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ABSTRACT

Recommender systems aim to predict personalized item rankings by modeling
user preference distributions derived from historical behavior data. While dif-
fusion models (DMs) have recently gained attention for their ability to model
complex distributions, current DM-based recommenders typically rely on tradi-
tional objectives such as mean squared error (MSE) or standard recommendation
objectives. These approaches are either suboptimal for personalized ranking tasks
or fail to exploit the full generative potential of DMs. To address these limita-
tions, we propose PreferDiff, an optimization objective tailored for DM-based
recommenders. PreferDiff reformulates the traditional Bayesian Personalized
Ranking (BPR) objective into a log-likelihood generative framework, enabling
it to effectively capture user preferences by integrating multiple negative sam-
ples. To handle the intractability, we employ variational inference, minimizing
the variational upper bound. Furthermore, we replace MSE with cosine error
to improve alignment with recommendation tasks, and we balance generative
learning and preference modeling to enhance the training stability of DMs. Prefer-
Diff devises three appealing properties. First, it is the first personalized ranking
loss designed specifically for DM-based recommenders. Second, it improves
ranking performance and accelerates convergence by effectively addressing hard
negatives. Third, we establish its theoretical connection to Direct Preference Op-
timization (DPO), demonstrating its potential to align user preferences within a
generative modeling framework. Extensive experiments across six benchmarks val-
idate PreferDiff’s superior recommendation performance. Our codes are available
at https://anonymous.4open.science/r/PreferDiff.

1 INTRODUCTION

The recommender system endeavors to model the user preference distribution based on their historical
behaviour data (He & McAuley, 2016; Wang et al., 2019; Rendle, 2022) and predict personalized
item rankings. Recently, diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Yang
et al., 2024) have gained considerable attention for their robust capacity to model complex data
distributions and versatility across a wide range of applications, encompassing diverse input styles:
texts (Li et al., 2022; Lovelace et al., 2023), images (Dhariwal & Nichol, 2021; Ho & Salimans, 2022)
and videos (Ho et al., 2022a;b). As a result, there has been growing interest in employing DMs as
recommenders in recommender systems.

These DM-based recommenders utilize the diffusion-then-denoising process on the user’s historical
interaction data to uncover the potential target item, typically following one of three approaches:
modeling the distribution of the next item (Yang et al., 2023b; Wang et al., 2024b; Li et al., 2024),
capturing the user preference distribution (Wang et al., 2023b; Zhao et al., 2024; Hou et al., 2024a;
Zhu et al., 2024), or focusing on the distribution of time intervals for predicting the user’s next
action (Ma et al., 2024a). However, prevalent DM-based recommenders often routinely rely on
standard generative loss functions, such as mean squared error (MSE), or blindly adapt established
recommendation objectives, such as Bayesian personalized ranking (BPR) (Rendle et al., 2009)
and (binary) cross entropy (Sun et al., 2019) without any modification. Despite their empirical
success, two key limitations in their training objectives have been identified, which may hinder further
advancements in this field:

• DM-based recommenders inheriting generative objective functions (Yang et al., 2023b) lack
a comprehensive understanding of user preference sequences. They model user behavior by
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Figure 1: Illustration of user preference distributions modeled by DM-based recommenders. (a)
Neglecting the negative item distribution leads to predicted items potentially being closer to negative
items. (b) Incorporating the negative sampling enhances the understanding of user preferences.

considering only the items users have interacted with, neglecting the critical role of negative items
in recommendations (Chen et al., 2023a). As illustrated in Figure 1(a), although the predicted item
centroid is close to the positive item, the sampling process of the DMs may tend to obtain the
final predicted item embedding in high-density regions (red in Figure 1(a)(b)). This can result in
the predicted item embedding being too close to negative items, thereby affecting the personalized
ranking performance. Enabling DMs to understand what users may dislike can help alleviate this
issue, as illustrated in Figure 1(b).

• DM-based recommenders simply employ standard recommendation training objectives,
hindering their generative ability. This type of DM-based recommenders treats DMs primarily as
noise-resistant models that focus on ranking or classification rather than on generation. While this
approach can mitigate the impact of noisy interactions inherent in recommender systems (Wang et al.,
2023b; Li et al., 2024), it may not fully exploit the generative and generalization capabilities of DMs,
whose primary objective is to maximize the data log-likelihood.

To better understand and redesign a diffusion optimization objective that is specially tailored to model
user preference distributions for personalized ranking, we aim to simultaneously encode user dislikes
and enhance the generative capability of the ranking objective. Our approach involves extending
the classical and widely-adopted BPR objective to incorporate multiple negative samples, while
also clarifying its connection to likelihood-based generative models, exemplified by DMs (Yang
et al., 2024). BPR only seeks to maximize the rating margin between positive and negative items,
which may result in high score negative ratings. In contrast, our core idea focuses on modeling user
preference distributions, where the distribution of positive items diverges from that of negative items,
conditioned on the user’s personalized interaction history.

To this end, we propose a training objective specifically designed for DM-based recommenders,
called PreferDiff, which effectively integrates negative samples to better capture user preference
distributions. Specifically, by applying softmax normalization, we transform BPR from a rating
ranking into log-likelihood ranking, leading to the formulation of LBPR-Diff. However, since DMs are
latent variable models (Ho et al., 2020), direct optimization through gradient descent is intractable.
To address this intractability, we derive a variational upper bound for LBPR-Diff using variational
inference, which serves as a surrogate optimization target. Furthermore, we replace the original MSE
with cosine error (Hou et al., 2022b), allowing generated items to better align with the similarity
calculations in recommendation tasks and controlling the scale of embeddings (Chen et al., 2023c).
Additionally, we extend LBPR-Diff to incorporate multiple negative samples, enabling the model to
inject richer preference information during training while implementing an efficient strategy to
prevent redundant denoising steps from excessive negative samples. Finally, we balance generation
learning and preference learning to achieve a trade-off that enhances both training stability and model
performance, culminating in the final objective function, LPreferDiff.

Benefiting from a comprehensive understanding of user preference distributions, PreferDiff has three
appealing properties: First, PreferDiff is the first personalized ranking loss specifically designed for
DM-based recommenders, incorporating multiple negatives to model the user preference distributions.
Second, gradient analysis reveals that PreferDiff handles hard negatives by assigning higher gradient
weights to item sequences, where DM incorrectly assigns a higher likelihood to negative items than
positive ones (Chen et al., 2022; Fan et al., 2023; Zhang et al., 2023))(cf. Section 3.2). This not

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

only improves recommendation performance but also accelerates training (cf. Section 4.1). Third,
from a preference learning perspective, we find that PreferDiff is connected to Direct Preference
Optimization (Rafailov et al., 2023) under certain conditions, indicating its potential to align user
preferences through generative modeling in diffusion-based recommenders (cf. Section 3.2).

We evaluate the effectiveness of PreferDiff through extensive experiments and comparisons with
baseline models using six widely adopted public benchmarks (cf. Section 4.1). Furthermore, by
simply replacing item ID embeddings with item semantic embeddings via advanced text-embedding
modules, PreferDiff shows strong generalization capabilities for sequential recommendations across
untrained domains and platforms, without introducing additional components (cf. Section 4.2).

2 PRELIMINARY

In this section, we begin by formally introducing the task of sequential recommendation and then
introduce the foundations of DM-based recommenders who model the next-item distribution.

Sequential Recommendation. Suppose each user has a historical interaction sequence
{i1, i2, . . . , in−1}, representing their interactions in chronological order and in is the next target
item. For each sequence, we randomly sample negative items from batch or candidate set result in
H = {iv}|H|

v=1. Moreover, each item i is associated with a unique item ID or additional descriptive
information (e.g., title, brand and category). Via ID-embedding or text-embedding module, items
can be transformed into its corresponding vectors e ∈ R1×d. Therefore, the historical interaction
sequence and negative items’ set can be transformed to c = {e1, e2, . . . , en−1} andH = {ev}Vv=1.
The goal of sequential recommendation is to give the personalized ranking on the whole candidate
set, namely, predict the next item in user may prefer given the sequence c and negative items’ setH.

Diffusion models for Sequential Recommendation. In this section, we introduce the use of guided
DMs to model the conditional next-item distribution p(in | i<n), following the DreamRec (Yang
et al., 2023b). For clarity, we denote the vector representation of the next item in as e+0 instead of en
and negative items iv as e−v

0 result inH = {e−v
0 }

|H|
v=1. The subscript denotes the timesteps in DM,

where “0” indicates that no noise has been added, and the superscript represents whether the item is
positive or negative, denoted by “+” or “-” respectively in recommendation. Notably, these notations
will be used consistently in the subsequent sections.

• Forward Process. DMs add Gaussian noise to the positive item embedding e+0 with noise scale
{α1, α2, · · · , αT } over the pre-defined timesteps T , namely, q(e+t | e+0 ) = N (

√
ᾱte

+
0 , (1− ᾱt)I).

If T → +∞, e+T asymptotically converges to the standard Gaussian distribution. q(e+t | e+0 ) can be
easily derived through applications of the reparameterization trick (Kingma & Welling, 2014).

• Reverse Process. The reverse process aims to recover the target item embedding e+0 from the
standard Gaussian distribution through the denoising process with the personalized guidance c.
Concretely, following the classical DMs’ paradigm introduced in DDPM (Ho et al., 2020), we choose
the simple objective which minimizes the KL divergence between the true denoising transition
q(e+t−1 | e

+
t , e

+
0 ) and the intractable denoising transition pθ(e

+
t−1 | e

+
t , c). Leveraging the favorable

properties of the Gaussian distribution, we can derive the following closed-form objective:

LSimple = E(e+
0 ,c,t)

[∥∥Fθ(e
+
t , t,M(c))− e+0

∥∥2
2

]
, (1)

where e+0 , c come from the training data. t ∼ U(1, T ) is the sampled timestep. M(·) denotes
the arbitrary sequence encoder utilized in sequential recommendation (e.g., GRU (Hidasi et al.,
2016), Transformer (Kang & McAuley, 2018), Bert (Sun et al., 2019)). Fθ(·) serves as denoising
network which is commonly parameterized by a simple MLP and θ denotes the trainable parameters.
Classifier-free guidance scheme (Ho & Salimans, 2022) can be utilized here to replaceM(c) with
dummy token Φ with probability pu to achieve the training of unconditional DM. Furthermore, some
works (Li et al., 2024) utilize the recommendation objective (binary) cross entropy instead of MSE.

• Inference and Recommend. During the inference stage, we first derive the representation of a
given user’s historical sequence, denoted asM(c). Starting from pure Gaussian noise, we then utilize
the denoising network Fθ(·) to iteratively generate latent embeddings, following arbitrary samplers
(e.g., DDIM (Song et al., 2021a)) in DMs, until the inferred next item embedding ê0 is obtained.
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More details can be found in Algorithm 2 and Appendix B. Finally, we recommend the top-K items
with the highest dot product between ê0 and the item embeddings in the candidate set.

3 METHODOLOGY: THE PROPOSED PREFERDIFF

In this section, we introduce PreferDiff, a novel loss for DM-based recommenders that can instill
preference information. First, we extend the classical BPR loss to a probabilistic one, defining a new
loss LBPR-Diff. To address the inherent intractability, we derive a variational upper bound LUpper for
LBPR-Diff and optimize this bound instead. Furthermore, we explore the incorporation of multiple
negative samples and propose an efficient strategy by lowering the likelihood of the negative samples’
centroid, which avoids multiple denoising steps. Lastly, we make a trade-off between learning
generation and learning preference to ensure training stability, resulting in the final loss LPreferDiff.

3.1 CONNECT DIFFUSION MODELS WITH BAYESIAN PERSONALIZED RANKING

In this subsection, we explore the integration of DMs with the classical BPR loss (Rendle et al., 2009),
which has been proven to be highly effective in real-world industrial recommendation scenarios. As
BPR is designed to optimize personalized ranking by modeling user preferences in a pairwise fashion,
it has been extensively applied in contemporary recommendation researches (Kang & McAuley,
2018; He et al., 2020). It can be formulated as

LBPR = −E(e+
0 ,e−

0 ,c)

[
log σ

(
fθ(e

+
0 | c)− fθ(e

−
0 | c)

)]
, (2)

where e+0 , e
−
0 represents the positive item and one negative item in H, we omit v for brevity. c

represents the historical item sequences. σ is the Sigmoid function. fθ(e0 | c) is the predicted
rating of item e0 conditioned on the historical item sequence c. As DMs are part of the family
of likelihood-based generative models (Yang et al., 2024) and are employed here to maximize the
log-likelihood of the next item distribution log pθ(e

+
0 | c), it is clear that equation 2 does not meet

this need. Therefore, we put forward to change the rating to the probability distribution.

From Rating to Probability Distribution. Here, we define the probability distribution of the next-
item e0 given historical item sequences c via a softmax over the arbitrarily flexible, parameterizable,
rating function fθ(·). It can be formulated as pθ(e0 | c) = exp(fθ(e0|c))

Zθ
, where Zθ is normalizing

constant (a.k.a, partition function), defined as
∫
exp(fθ(e | c)) de. Then, by substituting it into equa-

tion 2, we obtain the following result, which we refer to as LBPR-Diff, as we utilize the DMs to model
that distribution. The detailed derivation is provided in Appendix C.1.

