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ABSTRACT

Applications that generate topic-aligned output from large language models
(LLMs) are frequently limited by the computational intensity and lack of inter-
pretability of existing approaches, like fine-tuning. Recent work shows that Sparse
Autoencoders (SAE) applied to LLM layers have neurons corresponding to inter-
pretable concepts. These SAE neurons can be modified to align generated out-
puts, but only towards pre-identified topics and with some parameter tuning. Our
approach leverages the interpretability properties of SAEs to enable alignment for
any topic. This method 1) scores each SAE neuron by its semantic similarity to an
alignment text and uses them to 2) modify SAE-layer-level outputs by emphasiz-
ing topic-aligned neurons. We assess the alignment capabilities of this approach
on diverse public topic datasets including Amazon reviews, Medicine, and Syco-
phancy, across open-source LLMs, GPT2, and Gemma with multiple SAEs con-
figurations. Experiments aligning to medical prompts reveal several benefits over
fine-tuning, including increased average language acceptability (0.25 vs. 0.5), re-
duced training time across multiple alignment topics (333.65s vs. 62s), and accept-
able inference time for many applications (+0.00092s/token). Our anonymized
open-source code is available in the attached zip file.

1 INTRODUCTION

A typical application of general-purpose LLMs is producing topic-specific generated text, also
known as topic alignment. Existing approaches for topic alignment tend to use one of the fol-
lowing approaches: manipulating model input (e.g., few-shot learning, steering vectors, or prompt-
tuning (Liu et al., 2023))), the model as a whole (e.g., fine-tuning, retraining (Bereska & Gavves,
2024)), or model output (e.g., output validation (Jarvis, 2023)), regeneration, or filtering). As the
costs (Weng, 2024} Kaplan et al.l |2020) and interpretability challenges (Thirunavukarasu et al.,
2023)) associated with these existing approaches continue to scale (Villalobos et al.), they become im-
practical for applications that have multiple or changing alignment topics (Wu et al.}|2024), that need
some human control over the generation process, or that face precise, layer-level attacks (Mishra
et al., 2024).

Recently, Sparse Autoencoders (SAEs) have been used as observational tools to make LLM compu-
tations more interpretable. When attached to an LLM layer, these SAEs decompose the layer output
into SAE neurons corresponding to individual topics (e.g., the Golden Gate Bridge (Templeton,
2024)). Using SAEs for topic alignment can be promising because they provide:

Computational Efficiency Precise alignment approaches make fewer changes to the model, so they
are likely to be more efficient. As LLM neurons encode multiple, unrelated concepts, known as
polysemanticity (Bereska & Gavves |2024)), directly manipulating them could lead to contaminated
outputs. Modifications at the next tier up in the layer-level may be feasible and more efficient than
the existing heavy-model editing alignment approaches.

Increased Control Recent research shows that SAE neurons can separate LLM layer outputs, which
contain many concepts, into their corresponding human-interpretable concepts. Modifying these
layer-level SAE neurons can align the eventual LLM outputs with more control than opaque ap-
proaches that may unexpectedly produce unaligned outputs.
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Figure 1: (a) shows how existing approaches make extensive changes to LLM weights during topic
alignment, and (b) shows how our proposed approach aligns text to different topics by modifying
aligned SAE neurons.

Although recent works have hypothesized that SAEs can be used for general topic alignment. (Gao
et al.l 2024} [Templeton, [2024), there are methodological gaps. First, to the authors’ knowledge,
there is no method to automatically identify alignment neurons relevant to a topic from the large
potential set of SAE neurons (M1). Second, no current methods manipulate SAE neurons for topic
alignment in a context-sensitive way (M2). Additionally, for SAE topic alignment to be a viable
alternative to fine tuning, it must address current limitations. First, methods must be able to work
with any SAE and LLM (C1) because SAEs have vastly different representational power (as we
show in Fig. [3). Methods should also provide an uncertainty metric that quantifies the alignment
modification across different tokens (C2). Finally, methods should produce quality output without
compute-intensive parameter tuning (C3ﬂ Accordingly, the main contributions of this paper enable
SAE topic alignment by:

1. Introducing the first methods using SAEs for topic alignment by identifying & modifying
SAE activations for any set of alignment topics without parameter tuning.

2. Quantifying uncertainty using a new metric that measures how aligned token output is.

3. Performance evaluation over multiple experiments across different SAEs configurations,
three public topics datasets, including Amazon reviews, Medicine, and Sycophancy, and
across open-source LLMs, such as GPT2 and Gemma. We observe promising results for
topic alignment using correctness metrics, like increased language acceptability, and effi-
ciency metrics, like reduced training time.

