2021; Yang et al., 2023; He
et al., 2023), we explore visual grounding in a more general context, aiming to localize phrases using
gradient-based model explanations(i.e. GradCAM (Selvaraju et al., 2017)) rather than generating
boxes (Li et al., 2022b). Compared to boxes, explanation maps provide a more flexible representation
that can be used for text referring to multiple objects or background regions. Yang et al. (Yang
et al., 2023) recently proposed an attention mask consistency objective to optimize the gradient-based
explanations of ALBEF (Li et al., 2021) to improve localization performance. We adopt ALBEF as
our main base model and tune it with attention mask consistency on image-text-box triplets.

Learning from Synthetic Data. The use of synthetic data has been widely explored across various
computer vision tasks, including image classification (Gan et al., 2020; Peng et al., 2017; Mishra
et al., 2022), semantic segmentation (Richter et al., 2016; Ros et al., 2016; Chen et al., 2019), object
detection (Peng et al., 2015; Rozantsev et al., 2015), human pose estimation (Varol et al., 2017;
Kim et al., 2022), and many other domains (Abu Alhaija et al., 2018; Varol et al., 2021; Dan et al.,
2020; He et al., 2022b; Kumar et al., 2020; Meng et al., 2022; Mimura et al., 2018; Rosenberg et al.,
2019; Rossenbach et al., 2020; Tucker et al., 2020; Yang et al., 2020; Moreau et al., 2022; Yen-Chen
et al., 2022). In contrast to works that generate synthetic data using 3D-rendering (Greff et al., 2022;
Zheng et al., 2020) or physically realistic engines (de Melo et al., 2022; Dosovitskiy et al., 2017; Gan
et al., 2020; Cascante-Bonilla et al., 2023; 2022), our approach aligns more closely with research
adopting diffusion models. He et al. (He et al., 2022a) use GLIDE (Nichol et al., 2021) for generating
synthetic images to improve a pretrained CLIP model (Radford et al., 2021) in zero-shot and few-shot
classification, while its performance is adversely affected when trained from scratch on synthetic data.
Azizi et al. (Azizi et al., 2023) fine-tune Imagen (Saharia et al., 2022) on ImageNet (Russakovsky
et al., 2015) and subsequently leverage its synthetic data to augment the real ImageNet training set,
resulting in initial improvement followed by degradation upon scaling up. Fan et al. (Fan et al.,
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2023) investigate the scaling laws of synthetic images and identify related factors. StableRep (Tian
et al., 2024) propose a self-supervised method with a multi-positive contrastive loss that learns
representations from synthetic images generated for captions in large-scale datasets (Changpinyo
et al., 2021; Desai et al., 2021), thereby boosting linear probing image classification performance.
SynCLR (Tian et al., 2023) uses LLM-generated synthetic captions. Our research not only generates
image-text pairs but also provides corresponding synthetic boxes, facilitating a comprehensive
exploration of the efficacy of synthetic image-text-box triplets in visual grounding.

3 IS SYNTHETIC DATA READY FOR IMPROVING VISUAL GROUNDING?

We investigate effective strategies to generate image-text-boxes ⟨I, T,B⟩ to improve the visual
grounding ability of a base vision-and-language model. The base model comprises a text encoder ϕt,
a visual encoder ϕv , and a multimodal fusion encoder ϕf . Sec. 3.1 introduces the objectives for tuning
the base model on image-text pairs ⟨I, T ⟩ and image-text-box triplets ⟨I, T,B⟩. Sec. 3.2 explores
various image-text synthesis strategies with an image generation model Ψg , while Sec. 3.3 delves into
multiple approaches for box synthesis. In the following sections, we conduct extensive experiments
and analyses with our proposed image-text-box synthesis paradigm, SynGround, which integrates
an image caption generator Ψc, a text-to-image generation model Ψg, a large language model Ψt

and an object detector Ψd. We cover topics including the effect of augmenting real data (Sec. 3.4),
factors contributing to performance discrepancies compared to real data (Sec. 3.5), effectiveness and
analyses with other VLMs (Sec. 3.6), a more flexible design for generating theoretically infinite data
(Sec. 3.7), an analysis on the effect of scale (Sec. 3.8), comparisons with web-crawled data (Sec. 3.9),
and implementation details (Sec. 3.10).

3.1 PRELIMINARIES AND SETUP

Image-Text Matching. We adopt ALBEF (Li et al., 2021) as the main base model which incorporates
image-text matching objectives including a standard image-text matching loss (Litm), an image-text
contrastive loss (Litc) and a masking language modeling loss (Lmlm). The image-text matching loss
Litm evaluates the compatibility between an image and a text by analyzing the output of [CLS]
tokens. This loss measures how well a given image-text pair ⟨I, T ⟩ matches using a cross-entropy
loss. The image-text contrastive loss Litc is designed to align visual and textual representations using
contrastive learning by sampling a set of negative samples and a temperature scaling parameter to
normalize the scores. The masking language modeling loss Lmlm uses both visual inputs and textual
context to predict masked tokens from the input text. The overall objective to tune the base model on
image-text pairs is Lvl = Litm + Litc + Lmlm.

Image-Text-Box Matching. We adopt an attention map consistency objective Lamc, which was
recently proposed by Yang et al. (Yang et al., 2023) to add region-level box supervision on top of the
ALBEF model. This objective uses gradient-based explanation maps G through GradCAM (Selvaraju
et al., 2017), and maximizes the consistency between this map and region annotations. This objective
considers two terms. The first term Lmax encourages the maximum value of G inside a target box B
to surpass the maximum value outside by a margin δ1.

Lmax = E(I,T,B)∼D

[
max(0, max

i,j
((1−Bi,j)Gi,j)−max

i,j
(Bi,jGi,j) + δ1)

]
, (1)

where Bi,j is 1 when pixel location i, j is inside the box, and zero otherwise. The second term Lmean

encourages the mean value of heatmap G inside the box to be larger than the mean value outside by a
margin δ2.