LBPR-Diff(θ) = −E(e+
0 ,e−

0 ,c)

[
log σ

(
log pθ(e

+
0 | c)− log pθ(e

−
0 | c)

)]
. (3)

Intuitively, LBPR-Diff seeks to widen the gap between the log-probability distributions of positive and
negative items given c. However, the challenge is that equation 3 is intractable due to the need to
marginalize over all possible diffusion paths as DMs are latent variable models. Therefore, like
previous work (Sohl-Dickstein et al., 2015; Ho et al., 2020), we propose to minimize the LBPR-Diff via
variational inference through minimizing the derived variational upper bound.

Minimize LBPR-Diff through Variational Upper Bound. Therefore, like previous work (Sohl-
Dickstein et al., 2015; Ho et al., 2020), we introduce latent variables (e1, . . . , eT ), resulting in
pθ(e0 | c) =

∫
pθ(e0:T | c) de1:T . Then, we substitute pθ(e1:T | e0) with q(e1:T | e0) which is

typically modeled as a Gaussian distribution with predefined mean and variance at each timestep, due
to the intractability of directly sampling from the former distribution. The objective can be expressed
as follows:

LBPR-Diff(θ) = −E(e+
0 ,e−

0 ,c)

[
log σ(logEq(e+

1:T |e+
0 )

pθ(e
+
0:T | c)

q(e+1:T | e
+
0 )
− logEq(e−

1:T |e−
0 )

pθ(e
−
0:T | c)

q(e−1:T | e
−
0 )

)

]
.

(4)

By applying Jensen’s inequality and leveraging the convexity of the logarithmic function, we can
move the expectation operator outside. Consequently, after further mathematical derivations, we can
establish an upper bound for LBPR-Diff as equation 5.
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LBPR-Diff(θ) ≤ −E(e+
0 ,e−

0 ,c)Eq(e+
1:T |e+

0 ),q(e
−
1:T |e−

0 )

[
log σ(log

pθ(e
+
0:T | c)

q(e+1:T | e
+
0 )
− log

pθ(e
−
0:T | c)

q(e−1:T | e
−
0 )

)

]
.

(5)

Following the derivation of classical DMs (Ho et al., 2020; Song et al., 2021a; Luo, 2022), we can
simplify the above equation through algebra, yielding the following result:

LBPR-Diff(θ) ≤ −E(e+
0 ,e−

0 ,c)

[
log σ

(
−

(
T∑

t=1

Eq(e+
t |e+

0 )

[
DKL

(
q(e+t−1|e

+
t , e

+
0 ) ∥ pθ(e

+
t−1|e

+
t )
)]

−
T∑

t=1

Eq(e−
t |e−

0 )

[
DKL

(
q(e−t−1|e

−
t , e

−
0 ) ∥ pθ(e

−
t−1|e

−
t )
)]

+ C1

))]
,

(6)
where C1 is a constantthath is independent of the model parameter θ. As introduced in the Preliminary,
by applying Bayes’ theorem and leveraging the additivity property of Gaussian distributions, the final
trainable objective on stochastic samples over timestep is expressed as follows:

LUpper(θ) = −E(e+
0 ,e−

0 ,c),t∼U(1,T )

[
log σ(−(S(ê+0 , e

+
0 )− S(ê−0 , e

−
0 )))

]
. (7)

Here, ê+0 = Fθ(e
+
t , t,M(c)), ê−0 = Fθ(e

−
t , t,M(c)). S(·) denotes the function that quantifies the

distance between the prediction and the true next item embedding, typically MSE in previous works.
As retrieval during the inference stage is conducted via maximal inner product search for ranking and
MSE shows sensitivity to vector norms and dimensionality (Friedman, 1997; Hou et al., 2022b), we
propose using cosine error instead. Since LUpper serves as an upper bound for LBPR-Diff, minimizing
LUpper implicitly minimizes LBPR-Diff. Intuitively, equation 7 is designed such that, given a user’s
historical item sequence, the denoising network F(·) tends to recover the positive item rather than
the negative item. A detailed derivation can be found in Appendix C.3.

3.2 ANALYSIS OF LBPR-DIFF

In this subsection, we demonstrate the two properties of LBPR-Diff by analyzing the gradient with
respect to θ and connecting it with recent popular direct preference optimization. We also reveal
the connection between the rating function and the score function in Appendix equation C.2 which
bridges the objective of recommendation with generative modeling in DMs.

Gradient Analysis. Here, we analyze the gradients of LBPR-Diff to understand their impact on the
training process of DMs for sequential recommendation.

∂LBPR-Diff(θ)

∂θ
= −E(e+

0 ,e−
0 ,c) [wθ ( ∇θ log pθ(e

+
0 | c)︸ ︷︷ ︸

Increase Likelihood on Positive Item

− ∇θ log pθ(e
−
0 | c)︸ ︷︷ ︸

Decrease Likelihood on Negative Item

)] , (8)

where wθ = 1− σ
(
log pθ(e

+
0 | c)− log pθ(e

−
0 | c)

)
represents the gradient weight. Obviously, if

given certain item sequences, the DM incorrectly assigns a higher likelihood to the negative items
than positive items, and the gradient weight wθ will be higher. Therefore, optimizing LBPR-Diff is
capable of handling hard negatives, which has become increasingly important in recent research Chen
et al. (2022); Fan et al. (2023); Zhang et al. (2023).

Connection with Direct Preference Optimization. After determining how to minimize LBPR-Diff
using the aforementioned upper bound and analyzing the gradient, we proceed to validate the
rationality of LBPR-Diff. Here, we establish a connection with the recently prominent Direct Preference
Optimization (DPO) (Rafailov et al., 2023; Wallace et al., 2024; Meng et al., 2024), which has been
shown to effectively align human feedback with large language models. For further details on DPO,
we refer readers to (Rafailov et al., 2023). The equation of DPO is expressed as follows:

LDPO(θ) = −E(xw
0 ,xl

0,c)

[
log σ

(
β log

pθ(x
w
0 | c)

pref(xw
0 | c)

− β log
pθ(x

l
0 | c)

pref(xl
0 | c)

)]
. (9)

By comparing equation 3 with equation 9, we observe that LBPR-Diff can be viewed as a special case
of DPO, where β = 1 and pref is a constant distribution (e.g., uniform distribution). This validates

5
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that optimizing the proposed LBPR-Diff has the potential to align user preferences in DMs. Notably,
we give more details about the connection of DPO and PreferDiff in Appendix F.6.

3.3 EXTEND TO MULTIPLE NEGATIVES

As previous works have demonstrated that incorporating multiple negatives during the training phase
can better capture user preferences, we extend LBPR-Diff to support multiple negatives for instilling
more fruitful rank information. Suppose that for each sequence, we have negative items’ set H
introduced in Section 2, according to equation 7, we can directly derive that:

LBPR-Diff-V = − log σ(−|H| · (S(ê+0 , e
+
0 )−

1

|H|

|H|∑
v=1

S(ê−v
0 , e−v

0 )) . (10)

For brevity, we omit the expectation term. However, the above equation applies the noising and
denoising process to all negative samples, which significantly reduces the model’s training speed and
increases susceptibility to false negatives. Therefore, we propose to replace the |H| negative samples
with their centroid ē−0 = 1

|H|
∑|H|

v=1 e
−v
0 as the diffusion target and derive the following:

LBPR-Diff-C = − log σ(−|H| · [S(ê+0 , e
+
0 )− S(Fθ(ē

−
t , t,M(c)), ē−0 )]) . (11)

Assuming that F(·) is a convex function, we can apply Jensen’s inequality and derive that
LBPR-Diff-V ≤ LBPR-Diff-C. Therefore, minimizing LBPR-Diff-C can efficiently increase the likelihood
of the positive items while simultaneously distancing them from the centroid of the negative items.
Intuitively, this aligns with the phenomenon that users may not explicitly indicate dislike for specific
items, but rather for a certain category of items. A detailed derivation can be found in Appendix C.4.

Training and Inference of PreferDiff. Here, we introduce the training and inference details of
PreferDiff, as demonstrated in Algorithm 1 and Algorithm 2 in the Appendix. Empirically, we find
that solely using the proposed LBPR-Diff-C leads to instability during training. This may be due to an
overemphasis on ranking information, which can neglect the more accurate generation of the next
item. Therefore, we balance the trade-off between learning generation and learning preference with
hyperparameter λ, with the following:

LPerferDiff = λLSimple︸ ︷︷ ︸
Learning Generation

+(1− λ)LBPR-Diff-C︸ ︷︷ ︸
Learning Preference

. (12)

We conduct experiments about different λ to show the instable training issue in Section 4.3.

4 EXPERIMENTS

In this section, we aim to answer the following research questions:

• RQ1: How does PreferDiff perform compared with other sequential recommenders?

• RQ2: Can PreferDiff leverage pretraining to achieve commendable zero-shot performance on
unseen datasets or datasets from other platforms just like DMs in other fields?

• RQ3: What is the impact of factors (e.g., λ) on PreferDiff’s performance?

4.1 PERFORMANCE OF SEQUENTIAL RECOMMENDATION

Baselines. We comprehensively compare PreferDiff with five categories of sequential recommenders:
traditional sequential recommenders, including GRU4Rec (Hidasi et al., 2016), SASRec (Kang &
McAuley, 2018), and BERT4Rec (Sun et al., 2019); contrastive learning-based recommenders, such
as CL4SRec (Xie et al., 2022); generative sequential recommenders like TIGER (Rajput et al., 2023);
DM-based recommenders, including DiffRec (Wang et al., 2023b), DreamRec (Yang et al., 2023b)
and DiffuRec (Li et al., 2024); and text-based recommenders like MoRec (Yuan et al., 2023) and
LLM2Bert4Rec (Harte et al., 2023). See Appendix D.3 for details on the introduction, selection and
hyperparameter of the baselines.
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Table 1: Comparison of the performance with sequential recommenders. The improvement achieved
by PreferDiff is significant (p-value≪ 0.05). Results of three additional datasets are in Appendix F.1.

Model Sports and Outdoors Beauty Toys and Games
R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10

GRU4Rec 0.0022 0.0020 0.0030 0.0023 0.0093 0.0078 0.0102 0.0081 0.0097 0.0087 0.0100 0.0090
SASRec 0.0047 0.0036 0.0067 0.0042 0.0138 0.0090 0.0219 0.0116 0.0133 0.0097 0.0170 0.0109
BERT4Rec 0.0101 0.0060 0.0157 0.0078 0.0174 0.0112 0.0286 0.0148 0.0226 0.0139 0.0304 0.0163
CL4SRec 0.0105 0.0070 0.0159 0.0085 0.0221 0.0123 0.0345 0.0178 0.0224 0.0142 0.0321 0.0169
TIGER 0.0093 0.0073 0.0166 0.0089 0.0236 0.0151 0.0366 0.0193 0.0185 0.0135 0.0252 0.0156
DiffRec 0.0125 0.0068 0.0200 0.0101 0.0195 0.0121 0.0409 0.0188 0.0268 0.0142 0.0426 0.0193
DreamRec 0.0155 0.0130 0.0211 0.0140 0.0406 0.0299 0.0483 0.0326 0.0440 0.0323 0.0490 0.0353
DiffuRec 0.0093 0.0078 0.0121 0.0087 0.0286 0.0215 0.0335 0.0230 0.0330 0.0262 0.0355 0.0271

MoRec 0.0056 0.0045 0.0076 0.0051 0.0259 0.0189 0.0353 0.0219 0.0154 0.0115 0.0191 0.0127
LLM2BERT4Rec 0.0118 0.0076 0.0183 0.0097 0.0379 0.0262 0.0474 0.0265 0.0339 0.0246 0.0443 0.0263

PreferDiff 0.0185 0.0147 0.0247 0.0167 0.0429 0.0323 0.0514 0.0350 0.0473 0.0367 0.0535 0.0387
PreferDiff-T 0.0182 0.0145 0.0222 0.0158 0.0429 0.0327 0.0532 0.0360 0.0460 0.0351 0.0525 0.0380
Improve 19.35% 16.94% 17.06% 19.28% 5.66% 9.36% 10.43% 7.36% 7.50% 13.62% 9.18% 9.63%

Datasets. We evaluate the proposed PreferDiff on six public real-world benchmarks (i.e., Sports,
Beauty, and Toys from Amazon Reviews 2014 (He & McAuley, 2016), Steam, ML-1M, and Ya-
hoo!R1). Detailed statistics of three benchmarks can be found in Table 5. Here, we utilize the
common five-core datasets, filtering out users and items with fewer than five interactions. More
Details about data prepossessing can be found in Appendix D.1. Following prior work (Yang et al.,
2023b), in Table 1 and Table 14, we employ user-split which first sorts all sequences chronologically
for each dataset, then split the data into training, validation, and test sets with an 8:1:1 ratio, while
preserving the last 10 interactions as the historical sequence. We reproduce all baselines for a fair
comparison. Notably, in Table 8 and Table 9 of Appendix D.4, we also give comparison under another
setting (i.e., leave-one-out) to provide more insights where the baselines’ results are copied from
TIGIR. Moreover, we conduct experiments on varied user history lengths in Appendix F.2.