2 RELATED WORKS

While many related works surface alignment topics within generative models (including recent
works like |Chen et al.; |Stoica et al.| (2023)), few provide precise, interpretable modifications for
text generation like an SAE approach. In this context, we examine the limitations of other precise
methods that, like SAEs, come from an interpretability subfield called mechanistic interpretability
(MI). These methods focus on reasoning for neuron-level calculations.

Logit-lenses and layer-level observational mechanisms: Directly applying these observational
MI approaches for topic alignment is difficult. Many samples could be needed before identifying
possible alignment pathways, which would be impractical for general topic alignment tasks. SAEs
have an advantage here because they uniquely act as both an observation and modification mecha-
nism (Bereska & Gavves, [2024).

Probing and modified vectors: These layer-level approaches modify outputs towards a specific
concept (e.g., ‘weddings’) (Zou et al.}|2023; [Han et al.; Turner et al., |2023). Approach limitations
include the possible concepts represented, the uncertainty associated with the outputs, and the cost
of training/verifying these probes across many concepts (Bereska & Gavves|,2024; Belinkov, [2021).
Recently, (Conmy & Nanda|(2024)) explored using SAE:s to filter unaligned concepts from the steer-
ing vectors (by muting unrelated SAE neurons). This filtering approach could address some of the

!"These methodological limitations and constraints are apparent while using the Gemma steering prototype
from Neuronpedia (see Appendix: Fig. ) (Neuronpedia, ja).


https://www.neuronpedia.org/gemma-scope##steer

trust limitations for steering vectors, but generalizability and uncertainty limitations remain. Never-
theless, (Conmy & Nanda| (2024)) uncover a valuable insight — SAE modification using set values is
very similar to steering vectors (Turner et al.l | 2023)) because they both produce additive vectors for
layer-level output.

SAEs are well-suited to address the limitations of other MI approaches and thus enable precise
topic alignment. First, using SAEs with any model and any model layer is practical. There is
already considerable investment in using SAEs across LLMs to observe the computational ‘thought
process’ during token generation (Huang et al.l 2024; Marks et al., [2024)), and it would be efficient
to reuse these SAEs for alignment as well. Second, SAEs learn different topics/concepts jointly
(e.g., concrete nouns, syntax, more abstract concepts) instead of one at a time like modified vectors.
Third, because the SAEs can be used at calculation within a layer, placing it at the multi-layer
perceptron matches the intuition that alignment should occur (McDougalll 2023 where the model
refines its output process for next token generation (Bloom, 2024)). Given these benefits, this research
aims to enable SAE for topic alignment by addressing the aforementioned methodological gaps and
constraints.

3 METHODS

Our approach addresses methodological gaps in using SAEs (see Fig. for topic alignment by
scoring how semantically similar SAE neurons are to an alignment topic and using those scores to
select SAE neurons that contribute aligned output (see Fig. 2b). We also provide an uncertainty
metric, contamination, quantifying the SAE modifications for output topic alignment.
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Figure 2: (a) SAEs take layer output, encode it into interpretable SAE neurons, and decode it back
into a dense representation. (b) We calculate the similarity of each neuron in the hidden layer of the
SAE to Py;i4 and alter the token’s activations proportionally.

SAE Mechanics As shown in Fig. SAEs process tokens. These tokens come from prompts
p € Py in a set of prompts. As tokens from a prompt, p;, pass through the model, they have a
dense latent representation, z(p;). At layer [, the SAE takes the dense representation input z(p;)
and encodes it into a higher dimension using encoding matrix E with dimensions [djqtent, Ahidden]-
This encoding process disentangles the dense polysemantic representation with multiple concepts
into one where each SAE neuron ¢ in the SAE’s hidden layer, h;, should correspond to a single con-
cept (Bereska & Gavves, [2024) F| with a preactivation value: v(p;); = (x(p;) - E);. Then, an activa-
tion function, o, only selects some of these neurons to contribute to the final output: o(v(p;)) (e.g.
o=Top-32k, where only the top 32 values from ~y(p;) are nonzero). The non-zero post-activation
neurons are decoded using D with dimensions [dpidden > diatent] and the resulting dense token
output, 2’ (p;) = o() - D is processed through the model.