Lmean = E(I,T,B)∼D

[
max(0,

∑
i,j (1−Bi,j)Gi,j∑

i,j(1−Bi,j)
−

∑
i,j Bi,jGi,j∑
i,j(Bi,j)

+ δ2)

]
. (2)

The full Lamc objective is Lamc = λ1 ·Lmax+λ2 ·Lmean, where λ1, λ2 are trade-off hyperparameters.
The base model is tuned with both the Lvl and Lamc objectives on image-text-box triplets.
Visual Grounding Evaluation. Following prior works (Yang et al., 2023; Akbari et al., 2019; Li
et al., 2021; He et al., 2023; Datta et al., 2019; Lu et al., 2020; Gupta et al., 2020; Dou & Peng, 2021),
our evaluation uses pointing game accuracy, which measures the proportion of instances where the
maximal activation point within generated heatmaps correctly falls within the annotated ground-truth
box regions. We conduct evaluation across multiple benchmarks, including RefCOCO+ (Yu et al.,
2016) and Flickr30k (Plummer et al., 2015).
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Concatenation

Image2Text

Text2Text

a small girl wearing orange, a little girl holding a teddy 

bear, little girl in a red dress, a person, a hand person, 

a small girl, a black and white teddy bear, a floor, a blue 

carpet floor, a blue carpet, some presents, a room, 

orange toys, a girl, a teddy bear

LLM

a small girl holding a teddy 

bear, a little girl in a red 

dress, a person, a hand 

person, a small girl

a small girl wearing orange, a little girl holding a teddy bear, little girl in a red dress, a person, a hand person, a small girl, a 

black and white teddy bear, a floor, a blue carpet floor, a blue carpet, some presents, a room, orange toys, a girl, a teddy bear
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Image Captioning 

Model

A young girl is sitting on the floor and holding a black and 

white teddy bear. She appears to be playing with toys as 

she holds the stuffed bear. The room has several chairs of 

various sizes, a couch in the background, and a potted plant 

placed near the girl. There are also multiple presents 

scattered around the area, adding to the festive atmosphere.

I

I

I

IR

TR

TR

Figure 1: Illustration of various approaches for image and image description synthesis. Image
descriptions can be generated by concatenating real text TR, LLM summary on real text TR, and
image captioning on real image IR. Synthetic images I are obtained through an image generator
model conditioned on image descriptions.

Table 1: Comparisons of image-text synthesis strategies. We assess the effectiveness of synthetic
image-text pairs from text concatenation, Text2Text, and Image2Text pipelines, by evaluating the
performance improvements over an ALBEF model. For reference we also include the performance
that would be obtained by finetuning ALBEF on real image-text pairs from Visual Genome (VG).

Category Row Image Text Num. RefCOCO+ Flickr30k ∆avg

Test A Test B

ALBEF 1 - - – 69.35 53.77 79.38 -
ALBEF + VG 2 VG VG 1,649,546 71.41 54.06 79.90 +0.96

Concatenation 3 Syn-C VG 1,649,546 67.57 53.14 76.99 -1.60

Text2Text 4 Syn-V VG 1,649,546 67.41 52.14 77.80 -1.72
5 Syn-V LLMC 530,233 70.28 52.08 78.97 -0.39

Image2Text

6 Syn-B VG 1,649,546 56.88 48.48 73.93 -7.74
7 Syn-B BLIP-2C 267,199 68.15 51.50 78.30 -1.52
8 Syn-L VG 1,649,546 65.35 50.28 76.85 -3.34
9 Syn-L LLaVAP 384,455 70.22 52.30 78.34 -0.55

10 Syn-L LLaVAC 716,198 69.94 53.26 78.83 -0.16
11 Syn-L LLaVAL 680,093 69.84 53.61 79.44 +0.13
12 Syn-L LLaVAS 1,031,521 70.31 52.55 80.73 +0.36

3.2 IMPROVING VISUAL GROUNDING USING ONLY SYNTHETIC IMAGE-TEXT PAIRS

To generate image-text-box triplets for visual grounding, we first explore synthesizing image-text
pairs that are not only aligned but also inherently equipped for visual grounding. As illustrated in
Fig. 1, we investigate three alternatives for conditioning a text-to-image generation model Ψg. (1)
Concatenation: merging all captions of a real image I as a prompt for Ψg. (2) Text2Text: Using an
LLM Ψt to create a cohesive prompt given a set of text descriptions. (3) Image2Text: Employing an
image captioning model Ψc to generate new captions for real images IR as prompts for Ψg . Table 1
compares these strategies. We tune all of the models in these experiments using the image-text
matching objectives described in Sec. 3.1. Although image-text matching objectives are not designed
specifically for visual grounding, well-aligned region phrases from the Visual Genome (VG) dataset
can improve the visual grounding performance by 0.96% on average (row 2).

The Concatenation strategy (Syn-C) degrades the average performance by 1.60%, indicating that
the text-to-image generation model Ψg is not effective with long yet potentially redundant prompts.
For Text2Text, LLM summaries generated synthetic image (Syn-V) show misalignment with the
original VG captions (row 4). Also, tuning the model on Syn-V and object-centric phrases obtained
by splitting the LLM summary with commas (LLMC) is ineffective (row 5). For the Image2Text
strategy, we experiment with two distinct styles of image captioning models: BLIP-2 (Li et al.,
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In the image, a cat is laying on a couch, 

surrounded by a white stuffed teddy bear 

and a white towel. The cat is resting 

peacefully on the couch with the stuffed 

animal and towel nearby. The scene conveys 

a sense of coziness and relaxation, as the 

cat enjoys its time on the couch. 

LLM Ψt

Image Generator Ψg

Detector Ψd

a cat

a couch

a white stuffed teddy bear

a white towel

the cat

...
T

I

<I, T, B>
Generated Image 

Description

Image

Description

Generator

Ψc

Figure 2: Overview of our image-text-box synthesis pipeline, SynGround. We use an image descrip-
tion generator Ψc to output a description that serves as a prompt to an image generator Ψg to obtain
synthetic image I . This description is also used to obtain text phrases T by prompting an LLM Ψt.
Finally, the synthetic text and image are fed into an object detector Ψd to obtain synthetic boxes B.

2023a) that yields condensed phrases, and LLaVA (Liu et al., 2024) that produces detailed paragraphs.
Both BLIP-2 and LLaVA prompted images (Syn-B and Syn-L, respectively) show partial overlap
with real VG captions (rows 6 and 8). Notably, an opposite influence is observed when Syn-B and
Syn-L are paired with phrases extracted from their captions. BLIP-2 captions, usually short and
object-centric (e.g., "a dog, a cat"), are split into visual grounding phrases by commas, showing
improved performance over Syn-B and VG captions, possibly due to better cross-modal alignment,
but still below the baseline.

We find that LLaVA-synthesized images (Syn-L) paired with phrases extracted from LLaVA captions
can enhance grounding performance (Table 1, rows 11 and 12). This indicates that detailed prompts
suit the text-to-image synthesis model better. We compare four ways to partition the LLaVA captions
into phrases: LLaVAP and LLaVAC , segmented by periods and commas, respectively, LLaVAL for
longer LLM extracted phrases and LLaVAS for shorter phrases. Our experiments demonstrate that
the Image2Text strategy, particularly with LLaVA captioning and LLM phrase extraction, yields the
most effective synthetic image-text pairs for visual grounding. More details in Appendix A.2 and A.3.