Implementation Details. For PerferDiff, for each user sequence, we treat the other next-items
(a.k.a., labels) in the same batch as negative samples. We set the default diffusion timestep to
2000, DDIM step as 20, pu = 0.1, and the β linearly increase in the range of [1e−4, 0.02] for all
DM-based sequential recommenders (e.g., DreamRec). For all text-based recommenders, we utilize
OpenAI-3-Large (Neelakantan et al., 2022) to obtain the text embeddings. We fix the embedding
dimension to 64 for all models except DM-based recommenders, as the latter only demonstrates
strong performance with higher embedding dimensions. The former does not gain much from high
embedding dimensions, which will be discussed in Section 4.3. Refer to Appendix D.2 for more
implementation details about baselines. Notably, PreferDiff can be applied to any sequence encoder,
M(·). We provide the results of PreferDiff with other backbones in Appendix D.3.

Evaluation Metrics. We evaluate the recommendation performance in a full-ranking manner (Yang
et al., 2023b) using Recall (Recall@K) and Normalized Discounted Cumulative Gain (NDCG@K)
with K = 5, 10, following the widely adopted top-K protocol as the primary metrics for sequential
recommendation (Kang & McAuley, 2018; Rajput et al., 2023).

Results. Table 1 presents the performance of PreferDiff compared with five categories sequential
recommenders. For brevity, R stands for Recall, and N stands for NDCG. The top-performing and
runner-up results are shown in bold and underlined, respectively. “Improv” represents the relative
improvement percentage of PreferDiff over the best baseline. “*” indicates that the improvements are
statistically significant at 0.05, according to the t-test. We can have the following observations:

• DM-based recommenders have exhibited substantial performance gains over other sequential
recommenders across most metrics. This is consistent with prior research, which demonstrates
that the powerful generation and generalization capabilities (Yang et al., 2023b) or noise robust-
ness (Wang et al., 2023b; Li et al., 2024) of DM can better capture user behavior distributions
compared to other sequential recommenders and alleviate the false negative or false positive issue in
recommendation (Sato et al., 2020; Chen et al., 2023b).

• PreferDiff significantly outperforms other DM-based recommenders across all metrics on
three public benchmarks. PreferDiff demonstrates an improvement ranging from 6.41% to 19.35%
over the second-best baseline. Our results indicate that modeling the user’s next-item distribution
is more effective than modeling the user’s interaction probability distribution (e.g., DiffRec) in
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Table 2: Ablation Study of PreferDiff. Details are the same as Table 1.
Model Sports and Outdoors Beauty Toys and Games

R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10
PreferDiff 0.0185 0.0147 0.0247 0.0167 0.0429 0.0323 0.0514 0.0350 0.0473 0.0367 0.0535 0.0387

w/o-N 0.0165 0.0139 0.0214 0.0149 0.0415 0.0304 0.0492 0.0333 0.0445 0.0349 0.0495 0.0367
w/o-C 0.0180 0.0139 0.0230 0.0159 0.0393 0.0282 0.0496 0.0322 0.0458 0.0356 0.0521 0.0374
w/o-C&N 0.0155 0.0130 0.0211 0.0140 0.0406 0.0299 0.0483 0.0326 0.0440 0.0323 0.0490 0.0353

sequential recommendation. Additionally, directly applying classic recommendation objectives (e.g.,
DiffuRec) or using objectives that deviate significantly from the original (e.g., MSE) may impede
diffusion models from effectively learning user preference distributions and fully harnessing their
generative and generalization capabilities. Moreover, the performance gap between DreamRec and
PreferDiff further validates that our tailored optimization objective for DM-based recommenders
successfully incorporates personalized ranking information into DMs, enabling them to better unleash
their generative potential while more effectively capturing user preference distributions.

• PreferDiff can benefit from advanced text-embeddings. We observe that PreferDiff, when
incorporating the identical text embeddings (referred to as PreferDiff-T), outperforms MoRec and
LLM2Bert4Rec by replacing traditional ID embeddings with semantic text embeddings or using
them as initialization parameters of ID-embeddings. This demonstrates that incorporating text
embeddings, which provide a more semantic and stable feature space, into PreferDiff can obtain
commendable recommendation performance. This finding aligns with current trends in the text-
diffusion field (Lovelace et al., 2023; Liu et al., 2023). Building on this, due to the unified nature of
the language space, PreferDiff possesses the potential to generalize sequential recommendations to
other unseen domains, which we will elaborate on in the following subsection.

Ablation Study. As shown in Table 2, we scrutinize and evaluate each key individual component
of PreferDiff to comprehend their respective impacts and significance. The ablation analysis is
conducted using the following three versions. (1) PreferDiff-w/o-N employs cosine error as the
measure function and drops the learning preference term in LPreferDiff. (2) PreferDiff-w/o-C employs
MSE as a measure function. (3) PreferDiff-w/o-C&N employs MSE as the measure function and
drops the learning preference term in LPreferDiff. We can observe that each component in PreferDiff
contributes positively. Specifically, the performance degradation due to the omission of negative
samples highlights the importance of incorporating preference information into DMs to better capture
the underlying user preference distributions. Furthermore, replacing MSE with cosine error results
in performance improvements, as the recommendation phase is conducted through maximum inner
product search, which better aligns with the objective of capturing similarity in the embedding space.
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Figure 2: Training Comparison with DreamRec on Amazon Beauty.

Faster Convergence than DreamRec. As analyzed in Section 3.2, PreferDiff handles hard negatives
with higher gradient weight, as shown in Figure 4.1. Empirically, we find that PreferDiff converges
faster (approximately 35 epochs, 8 minutes) than other DM-based sequential recommenders, such
as DreamRec (approximately 65 epochs, 15 minutes) with better performance on validation sets.
Notably, we compare the training time and inference time with a 2-D scatter plot and table in
Appendix F.4. We also show that by adjusting the denoising steps, we can achieve a trade-off between
inference time and recommendation performance for real-time recommendation scenarios, as detailed
in Appendix F.5.
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Table 3: Performance comparison of General Sequential Recommendation on Different Target
Datasets. Details are the same as Table 1.

Supervision Models Metrics
In Domains Out Domains Other Platform

Instruments Tools CDs Movies Steam

Full-Supervised SASRec
R@5 0.1060 0.0673 0.0608 0.1392 0.0874
N@5 0.0951 0.0642 0.0542 0.1210 0.0720

Zero-Shot

UniSRec
R@5 0.1067 0.0627 0.0253 0.0286 0.0397
N@5 0.1009 0.0605 0.0239 0.0271 0.0329

MoRec
R@5 0.1220 0.0699 0.0268 0.0306 0.0585
N@5 0.1094 0.0655 0.0274 0.0293 0.0556

PreferDiff-T
R@5 0.1213 0.0723 0.0295 0.0312 0.0621
N@5 0.1135 0.0691 0.0293 0.0299 0.0583

4.2 GENERAL SEQUENTIAL RECOMMENDATION (RQ2)

Given that DMs have exhibited exceptional zero-shot inference capabilities after pretraining on large,
high-quality datasets in other fields (Khachatryan et al., 2023; Clark & Jaini, 2023), we aim to explore
how PreferDiff can effectively zero-shot recommendation on unseen datasets, either within the same
platform (e.g., Amazon) or across different platforms (e.g., Steam), without any overlap of users
or items (Ding et al., 2021; Hou et al., 2022a; 2023; Li et al., 2023a), which distinguishes it from
traditional ID-based cross-domain recommendation (Zhu et al., 2021; Ma et al., 2024b).

Baselines. Here, we compare PreferDiff with two baselines that are towards general sequential recom-
mendations, namely UniSRec (Hou et al., 2022a) and MoRec (Yuan et al., 2023). See Appendix D.5
for details on the introduction, selection, and hyperparameter search range of the baselines. For a
fair comparison, we employ the text-embedding-3-large model from OpenAI (Neelakantan
et al., 2022) as the text encoder to convert identical item descriptions (e.g., title, category, brand) into
representations, as it has been proven to deliver commendable performance in recommendation (Harte
et al., 2023). More additional experiments about different text encoders can be found in Appendix E.3.

Datasets and Evaluation Metrics. Following the previous work (Hou et al., 2022a; Li et al., 2023a),
we select five different product reviews from Amazon 2018 (Ni et al., 2019), namely, “Automotive”,
“Cell Phones and Accessories”, “Grocery and Gourmet Food”, “Musical Instruments” and “Tools and
Home Improvement”, as pretraining datasets. “Office Products” is selected as the validation dataset
for early stopping when Recall@5 (i.e., R@5) shows no improvement for 20 consecutive epochs.
Here, we consider three scenarios for the incoming evaluated target datasets. (1) “In Domains” refers
to target datasets that are part of the pretraining dataset. (2) “Out Domains” refers to target datasets
that are not in the pretraining dataset but belong to the same platform (i.e., Amazon). Here, we select
“CDs and Vinyl” and “Movies and TV”. (3) “Other Platform” refers to target datasets that are neither
in the pretraining dataset nor from the same platform. Here, we select a commonly used game dataset
collected from Steam (Kang & McAuley, 2018). Detailed dataset statistics can be found in Table 5.

Results. Tables 3 present the performance of PreferDiff compared with the chosen two general
sequential recommenders. We can observe that:

• Without any additional components, PreferDiff-T outperforms other general sequential
recommenders. Unlike UniSRec, which employs a mixture of experts technique for whitening,
and MoRec, which uses dimension transformation, PreferDiff-T directly utilizes raw semantic text
embeddings. This results in improvements of 2% to 8% in in-domain scenarios, 2% to 10% in
out-domain scenarios, and 3% to 6% on other platforms, validating PreferDiff’s strong capability in
general sequential recommendation tasks without harming the performance on pretraining datasets.

• The general sequential recommendation capacity of PreferDiff-T increases significantly as the
amount of training data grows. As shown in Figure 5, we empirically find that as we continuously
expand the scale of the training data (by adding more diverse datasets), NDCG@5 and HR@5
have nearly improved 500% as the scale of the training data increased five times, approaching
the performance of full-supervised SASRec. This suggests that PreferDiff-T can effectively learn
general knowledge to model user preference distributions by pretraining on even diverse datasets and
transferring this knowledge to unseen datasets via advanced textual representations.
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4.3 STUDY OF PREFERDIFF (RQ3)

In this subsection, we study the important factors (e.g., λ, embedding size, and S(·)) that may
impact the recommendation performance of PreferDiff. Others can be found in Appendix E.1 and
Appendix E.2. We also provide visualization of learned item embeddings via t-SNE in Appendix E.4.
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Figure 3: Effect of the λ for PreferDiff.

Importance of λ for PreferDiff λ controls the balance between learning generation and learning
preference in PreferDiff. As shown in Figure 3, PreferDiff performs best when λ = 0.4 or λ = 0.6,
highlighting the importance of enabling DMs to understand negatives in the recommendation task.
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Figure 4: Effect of the Embedding Size for PreferDiff.

Dimension of Embedding for PreferDiff. As shown in Figure 4, we empirically observe that
the recommendation performance of both PreferDiff and DreamRec improves significantly as the
embedding size increases. This finding contrasts with previous observations in some non-DM-based
recommenders (Liu et al., 2020; Qu et al., 2023; Guo et al., 2024). We attribute this phenomenon to
the dynamic feature space of ID embeddings, in which DMs require higher dimensions to capture
the user preference and ensure the stability of embedding space. Notably, in the Appendix F.3, we
provide a simple theoretical analysis and experimental validation to explain this phenomenon.

Measure Function for PreferDiff. As the final
recommendation is ranked by maximal inner prod-
uct search, we replace MSE with cosine error, as
introduced in equation 7. The results presented in
Table 4 demonstrate the superiority of using set co-
sine error as the default measurement function over
MSE in PreferDiff.

Table 4: Effect of Measure Function for Prefer-
Diff.

Datasets Sports Beauty Toys
Measure R@5 N@5 R@5 N@5 R@5 N@5
L1 0.0152 0.0121 0.0362 0.0281 0.0448 0.0345
Huber 0.0154 0.0123 0.0364 0.0279 0.0371 0.0286
L2 0.0180 0.0139 0.0393 0.0282 0.0458 0.0356
Cosine 0.0185∗ 0.0147∗ 0.0429∗ 0.0323∗ 0.0473 0.0367∗

5 CONCLUSIONS AND LIMITATIONS

We propose PreferDiff, an optimization objective specifically designed for DM-based recommenders
which can integrate multiple negative samples into DMs via generative modeling paradigm. Opti-
mization is achieved through variational inference, deriving a variational upper bound as a surrogate
objective. However, PreferDiff has limitations: (1) Dimension Sensitivity: The recommendation
performance of PreferDiff is highly dependent on the embedding dimension. Empirical results show
a sharp decline in performance when the embedding size is reduced to 64, a common dimension in
existing studies. This dependency may lead to increased computational resources and slower training
times when larger embedding sizes are required. (2) Hyperparameter λ Dependence: PreferDiff
heavily relies on the hyperparameter λ to balance the generation and preference learning in DMs.
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Ethic Statement. This paper aims to develop a specially tailored objective for DM-based recom-
menders through generative modeling. We do not anticipate any negative social impacts or violations
of the ICLR code of ethics.