Templeton| (2024)) use this SAE setup for steering. They clamp select SAE neurons’ post-activation
values high, and, because the contribution to the decoded dense representation is higher, that neu-
ron’s topic empirically has increased representation in the model output. However, using that ap-
proach for topic alignment more generally is complex because of the number of SAE neurons

*Multiple reports have demonstrated this disentanglement processes across different LLMs (Cunningham
et al.,[2023} |Bricken et al.; Kissane et al., [2024).



(dhidden) and the semantic context that different neurons activate on. First, there could be multi-
ple neurons that encode the same concepts with slight contextual nuances (e.g., Anthropic’s neuron
cluster for sycophancy (Sharma et al.| 2023))) or neurons that need to co-activate for a desired out-
put. Second, SAEs may have neurons that are still polysemantic and introduce some contamination
into the output (some examples shown in Table . Notably, SAE neurons do not represent oppo-
site concepts (e.g., truth and lie are separate neurons), so modifying SAE neurons can upregulate
the presence of a topic, but clamping the neuron to O does not necessarily negate that topic. Thus,
an automated method that scores SAE neurons by their semantic relevance could penalize both con-
textually irrelevant and polysemantic neurons without requiring manual SAE neuron identification
for each alignment topic and token context. These scores can then be used to align tokens in a
contextually-sensitive way so that alignment occurs on tokens that are easy to align vs. those that
are not (e.g., syntax tokens).

SAE Viewer | Examples of seemingly unrelated topics that activate same SAE neuron

GemmaZ2b -based on appellee ’s breach -four Gaelic festivals

(Neuronpedia, b) | _south side of the chancel are -extensive spectroscopic coverage

GPT (OpenAl) - ﬁsh-spawr.ung ztreas - transmission lll‘IG.ES , pipes
-expenses like alimony , payments -alarm clocks or instant messengers

Claude - MeV) i [* Nu cl. Phys.*] -Spanish m iqu elitos

(Anthropic) - brett’s Et iqu ette and - joice in in iqu ity

Table 1: Examples of polysemanticity, where a single neuron activates on unrelated topics, shown
in bold (e.g., Gemma on tokens corresponding to astronomy, culture, and legal).

3.1 METHOD 1: SAE NEURONS SEMANTIC SIMILARITY TO ALIGNMENT TOPICS SCORES

With the premise that SAE neurons activate highly on only concepts related to P;,, are alignment
candidates. We could observe the SAE neurons that activate on tokens from P;4, is a straightfor-
ward approach to identifying alignment neurons; we call this the Strawman Approach. However,
given how few tokens IPy;;4y, typically contains compared to the thousands of SAE neurons, there is
no way to determine how polysemantic an activated SAE neuron is or identify similar neurons that
would also be useful for alignment but did not activate on tokens.

Our proposed approach addresses these challenges by using a large reference set, P,y with many
concepts or topics. By independently processing prompts in P..r, each SAE neuron 1) likely has
at least some tokens it activates, and prompts in IP,.. s that are similar to P4;;4,, can be used identify
2) other relevant alignment neurons. This baseline can then be used to identify and penalize SAE
neurons activated with tokens as follows:

* Aligned neurons have high activations only when prompts are close to Pq;gp.

* Polysemantic neurons have prompts close and far activate high.

* Unaligned neurons have prompts that are far and activate high.
Thus, for a score to quantify if an SAE neuron only activates highly on concepts related t0 Pqy;gp,
we want to penalize neurons that fire highly on distant prompts. However, because SAE activations

occur at the token level and distances are calculated at the prompt-level, we need both a prompt-level
activation calculation and prompt-level distance from Pg;gs,.

Summarizing Prompt-Level Activations Tokens that pass through the SAE activate specific neu-
rons, but prompts contain a variable number of tokens. Prompt-level activations should correspond

3This limitation is explicitly expressed by |Gao et al.|(2024), “A large fraction of the random activations of
[SAE neurons] we find, especially in GPT-4, are not yet adequately monosemantic.”



to the semantic relevance of an SAE neuron to Pg;4r, so our approach normalizes the sum of neu-
ron activations over all tokens and outputs a vector of prompt-level activations per SAE neuron:

summary(p) = 3, o(v(p;)) /g where g = S>"4" S 5(~;(py))

Calculating Prompt-Distances Prompts of different lengths can be compared using sentence-
level embeddings (e), to summarize prompts into a single vector, and a distance metric (dist), to
calculate distances between vectors. The output prompt-level distance for a prompt in P,.. ¢ is the
minimum dist to any element in Py, min {dist(e(p), e(p’)) VD € Patign, 0’ € Pres}