3.3 IMPROVING VISUAL GROUNDING WITH SYNTHETIC IMAGE-TEXT-BOX TRIPLETS

This section discusses two pipelines for image-text-box synthesis. The first pipeline builds on the
success of Image2Text (Sec. 3.2) and additionally uses an open vocabulary object detector Ψd(Li
et al., 2022b) to generate region annotations for each synthetic text phrase. Fig. 2 shows an overview
of this strategy. As shown in Table 2, we compare pairing the synthetic images with shorter phrases
(LLaVAS), longer phrases (LLaVAL), and both (LLaVAS,L). The shorter phrases outperform others
(row 10), leading to an average performance gain of 4.81%. However, combining shorter and longer
phrases (LLaVAS,L) –despite increasing the amount of data– does not further improve performance,
suggesting redundancy in the information conveyed by phrases with different lengths.

We also investigate an alternative strategy that leverages a layout-conditioned generative model
GLIGEN (Li et al., 2023b), synthesizing images conditioned on the text and corresponding bounding
boxes. Directly inputting all real VG texts and boxes (row 3) results in a modest increase of 2.58%
compared to the baseline (row 1). We observe the ineffectiveness of using regions with multiple
textual descriptions, as this tends to generate unrealistic or implausible content. To address it, we
explore three strategies: Random selection of text-box inputs (VGR), reduction based on average
CLIP (Radford et al., 2021) text dissimilarity (VGT ), and selecting the maximum number of boxes
with an IoU below 0.5 (VGI ). Random selection keeps at most 10 boxes per image, resulting in a
reduction of about 50% of the data. Random text-box synthesized images Syn-R (row 5) outperform
the all-text-box conditioned variant (Syn-A, row 3). Also, pairing Syn-R with all text-box data from
Real VG (row 4) does not match the effectiveness of either Syn-A with all text-boxes or Syn-R with
selected text-boxes, underscoring the importance of image-text-box alignment. Sorting by CLIP text
dissimilarity to select at most top-10 inputs (Syn-T, VGT ) marginally improves the random selection.
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Figure 3: Qualitative examples of synthetic image-text-box triplets from SynGround.

Table 2: Effectiveness of synthetic image-text-boxes generated with either GLIP (Li et al., 2022b)
or GLIGEN (Li et al., 2023b). For reference we also include the reported performance obtained by
finetuning ALBEF (Li et al., 2021) with an AMC loss (Yang et al., 2023) on real image-text-box
triplets from Visual Genome (VG).

Model Row Image Text Box Num. RefCOCO+ Flickr30k ∆avg

Test A Test B

ALBEF 1 - - - – 69.35 53.77 79.38 -
AMC 2 VG VG VG 1,649,546 78.89 61.16 86.46 +8.00

ALBEF 3 Syn-A VG VG 1,649,546 68.79 56.88 84.57 +2.58
4 Syn-R VG VG 1,649,546 68.25 55.78 84.59 +2.04

+ 5 Syn-R VGR VGR 725,974 71.66 56.15 84.84 +3.38

GLIGEN 6 Syn-T VGT VGT 725,974 71.80 56.68 84.73 +3.57
7 Syn-I VGI VGI 652,657 73.05 58.38 84.39 +4.44

ALBEF 8 Syn-L LLaVAL GLIP 659,927 72.39 55.94 86.53 +4.12
+ 9 Syn-L LLaVAS,L GLIP 1,658,333 72.25 57.05 86.71 +4.50
GLIP 10 Syn-L LLaVAS GLIP 998,406 73.70 56.35 86.89 +4.81

Yet, the most significant improvement stems from selecting as many boxes as possible with an IoU
below 0.5. The images (Syn-I) generated with this strategy match the best practice in the GLIP-based
pipeline (row 10).

Our results show the potential of using a layout-conditioned generative model for image-text-box
synthesis. However, either generating non-overlapping and natural layouts or generating text for
visually coherent layouts poses a substantial challenge, limiting the advancement to synthesis without
real image-text-box data. Even with layout generation models (Inoue et al., 2023; Kikuchi et al.,
2021), strong constraints of natural composition and non-overlapping bounding boxes detract from
their efficiency and effectiveness compared to the object detector approach.

We use our findings to define SynGround, a processing pipeline for generating synthetic image-text-
boxes for visual grounding (Table 2 row 10, Fig. 2). Fig. 3 shows representative examples of our
generated image-text-boxes, including images with specific and recognizable entities (the first image
shows "a Siamese cat"), complex scenarios with composite subjects (the second image shows "rice,
beans and meat"). The third image shows a synthetic person with unrealistic features, observed in
several generated results. This contrasts with improvements on RefCOCO+ Test A (a person-only
subset), suggesting that realistic object details are not crucial for visual grounding. The fourth image
showcases creative objects with unusual attributes such as a pink coffee table, which showcases
diversity in our generated data. More qualitative examples are provided in Appendix F.

3.4 IMPROVING VISUAL GROUNDING USING BOTH REAL AND SYNTHETIC DATA

SynGround can augment training with real data. Table 3 presents comparisons between training
exclusively on real data from the Visual Genome (VG) dataset, synthetic data from SynGround, and a
combination of both. The baseline performance (row 1) is significantly enhanced by incorporating
synthetic data, yielding an average improvement of 4.81% (row 3). While it falls short of the gains
achieved through training on real data (row 2), SynGround offers an average improvement of 9.16%
when combined with real data (row 4), outperforming the state-of-the-art (row 2) (Yang et al., 2023)
on RefCOCO+ (Yu et al., 2016) Test A and B, and Flickr30k (Plummer et al., 2015) benchmarks.
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Table 3: Training on both synthetic and real data. We compare visual grounding improvements for
the base model (row 1) by using the real data (row 2), synthetic data (row 3), and both (row 4).

Method Data Num. RefCOCO+ Flickr30k ∆avg

Test A Test B

ALBEF (Li et al., 2021) Off-the-Shelf – 69.35 53.77 79.38 -
AMC (Yang et al., 2023) Real 1,649,546 78.89 61.16 86.46 +8.00

SynGroundS Synthetic 998,406 73.70 56.35 86.89 +4.81
SynGround Real&Synthetic 2,627,952 79.06 63.67 87.26 +9.16

Table 4: Factors causing the performance gap with the real data. We investigate how each model
caused the ineffectiveness compared to the real data. I: Off-the-shelf base model. II: Learning from
real data. III-V: Sequentially replacing real boxes, text, and images with synthetic variants.