Reproducibility Statement. All results in this work are fully reproducible. The hyperparameter
search space is discussed in Table 11, and further details about the hardware and software environment
are provided in Appendix D.2. We provide the code and the best hyperparameters for our method at
https://anonymous.4open.science/r/PreferDiff and Table 12.
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A RELATED WORK

We highlight key related works to contextualize how PreferDiff fits within and contributes to the
broader literature. Specifically, our work aligns with research on sequential recommendation and
DMs based recommenders.

Sequential Recommendation have gained significant attention in both academia (Rendle, 2022; Liu
et al., 2024) and industry (Wang et al., 2019; Fang et al., 2020) due to their ability to capture user
preferences from historical interactions and recommend the next item. One common research line
has focused on developing more efficient network architectures, such as GRU (Hidasi et al., 2016),
convolutional neural networks (Tang & Wang, 2018), Transformer (Kang & McAuley, 2018; Fan
et al., 2021), Bert4Rec (Devlin et al., 2019), and HSTU (Zhai et al., 2024). Another research line
focuses on leveraging additional unsupervised signals (Xie et al., 2022; Wang et al., 2023a; Ren et al.,
2024a) or reshaping sequential recommendation into other tasks such as retrieval (Rajput et al., 2023;
Wang et al., 2024a) and language generation (Bao et al., 2023; Li et al., 2023b; Liao et al., 2024).

DM-based Recommenders have been explored in recent studies due to the powerful generative
and generalization capabilities of DMs (DMs) (Lin et al., 2024). These recommenders either focus
on modeling the distribution of the next item (e.g., (Yang et al., 2023b; Wang et al., 2024b; Li
et al., 2024)), capture the probability distribution of user interactions (e.g., (Wang et al., 2023b;
Zhao et al., 2024)), or focus on the distribution of time intervals between user behaviors (e.g., (Ma
et al., 2024a)). However, existing approaches often rely on conventional objectives, such as mean
squared error (MSE), or standard recommendation-specific objectives like Bayesian Personalized
Ranking (BPR) (Rendle et al., 2009) and Cross Entropy (CE) (Klenitskiy & Vasilev, 2023). We
argue that the former may diverge from the core objective of accurately modeling user preference
distributions in recommendation tasks (Rendle, 2022), as DMs often lack an adequate understanding
of negative items. While the latter leverages DMs’ noise resistance to mitigate noisy interactions
in recommendations which might fall short of fully exploiting the generative and generalization
capabilities of DMs.

B SAMPLING ALGORITHM IN PREFERDIFF

We utilize DDIM (Song et al., 2021a) as the default sampler in PreferDiff, replacing the DDPM
used in DreamRec, as we empirically find that DDIM is faster and performs better, requiring
only a few denoising steps. Here, we briefly introduce how DDIM is employed in PreferDiff;
Detailed derivations can be found in (Song et al., 2021a), and the code implementation is available at
https://anonymous.4open.science/r/PreferDiff.

Details. Specifically, in PreferDiff, the training is to predict the original data e0. The sampling
process should be reparameterized to predict e0 directly instead of the noise ϵ. Starting from the
original DDIM update equation (Song et al., 2021a):

et−1 =
√
αt−1

(
et −

√
1− αt ϵθ(et, t)√

αt

)
+
√

1− αt−1 − σ2
t ϵθ(et, t) + σtz, (13)

where z ∼ N (0, I), σt controls the stochasticity of the process, and ϵθ(et, t) is the predicted noise at
time step t.

In PreferDiff, since our model is trained to predict the original data e0 directly, we use the relationship
between et, e0, and the noise ϵ:

et =
√
αt e0 +

√
1− αt ϵ. (14)

Solving for ϵ, we obtain:

ϵ =
et −

√
αt e0√

1− αt
. (15)

Since e0 is predicted by our model as ê0 = Fθ(et, c, t), we can estimate the noise as:
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ϵ̂θ =
et −

√
αt ê0√

1− αt
. (16)

Substituting ϵ̂θ back into the DDIM update equation and setting σt = 0 for deterministic sampling,
we get:

et−1 =
√
αt−1

(
et −

√
1− αt ϵ̂θ√
αt

)
+
√
1− αt−1 ϵ̂θ (17)

=
√
αt−1 ê0 +

√
1− αt−1 ϵ̂θ. (18)

This simplification allows us to update et−1 directly using the predicted ê0 and ϵ̂θ without introducing
additional randomness, thus making the sampling process deterministic and more efficient.

Summary. Therefore, the deterministic DDIM sampling steps in our inference algorithm are:

1. Predict ê0 = Fθ(et, c, t).

2. Compute ϵ̂θ =
et −

√
αt ê0√

1− αt
.

3. Update et−1 =
√
αt−1 ê0 +

√
1− αt−1 ϵ̂θ.

By iteratively applying these steps, we can efficiently generate the predicted original data ê0. During
inference, by setting σt = 0, we eliminate the noise term σtz and focus solely on the deterministic
components of the update rule. This results in faster convergence with fewer denoising steps while
maintaining high-quality predictions. Detailed derivations and explanations of this reparameterization
and the DDIM sampling process can be found in (Song et al., 2021a).

C DETAILS ABOUT PREFERDIFF

C.1 FROM RATINGS TO PROBABILITY DISTRIBUTION

LBPR = −E(e+
0 ,e−

0 ,c)

[
log σ

(
fθ(e

+
0 | c)− fθ(e

−
0 | c)

)]
, (19)

The primary objective of equation 19 is to maximize the rating margin between positive items and
sampled negative items. Here, we employ softmax normalization to transform the rating ranking into
a log-likelihood ranking.

We begin by expressing the rating fθ(e0 | c) in terms of the probability distribution pθ(e0 | c). This
relationship is established through the following set of equations:

pθ(e0 | c) =
exp(fθ(e0 | c))

Zθ
,

log pθ(e0 | c) = fθ(e0 | c)− logZθ ,

fθ(e0 | c) = log pθ(e0 | c) + logZθ . (20)

Substituting equation 20 into equation 19 yields the BPR loss expressed solely in terms of the
probability distributions of positive and negative items.
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LBPR-Diff = −E(e+
0 ,e−

0 ,c)

log σ
 fθ(e

+
0 | c)︸ ︷︷ ︸

rating of Positive Item

− fθ(e
−
0 | c)︸ ︷︷ ︸

rating of Negative Item




= −E(e+
0 ,e−

0 ,c)

log σ
log pθ(e

+
0 | c) + logZθ︸ ︷︷ ︸

From equation 20

− log pθ(e
−
0 | c)− logZθ︸ ︷︷ ︸

From equation 20




= −E(e+
0 ,e−

0 ,c)

log σ
log pθ(e

+
0 | c)− log pθ(e

−
0 | c) + logZθ − logZθ︸ ︷︷ ︸

=0


= −E(e+

0 ,e−
0 ,c)

[
log σ

(
log

pθ(e
+
0 | c)

pθ(e
−
0 | c)

)]
.

(21)

C.2 CONNECTING THE RATING FUNCTION TO THE SCORE FUNCTION

In this subsection, we establish the relationship between the rating function fθ(e0 | c) and the
score function in the context of score-based DMs. Specifically, we demonstrate that the gradient
of the rating function with respect to the item embedding e0 is equivalent to the score function
∇e0

log pθ(e0 | c).
Starting from Equation equation 20:

fθ(e0 | c) = log pθ(e0 | c) + logZθ , (22)

where Zθ is the partition function:

Zθ =

∫
exp(fθ(e | c)) de . (23)

DERIVATIVE OF THE RATING FUNCTION WITH RESPECT TO e0

Taking the gradient of Equation equation 22 with respect to e0, we have:

∇e0fθ(e0 | c) = ∇e0 log pθ(e0 | c) +∇e0 logZθ . (24)

Since the partition function Zθ is obtained by integrating over all possible item embeddings e, and
does not depend on the specific e0, its gradient with respect to e0 is zero:

∇e0
logZθ = 0 . (25)

Therefore, Equation equation 24 simplifies to:

∇e0fθ(e0 | c) = ∇e0 log pθ(e0 | c) . (26)

Definition of the Score Function In score-based DMs, the score function is defined as the gradient
of the log-probability density with respect to the data point e0:

sθ(e0, c) ≜ ∇e0
log pθ(e0 | c) . (27)

Comparing Equations equation 26 and equation 27, we find that:

∇e0
fθ(e0 | c) = sθ(e0, c) . (28)

This reveals that the gradient of the rating function with respect to the item embedding e0 is exactly
the score function of the probability distribution pθ(e0 | c). Score-based DMs Song et al. (2021b)
utilize the score function sθ(e0, c) to define the reverse diffusion process. In these models, the data
generation process involves integrating the score function over time to recover the data distribution
from noise. Intuitively, we can utilize∇e0fθ(e0 | c) to sample item embeddings with high ratings
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through Langevin dynamics (Song & Ermon, 2020) given certain user historical conditions. Therefore,
it bridges the objective of recommendation with generative modeling in DMs.

Connection to Our Loss Function. Our BPR-Diff loss function, as expressed in Equation equa-
tion 21, involves the log-ratio of the probabilities of positive and negative items:

LBPR-Diff = −E(e+
0 ,e−

0 ,c)

[
log σ

(
log

pθ(e
+
0 | c)

pθ(e
−
0 | c)

)]
. (29)

Using the equivalence between the rating function and the log-probability (from Equation equation 22),
the loss function can also be seen as a function of the rating differences:

LBPR-Diff = −E
[
log σ

(
fθ(e

+
0 | c)− fθ(e

−
0 | c)

)]
. (30)

Gradient of the Loss with Respect to e0. Taking the gradient of the loss function with respect to
the positive item embedding e+0 , we get:

∇e+
0
LBPR-Diff = −E

[
σ(−s) · ∇e+

0
fθ(e

+
0 | c)

]
, (31)

where s = fθ(e
+
0 | c)− fθ(e

−
0 | c).

Similarly, for the negative item embedding e−0 :

∇e−
0
LBPR-Diff = E

[
σ(−s) · ∇e−

0
fθ(e

−
0 | c)

]
. (32)

These gradients indicate that the loss function encourages:

• Increasing the rating fθ(e
+
0 | c) of the positive item by moving e+0 in the direction of

∇e+
0
fθ.

• Decreasing the rating fθ(e
−
0 | c) of the negative item by moving e−0 opposite to∇e−

0
fθ.

C.3 DERIVATION THE VARIATIONAL UPPER BOUND

In this section, we provide a comprehensive derivation of the upper bound for the proposed LBPR-Diff.
We focus particularly on the steps involving the Kullback-Leibler divergence, leading to the final loss
function used for training.

Assumptions and Definitions:

• e+0 and e−0 represent the embeddings of the positive and negative items, respectively.

• e+t and e−t are the noisy embeddings at timestep t for the positive and negative items,
obtained via the forward diffusion process.

• c denotes the historical item sequence for a user.

• q(et−1 | et, e0) is the posterior distribution in the forward diffusion process.

• pθ(et−1 | et, c) is the reverse diffusion process modeled by our neural network Fθ.

• M(c) is a mapping function that encodes the historical context c into a suitable representa-
tion for conditioning.

• σ(·) is the sigmoid function.

• βt, αt, and ᾱt are predefined constants in the diffusion schedule.

Starting from equation 4 in the main text, we have:

LBPR-Diff(θ) = −E(e+
0 ,e−

0 ,c)

[
log σ

(
logEq(e+

1:T |e+
0 )

[
pθ(e

+
0:T | c)

q(e+1:T | e
+
0 )

]
− logEq(e−

1:T |e−
0 )

[
pθ(e

−
0:T | c)

q(e−1:T | e
−
0 )

])]
.

(33)
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To address the intractability of directly computing the expectations inside the logarithms, we ap-
ply Jensen’s inequality, which states that for a convex function f , we have f(E[X]) ≤ E[f(X)].
Recognizing that − log σ(x) is convex in x, we obtain an upper bound:

LBPR-Diff(θ) ≤ −E(e+
0 ,e−

0 ,c) Eq(e+
1:T |e+

0 ),

q(e−
1:T |e−

0 )

log σ
log

[
pθ(e

+
0:T | c)

q(e+1:T | e
+
0 )

]
︸ ︷︷ ︸

(a)

− log

[
pθ(e

−
0:T | c)

q(e−1:T | e
−
0 )

]
︸ ︷︷ ︸

(b)


 .

(34)

The terms (a) and (b) represent the variational lower bounds of the log-likelihoods for the positive
and negative items, respectively. According to the properties of DMs (Ho et al., 2020), these terms
can be related to the evidence lower bound (ELBO). Specifically, for any item e0, we have:

log pθ(e0 | c) ≥ Eq(e1:T |e0)

[
log

(
pθ(e0:T | c)
q(e1:T | e0)

)]
= −LELBO(θ; e0, c) . (35)

Substituting equation 35 into equation 34, we get:

LBPR-Diff(θ) ≤ −E(e+
0 ,e−

0 ,c)

[
log σ

(
−LELBO(θ; e

+
0 , c) + LELBO(θ; e

−
0 , c)

)]
. (36)

The ELBO for each item can be decomposed into a sum over timesteps t:

LELBO(θ; e0, c) =

T∑
t=1

Eq(et|e0) [DKL (q(et−1 | et, e0) ∥ pθ(et−1 | et, c))] + C , (37)

where C is a constant independent of θ.