To distinguish between aligned, polysemantic, and unaligned SAE neurons, we use the weighted
variance equation (NIS|[1996), where E[dist] = 0 for a perfect neuron.

| _ 2 (summary(p); * dist(p,p'))
g(hi) = > summary(p); v

p/ € Palingp € ]P)hi (1)

(9(hi) — min(g(hs)))
(max(g(hi)) — min(g(hs)))

score(h;) =

(2
Higher scores (between 0 and 1) for SAE neuron h; means increased relevancy to topics in Palignﬂ

3.2 METHOD 2: MODIFYING SAES WITH ALIGNMENT SCORES

The alignment scores calculated in Sec[3.T|for each SAE neuron can now be used to modify incom-
ing tokens to different alignment topics in a contextually sensitive way.

Clamping Approach (Baseline) Based on the insights from Conmy & Nanda| (2024), forcing a
specific feature to be clamped high, as. [Templeton| (2024) have previously done, is akin to creating
a steering vector. We use this idea as a baseline, where the 5 SAE neurons with the highest scores
are clamped to 10x their value (inspired by [Templeton| (2024)).

However, determining this clamping value is nontrivial and if it is too high or low, it produces
garbled output. Instead of parameter tuning per application, our approach modifies 7y (p;) so that the
SAE neurons selected post-activation are more aligned and still match the token’s context.

Swap Approach (Proposed) As shown in Fig. the SAE decomposes the layer-level token out-
put into preactivation values. Weighting these values by alignment scores can change the SAE
neurons selected after the activation function. However, large modifications to preactivation values
can lead to garbled output. Instead, our approach uses the indices of the modified SAE neurons
post-activation with the original preactivation values, as shown below, before the decoding step.

o' (v(pe)) =T (v(pe)i) # 0)] - ¥(pe) 3)

In contrast to vector-based steering and clamping, the additive vector in this proposed approach
changes based on the token context. We can quantify how related the generated output is to Pgign
by multiplying final activations by ‘unalignment scores’, (1-scores), which we call contamination
= ~v(pt) * (1 — score(h;)). Through these methods, we address existing gaps in identifying SAE
alignment neurons (M1) and using them to modify output (M2) while meeting the constraints be-
cause these methods are SAE agnostic (C1), lend naturally to the contamination uncertainty metric
(C2), and do not rely on parameter tuning (C3).

3.3 SAE PRELIMINARIES AND IMPLEMENTATION DETAILS

As open-source SAEs (Gao et al.| [2024; [Lieberum et al., [2024) have only recently been released,
there is little exploratory work on the representational power of different SAEs, a prerequisite for
alignment.

Our PP, construction samples 1500 prompts across 660 tasks in HuggingFace’s P3 dataset (Sanh
et al., 2021)) to form a pool of nearly 1 million prompts spanning different topics. For the prompt

*(g(hs)) can be used to compare SAE representation power across different alignment topics.
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Figure 3: Comparing different SAEs and the coverage of different neurons across different sizes of
P, s. Error bars represent the max and min values across 5 random samples of that size.

embedding e, we used sentence transformer (Reimers & Gurevych, [2019), and for dist, we used
Euclidian distance.

To study SAE representation ability, we sample 5 P, sets with different sizes (with replacement)
and exclude the <endoftext> token from each prompt so that they are not overrepresented in gener-
ated outputs. As seen in Fig.[3] the number of neurons activated varies widely by SAE specifications,
including the underlying model and layer, activation function (o), and number of neurons in the hid-
den layer. Notably, most smaller layer 0 SAEs cross above 0.99 coverage around only 2'4 ~ 8K
prompts, whereas other SAEs from different layers have less coverage for the same number of
prompts. These less representative SAEs likely have more neurons that only activate under rare
circumstances or are dead (Gao et al., 2024; Templeton, |2024)). If a neuron does not have enough
prompts activated on it, we cannot adequately identify how polysemantic/unaligned it is, so we do
not consider neurons where less than 20 prompts have been activated.

4 EXPERIMENTAL RESULTS AND ANALYSIS

Our evaluation focuses on the 1) SAE neuron scores, 2) layer output, and 3) full model-generated
output. We highlight results on the medical datasets because the presence of domain-specific termi-
nology is an indicator of topic alignment. See Appendix for additional ablation studies over:

* SAE Specifications LLM model (GPT, Gemma), Layer of LLM, Parameters in SAE, SAE
loss function/parameters, # of neurons in SAE.

* Score Calculation, specifically design choices for prompt-level summaries.