Exp. Image Text Box Num. RefCOCO+ Flickr30k ∆avg

Test A Test B

I - - - – 69.35 53.77 79.38 -
II VG VG VG 1,649,546 78.89 61.16 86.46 +8.00
III VG VG GLIP 1,599,633 76.88 59.79 86.76 +6.98
IV VG LLaVAS GLIP 1,000,634 73.11 57.35 87.49 +5.15
V Syn-L LLaVAS GLIP 998,406 73.70 56.35 86.89 +4.81

3.5 FROM REAL DATA TO SYNTHETIC DATA: PERFORMANCE GAP FACTORS

Table 4 analyzes the factors contributing to the performance gap between synthetic and real data.
Experiment I is the off-the-shelf ALBEF performance, serving as a baseline. Experiment II provides
the results from training on real VG image-text-boxes, leading to an average improvement of 8%.
Experiment III retains real images and texts from VG, but employs GLIP-generated boxes. The 1.02%
decrease in performance compared to Experiment II suggests that the synthetic boxes, while effective,
may lack the precision of manual-annotated equivalents. Experiment IV further replaces real VG
captions with synthetic captions from SynGround (i.e., LLaVAS), resulting in an additional average
reduction of 1.83%. This decline could stem from a reduction in the number of captions (∼600K
fewer) or discrepancies in image-text alignment, coverage, and diversity compared to manually
curated captions (details in Appendix D). Interestingly, the performance on Flickr30k is enhanced by
1.03% over real data (II), showing a potential distribution shift from synthetic captions. In Experiment
V, the setting consists entirely of synthetic image-text-box data, eliminating real images from the
dataset. Compared to Experiment IV, it modestly drops another 0.34%. This minor decrement,
relative to the changes observed with synthetic texts and boxes, indicates that synthetic images
maintain a level of effectiveness for visual grounding tasks comparable to their real counterparts.

3.6 EFFECTIVENESS AND GENERALIZATION ON OTHER VLMS

This section experiments with an additional off-the-shelf VLM, BLIP (Li et al., 2022a), to further
examine the effectiveness of our synthetic data and verify the generalizability of our findings from the
default base model ALBEF. Refer to Appendix. B for the base model selection and implementation
details. As shown in Table 5, our generated synthetic image-text and image-text-boxes significantly
enhance its visual grounding performance (III, V), matching closely to the improvement from training
on real data (II, IV). Additionally, we investigate the factors contributing to the degradation in Table 6.
Similar to findings from ALBEF experiments in Table 3.5, most drop comes from the box and text
synthesis. By replacing ALBEF with BLIP for experiments presented in previous sections, consistent
findings are observed (details in Appendix C).

3.7 EFFECT OF LESS TO NO RELIANCE ON REAL IMAGES

In this section, we explore a series of variants of our methodology that we refer to as SynGroundH ,
which consists of synthesizing image-text-boxes with less or even no reliance on real data.
SynGroundHS substitutes real images and the image captioning model with an extracted concept list,
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Table 5: Training on both synthetic and real data. We compare visual grounding improvements for
BLIP (I) by using the real data (II, IV) and synthetic data (III, V) w/o the AMC box-supervised loss.

Exp. Box (AMC Loss) Data Num. RefCOCO+ Flickr30k ∆avg

Test A Test B

I × Off-the-Shelf – 58.56 38.00 64.54 -
II × Real 1,649,546 68.86 52.85 64.08 +8.23
III × Synthetic 998,406 63.45 44.39 68.21 +4.98
IV ✓ Real 1,649,546 78.47 61.96 85.35 +21.56
V ✓ Synthetic 998,406 71.78 54.82 85.83 +17.11

Table 6: Performance gap between real and synthetic data analyses with BLIP. We investigate how
each model caused the ineffectiveness compared to the real data. I: Off-the-shelf. II: Trained on real
data. III-V: Sequentially replacing real boxes, text, and images with synthetic variants.

Exp. Image Text Box Num. RefCOCO+ Flickr30k ∆avg

Test A Test B

I - - - – 58.56 38.00 64.54 -
II VG VG VG 1,649,546 78.47 61.96 85.35 +21.56
III VG VG GLIP 1,599,633 75.72 58.50 86.11 +19.74
IV VG LLaVAS GLIP 1,000,634 72.44 55.94 86.72 +18.00
V Syn-L LLaVAS GLIP 998,406 71.78 54.82 85.83 +17.11

an in-context learning example database, and a large language model (LLM). Fig. 4 presents an
overview of SynGroundH

S .

The Image2Text strategy, detailed in Section 3.3, applies an image captioning model to obtain detailed
descriptions from a real image IR (II). In contrast, Concept2Text reduces real data dependency by
sampling from a predefined concept list and an in-context learning example database of detailed
captions. The concept list is collected from real text TR, and the in-context learning example database
is built through image captioning on a small subset of real images IR (III-V), web-crawled images
(VI), or manual-crafted descriptions (VII). Leveraging the in-context learning capability of an LLM
Ψt, Concept2Text can theoretically generate unlimited data.

As shown in Table 7, though relying on less or even no real data, the Concept2Text strategies
(SynGroundHS ) not only rivals but match the performance of the Image2Text variant on benchmarks.
Sourcing in-context examples (ICE) from captioning on real images, web-crawled data, or manual-
crafted text descriptions, while reducing the reliance on real data, all achieve absolute average
improvements of around 4%. It indicates the potential of generating synthetic data in a more scalable
and flexible setting. Refer to Appendix A.1 for more implementation details.

3.8 EFFECT OF DATA SCALE ON VISUAL GROUNDING

25% 50% 75% 100%
Percentage of Synthetic Data
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Figure 5: Pointing game accuracy improvement on
RefCOCO+ and Flickr30k at various scales. The
line denotes the mean improvement across 3 sam-
pled subsets at each scale, and the error bars are
corresponding standard deviations.

This section explores the potential for scal-
ing synthetic data. We analyze how the per-
formance of SynGround scales by using one
fourth, half, and seventy five percent of our to-
tal generated almost 1 million image-text-box
triplets. We perform experiments 3 times for
each scale to measure variance. Fig. 5 illus-
trates the average pointing game accuracy im-
provement across RefCOCO+ (Yu et al., 2016)
and Flickr30k (Plummer et al., 2015). We plot
the mean improvement at each scale with lines
and their standard deviations with error bars.
The observed upward trend indicates a promis-
ing scaling-up ability of using synthetic data
with SynGround.
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Image Captioning

Model

Q: [“cat”, “building”]

Q: [“woman”, “car”]

A: [“In the image, there are a woman walking down the sidewalk, a fire hydrant located next to her, and a building behind her. The woman appears to 

be carrying a handbag. Additionally, there is a car parked on the street in the background.”]

…

LLM

In the image, a cat is laying on a couch, surrounded by a white stuffed teddy bear and a white 

towel. The cat is resting peacefully on the couch with the stuffed animal and towel nearby. The 

scene conveys a sense of coziness and relaxation, as the cat enjoys its time on the couch.

A: [“The image features a sleek black cat sitting on the edge of a tall building. The cat looks 

poised and alert, its ears perked up and its tail twitching. Behind the cat, there is a row of 

windows that stretch up to the top of the building, providing a view of the interior. The building 

itself is modern and made of concrete and glass, with an angular design.”]