Substituting equation 37 back into equation 36, we obtain:

LBPR-Diff(θ) ≤ −E(e+
0 ,e−

0 ,c)

[
log σ

(
−

(
T∑

t=1

Eq(e+
t |e+

0 )

[
DKL

(
q(e+t−1|e

+
t , e

+
0 ) ∥ pθ(e

+
t−1|e

+
t )
)]

−
T∑

t=1

Eq(e−
t |e−

0 )

[
DKL

(
q(e−t−1|e

−
t , e

−
0 ) ∥ pθ(e

−
t−1|e

−
t )
)]

+ C1

))]
,

(38)
where C1 aggregates constants and is independent of θ.

Now, we focus on the KL divergence terms. In DMs, both q(et−1 | et, e0) and pθ(et−1 | et, c)
are Gaussian distributions (Ho et al., 2020). Specifically, for the forward process q and the reverse
process pθ, we have:

q(et−1 | et, e0) = N
(
et−1; µ̃t(et, e0), β̃tI

)
, (39)

pθ(et−1 | et, c) = N (et−1;µθ(et, t, c), βtI) , (40)

where µ̃t(et, e0) is the mean of the posterior q(et−1 | et, e0), β̃t is the variance, and βt is the
variance schedule for the reverse process.

The KL divergence between two Gaussian distributions can be computed as:

DKL (q ∥ pθ) =
1

2

(
tr
(
β−1
t β̃tI

)
+ (µθ − µ̃t)

⊤
β−1
t I (µθ − µ̃t)− k + ln

(
det(βtI)

det(β̃tI)

))
, (41)

where k is the dimensionality of the Gaussian distributions (i.e., the embedding dimension).

Assuming that β̃t = βt (Ho et al., 2020), the trace term simplifies to k, and the determinant term
becomes ln(1) = 0. Therefore, the KL divergence simplifies to:

DKL (q ∥ pθ) =
1

2βt
∥µθ − µ̃t∥22 . (42)
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Next, we define the network prediction µθ and relate it to the mean µ̃t from the forward process.

Relationship between µ̃t and e0:

The mean µ̃t is given by:

µ̃t(et, e0) =

√
ᾱt−1βt

1− ᾱt
e0 +

√
αt(1− ᾱt−1)

1− ᾱt
et , (43)

where αt = 1 − βt, and ᾱt =
∏t

s=1 αs. In practice, it is common to predict e0 directly using the
neural network Fθ:

ê0 = Fθ(et, t,M(c)) . (44)

Given ê0, we can compute µθ as:

µθ(et, t, c) =

√
ᾱt−1βt

1− ᾱt
ê0 +

√
αt(1− ᾱt−1)

1− ᾱt
et . (45)

Substituting equations equation 43 and equation 45 into equation 42, we have:

DKL (q ∥ pθ) =
1

2βt
∥µθ − µ̃t∥22 =

1

2βt

∥∥∥∥(√ᾱt−1βt

1− ᾱt
(ê0 − e0)

)∥∥∥∥2
2

=
(
√
ᾱt−1βt)

2

2β2
t (1− ᾱt)2

∥ê0 − e0∥22 .

(46)

Simplifying the constants, we observe that the coefficient reduces to a constant factor dependent on t,
which we can denote as λt:

λt =
(
√
ᾱt−1βt)

2

2β2
t (1− ᾱt)2

=
ᾱt−1

2(1− ᾱt)2
. (47)

Therefore, the KL divergence becomes:

DKL (q ∥ pθ) = λt ∥ê0 − e0∥22 . (48)

Since λt is independent of θ and depends only on t, when we sum over all timesteps and average
over t, this term becomes proportional to the mean squared error between ê0 and e0.

Equivalence of MSE and Cosine Error for Unit Norm Vectors:

Alternatively, to mitigate sensitivity to vector norms and dimensionality (Friedman, 1997; Hou et al.,
2022b) (the recommendation performance of PreferDiff is competitive when embedding size is
higher), we can use the cosine error as the distance measure. The cosine similarity between ê0 and
e0 is given by:

cos (ê0, e0) =
ê⊤0 e0

∥ê0∥2∥e0∥2
. (49)

The cosine error is then:
S (ê0, e0) = 1− cos (ê0, e0) . (50)

Actually, when both ê0 and e0 are normalized to have unit norm (i.e., ∥ê0∥2 = ∥e0∥2 = 1), the mean
squared error and the cosine error are directly related. Specifically, the squared Euclidean distance
between two unit vectors is:

∥ê0 − e0∥22 = (ê0 − e0)
⊤
(ê0 − e0) = ∥ê0∥22 + ∥e0∥22 − 2ê⊤0 e0 = 2(1− cos (ê0, e0)) . (51)

Thus, under the unit norm constraint, minimizing the MSE is equivalent to minimizing the cosine
error up to a constant factor of 2. This shows that both distance measures capture the same notion
of similarity in this case. Substituting the KL divergence approximation back into equation 38, and
considering both positive and negative items, we simplify the expression:

LBPR-Diff(θ) ≤ −E(e+
0 ,e−

0 ,c), t∼U(1,T )

log σ
−

 S
(
ê+0 , e

+
0

)︸ ︷︷ ︸
Positive item error

− S
(
ê−0 , e

−
0

)︸ ︷︷ ︸
Negative item error



 , (52)
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where ê+0 = Fθ(e
+
t , t,M(c)) and ê−0 = Fθ(e

−
t , t,M(c)).

Equation equation 52 represents our final trainable objective:

LUpper(θ) = −E(e+
0 ,e−

0 ,c), t∼U(1,T )

[
log σ

(
−
(
S
(
Fθ(e

+
t , t,M(c)), e+0

)
− S

(
Fθ(e

−
t , t,M(c)), e−0

)))]
.

(53)

Explanation. This objective encourages the model to minimize the distance between the predicted
embedding and the true embedding for the positive item while maximizing the distance for the
negative item, effectively widening the gap between them in the latent space. By doing so, we
enhance the personalized ranking capability of the model.

Summary. By minimizing LUpper(θ), we implicitly minimize the original LBPR-Diff(θ) due to the
application of Jensen’s inequality. This aligns the training objective with the goal of improving
personalized ranking by leveraging DMs within the BPR.

C.4 EXTEND INTO MULTIPLE NEGATIVE SAMPLES

In this section, we provide a detailed derivation of the inequality LBPR-Diff-V ≤ LBPR-Diff-C, under the
assumption that Fθ and S are convex functions.

Definitions and Assumptions

We define:

• Fθ(et, t,M(c)): the denoising function at time step t, parameterized by θ, conditioned on
contextM(c).

• S(a,b): a measure function quantifying the discrepancy between vectors a and b, such as
Mean Squared Error (MSE).

• σ(·): the sigmoid function.

Assume that:

• Fθ is convex with respect to its input et.
• S is convex with respect to both of its inputs.

Starting with the definition of LBPR-Diff-V:

LBPR-Diff-V = − log σ

(
−V

(
S
(
Fθ

(
e+t , t,M(c)

)
, e+0

)
− 1

V

V∑
v=1

S
(
Fθ

(
e−v
t , t,M(c)

)
, e−v

0

)))
.

(54)

Similarly, for LBPR-Diff-C:

LBPR-Diff-C = − log σ
(
−V

(
S
(
Fθ

(
e+t , t,M(c)

)
, e+0

)
− S

(
Fθ

(
ẽ−t , t,M(c)

)
, ẽ−0

)))
, (55)

where we have defined the centroids:

ẽ−t =
1

V

V∑
v=1

e−v
t , ẽ−0 =

1

V

V∑
v=1

e−v
0 . (56)

Our aim is to show that LBPR-Diff-V ≤ LBPR-Diff-C.

First, consider the term:

DV = S
(
Fθ

(
e+t , t,M(c)

)
, e+0

)
− 1

V

V∑
v=1

S
(
Fθ

(
e−v
t , t,M(c)

)
, e−v

0

)
. (57)
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By the convexity of S, we have:

1

V

V∑
v=1

S
(
Fθ

(
e−v
t , t,M(c)

)
, e−v

0

)
≤ S


1

V

V∑
v=1

Fθ

(
e−v
t , t,M(c)

)
︸ ︷︷ ︸

Convex combination of Fθ(e
−v
t )

,
1

V

V∑
v=1

e−v
0︸ ︷︷ ︸

ẽ−
0

 . (58)

Next, using the convexity of Fθ, we have:

Fθ

(
ẽ−t , t,M(c)

)
≤ 1

V

V∑
v=1

Fθ

(
e−v
t , t,M(c)

)
︸ ︷︷ ︸

Convex combination

. (59)

Combining equation 58 and equation 59, and recognizing that S is non-decreasing with respect to its
first argument, we get:

1

V

V∑
v=1

S
(
Fθ

(
e−v
t , t,M(c)

)
, e−v

0

)
≤ S

(
Fθ

(
ẽ−t , t,M(c)

)
, ẽ−0

)
. (60)

Therefore, we have:

DV = S
(
Fθ

(
e+t , t,M(c)

)
, e+0

)
− 1

V

V∑
v=1

S
(
Fθ

(
e−v
t , t,M(c)

)
, e−v

0

)
(61)

≥ S
(
Fθ

(
e+t , t,M(c)

)
, e+0

)
− S

(
Fθ

(
ẽ−t , t,M(c)

)
, ẽ−0

)
= DC . (62)

Since DV ≥ DC , it follows that:

−V DV ≤ −V DC . (63)

Applying the monotonicity of the log σ(·) function (since σ is an increasing function and log is
monotonic), we have:

LBPR-Diff-V = − log σ(−V DV ) ≤ − log σ(−V DC) = LBPR-Diff-C. (64)

Therefore, we have shown that:

LBPR-Diff-V ≤ LBPR-Diff-C. (65)

Explanation. This inequality implies that minimizing LBPR-Diff-C effectively minimizes an upper
bound ofLBPR-Diff-V, leading to an efficient increase in the likelihood of positive items while distancing
them from the centroid of negative items. Notably, although the assumption of convexity is difficult
to satisfy in practice, the aforementioned method still empirically achieves strong results than one
negative item.

D EXPERIMENTS

D.1 DATASETS PREPOSSESSING IN USER SPLITTING SETTING

Following prior works (Yang et al., 2023a;b), we adopt the user-splitting setting, which has been
shown to effectively prevent information leakage in test sets (Ji et al., 2023). Specifically, we first
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Algorithm 1 Training Phase of PreferDiff

1: Input: Trainable parameters θ, training dataset Dtrain = {(e+0 , c,H)}
|Dtrain|
n=1 , total steps T ,

unconditional probability pu, learning rate η, variance schedules {αt}Tt=1
2: Output: Updated parameters θ
3: repeat
4: (e+0 , c,H) ∼ Dtrain ▷ Sample data from training dataset.
5: With probability pu: c = Φ ▷ Set unconditional condition with probability pu.
6: t ∼ Uniform(1, T ), ϵ+, ϵ− ∼ N (0, I) ▷ Sample diffusion step and noise.
7: e+t =

√
ᾱte

+
0 +
√
1− ᾱtϵ

+ ▷ Add noise to positive item embedding.
8: e−t =

√
ᾱt

V

∑V
v=1 e

−v
0 +

√
1− ᾱtϵ

− ▷ Add noise to negative item embeddings’ centroid.
9: θ ← θ − η∇θLPreferDiff(e

+
t , e

−
t , t, c,Φ; θ) ▷ Gradient descent update.

10: until convergence
11: return θ

Algorithm 2 Inference Phase of PreferDiff

1: Input: Trained parameters θ, Sequence encoderM(·), test dataset Dtest = {(e0, c)}|Dtest|
n=1 , total

steps T , DDIM steps S, guidance weight w, variance schedules {αt}Tt=1
2: Output: Predicted next item ê0
3: c ∼ Dtest ▷ Sample user historical sequence from testing dataaset.
4: eT ∼ N (0, I) ▷ Sample standard Gaussian noise.
5: for s = S, . . . , 1 do ▷ Denoise over S DDIM steps.
6: t = ⌊s× (T/S)⌋ ▷ Map DDIM step s to original step t.
7: With probability pu:M(c) = Φ ▷ Set unconditional condition with probability pu.
8: z ∼ N (0, I) if s > 1 else z = 0 ▷ Sample noise if not final step.
9: ê0 = (1 + w)Fθ(êt,M(c), t)− wFθ(êt,Φ, t) ▷ Apply classifier-free guidance.

10: ϵ̂θ = êt−
√
ᾱtê0√

1−ᾱt
▷ Compute predicted noise.

11: êt−1 =
√
ᾱt−1ê0 +

√
1− ᾱt−1ϵ̂θ ▷ DDIM update step when σt = 0.

12: end for
13: return ê0
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Table 5: Detailed Statistics of Datasets after Preprocessing.
Datasets

Fully Trained Recommendation General Sequential Recommendation
Sports Beauty Toys Steam ML-1M Yahoo!R1 Pretraining Validation CDs Movies Steam

#Sequences 35,598 22,363 19,412 39,795 6,040 50,000 746,688 101,501 112,379 297,529 39,795
#Items 18,357 12,101 11,924 9,265 3,706 23,589 68,668 8,623 15,520 25,925 9,265
#Interactions 256,598 162,150 138,444 437,733 60,400 500,000 3,258,523 452,415 457,589 2,053,497 437,733

sort all sequences chronologically for each dataset, then split the data into training, validation, and
test sets with an 8:1:1 ratio, while preserving the last 10 interactions as the historical sequence.