* Alignment Texts Topics - (P3: Amazon (Sanh et al., 2021), Medical (Gamino)), Shoes (
Generated), Sycophancy (Rimsky et al.,[2023))) Format - (6 prompts, 20 prompts).

4.1 SAE NEURON ALIGNMENT SCORES

Our validation approach for scoring (M1) is inspired by the SAE neuron scoring strawman approach
in Sec [3;1'} Recall that IPy;;4y, is never directly used during neuron scoring due to polysemantic and
multiple similar neurons. By reversing this approach and calculating how many of a subset of the
top—k scoring SAE neurons also activate on [Py;4,, vs. an unaligned dataset (HuggingFace, b), we
no longer face challenges due to polysemanticity and small token sample.

Results in Fig. |4 show that, as expected, a higher percentage of tokens from Pg;4, (the medical
dataset) activate on top—k scoring neurons than the unaligned text. The value of k at where the
differences between the datasets become apparent (greater than 0) varies with the representative
power of the SAE (Fig.[4a)). Further, the tokens in either text, which are firing on the top—k neurons,
are still topically aligned (Fig. , showing that the top-scoring neurons are similar to Py;;4y,.
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Figure 4: Top—k evaluation for medical prompts. In (a), we observe that aligned text (purple)
generally activates higher than the unaligned text (black) on the top—k neurons. (b) shows tokens
that activate on the top—k highest scoring neurons are generally words associated with the alignment
topic.
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Figure 5: (a) shows that Clamp is not sensitive to incoming token context. While we can observe in
(b) that Swap varies the number of neurons changed, which reflects that it accounts for token context
and feasible alignment potential.

4.2 LAYER-LEVEL OUTPUT

Validating the immediate output of SAE modifications using alignment scores (M2) involves com-
paring Clamp and Swap methods with the unmodified SAE (Fig.[3). First, at a neuron level, Clamp
has a static number of different neurons as we always force the changes for 5 neurons, while Swap
has a distribution. Fig. [5]also shows that Swap makes more neuronal changes when the text is al-
ready aligned. This could be because having alignment scores between 0 and 1 yields changes in
the post-activation SAE neuron set only when candidate neurons have high preactivations and high
scores vs. unaligned tokens having high preactivations on SAE neurons with lower, non-zero scores,
so the Swap multiplication does not change the postactivation SAE neurons selected.

Second, for layer-level modified outputs, we consider the following metrics, as shown in Fig. [6}

¢ Difference in Reconstruction Error (]) Difference between the reconstruction error of
the modification output (Modif vs. Orig) and the SAE output (SAE vs. Orig). Values less
than 0 mean that the modification more closely matches the original token than the SAE.

¢ Contamination (]) As described in Sec. @ it is a function of the post-activation neurons
and measures modification misalignment.
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Figure 6: Generally, the difference in reconstruction error for the modifications is less for aligned
tokens than unaligned tokens. In Swap (b), we see lower contamination as a metric of uncertainty
than with Clamp (a), which means that the neurons firing have higher alignment scores with Swap
than Clamp. Special tokens not visualized.

In Fig. [6] the unaligned text has a higher difference in reconstruction error because the the more
generic SAE trained to reduce reconstruction error should better represent the unaligned text while
the SAE modifications should better represent the aligned text. We have excluded special tokens
from our analysis, which had very high reconstruction error with our modifications. We hypothesize
this is because we removed these special tokens during our scoring process, but they were included
while training the underlying SAEs. This could be why the tokens with the lowest/highest differ-
ences in reconstruction error are the same between both mechanisms. Still, in the Swap approach,
we tend to notice lower contamination (x-axis in Fig.[6b), which is in line with our expectations that
Swap is better able to align layer-level output based on our alignment scores.

4.3 GENERATED OUTPUT

Lastly, we evaluate the full model outputs of our modification method (IM2) to a fine-tuning approach
using the following metrics:

 Perplexity () This is a standard metric of unexpectedness for next token generation, also
used by |(Conmy & Nandal (2024); [Turner et al.| (2023).

 Linguistic Acceptability (1) A measure of how acceptable the generated text structure is
using pretrained models trained for this task (Warstadt et al.,[2019).

* Distance from PPy;;,, (1) Using prompt-distances described in Sec. @ to determine min
distance of the generated text from Pg;gp.