Concepts

In-context examples

Figure 4: Two approaches for generating image descriptions (ΨC) for image synthesis and phrase
extraction. The top pipeline, Image2Text, relies more on real data, applying an image captioning
model to real images. The bottom pipeline, Context2Text, samples concepts from a predefined list
and uses an LLM with in-context learning to generate image descriptions.

Table 7: Performance comparisons with pipelines at different real data reliance due to different image
description generators. SynGroundS relies more on real data, whereas SynGroundHS reduces reliance
through a concept list and in-context examples from different sources.

Category Exp. ICE VG Img. Source RefCOCO+ Flickr30k ∆avg

Test A Test B

Off-the-Shelf I - - - 69.35 53.77 79.38 -
SynGroundS II - 94,893 Real 73.70 56.35 86.89 +4.81

SynGroundH
S

III 50 50 Real 72.48 56.23 86.07 +4.09
IV 100 100 Real 72.49 56.25 86.33 +4.19
V 500 500 Real 72.18 55.92 86.30 +3.97
VI 500 0 Web-Crawled 72.69 55.66 86.29 +4.05
VII 500 0 Manual-Crafted 71.27 56.82 86.78 +4.12

3.9 COMPARING THE USE OF SYNTHETIC DATA VS. WEB-CRAWLED DATA

To showcase the challenge and necessity of generating effective synthetic data tailored for visual
grounding, Table 8 compares our synthetic data and web-crawled data. The first and second rows
are the off-the-shelf and tuning on real VG data, respectively. For fair comparisons, we randomly
sample 1M web-crawled data from Conceptual Captions (CC) (Sharma et al., 2018), approximately
matching the scale of our synthetic data. As CC data only encompasses images and texts, we add
synthetic boxes using an open-vocabulary detector (Li et al., 2022b), as the same in our method.
Tuning the base model on it achieves (row 3) a 1.82% average performance gain. Additionally,
experiments in Table 1 and other work (He et al., 2023) find that visual grounding ability can be
enhanced more significantly with object-centric short phrases rather than generic image descriptions.
Considering that CC text might describe entire scenarios, we further apply our LLM phrase extraction
(row 4) and generate synthetic boxes for the synthetic text phrases, leading to a greater average
improvement of 2.86%. However, to our best effort, we can not make the web-crawled data reach a
similar enhancement with our synthetic data (SynGroundHS , SynGroundS). Our experimental results
indicate that it is non-trivial to curate or synthesize image-text-boxes for visual grounding. The image
and text favored by visual grounding seem to feature specific properties, such as images with multiple
objects and text for region descriptions.

3.10 IMPLEMENTATION DETAILS

Image-Text-Box Synthesis. To favor reproducibility and accessibility, we adopt Stable Diffusion
2.1 (Rombach et al., 2022) with guidance scale 10.0 as the text-to-image generator Ψg , an open-source
LLM Vicuna-13B (Chiang et al., 2023) as Ψt, and GLIP (Li et al., 2022b) as the object detector Ψd.
We select the box with top-1 confidence if it exceeds the default confidence threshold (0.7) as in the
official implementation. For image description generation Ψc, we experiment with BLIP-2 (Li et al.,
2023a) and LLaVA (Liu et al., 2024) for the Image2Text strategy. For the Concept2Text variant, we
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Table 8: Comparisons of our synthetic data with web-crawled data. The first row is the off-the-shelf
base model performance, and the second is the performance after tuning on real data. The third
row ("CC") tunes on a subset of CC (Sharma et al., 2018) image-text pairs with generated synthetic
boxes, while "CCPhrase" processes the text through LLM phrase extraction. SynGroundH

S and
SynGroundS refer to tuning on our synthetic data, relying on less or more on the real data during
synthesis, respectively.

Method Data Num. RefCOCO+ Flickr30k ∆avg

Test A Test B

ALBEF (Li et al., 2021) - – 69.35 53.77 79.38 -
AMC (Yang et al., 2023) Real 1,649,546 78.89 61.16 86.46 +8.00

CC Web-Crawled 1,000,000 69.05 54.96 83.94 +1.82
CCPhrase Web-Crawled 1,000,000 70.35 55.31 85.43 +2.86

SynGroundH
S Synthetic 719,254 71.27 56.82 86.78 +4.12

SynGroundS Synthetic 998,406 73.70 56.35 86.89 +4.81

use Vicuna-13B (Chiang et al., 2023) to generate image descriptions from a two-concept query with
four randomly sampled in-context examples. The concept list contains nouns extracted from real VG
captions. The in-context learning example database implementation details are in Appendix A.1.
Visual Grounding Tuning. We employ ALBEF-14M (Li et al., 2021) as our base model for its
reported visual grounding performance through GradCAM (Selvaraju et al., 2017). ALBEF is
pretrained on image-text pairs from Conceptual Captions (Changpinyo et al., 2021), ImageNet-
1k (Russakovsky et al., 2015), MS-COCO (Lin et al., 2014), SBU Captions (Ordonez et al., 2011) and
Visual Genome (Krishna et al., 2017). Tuning for visual grounding applies Lvl on image-text pairs
and a combination of Lvl and Lamc on image-text-box triplets, adhering to the coefficient settings
δ1 = 0.5, δ2 = 0.1, λ1 = 0.8, and λ2 = 0.2 as originally proposed in Yang et al. (Yang et al., 2023).
The training is conducted on a single node with 8 NVIDIA A40 GPUs. Input images are resized
to 256×256 pixels and augmented with color jittering, horizontal flipping, and random grayscale
conversion. All ALBEF-based experiments use an Adam optimizer (Kingma & Ba, 2014) with a
learning rate set to 1e-5 and a batch size of 512.

4 CONCLUSION

This paper investigates various strategies and conducts extensive analyses for generating synthetic
training data to improve the visual grounding ability of a base vision-and-language model. By
leveraging exhaustive image descriptions for image synthesis, utilizing an LLM for phrase extraction,
and adopting an open-vocabulary object detector for box synthesis, we propose SynGround– an
effective framework to generate training data for improving visual grounding. SynGround can
augment real data to yield further performance gains, and surpasses the efficacy of web-crawled data
in visual grounding. Furthermore, SynGround is scalable and capable of generating theoretically
infinite data using LLMs for image description generation.
Limitations and Future Work. While SynGround learns from a suite of large-scale pretrained
models, it also inherits their limitations, resulting in certain degradations compared to real data.
Future improvements could stem from integrating more advanced models, such as GPT-4 (OpenAI,
2023) or DALLE-3 (Betker et al., 2023). Additionally, considering the success and efficiency of
SynGround, this work has not yet explored the integration of layout-conditioned image synthesis
models with less real-data reliance. Although the proposed Context2Image paradigm can theoretically
generate unlimited data, practical limitations in computational resources limit our ability to generate
and train on larger-scale data. Future studies should investigate the scaling laws applicable under
reduced real data reliance.
Broader Impact. Using synthetic data for training mitigates privacy issues associated with real
images, as the identities of real people are unlikely to be depicted. However, training on synthetic data
raises ethical concerns, especially regarding the amplification of implicit biases present in the source
data used to train the adopted pretrained models. Such biases may manifest in the oversampling of
specific skin colors and genders, such as in certain caption descriptions.
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In this appendix, we provide additional implementation details in Section A, justification of base
model selection in Section B, generalizability of findings in Section C, analyses of synthetic text in
Section D, comparisons between alternative paradigm designs in Section E, and more qualitative
examples in Section F.