Amazon 2014 1. Here, we choose three public real-world benchmarks (i.e., Sports, Beauty and Toys)
which has been widely utilized in recent studies (Rajput et al., 2023). Here, we utilize the common
five-core datasets (Hou et al., 2022a), filtering out users and items with fewer than five interactions
across all datasets. Following previous work (Yang et al., 2023b), we set the maximized length user
interaction sequence as 10.

Amazon 2018 2. Following prior works (Hou et al., 2022a; Li et al., 2023a), we select five distinct
product review categories—namely, “Automotive,” “Electronics,” “Grocery and Gourmet Food,”
“Musical Instruments,” and “Tools and Home Improvement”—as pretraining datasets. “Cell Phones
and Accessories” is used as the validation set for early stopping. In line with previous research (Yang
et al., 2023b), we filter out items with fewer than 20 interactions and user interaction sequences
shorter than 5, capping the maximum length of each user’s interaction sequence at 10.

Steam is a game review dataset collected from Steam 3. Due to the large number of game reviews,
we filter out users and items with fewer than 20 interactions.

ML-1M is a movie rating dataset collected by GroupLens 4. We filter out users and items with fewer
than 20 interactions.

Yahoo!R1 is a music rating dataset collected by Yahoo 5. We filter out users and items with fewer
than 20 interactions.

D.2 IMPLEMENTATION DETAILS

For a fair comparison, all experiments are conducted in PyTorch using a single Tesla V100-SXM3-
32GB GPU and an Intel(R) Xeon(R) Gold 6248R CPU. We optimize all methods using the AdamW
optimizer and all models’ parameters are initialized with Standard Normal initialization. We fix
the embedding dimension to 64 for all models except DM-based recommenders, as the latter only
demonstrate strong performance with higher embedding dimensions, as discussed in Section 4.3.
Since our focus is not on network architecture and for fair comparison, we adopt a lightweight
configuration for baseline models that employ a Transformer backbone 6, using a single layer with
two attention heads. Notably, all baselines, unless otherwise specified, use cross-entropy as the
loss function, as recent studies (Klenitskiy & Vasilev, 2023; Zhai et al., 2023) have demonstrated its
effectiveness.

For PerferDiff, for each user sequence, we treat the other next-items (a.k.a., labels) in the same batch
as negative samples. We set the default diffusion timestep to 2000, DDIM step as 20, pu = 0.1, and
the β linearly increase in the range of [1e−4, 0.02] for all DM-basd sequential recommenders (e.g.,
DreamRec). We empirically find that tuning these parameters may lead to better recommendation
performance. However, as this is not the focus of the paper, we do not elaborate on it.

The other hyperparameter (e.g., learning rate) search space for PreferDiff and the baseline models is
provided in Table 11, while the best hyperparameters for PreferDiff are listed in Table 12.

1https://cseweb.ucsd.edu/˜jmcauley/datasets/amazon/links.html
2https://cseweb.ucsd.edu/˜jmcauley/datasets/amazon_v2/
3https://github.com/kang205/SASRec
4https://grouplens.org/datasets/movielens/1m/
5https://webscope.sandbox.yahoo.com/
6https://github.com/YangZhengyi98/DreamRec/
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D.3 BASELINES OF SEQUENTIAL RECOMMENDATION

Traditional sequential recommenders:

• GRU4Rec (Hidasi et al., 2016) adopts RNNs to model user behavior sequences for session-based
recommendations. Here, following the previopus work (Kang & McAuley, 2018; Yang et al., 2023b),
we treat each user’s interaction sequence as a session.

• SASRec (Kang & McAuley, 2018) adopts a directional self-attention network to model the user
user behavior sequences.

• Bert4Rec (Sun et al., 2019) adapts the original text-based BERT model with the cloze objective for
modeling user behavior sequences. We adopt the implementation of mask from (Ren et al., 2024b)

Contrastive learning based sequential recommenders:

• CL4SRec (Xie et al., 2022) incorporates the contrastive learning with the transformer-based
sequential recommendation model to obtain more robust results. We adopt the implementation 7

from (Ren et al., 2024b).

Generative sequential recommenders:

• TIGER(Rajput et al., 2023) introduces codebook-based identifiers through RQ-VAE, which
quantizes semantic information into code sequences for generative recommendation. Since the source
code is unavailable, we implement it using the HuggingFace and Transformers APIs, following
the original paper by utilizing T5 (Ni et al., 2022) as the backbone. For quantization, we employ
FAISS (Johnson et al., 2019), which is widely used 8 in recent studies of recommendation (Hou et al.,
2023).

DM-based sequential recommenders:

• DiffRec (Wang et al., 2023b) introduces the application of diffusion on user interaction vectors
(i.e., multi-hot vectors) for collaborative recommendation, where “1” denotes a positive interaction
and “0” indicates a potential negative interaction. We adopt the author’s public implementation 9.

• DreamRec (Yang et al., 2023b) uses the historical interaction sequence as conditional guiding
information for the diffusion model to enable personalized recommendations and utilize MSE as the
training objective. We adopt the author’s public implementation 10.

• DiffuRec (Li et al., 2024) introduces the DM to reconstruct target item embedding from a Trans-
former backbone with the user’s historical interaction behaviors and utilize CE as the training
objective. We adopt the author’s public implementation 11.

Text-based sequential recommenders:

•MoRec (Yuan et al., 2023) utilizes item features from text descriptions or images, encoded using
a text encoder or vision encoder, and applies dimensional transformation to match the appropriate
dimension for recommendation. Here, we utilize the OpenAI-3-large embeddings, SASRec as
backbone and transform the dimension to 64.

• LLM2Bert4Rec (Harte et al., 2023) proposes initializing item embeddings with textual embeddings.
In our implementation, we use OpenAI-3-large embeddings, Bert4Rec as backbone and apply PCA
to reduce the dimensionality to 64, as mentioned in the original paper.

Noablely, the inconsistent performance of Tiger and LLM2BERT4Rec with their origin paper is
actually caused by the differences in evaluation settings. Both of these papers use the Leave-one-out
evaluation setting, which differs from the User-split used in our work.

Results of Other Backbone. Here, we present a comparison of PreferDiff with other recommenders
using a different backbone, namely GRU. As shown in Table 6, PreferDiff still outperforms DreamRec
across all datasets, further validating its versatility. Empirically, we find that, unlike SASRec, which

7https://github.com/HKUDS/SSLRec/
8https://github.com/facebookresearch/faiss
9https://github.com/YiyanXu/DiffRec/

10https://github.com/YangZhengyi98/DreamRec/
11https://github.com/WHUIR/DiffuRec/
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performs better with a Transformer than with GRU4Rec, PreferDiff performs better with GRU as the
backbone on the Sports and Toys datasets compared to using a Transformer. This could be due to the
relatively shallow Transformer used, making GRU easier to fit. More suitable network architectures
for DM-based recommenders will be explored in future work.

Table 6: Comparison of the performance with sequential recommenders with GRU as backbone. The
improvement achieved by PreferDiff is significant (p-value≪ 0.05).

Model Sports and Outdoors Beauty Toys and Games
R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10

GRU4Rec 0.0022 0.0020 0.0030 0.0023 0.0093 0.0078 0.0102 0.0081 0.0097 0.0087 0.0100 0.0090
SASRec 0.0047 0.0036 0.0067 0.0042 0.0138 0.0090 0.0219 0.0116 0.0133 0.0097 0.0170 0.0109
DreamRec 0.0201 0.0147 0.0230 0.0165 0.0431 0.0290 0.0543 0.0321 0.0484 0.0343 0.0591 0.0382

PreferDiff 0.0216 0.0165 0.0250 0.0176 0.0451 0.0313 0.0590 0.0358 0.0530 0.0385 0.0623 0.0415

D.4 LEAVE ONE OUT

Evaluation. The “leave-one-out” strategy is another widely adopted evaluation protocol in sequential
recommendation. For each user’s interaction sequence, the final item serves as the test instance, the
penultimate item is reserved for validation, and the remaining preceding interactions are utilized for
training. During testing, the ground-truth item of each sequence is ranked against a set of candidate
items, allowing for a comprehensive assessment of the model’s ranking capabilities. Performance is
evaluated by computing ranking-based metrics over the test set, and the final reported result is the
average metric across all users in the test set.

Table 7: Detailed Statistics of Datasets after Preprocessing in Leave-One-Out Setting.
Datasets Sports Beauty Toys Automotive Music Office
#Sequences 35,598 22,363 19,412 2,929 1,430 4,906
#Items 18,357 12,101 11,924 1,863 901 2,421
#Interactions 296,337 198,502 167,597 20,473 10,261 53,258
Avg. Length 8.32 8.87 8.63 6.99 7.17 10.86

Datasets. Except for the original three datasets (Sports, Toys and Beauty) in TIGER, we select
three additional product review categories—namely, “Automotive”, “Music Instrument” and “Office
Product” from Amazon 2014 for a more comprehensive comparison. Here, we utilize the common
five-core datasets, filtering out users and items with fewer than five interactions across all datasets.

Baselines. Here, we directly report baseline results (e.g., S3-Rec (Zhou et al., 2020), P5 (Geng et al.,
2022), FDSA (Hao et al., 2023)) from TIGER (Rajput et al., 2023) and evaluate DreamRec (Yang
et al., 2023b) and the proposed PreferDiff.

Results. Tables 8 and Tables 9 present the performance of PreferDiff compared with six categories
sequential recommenders. For breivty, R stands for Recall, and N stands for NDCG. The top-
performing and runner-up results are shown in bold and underlined, respectively. “Improv” represents
the relative improvement percentage of PreferDiff over the best baseline. We observe that in the
leave-one-out setting, PreferDiff demonstrates competitive recommendation performance compared
to the baselines. Specifically, on larger datasets (i.e., Sports and Beauty), PreferDiff performs on
par with TIGER. However, on the Toys dataset and the three smaller datasets, PreferDiff achieves
a significant lead.This may be due to PreferDiff adopting the same manner as DreamRec, where
recommendation is not included in the training process. With a smaller number of items, this approach
can result in more precise recommendation performance.

D.5 GENERAL SEQUENTIAL RECOMMENDATION

Pretraining Datasets. Here, we introduce more details about Pretraining datasets. Following the
previous work (Hou et al., 2022a; Li et al., 2023a), we select five different product reviews from
Amazon 2018 (Ni et al., 2019), namely, “Automotive”, “Cell Phones and Accessories”, “Grocery and
Gourmet Food”, “Musical Instruments” and “Tools and Home Improvement”, as pretraining datasets.
“Cell Phones and Accessories” is selected as the validation dataset for early stopping when Recall@5
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Table 8: Performance comparison on sequential recommendation under leave one out. The last row
depicts % improvement with PreferDiff relative to the best baseline.

Methods Sports and Outdoors Beauty Toys and Games
R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10

P5 0.0061 0.0041 0.0095 0.0052 0.0163 0.0107 0.0254 0.0136 0.0070 0.0050 0.0121 0.0066
Caser 0.0116 0.0072 0.0194 0.0097 0.0205 0.0131 0.0347 0.0176 0.0176 0.0166 0.0270 0.0141
HGN 0.0189 0.0120 0.0313 0.0159 0.0325 0.0206 0.0540 0.0257 0.0266 0.0321 0.0497 0.0277
GRU4Rec 0.0129 0.0086 0.0204 0.0111 0.0164 0.0113 0.0283 0.0137 0.0137 0.0097 0.0176 0.0084
BERT4Rec 0.0115 0.0075 0.0191 0.0099 0.0263 0.0184 0.0407 0.0214 0.0170 0.0161 0.0310 0.0183
FDSA 0.0182 0.0128 0.0288 0.0156 0.0261 0.0201 0.0407 0.0228 0.0228 0.0150 0.0381 0.0199
SASRec 0.0233 0.0162 0.0412 0.0209 0.0462 0.0387 0.0605 0.0318 0.0463 0.0463 0.0675 0.0374
S3-Rec 0.0251 0.0161 0.0385 0.0204 0.0380 0.0244 0.0647 0.0327 0.0327 0.0294 0.0700 0.0376
DreamRec 0.0087 0.0071 0.0096 0.0075 0.0318 0.0257 0.0624 0.0273 0.0422 0.0347 0.0689 0.0362
TIGER 0.0264 0.0181 0.0400 0.0225 0.0454 0.0321 0.0648 0.0384 0.0521 0.0371 0.0712 0.0432
PreferDiff 0.0275 0.0190 0.0405 0.0218 0.0455 0.0317 0.0660 0.0388 0.0603 0.0403 0.0851 0.0483
Improve 4.16% 4.97% 1.25% -3.1% 0.22% -1.25% 1.85% 1.04% 15.73% 8.63% 19.52% 11.81%

Table 9: Performance comparison on sequential recommendation under leave one out. The last row
depicts % improvement with PreferDiff relative to the best baseline.