We compare our approach to an out-of-the-box fine-tuning method, adapted from HuggingFace|(a),
and generated 64 tokens per prompt with a top-k value of 5. To demonstrate alignment power,
our input prompts were common medical metaphors (see Appendix for full prompts), as we expect
that the general-purpose LLM would generate text related to the metaphor, while the alignment
approaches should generate medical text. Our results in Table [2] show that approach performance
depends on the underlying SAE’s representational power:

Further, based on our generated text results in Table 2, we note that there are better metrics for
alignment than perplexity, especially in domains with jargon. The fine-tuned approach has very high
perplexity because the next predicted token in medical text is highly unexpected (and likely suffers
from some numerical instability). Another reason this metric is limited is because it favors Clamp,
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Table 2: Results for different metrics across SAE layers.

which tends to only produce meaningless, repetitive text, as reflected by the Linguistic Acceptability
(COLA) metric. Also, the distance from Pg;;4,, is smallest using fine-tuning, but Swap, when the
underlying SAE generates meaningful text (Layer 0), is second. Finally, the contamination metric
provides some confidence that the Swap method relies more heavily on SAE neurons with higher
alignment scores than the Clamp approach. These results demonstrate the potential of using SAEs
for topic alignment.

4.4 COMPUTATIONAL COSTS

Finally, the computational costs of this proposed approach support that it is worth investigating as a
practical alternative to fine-tuning. Most of the training cost is a one-time set-up cost, as shown in
Table 3} Our implementation used PP,y with 8K tokens and Pgy;4, with 800 tokens that is broken
down in Table[d Further, while fine-tuning appears quite efficient at inference time (Table [3), there
is an overhead because our implementation relies on packages like Transformer Lens instead of
natively implementing PyTorch hooks. This is demonstrated by the gap between inference times
for the SAE Original approach and the Fine Tuning approach. Thus, when comparing Swap and
Original, there is a difference of 0.059s to generate 64 tokens. Still, while Clamp appears to take
more time, we attribute this to implementation choices converting between types as an optimized
version should take less time than Swap.



SAE Approaches

Compute ‘ Fine Tuning ‘ Original SAE Clamp Swap
Set-Up | N/A \ All are 12.4m
Per Task | 333.6s \ All are 62s
Prompt 0.399 £ .0009 | 6.204 +£0.017 6.235+0.019 6.639 £ 0.023 6.263 £ 0.014
Inference
Table 3: Computational costs for training/inference across approaches.
Task Breakdown | Type | s/Per Token | SAE Approaches
Ref Embeddings Set-Up, Parallel 0.07+0.001 10m
Ref Latent Generation Set-Up, Parallel 0.02+0.001 2.4m
Align Embeddings Per Task, Parallel 0.07£0.001 56s
Distance Generation Per Task, Sequential 3e %+ 1e 6 2.4s
Scoring Per Task, Sequential | 4e~%443e~° 3.72s

Table 4: Compute breakdown for SAE Set-up and Per Task in Table 3.

5 DISCUSSION AND CONCLUSION

This work enables topic alignment using SAEs by proposing new methods to address gaps. These
methods involve calculating alignment scores for each SAE neuron and modifying the SAE outputs
in a contextually-sensitive way with no parameters. With a competitive correctness performance and
computationally efficient inference-time modification that takes less than 0.001s/token on average,
the proposed approach is promising due to the interpretability properties of the SAE, quanifiable
uncertainty, and lack of parameters. By unlocking topic alignment using SAEs, this work enables
using SAE alignment as a tool to study other interpretability questions and use in applications where
alignment topics change often. These results inspire research directions closely tied to exciting
interpretability challenges like:

* Designing P,..¢: To reduce one-time compute costs, is there a better way to design P;.. ¢
using contrastive approaches? How can we design it so that potential Py;;4,, topics will be
very close to some P,y prompts and very far away from others?

* Engineering SAE modification: SAE representational power varies by layer and training
choices. Which layers (if not all) should use SAE steering for alignment? When should
outputs be used? These questions tie into literature about LLM self-repair in mechanistic
interpretability (McGrath et al., [2023).

* HAI Perspective: This approach uses a large volume of data modifications. Can users use
approaches like (Cho et al.|(2024) to understand the impact of the SAE modifications in
their applications?

Further, research into improving the representational power of the underlying SAEs, testing on rare
alignment topics, and studying patterns of coactivation can further the potential of using SAEs for
topic alignment as an alternative to fine tuning. Finally, it is worth noting that this approach can
also address other limitations with fine-tuning (e.g., where privacy is essential, as IPy;;4,, tokens are
never directly used for scoring, or when there are too few examples for successful fine tuning) and
warrants exploration on these dimensions as well.
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A APPENDIX

Reproductibility Statement: Please find our open-source code in the attached zip file, implemented
in PyTorch. Additional implementation details are provided in Sec[3.3] Experiments were conducted
using NVIDIA V100 Tesla GPUs. For the synthetic “Shoes” dataset, we prompted an LLM with,
”Generate 20 prompts related to shoes, separated by a comma”, which we post-processed for syntax
errors. All code and supplementary materials are released under the MIT License.