A IMPLEMENTATION DETAILS

This section presents implementation details, including concept list sampling, as well as LLM prompts
used for generating image descriptions, summarizing captions, and extracting text phrases.

A.1 CONCEPT2TEXT: CONCEPT LIST AND IN-CONTEXT EXAMPLES

Following previous work (Tian et al., 2023), we assume access to a list of concepts and their
distribution in real text TR (captions from the VG dataset (Krishna et al., 2017)). The concept list
curation involves tokenizing the real text TR and identifying nouns by their part-of-speech (POS)
tags. To ensure keeping the relevant information provided in a query for image description generation,
we exclude a predefined set of nouns commonly used in prompts or spatial positions: "scene",
"scenery", "view", "picture", "image", "photo", "left", "right", "back", "front", "top", "bottom",
"middle", "center", "side", "background", "frontmost", "leftmost", "rightmost".

We sample two concepts per query for each image description generation by their frequency in real
text TR. As shown in Fig. 6, an in-context learning example consists of a two-noun query ("Q") and
an image description ("A"). Relying less on the real images, the image descriptions are generated by
an image captioning model (Liu et al., 2024) on 50, 100, or 500 randomly sampled real images IR.
In the setting with non-reliance on the real image, we randomly sampled 500 web-crawled images
from CC3M (Changpinyo et al., 2021) or manually crafted 500 text descriptions. Then we use POS
to randomly extract two nouns as their query. The Caption2Text image description generation uses
four random in-context learning examples with a random two-noun query.

Q: ["cup", "table"]

A: ["The image showcases a wooden dining table with various food items and tableware arranged on it. A teapot is
positioned on the table, along with a kettle and a cup. Three donuts are also present on the table, with one donut
placed near the center, another on the left side, and the third on the right side."]

Q: ["couch", "video"]

A: ["In the image, there are two people playing a video game together. A woman is focused on the game, holding a
video game remote in her hand, while a man stands behind her, watching her play. There is also a couch in the
room, providing a comfortable seating area for the two individuals. Additionally, there is a clock on the wall."]

Q: ["trees", "clock"]

A: ["The image features a tall, multi-story building with a prominent clock tower at the top. The clock is large and can
be seen in the center of the tower. The building is surrounded by trees and has a large clock on one of its sides,
visible towards the left side of the structure. The overall scene showcases a clock tower that stands out among the
surrounding environment."]

Q: ["chair", "vase"]

A: ["The image features a clean, well-furnished apartment with two couches, a chair, and a coffee table. The living
room area is bright and open, and a large window allows natural light to fill the space. On the coffee table, there is a
vase with a potted plant, and a book is placed on one of the couches."]

Q: ["cars", "trucks"]

A: ["In this scene, a group of people is gathered at a busy street corner with several vehicles, including cars and
trucks, surrounding the area. There are multiple police cars parked on the side of the street, as well as other cars
and trucks scattered throughout the scene. Two people are holding cell phones, likely communicating with others or
checking for updates."]

Figure 6: Random examples from the in-context learning database. The query "Q" contains two
nouns, while the expected answer "A" is a crafted image description incorporating the queried nouns.

A.2 TEXT2TEXT: LLM SUMMARY

In the Text2Text strategy, we prompt an LLM (Chiang et al., 2023) to condense the potentially
redundant VG captions TR for the same image IR into a summarized version. We include four
examples in our prompts, as detailed in Fig. 7. Note that, for each query "Q" and expected answer
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A: ["blue metal old rusty bike, a wooden brown and vertical surfboard, a red blue and 

yellow surfboard, a tan and blue surfboard, straw fence along the railing, brown and 

boggy board, flame stripes, balcony, a railing of metal pipes and rods"]

Q: ["blue metal bike on ground, brown grass fence panel, bicycle parked against the 

wall, a blue bicycle parked at the railing, a railing of metal pipes and rods, straw fence 

along the railing, a wood and tan surf board, a tan wood, a red blue and yellow 

surfboard, a blue and metal bike, an old and rusty bike, a wall, a brown fence panel, a 

blue surfboard, a surfboard, a white surfboard, a writing, a fence, a boggy board, flame 

stripes, a brown and boggy board, a blue bicycle, a bicycle, a tan and blue surf board, 

a railing, a wooden brown and vertical surfboard, metal pipes, a straw fence, a 

balcony"]

A: ["a girl playing with cat, a black and white cat laying on beige carpet, a grey and light 

ground, a stone fireplace, a screen in front of the fireplace"]

Q: ["this is a person, the cat is black and white, black cat laying on beige carpet, girl 

playing with cat, fireplace behind the girl, a screen in front of the fireplace, a here 

person, a here and black cat, a grey and light ground, a girl, a stone fireplace"]

A: ["two men riding horses on a cobblestone road, four brown horses with white 

markings, eight people, a large brown building, a motorcycle, telephone poles on village 

street"]

Q: ["men riding horses on set, two men riding horses on a cobblestone road, two horses 

have riders but two do not, it is a daytime scene, it is an outdoor scene, there are several 

people in the photo, there are several horses in the photo, a large brown building, two 

men on horseback, 2 men and 4 horses, 3 men looking at a motorcycle, 2 men ponying 2 

horses, telephone poles on village street, a total of eight people are in this picture, four 

brown horses with white markings, a man, a horse, some men, some horses, some 

riders, a daytime, a scene, an outdoor, a sunny, some seems, a sky, some people, a 

photo, a motorcycle, a motorycle, some whites, a top, a cowboy, a brown, a cement, a 

building, a rider, a parked, a street, a road, a horseback, a rocky, a motorbike"]

Q: ["a scene in an old building, a window with green trim, a tan painted brick wall, an a, 

a window, a top"]

A: ["an old building, a window with green trim, a tan painted brick wall"]

Figure 7: LLM prompts that summarizes real captions in Text2Text strategy. Each example comprises
a query "Q" in orange and its expected answer "A" in yellow. "Q" is concatenated real text for an
image, and "A" is our crafted summary.
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"A", all orange rows correspond to images generated using the captions from the VG dataset ("Q"); as
a counterpart, the yellow rows show images generated by the summarized captions ("A"). Compared
to directly concatenating all VG captions, the images generated for summary tend to include more
salient objects in the prompts (e.g., surfboards in the 2nd row and the girl in the 4th row), enrich the
contextual details (e.g., poles in the 6th row), and remain effective for originally concise captions
(e.g., the window and wall in the 8th row).