Methods Automotive Music Office
R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10

DreamRec 0.0543 0.0400 0.0683 0.0445 0.0622 0.0414 0.0783 0.0467 0.0523 0.0378 0.0699 0.0434
TIGER 0.0454 0.0290 0.0745 0.0383 0.0532 0.0358 0.0840 0.0456 0.0462 0.0299 0.0746 0.0390
PreferDiff 0.0649 0.0463 0.0864 0.0532 0.0650 0.0453 0.0874 0.0526 0.0538 0.0379 0.0850 0.0480
Improve 19.52% 15.75% 15.97% 19.55% 4.50% 9.42% 4.04% 12.63% 2.87% 0.26% 13.90% 10.60%

(i.e., R@5) shows no improvement for 20 consecutive epochs. The detailed statistics of each dataset
used for pretraining are shown in Table 10. Clearly, the pretraining datasets have no domain overlap
with the unseen datasets used in Section 4.2.

Table 10: Detailed Statistics of Pretraining Datasets.
Datasets Automotive Phones Tools Instruments Food
#Sequences 193,651 157,212 240,799 27,530 127,496
#Items 18,703 12,839 22,854 2,494 11,778
#Interactions 806,939 544,339 1,173,154 110,151 623,940
Avg. Length 7.26 6.51 7.19 7.06 7.24

Baselines. Here, we introduce more details for baselines in General Sequential Recommendation
tasks. Notably, for a fair comparison, we employ the text-embedding-3-large model from
OpenAI (Neelakantan et al., 2022) as the text encoder instead of Bert (Devlin et al., 2019) in
UniSRec and MoRec to convert identical item descriptions (e.g., title, category, brand) into vector
representations, as it has been proven to deliver commendable performance in recommendation (Harte
et al., 2023). Different of the Mixed-of-Experts (MoE) Whitening utilized in UniSRec, we employ
identical ZCA-Whitening (Bell & Sejnowski, 1997) for the textual item embeddings for MoRec and
Our proposed PreferDiff.

• UniSRec (Hou et al., 2022a) uses textual item embeddings from frozened text encoder and adapts
to a new domain using an MoE-enhance adaptor. We adopt the author’s public implementation 12.

•MoRec (Yuan et al., 2023) uses textual item embeddings from frozened text encoder and utilize
dimension transformation technique. The architecture is the same as previously mentioned.

Positive Correlation Between Training Data Scale and General Sequential Recommendation
Performance. Here, we explore how the scale of training data impacts the general sequential
recommendation performance of PreferDiff-T. For brevity, we use the initials to represent each
dataset. For example, “A” stands for Automotive, and “P” stands for Phones. “AP” indicates that the
training data for pretraining includes both Automotive and Phones datasets’ training set.

We observe that both NDCG and HR increase as the training data grows, indicating that PreferDiff-T
can effectively learn general knowledge to model user preference distributions through pre-training on

12https://github.com/RUCAIBox/UniSRec
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diverse datasets and transfer this knowledge to unseen datasets via advanced textual representations.
Further studies can explore whether homogeneous datasets lead to greater performance improvements
(e.g., whether Amazon Book data provides a larger boost for Goodreads compared to other datasets)
and investigate the limits of data scalability for PreferDiff-T.
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Figure 5: Positive Correlation Between Training Data Scale and General Sequential Recommendation
Performance.

D.6 HYPERPARAMETER SEARCH SPACE

Here, we introduce the hyperparamter search space for baselines and PreferDiff.

Table 11: Hyperparameters Search Space for Baselines.
Hyperparameter Seach Space

GRU4Rec lr ∼ {1e-2, 1e-3, 1e-4, 1e-5}, weight decay=0

SASRec lr ∼ {1e-2, 1e-3, 1e-4, 1e-5}, weight decay=0

Bert4Rec lr ∼ {1e-2, 1e-3, 1e-4, 1e-5}, weight decay=0, mask probability∼ {0.2,0.4,0.6,0.8}
CL4SRec lr ∼ {1e-2, 1e-3, 1e-4, 1e-5}, weight decay=0, λ∼ {0.1, 0.3, 0.5, 1.0, 3.0}
DiffRec lr ∼ {1e-2, 1e-3, 1e-4, 1e-5}, weight decay=0, noise scale ∼ {1e-1, 1e-2, 1e-3, 1e-4, 1e-5}, T ∼ {2, 5, 20, 50, 100}
DreamRec lr ∼ {1e-2, 1e-3, 1e-4, 1e-5}, weight decay=0, embedding size ∼ {64, 128, 256, 1024, 1536, 3072} , w ∼ {0, 2, 4, 6, 8, 10}
DiffuRec lr ∼ {1e-2, 1e-3, 1e-4, 1e-5}, weight decay=0, embedding size ∼ {64, 128, 256, 1024, 1536, 3072}
UniSRec lr ∼ {1e-2, 1e-3, 1e-4, 1e-5}, weight decay=0, λ∼ {0.05, 0.1, 0.3, 0.5, 1.0, 3.0}
TIGER lr ∼ {1e-2, 1e-3, 1e-4, 1e-5}, weight decay ∼ {0, 1e-1, 1e-2, 1e-3}
MoRec lr ∼ {1e-2, 1e-3, 1e-4, 1e-5}, weight decay=0, text-encoder=text-embedding-3-large

LLM2Bert4Rec lr ∼ {1e-2, 1e-3, 1e-4, 1e-5}, weight decay=0, text-encoder=text-embedding-3-large

PreferDiff lr ∼ {1e-2, 1e-3, 1e-4, 1e-5}, λ ∼ {0.2, 0.4, 0.6, 0.8}, embedding size ∼ {64, 128, 256, 1024, 1536, 3072} , w ∼ {0, 2, 4, 6, 8, 10}

Table 12: Best Hyperparameters for PreferDiff on Sports, Beauty, and Toys.
Dataset learning rate weight decay λ w embedding size

Sports 1e-4 0 0.4 2 3072

Beauty 1e-4 0 0.8 6 3072

Toys 1e-4 0 0.5 4 3072

E HYPERPARAMETER ANALYSIS FOR PREFERDIFF

E.1 THE NUMBER OF NEGATIVE SAMPLES FOR PREFERDIFF.

Here, we discuss the impact of the number of negative samples on PreferDiff. As shown in Figure 6,
we observe that in cases where the number of items is relatively small (e.g., Beauty and Toys), 8
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Figure 6: Effect of the Number of Negative Samples for PreferDiff.
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Figure 7: Effect of the w for PreferDiff.

negative samples are sufficient. However, as the number of items increases, the required number of
negative samples also grows (e.g., in Sports).

E.2 IMPORTANCE OF GUIDANCE STRENGTH FOR PREFERDIFF

w controls the weight of personalized guidance during the inference stage of PreferDiff. As shown
in Figure 7, increasing w can enhance recommendation performance. However, an excessively
large w may reduce the generalization capability of DMs, negatively impacting the recommender’s
performance. Therefore, we think setting w ∈ [2, 4].

E.3 DIFFERENT TEXT ENCODERS

Table 13: Comparison of the PreferDiff-T performance with different text-encoder.
PreferDiff-T Sports and Outdoors Beauty Toys and Games
Text-Encoders R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10
Bert 0.0022 0.0020 0.0030 0.0023 0.0104 0.0128 0.0154 0.0148 0.0051 0.0022 0.0068 0.0044
T5 0.0011 0.0009 0.0014 0.0011 0.0241 0.0198 0.0282 0.0212 0.0283 0.0240 0.0309 0.0248
Robert 0.0115 0.0098 0.0135 0.0102 0.0331 0.0256 0.0393 0.0276 0.0391 0.0303 0.0438 0.0319
Mistral-7B 0.0166 0.0130 0.0213 0.0146 0.0375 0.0287 0.0456 0.0312 0.0427 0.0328 0.0505 0.0353
LLaMA-7B 0.0171 0.0126 0.0205 0.0137 0.0402 0.0297 0.0483 0.0323 0.0397 0.0298 0.0494 0.0330
OpenAI-Ada-V2 0.0160 0.0126 0.0183 0.0134 0.0407 0.0318 0.0469 0.0338 0.0396 0.0315 0.0467 0.0339

OpenAI-3-large 0.0182∗ 0.0145∗ 0.0222∗ 0.0158∗ 0.0429∗ 0.0327∗ 0.0532∗ 0.0360∗ 0.0460∗ 0.0351∗ 0.0525∗ 0.0387∗

Obtaining Item Embedding from Advanced Text Encoder Here, we introduce the process for
obtaining item embeddings from current advanced text-encoders. For encoder-based large language
models, such as Bert (Devlin et al., 2019) and Robert (Liu et al., 2019), we leverage the final hidden
state representation associated with the [CLS] token (Hou et al., 2024b). For convenient, we directly
utilize the Sentence Transformers APIs 13. As for other large language models, including T5 (Ni et al.,
2022), Llama-7B (Touvron et al., 2023), Mistral-7B (Jiang et al., 2023), we utilize the output from the
last transformer block corresponding to the final input token (Vaswani et al., 2017). Closed-source
large language models like text-embedding-ada-v2 and text-embeddings-3-large, we obtain the item
embeddings directly via OpenAI APIs 14 (Neelakantan et al., 2022).

13https://huggingface.co/sentence-transformers
14https://platform.openai.com/docs/guides/embeddings
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Results. Table 13 shows the PreferDiff-T employing different item embeddings encoded from
text-encoders with varying parameter sizes and architectures. We can observe that

Positive Correlation Between LLM Size and Recommendation Performance. The results show
that OpenAI-3-large outperforms all other models, indicating that larger language models (LLMs)
yield better results in recommendation tasks. This is because larger models generate richer and more
semantically stable embeddings, which improve PreferDiff’s ability to capture user preferences. Thus,
the larger the LLM, the better the embeddings perform within PreferDiff.

High-Quality Embeddings Improve Generalization. Models like Mistral-7B and LLaMA-7B,
although smaller than OpenAI-3-large, still perform relatively well across metrics. This suggests that
while model size is important, the quality of embeddings plays a crucial role. Especially in the Beauty,
these models provide embeddings with sufficient semantic power to enhance recommendation quality.

E.4 ANALYSIS OF LEARNED ITEM EMBEDDINGS

(a) SASRec (b) DreamRec (c) PreferDiff

Figure 8: t-SNE Visualization and Gaussian Kernel Density Estimation of Learned Item Embeddings
on Amazon Beauty.

To further analysis the item space learned by PreferDiff, we reduce the dimensionality of the learned
item embeddings using T-SNE (Van der Maaten & Hinton, 2008) 15 to visualize the underlying
distribution of the item space learned by PreferDiff. Due to the large number of items in Amazon
Beauty, we randomly select 2000 items as example. Then, we apply Gaussian kernel density
estimation (Botev et al., 2010) 16 to analyze the density distribution of reduced item embeddings and
visualize the results using contour plots. The red regions indicate areas where a high concentration
of items is clustered. From figure 8, we can observe that comparing with SASRec, PreferDiff not
only explores the item space more thoroughly (covering most regions). Comparing with DreamRec,
PreferDiff exhibits a stronger clustering effect (with high-density regions concentrated in specific
areas), better reflecting the similarities between items, result in better recommendation performance.

15https://scikit-learn.org/dev/modules/generated/sklearn.manifold.TSNE.
html

16https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
gaussian_kde.html
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F DISCUSSION

F.1 COMPARISON ON OTHER BACKGROUND DATASETS.

To further validate the effectiveness of PreferDiff, we include Yahoo! R1 (Music) as an additional
dataset, along with two other commonly used datasets in sequential recommendation—Steam (Game)
and ML-1M (Movie). These datasets provide a diverse set of user-item interaction patterns, allowing
us to comprehensively evaluate the performance of our proposed PreferDiff.

We utilize the same data preprocessing technique and same evaluation setting as introduced in our
paper for all three datasets, except Yahoo! R1. Due to its large size (over one million users), we
are unable to provide results for the entire dataset during the rebuttal period. Instead, we randomly
sampled 50,000 users for our experiments. We will include the full-scale results on Yahoo! R1 in the
final revised version of the paper. The experimental results are shown in Table 14.

Table 14: Performance Comparison Across Background Datasets (Recall@5/NDCG@5)
Datasets (Background) Yahoo (Music) Steam (Game) ML-1M (Movie)
GRU4Rec 0.0548 / 0.0491 0.0379 / 0.0325 0.0099 / 0.0089
SASRec 0.0996 / 0.0743 0.0695 / 0.0635 0.0132 / 0.0102
Bert4Rec 0.1028 / 0.0840 0.0702 / 0.0643 0.0215 / 0.0152
TIGIR 0.1128 / 0.0928 0.0603 / 0.0401 0.0430 / 0.0272
DreamRec 0.1302 / 0.1025 0.0778 / 0.0572 0.0464 / 0.0314
PreferDiff 0.1408 / 0.1106 0.0814 / 0.0680 0.0629 / 0.0439

We observe that the effectiveness of our proposed PreferDiff across datasets with different back-
grounds are validated.