A.1 ADDITIONAL JUSTIFICATION

As we focus on text generation, we do not compare with approaches related to other fine-tuning and
alignment goals, such as high performance on a certain type of task (e.g. classification) or correcting
how knowledgable, ‘truthful’, or factual models are, which have a rich body of supporting literature
(Xu et al.| 2023}, [Zhang et al, 2023 [Hadi et al, 2023} Wang et al.,[2023). Additionally, while there
is continued exploration in identifying circuits of LLM neurons, that line of work is nascent and not
ready for alignment applications without additional circuit discovery [Tigges et al.|(2024).

Specifically for alignment, we believe that existing approaches for alignment are limited, as shown
in Fig. [7} and that the issues of polysemantic neurons and SAE representativeness are here to stay.
First, there are far more concepts than the tens of thousands of hidden layer neurons in small SAEs,
of which some ‘dead neurons’ do not activate on any large corpi of tokens (2024). Thus,
many SAE neurons likely encode multiple concepts, especially in very rare cases. Increasing the
width of SAEs is a popular research direction, but there are computational limits on training using
current approaches. Additionally, if the SAE is too wide, it may learn concepts that are not present
in the LLM, making resulting alignment mechanisms difficult.

Three Steering Challenges

[ per— strong (===
— - e
ey ———
S ouam e s st
o Too Wech Kareel e LIS TERTEY
o Hamer mmw
1. Identifying Relevant 2. Insightful Modification 3. Reasoning About Output
Features Across SAE Processes Quality

Figure 7: Recently released Gemma SAEs (EI) can be used for steering at , but face
three challenges emblematic of current research gaps our approach aims to address.

Histogram of Tokens Firing/Neuron Across 1M Prompts Tokens Distribution Across 1M Prompts
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Figure 8: Most neurons activate on many tokens, but the number of tokens can vary widely across
prompts.
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As shown in Fig. [8] coverage is not uniform, with the vast majority of neurons activating on large
numbers of tokens.

A.2 DESIGN CHOICES FOR SCORING CONFIGURATIONS

For different combinations of SAE configuration and topic , we generated a score file, where each
score summarizes prompt-level activations and distance graphs that look like the graphs in Fig.[9]

Quantile 0: Score: 0.066 Quantile 25: Score: 1.241 Quantile 50: Score: 1.588 Quantile 75 Quantile 100
0.004 L4

0.003
0.002 .

0.001

Activation @ Layer 0

0 0.5 1 15 0 0.5 1 1.5 0 0.5 1 0 0.5 B L5 0 0.5 1 15

Distance

Figure 9: Examples of prompt-level activations across different SAE neurons in Top-k Layer 0, with
a toy P,y where n=2K (vs. 8K) for visualization purposes.

The respective violin plots of scores across the various configurations are shown in Fig. [I0} Across
models and topics, the score histogram’s shape changes significantly due to SAE neuron coverage
(see Fig. 3) and relevance. Across formats, we see that as there are more prompts, the scores shift
up. This reflects that the more prompts there are, the smaller the min distance between prompts in
P,es and Pgj;4,, wWhich in turn increases the average score. This phenomenon reflects that there
are more neurons that can be considered relevant to a larger set of Pg;4,. While the differences
across prompt-level activation functions are difficult to visibly discern, we conducted a Kendall-Tau
similarity test across combinations of the activations to discern how the relative ordering of neurons
by similarity change with different distance functions, and across combinations this order is different
(avg. Kendall Tau score 0.741).

6 Prompts

Sum Count Max 20 Prompts

Gemma
L0 Layer 16K 10
0 Layer 0

Top-k

GPT32K GPT32K
Layer 0

GPT 32K
Top-k
Layer 6

Amz  Med Shoes Syco Amz  Med Shoes Syco Amz  Med Shoes Syco

Figure 10: Scores across different listed configurations

Choice of dist: For four topics from the P3 set relatively individual tasks (Amazon, Yelp, IMDB,
and Wikipedia), we sampled 20 prompts and calculated inter and intra-Euclidian distance metrics as
shown in Table
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Task

Text Excerpt

| Compare

Inter-Topic Excerpt

Amazon

Amazon

Amazon

Amazon

ER)

I purchased these deck of
cards[...]layout or spreads are
too big, and it comes with a lil
booketlet not really a booklet [...]
do a reading for a man and women
[...] Very disappointed”

” 1 guess there are times when the
majority of the reviews do not live
up to the movie. This movie was
horrible to say the least. Horrible
plot, acting, and props. Don’t waste
your time on this on, not even if you
watch it for free.”