Q: ["there are several cars parked on the street, one of which is a red car near the crosswalk"]

A: ["several cars", "the street", "a red car", "the crosswalk"]

Q: ["on the countertop, there is a white plate and a bowl, two cups, a spoon, and a bottle"]

A: ["the countertop", "a white plate", "a bowl", "two cups", "a spoon", "a bottle"]

Q: ["the image features a cluttered home office desk with a variety of objects"]

A: ["a cluttered home office desk", "a variety of objects on the desk"]

Q: ["a computer monitor is situated towards the left side of the desk, accompanied by a 

keyboard and a mouse placed directly in front of it"]

A: ["a computer monitor", "the left side of the desk", "a keyboard", "a mouse"]

Figure 8: LLM prompts for shorter text phrase T extraction. "Q" is the example query sentence, and
"A" is the expected shorter phrase output.

Q: ["there are several cars parked on the street, one of which is a red car near the crosswalk"]

A: ["there are several cars parked on the street", "a red car near the crosswalk"]

Q: ["on the countertop, there is a white plate and a bowl, two cups, a spoon, and a bottle"]

A: ["a white plate on the countertop", "a bowl on the countertop", "two cups on the countertop", 

"a spoon on the countertop", "a bottle on the countertop"]

Q: ["the image features a cluttered home office desk with a variety of objects"]

A: ["a cluttered home office desk", "a variety of objects on the office desk"]

Q: ["a computer monitor is situated towards the left side of the desk, accompanied by a 

keyboard and a mouse placed directly in front of it"]

A: ["a computer monitor is situated towards the left side of the desk", "a keyboard and a 

mouse placed directly in front of the monitor"]

Figure 9: LLM prompts for longer text phrase T extraction. "Q" is the example query sentence, and
"A" is the expected longer phrase output.

A.3 IMAGE2TEXT AND CONCEPT2TEXT: TEXT PHRASE EXTRACTION

Unlike image descriptions obtained from Concatenation or Text2Text strategies, which consist of a
list of phrases, the variants in Image2Text and Concept2Text are expressed as paragraphs. Due to
the ineffectiveness of the “period” or “comma” segment (refer to Table 1), we experimented with
partitioning the sentences by phrase extraction through an LLM. We randomly sample four sentences
(i.e., segmented by “period”) and extract phrases manually as in-context examples. Fig. 8 presents
examples of shorter phrases, while Fig. 9 shows examples of longer phrases.

B SELECTION OF BASE MODEL

It is non-trivial to select a model that can extensively examine the quality of synthetic data for visual
grounding. We select ALBEF (Li et al., 2021) as our base model due to its reported off-the-shelf
visual grounding performance and success in further improvement with an attention mask consistency
objective (Yang et al., 2023). Moreover, we intend to generate synthetic data that is effective for both
weakly and box-supervised methods, such as the real VG data. The desired model is supposed to be
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Table 9: VLM’s off-the-shelf, weakly-supervised tuned, and AMC box-supervised tuned visual
grounding performance in pointing game accuracy.

Model Box (AMC) Data RefCOCO+ Flickr30k ∆avg

Test A Test B

CLIP
× Off-the-Shelf 47.42 41.36 59.22 -
× VG 44.38 39.09 54.95 -3.19
✓ VG 33.29 35.71 46.87 -10.71

METER
× Off-the-Shelf 68.07 52.73 83.16 -
× VG 53.44 34.73 57.65 -19.38
✓ VG 83.16 65.58 88.95 +11.24

BLIP
× Off-the-Shelf 58.56 38.00 64.54 -
× VG 68.86 52.85 64.08 +8.23
✓ VG 78.47 61.96 85.35 +21.56

improved with and without box supervision, so that the investigation can be conducted continually
and consistently from image-text synthesis to image-text-box synthesis.

To the best of our knowledge, ALBEF is the only VLM fine-tuned with a proposed box-supervised
objective (AMC) achieving the current state-of-the-art. Hence, we make our best effort to extract
gradient-based explanation maps from other VLMs and implement the AMC loss on top of them. As
shown in Table 9, we explore 3 other models, CLIP (Radford et al., 2021), BLIP (Li et al., 2022a),
and METER (Dou et al., 2022).

CLIP. We extract the GradCAM (Selvaraju et al., 2017) attention map from the last layer of the
image encoder using its contrastive loss. The weakly-supervised training adopts its contrastive loss.
We implement the AMC loss on top of it for box-supervised training. To our best effort, we can
not obtain positive results from CLIP by tuning it on the real VG dataset, either weakly or fully.
Therefore, CLIP is not a proper choice for visual grounding experiments.

METER. We pick the 5th layer of the cross-modal image encoder and obtain the GradCAM
attention map from the image-text matching loss. The weakly-supervised experiments fine-tune
METER with its original losses. The box-supervised experiments fine-tune METER with its original
losses and an AMC loss we implemented. METER’s original losses are deficient for weakly-
supervised tuning. Using the original loss, our best effort for fine-tuning METER on VG significantly
decreases performances. When using AMC loss instead, the real data improves METER by 11.24%.
Given the deficiency under the weakly-supervised setting, METER can not be easily adopted to
investigate both image-text and image-text-boxes continuously.

BLIP. We extract the GradCAM attention maps from the 8th layer of cross-modal attention from
image-text matching loss. The weakly-supervised experiments finetune BLIP with its original losses.
The box-supervised one fine-tune BLIP with its original losses and an AMC loss we implemented.
Training on VG image-text pairs and image-text-box triplets both boosts the grounding performance.
Therefore, we select BLIP as an additional model to verify the generalization of our findings.

C ABLATIONS AND FINDINGS WITH BLIP

Table 10 provides ablation studies with BLIP fine-tuned on synthetic image-text pairs. We observe
consistent performance change as ALBEF’s in Table 1. The Concatenation and Text2Text strategies
are ineffective for BLIP as well. In the Image2Text strategy, the shorter phrases extracted from
LLaVA captions also fit BLIP better. It is likely due to the nature of visual grounding that focuses
on a small RoI (shorter phrases) instead of the entire image or broader RoIs (longer phrases). Also,
the longer phrases defined by our prompts contain complex compositions which may affect VLM’s
performance. In Table 11, we fine-tune BLIP with image-text-box triplets. Longer phrases (row
3) result in less improvement than the shorter phrases (row 4), which consistently aligns with the
findings from ALBEF.
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Table 10: Comparisons of image-text synthesis strategies. We assess the effectiveness of synthetic
image-text pairs from text concatenation, Text2Text, and Image2Text pipelines by evaluating the
performance improvements over a BLIP model Li et al.. For reference we also include the performance
that would be obtained by finetuning BLIP on real image-text pairs from Visual Genome (VG).