F.2 COMPARISON ON VARIABLE USER HISTORY

we conduct additional experiments to evaluate the performance of PreferDiff under different maximum
history lengths {10, 20, 30, 40, 50}. Notably, since the historical interaction sequences in the original
three datasets (Sports, Beauty, Toys) are relatively short, with an average length of around 10, we
select two additional commonly used datasets Kang & McAuley (2018); Sun et al. (2019), Steam
and ML-1M, for further experiments. These datasets were processed and evaluated following the
same evaluation settings and data preprocessing protocols in our paper, which is different from the
leave-one-out split in Kang & McAuley (2018); Sun et al. (2019).

We choose another two datasets (Steam and ML-1M). The results are as follows:

Table 15: Performance Comparison on Steam Dataset (Recall@5/NDCG@5)
Model 10 20 30 40 50
SASRec 0.0698 / 0.0634 0.0676 / 0.0610 0.0663 / 0.0579 0.0668 / 0.0610 0.0704 / 0.0587
Bert4Rec 0.0702 / 0.0643 0.0689 / 0.0621 0.0679 / 0.0609 0.0684 / 0.0618 0.0839 / 0.0574
TIGIR 0.0603 / 0.0401 0.0704 / 0.0483 0.0676 / 0.0488 0.0671 / 0.0460 0.0683 / 0.0481
DreamRec 0.0778 / 0.0572 0.0746 / 0.0512 0.0741 / 0.0548 0.0749 / 0.0571 0.0846 / 0.0661
PreferDiff 0.0814 / 0.0680 0.0804 / 0.0664 0.0806 / 0.0612 0.0852 / 0.0643 0.0889 / 0.0688

Table 16: Performance Comparison on ML-1M Dataset (Recall@5/NDCG@5)
Model 10 20 30 40 50
SASRec 0.0201 / 0.0137 0.0242 / 0.0131 0.0306 / 0.0179 0.0217 / 0.0138 0.0205 / 0.0134
Bert4Rec 0.0215 / 0.0152 0.0265 / 0.0146 0.0331 / 0.0200 0.0248 / 0.0154 0.0198 / 0.0119
TIGIR 0.0451 / 0.0298 0.0430 / 0.0270 0.0430 / 0.0289 0.0364 / 0.0238 0.0430 / 0.0276
DreamRec 0.0464 / 0.0314 0.0480 / 0.0349 0.0514 / 0.0394 0.0497 / 0.0350 0.0447 / 0.0377
PreferDiff 0.0629 / 0.0439 0.0513 / 0.0365 0.0546 / 0.0408 0.0596 / 0.0420 0.0546 / 0.0399

From Table 15 and Table 16, we can observe that PreferDiff consistently outperforms other baselines
across different lengths of user historical interactions.
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Figure 9: Covariance Matrix Visualization of Learned Item Embeddings on Amazon Beauty.

F.3 WHY DREAMREC AND PREFERDIFF ARE SENSITIVE TO THE EMBEDDING DIMENSION?

Here, we will try to explain the reason. Since there is no robust theoretical proof at this stage, we
propose a hypothesis supported by simple theoretical reasoning and experimental validation.

We guess the challenge is inherent to the DDPM Ho et al. (2020) itself, as it is designed to be
variance-preserving as introduced in the following diffusion models Song et al. (2021b). For one
target item, the forward process formula with vector form is as follows:

Forward Process: et0 =
√
αte0 +

√
1− αtϵ Here, e0 ∈ R1×d represents the target item embedding,

et0 represents the noised target item embedding, αt denotes the degree of noise added, and ϵ is the
noise sampled from a standard Gaussian distribution.

Considering the whole item embeddings E ∈ RN×d, where N represents the total number of items,
we can rewrite the previous formula in matrix form as follows:

Et
0 =
√
αtE0 +

√
1− αtϵ

Then, we calculate the variance on both sides of the equation:

Var(Et
0) = αtVar(E0) + (1− αt)I

We can observe that the Var(E0) is almost an identity matrix. This is relatively easy to achieve for
data like images or text, as these data are fixed during the training process and can be normalized
beforehand. However, in recommendation, the item embeddings are randomly initialized and updated
dynamically during training. We empirically find that initializing item embeddings with a standard
normal distribution is also a key factor for the success of DreamRec and PreferDiff. The results are
shown as follows:

Table 17: Performance of Different Initialization methods on Various Datasets (Recall@5/NDCG@5).
Embedding Initialization Sports Beauty Toys
Uniform 0.0039/0.0026 0.0013/0.0037 0.0015/0.0011
Kaiming Uniform 0.0025/0.0019 0.0040/0.0027 0.0051/0.0028
Kaiming Normal 0.0023/0.0021 0.0049/0.0028 0.0041/0.0029
Xavier Uniform 0.0011/0.0007 0.0036/0.0021 0.0051/0.0029
Xavier Normal 0.0014/0.0007 0.0067/0.0037 0.0042/0.0023
Standard Normal 0.0185/0.0147 0.0429/0.0323 0.0473/0.0367

We can observe that the initializing item embeddings with a standard normal distribution is the
key of success for Diffusion-based recommenders. This experiment validates the aforementioned
hypothesis.

Furthermore, we also calculate the final inferred item embeddings of DreamRec, PreferDiff, and
SASRec. As shown in Figure 9, interestingly, we observe that the covariance matrices of the final
item embeddings for DreamRec and PreferDiff are almost identity matrices, while SASRec does
not exhibit this property. This indicates that DreamRec and PreferDiff rely on high-dimensional
embeddings to adequately represent a larger number of items. The identity-like covariance structure
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suggests that diffusion-based recommenders distribute variance evenly across embedding dimensions,
requiring more dimensions to capture the complexity and diversity of the item space effectively.
This further validates our the hypothesis that maintaining a proper variance distribution of the item
embeddings is crucial for the effectiveness of current diffusion-based recommenders.

We have tried several dimensionality reduction techniques (e.g., Projection Layers) and regularization
techniques (e.g., enforcing the item embedding covariance matrix to be an identity matrix). However,
these approaches empirically led to a significant drop in model performance.

We guess one possible solution to this issue is to explore the use of Variance Exploding (VE) diffusion
models Song et al. (2021b). Unlike Variance Preserving diffusion models, which maintain a constant
variance throughout the diffusion process, VE diffusion models increase the variance over time.

F.4 TRAINING AND INFERENCE TIME COMPARISON

Table 18: Training and Inference Time Comparison for PreferDiff and Baselines.
Dataset Model Training Time (s/epoch)/(s/total) Inference Time (s/epoch)

Sports

SASRec 2.67 / 35 0.47
Bert4Rec 7.87 / 79 0.65
TIGIR 11.42 / 1069 24.14
DreamRec 24.32 / 822 356.43
PreferDiff 29.78 / 558 6.11

Beauty

SASRec 1.05 / 36 0.37
Bert4Rec 3.66 / 80 0.40
TIGIR 5.41 / 1058 10.19
DreamRec 14.78 / 525 297.06
PreferDiff 18.05 / 430 3.80

Toys

SASRec 0.80 / 56 0.22
Bert4Rec 3.11 / 93 0.23
TIGIR 3.76 / 765 4.21
DreamRec 15.43 / 552 309.45
PreferDiff 16.07 / 417 3.29

In this subsection, we endeavor to illustrate the training and inference time comparison between
PreferDiff and baseline methods, as efficiency is critically important for the practical application
of recommenders in real-world scenarios. As shown in Table 18, Figure 10 and Figure 11, we can
observe that

• In PreferDiff, thanks to our adoption of DDIM for skip-step sampling, requires less training time and
significantly shorter inference time compared to DreamRec, another diffusion-based recommender.

• Compared to traditional deep learning methods like SASRec and Bert4Rec, PreferDiff has longer
training and inference times but achieves much better recommendation performance.

• Furthermore, compared to recent generative recommendation methods, such as TIGIR, which rely
on autoregressive models and use beam search during inference, PreferDiff also demonstrates shorter
training and inference times, highlighting its efficiency and practicality in real-world scenarios.

F.5 TRADE-OFF BETWEEN RECOMMENDATION PERFORMANCE AND INFERENCE TIME

As introduced in Subsection F.4, PreferDiff demonstrates significantly lower inference time compared
to DreamRec, averaging around 3 seconds per batch. However, this may still be unacceptable for
real-time recommendation scenarios with strict latency constraints. In this subsection, we aim to
show how adjusting the number of denoising steps can effectively balance recommendation
performance and inference time.

As shown in Figure 12 and Table 19, we observe that by adjusting the number of denoising steps,
PreferDiff can ensure practicality for real-time recommendation tasks. This flexibility allows for a
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Figure 10: Recall@5 and Total Training Time for PreferDiff and Baselines.
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Figure 11: Recall@5 and Inference Time for PreferDiff and Baselines.

trade-off between inference speed and recommendation performance, making PreferDiff adaptable to
various latency constraints while maintaining competitive effectiveness.

F.6 CONNECTION OF PREFERDIFF AND DPO

In Preferdiff, we aim to redesign a diffusion optimization objective that is specially tailored to model
user preference distributions for personalized ranking. Therefore, we reformulate the classic recom-
mendation objective Bayesian personalized ranking Rendle et al. (2009) to log-likelihood rankings
which meet the requirement of generative modeling in diffusion models. We are also surprisingly and
delightedly discovering that the one-negative-sample version of PreferDiff’s formulation, LBPR-Diff, is
indeed related to the recent well-known DPO Rafailov et al. (2023) which stems from Reinforcement
Learning with Human Feedback, as you have mentioned. To further validate the rationality of our
proposed LBPR-Diff, we intentionally aligned some aspects of our final formulation with DPO in terms
of mathematical expression.

However, there are significant distinctions between PreferDiff and DPO.
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Figure 12: Relationship of Denoising Steps and Recommendation Performance.
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Table 19: Adjusting Denoising Steps for Trade-Off Between Recommendation Performance and
Inference Time.

Datasets Sports Beauty Toys
SASRec (0.33s) 0.0047 / 0.0036 0.0138 / 0.0090 0.0133 / 0.0097
BERT4Rec (0.42s) 0.0101 / 0.0060 0.0174 / 0.0112 0.0226 / 0.0139
TIGER (12.85s) 0.0093 / 0.0073 0.0236 / 0.0151 0.0185 / 0.0135
DreamRec (320.98s) 0.0155 / 0.0130 0.0406 / 0.0299 0.0440 / 0.0323
PreferDiff (Denoising Step=1, 0.35s) 0.0162 / 0.0131 0.0384 / 0.0289 0.0437 / 0.0340
PreferDiff (Denoising Step=2, 0.43s) 0.0165 / 0.0133 0.0398 / 0.0309 0.0438 / 0.0341
PreferDiff (Denoising Step=4, 0.65s) 0.0177 / 0.0137 0.0402 / 0.0296 0.0433 / 0.0342
PreferDiff (Denoising Step=20, 3s) 0.0185 / 0.0147 0.0429 / 0.0323 0.0473 / 0.0367

Table 20: Comparison with DPO and Diffusion-DPO (Recall@5/NCDG@5)
Models Sports Beauty Toys
DreamRec + DPO (β = 1) 0.0031 / 0.0015 0.0067 / 0.0053 0.0030 / 0.0022
DreamRec + DPO (β = 5) 0.0036 / 0.0026 0.0053 / 0.0034 0.0036 / 0.0023
DreamRec + DPO (β = 10) 0.0019 / 0.0011 0.0075 / 0.0056 0.0046 / 0.0034
DreamRec + Diffusion-DPO (β = 1) 0.0129 / 0.0101 0.0308 / 0.0244 0.0324 / 0.0261
DreamRec + Diffusion-DPO (β = 5) 0.0132 / 0.0113 0.0321 / 0.0251 0.0340 / 0.0272
DreamRec + Diffusion-DPO (β = 10) 0.0133 / 0.0115 0.0281 / 0.0223 0.0345 / 0.0281
PreferDiff 0.0185 / 0.0147 0.0429 / 0.0323 0.0473 / 0.0367

•First, PreferDiff is an optimization objective specifically tailored to model user preferences in
diffusion-based recommenders. It is designed to align with the unique characteristics of the diffusion
process, ensuring its effectiveness in recommendation tasks. We also replace the MSE loss with
Cosine loss

• Second, unlike DPO and Diffusion-DPO Wallace et al. (2024), PreferDiff incorporates multiple
negative samples and proposes a theoretically guaranteed, efficient strategy to reduce the computa-
tional overhead of denoising caused by the increased number of negative samples in diffusion models.
This innovation allows PreferDiff to scale effectively while maintaining high performance, making it
well-suited for large-negative-sample scenarios in recommendation tasks.

• Third, unlike DPO and Diffusion-DPO, PreferDiff is utilized in an end-to-end manner without
relying on a reference model. In contrast, DPO and Diffusion-DPO require a two-stage process,
where the first step involves training a reference model. This significantly increases training overhead,
which is often unacceptable in practical recommendation scenarios.

To further validate the aforementioned distinctions, we conduct experiments on three datasets using
DPO and Diffusion-DPO. Specifically, we select β, a crucial hyperparameter in DPO, with values of
1, 5, and 10, and integrate it with DreamRec for a fair comparison. The results are shown in Table 20

We can observe that PreferDiff outperforms DPO and Diffusion-DPO by a large margin on all three
datasets. This further validates the effectiveness of our proposed PreferDiff, demonstrating that it is
specifically tailored to model user preferences in diffusion-based recommenders.
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