” T guess there are times when the
majority of the reviews do not live
up to the movie. This movie was
horrible to say the least. Horrible
plot, acting, and props. Don’t waste
your time on this on, not even if you
watch it for free.”

”This is a good read. A little slow
at times. I recommend the entire
Tucker Mills series.

Yelp

IMDB

IMDB

Yelp

Table 6: Distance Examples

”I used to go here for tech books a
lot. I went in and the section for
tech books is half the size it used
to be, completely disheveled, and
contains no organization beyond the
dummies books”

”[..]This is one of the most point-
less films ever made. [...] Its a won-
der that it was ever put on video.[..]
Surely this film is a waste of the
money used to create it, and a waste
of anyone’s time watching it.”

”Can only be described as awful.
[...] impossible to believe that it can
get worse - but fear not because it
does.[...] script is worse than the
acting or whether the directing is
worse than both. [...] Lucky it only
cost me $1 to hire.

”ALWAYS very consistent. Food is
ALWAYS good [...] So yummy” ”

Task Distances
Intra-topic Inter-topic
Yelp 1.357 £0.005 1.128 +0.04
Wiki 1.412 £0.004  1.144 +0.041
Amazon 1.34+£0.006 0.95£0.04
IMDB 1.34 £0.005  1.00 £0.04

Table 5: Distance Metric Evaluation

A.3 SCORING OUTPUT
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Figure 11: Additional Top-K Scoring Alignment Configurations (2 of 3)
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Top-K Neurons Fired at Least Once Across
Layers Aligned and Unaligned Texts
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Figure 12: Additional Top-K Scoring Alignment Configurations (3 of 3)

We found the distance metric reasonable because the intra-topic distance was less than the inter-topic
distance per topic. Still, some examples of prompts from different topics had a distance less than the
maximum distance between intra-topic prompts. Upon inspection, these distances still made sense
because even though they were from different tasks, they discussed similar topics, as shown in Table
6

Generally, as shown in Fig. [TT|and[T2|IP,;g, activated more on top scoring prompts than Po,azigned
but this varied by the topic and model.

A.4 LAYER-LEVEL OUTPUT

An ablation for the Swap method uses the SAE neuron alignment scores and multiplies them by the
token activations without applying the masking step we use for Swap. However, this approach leads
to high instability, as seen in the difference in reconstruction error in Fig.[T3]

Difference in Reconstruction Error for SAE GPT Top-k 32K Layer 0
Clamp Weight (Ablation) Swap

0.15 0.2

0.03
0.1 0.02 M Aligned
N" | Il Unaligned
0.05
0 e .|M“WM 0 thmH“ } “ W‘H‘IMWW 0 e
-10 -5 100 200 -10

Figure 13: Results show an ablation of Swap without the mask and only using the new score-
weighted SAE neurons (Weight). Unlike the other approaches, the range of difference in recon-
struction error is far greater than 0, suggesting this is a poor modification mechanism.

A.5 GENERATED OUTPUT

The prompts for the medical metaphor texts are:

1. What should I do about my heart of stone
2. What should I do about my heart pains
3. What should I do about tough skin
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. How should I keep someone on their toes
. Should I shoulder the blame for

. Can I foot the bill

. Do I have an eye for

. My rule of thumb is

O 00 N N L b

. My heart is broken so I should
10. T'have a cold so I should
11. T have a stiff upper lip so

12. T have butterflies in my stomach so I should

We provide additional correctness metrics for aligned prompts (from |Gamino) and unaligned
prompts (from [HuggingFace| (b)) in Tables[7]and [§]

Aligned Text
Metric | FT Orig. | Layer | SAE Clamp Swap
COLA ‘0.2510.19 0.6 +0.22 ‘ 2 ‘ 06‘81002(2)8 003(;51002()1 88?%%
mee | 13005 1145004 | ¢ | ST syt 115001
Table 7: Generated text using prompts from (Gamino}, which are aligned already.
Unaligned Text
Metric | FT Orig. | Layer | SAE Clamp Swap
con [0 wasors | b | i gl g
D e o] 0| LT (sEmT Ton

Table 8: Results for different metrics across SAE layers
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