Category No. Image Text Num. RefCOCO+ Flickr30k ∆avg

Test A Test B

BLIP 1 - - – 58.56 38.00 64.54 -
BLIP + VG 2 VG VG 1,649,546 68.86 52.85 64.08 +8.23

Concatenation 3 Syn-C VG 1,649,546 60.29 41.58 50.98 -2.75

Text2Text 5 Syn-V LLMC 530,233 61.79 42.42 55.09 -0.60

Image2Text 6 Syn-L LLaVAL 680,093 61.56 42.03 57.69 +0.06
7 Syn-L LLaVAS 1,031,521 63.45 44.39 68.21 +4.98

Table 11: Effectiveness of synthetic image-text-boxes generated with GLIP (Li et al., 2022b). For
reference we also include the performance that would be obtained by finetuning BLIP (Li et al.,
2022a) with an AMC loss (Yang et al., 2023) on real image-text-box triplets from Visual Genome
(VG).

No. Image Text Box Num. RefCOCO+ Flickr30k ∆avg

Test A Test B

1 - - - – 58.56 38.00 64.54 -
2 VG VG VG 1,649,546 78.47 61.96 85.35 +21.56

3 Syn-L LLaVAL GLIP 659,927 68.46 54.43 85.73 +15.84
4 Syn-L LLaVAS GLIP 998,406 71.78 54.82 85.83 +17.11

D SYNTHETIC TEXT ANALYSIS

This section supplements the analysis of the factors causing the performance gap with the real data in
Sec 3.5. Specifically, here we focus on analyzing the similarity, diversity, and coverage of synthetic
text T and real text TR.
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Figure 10: Distribution of image-wise average Sentence-BERT (Reimers & Gurevych, 2019) based
cosine similarity between synthetic and real text.

To compute the text similarity, we adopt a pretrained Sentence-BERT (Reimers & Gurevych, 2019)
to encode text into embeddings. Cosine similarity is then calculated between the embeddings of
synthetic and real text corresponding to each image. We determine the text similarity for each
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Figure 11: Distribution of image-wise type-token ratio for synthetic and real text.

synthetic caption by selecting the highest similarity among the real text embeddings, and then track
the average similarity for each image. The distribution of the average similarity between synthetic and
real text for each image is depicted in Fig. 10, where the highest frequency shows a score of around
0.6. The dissimilarity between the synthetic and real text aligns with the observation of degradation
from text synthesis compared to real text (Table 4).
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Figure 12: Distribution of image-wise overlap coefficient between synthetic and real text.

To delve deeper into the distinctions between synthetic and real texts, we compare their text diversity
and coverage. Text diversity is measured using the Type-Token Ratio (TTR), which calculates the
ratio of unique token types to the total number of tokens in a text. As shown in Fig. 11, our synthetic
text T generally has greater diversity than the real text TR from VG, indicating more elaborate
descriptions that, however, may risk including irrelevant words to the visual content. Additionally,
we calculate the overlap coefficient between the unique words in synthetic and real text, assessing
the coverage and intersection of vocabulary, peaking at around 0.3 (See Fig. 12). This relatively low
coefficient reveals the difference in word usage or content focus between the synthetic text T and the
real text TR.

The observation of a higher TTR in synthetic texts T with a modest overlap coefficient with real
texts TR suggests a trade-off for synthesizing more effective texts for visual grounding. Although
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the broader vocabulary in synthetic texts T suggests richer and more diverse word usage as well
as lower repetition when describing an image, the low overlap score implies a divergence from
human-annotated content. Moreover, the presence of approximately 600K fewer texts in the synthetic
data may indicate that paraphrasing in real data plays a crucial role.

E ALTERNATIVE PARADIGM DESIGN

Table. 13 compares two strategies of distinct sequence on phrase extraction (See Fig. 14). The
"Caption" strategy adopted in SynGround obtains the synthetic phrases for visual grounding by
applying LLM phrase extraction on captions derived from captioning the real VG images (row
2). Alternatively, "ReCaption" extracts phrases from paragraphs captioned on synthetic images.
The core comparison between the "Caption" and "ReCaption" paradigms essentially boils down to
evaluating the visual-textual misalignment introduced by image synthesis via a text-to-image model
("Caption") against the misalignment from an image captioning model ("ReCaption"). Table. 13
reveals a consistent observation with Table 4 that information loss or misalignment stems from the
text synthesis, specifically image captioning on synthetic images in this experiment, rather than the
image synthesis.

Figure 13: Data synthesis comparisons. "ReCap-
tion" denotes applying an image captioning model
to synthetic images, whereas "Caption" is applied
on real images.

Paradigm RefCOCO+ Flickr30k

Test A Test B

ReCaption 73.09 56.33 86.80
Caption 73.70 56.35 86.89

Image Captioning Model

LLM

Detector

Image Generation ModelImage Captioning Model

LLM

Detector

Image Generation Model

Caption ReCaption

Figure 14: Comparative overview of the "Caption"
and "ReCaption" strategies.

F QUALITATIVE EXAMPLES

In this section, we supplement additional qualitative examples of our synthetic image-text-boxes. For
better display, we randomly present a text phrase if there are multiple phrases for overlapping boxes
(IoU ≥ 0.95). The full dataset will be released upon publication.

In Fig. 15, the first row showcases indoor scenes, the second row features human-related scenes,
and the third row depicts outdoor scenes. Intriguingly, our synthetic data shows diversity, such
as unconventional design (e.g., "the lamp") or color (e.g., "a green chair", "chairs with a floral
pattern", "red pillows") of furniture in the first row. Despite the presence of artifacts, synthetic
humans generally have human-like shapes (row 2). Considering the experimental results (refer to
Table 3) that tuning on synthetic data improves grounding performance on the RefCOCO+ Test A,
a person-only benchmark, the synthetic human with artifacts still benefits visual grounding. The
third row presents some challenging scenarios, including small objects (e.g., "traffic lights," "a
train"), detailed descriptions (e.g., "a well-maintained grassy yard"), and complex grammatical
structures (e.g., "covered with snow"). In Fig. 16, similar properties are also found in synthetic
data generated with less real data reliance (Sec 3.7). Overall, synthetic data with artifacts is able
to improve visual grounding performance based on our result, but we expect learning from more
advanced image-generative models or text-generative models can lead to further enhancement.
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Figure 15: Qualitative examples of our synthetic image-text-boxes. The images are synthesized by a
text-to-image generative model. The texts are generated by an LLM, and their corresponding boxes
are obtained from an open-vocabulary object detector.

Figure 16: Qualitative examples of our synthetic image-text-boxes generated with Concept2Text
strategy that relies less on the real data. The images are synthesized according to LLM-generated
image descriptions through a text-to-image generative model. The texts are generated by an LLM,
and their corresponding boxes are obtained from an open-vocabulary object detector.
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