
Retrieval-Augmented Layout Transformer
for Content-Aware Layout Generation

Daichi Horita1 Naoto Inoue2 Kotaro Kikuchi2 Kota Yamaguchi2 Kiyoharu Aizawa1

1The University of Tokyo 2CyberAgent
{horita,aizawa}@hal.t.u-tokyo.ac.jp

{inoue naoto,kikuchi kotaro xa,yamaguchi kota}@cyberagent.co.jp

Abstract

Content-aware graphic layout generation aims to auto-
matically arrange visual elements along with a given content,
such as an e-commerce product image. In this paper, we ar-
gue that the current layout generation approaches suffer
from the limited training data for the high-dimensional lay-
out structure. We show that a simple retrieval augmentation
can significantly improve the generation quality. Our model,
which is named Retrieval-Augmented Layout Transformer
(RALF), retrieves nearest neighbor layout examples based on
an input image and feeds these results into an autoregressive
generator. Our model can apply retrieval augmentation to
various controllable generation tasks and yield high-quality
layouts within a unified architecture. Our extensive experi-
ments show that RALF successfully generates content-aware
layouts in both constrained and unconstrained settings and
significantly outperforms the baselines.1

1. Introduction
Layout is an essential part of graphic design, where the
aesthetic appeal relies on the harmonious arrangement and
selection of visual elements such as logos and texts. In
real-world creative workflows, such as posters [13, 36] and
magazines [20, 49] creation, designers typically work on a
given subject; for example, creating an advertising poster
of a specific product. We call layout generation under such
conditions content-aware layout generation, where the goal
is to generate diverse yet plausible arrangements of element
bounding boxes that harmonize with the given background
image (canvas). Recent studies [52, 53] show that generative
models can produce content-aware layouts that respect aes-
thetic principles, such as avoiding overlaps [13]. However,
generated layouts often still suffer from artifacts, including
misaligned underlay embellishment and text elements. We
hypothesize that current approaches based solely on gen-
erative models do not scale due to the scarcity of highly
structured layout data. Unlike public images on the Web,

1Our project page is available at https://udonda.github.io/RALF/

Input image Output layouts
Retrieved examples

Figure 1. Retrieval-augmented content-aware layout generation.
We retrieve nearest neighbor examples based on the input image
and use them as a reference to augment the generation process.

curating a large dataset of layered graphic designs is not a
viable solution since designers typically create their work in
proprietary authoring tools, such as Adobe Illustrator [1].

Inspired by the fact that designers often refer to existing
designs [17], we propose a retrieval-augmented generation
method to address the challenges in the layout domain. Re-
cent literature shows that retrieval augmentation helps in
enhancing the generation quality of language models [6, 15]
and image synthesis [5, 44], thanks to the ability to reference
real examples in the limited data domain. We argue that
retrieval augmentation plays an important role in mitigating
the data scarcity problem in content-aware layout generation.

We build Retrieval-Augmented Layout TransFormer
(RALF), which is an autoregressive generator capable of ref-
erencing external layout examples. RALF retrieves reference
layouts by nearest neighbor search based on the appearance
of the input and supplements the generation process (Fig. 1).
Since the input canvas and retrieved layouts have different
modalities, we use the cross-attention mechanism to aug-
ment the feature input to the generator. Although we build
RALF with an autoregressive approach, retrieval augmenta-
tion is also effective in other generation approaches such as
diffusion models [19], which we show in the experiments.

We evaluate our RALF on public benchmarks [18, 53]
and show that RALF outperforms state-of-the-art models
in content-aware layout generation. Thanks to the retrieval
capability, RALF requires less than half the training data to
achieve the same performance as the baseline. We further

1

ar
X

iv
:2

31
1.

13
60

2v
4 

 [
cs

.C
V

] 
 1

5 
A

pr
 2

02
4

https://udonda.github.io/RALF/


show that our modular architecture can adapt to control-
lable generation tasks that impose various user-specified
constraints, which is common in real-world workflow.

We summarize our contributions as follows: 1) We find
that retrieval augmentation effectively addresses the data
scarcity problem in content-aware layout generation. 2) We
propose a Retrieval-Augmented Layout Transformer (RALF)
designed to integrate retrieval augmentation for layout gen-
eration tasks. 3) Our extensive evaluations show that our
RALF successfully generates high-quality layouts under var-
ious scenarios and significantly outperforms baselines. We
will make our code publicly available on acceptance.

2. Related Work
2.1. Content-agnostic Layout Generation

Content-agnostic layout generation, which aims at generat-
ing layouts without a specific input canvas, has been stud-
ied for a long time [2, 33, 36, 49]. The typical approach
involves predicting the arrangement of elements, where
each element has a tuple of attributes such as category, po-
sition, and size [30]. Recent approaches employ various
types of neural networks-based generative models, such as
generative adversarial networks (GAN) [25, 30, 31], varia-
tional autoencoders (VAE) [3, 21, 24], autoregressive mod-
els [14, 22], non-autoregressive models [26], and diffusion
models [9, 19, 28, 50]. Note that the retrieval augmentation
discussed in this paper may not be directly applicable to the
content-agnostic setup due to the lack of input queries.

Several works consider user-specified design constraints
such as “a title is above the body”, which are often seen
in real-world workflow. Such constraints are studied as
controllable generation [19, 22, 25, 26], where the model
generates a complete layout from a partial or noisy layout.
In this paper, we adapt the concept of controllable generation
to the content-aware generation.

2.2. Content-aware Layout Generation

Content-aware layout generation, relatively less studied
compared to the content-agnostic setup, has seen notable
progress. ContentGAN [52] first tackles to incorporate
image semantics of input canvases. Subsequently, CGL-
GAN [53] introduces a saliency map to a non-autoregressive
decoder [8, 10, 47] for better subject representation. DS-
GAN [18] proposes a CNN-LSTM framework. ICVT [7] em-
ploys a conditional VAE, predicting a category and bounding
box autoregressively based on previously predicted elements.
RADM [29] leverages a diffusion model and introduces
modules to refine both visual–textual and textual–textual pre-
sentations. We note that we cannot compare RADM in our
experiments because their text annotations are not available.

Current approaches rely solely on generative models and
may struggle with capturing sparse data distributions with

limited training data. We use retrieval augmentation to miti-
gate this issue, and our experiments confirm its significant
impact on enhancing content-aware generation.

2.3. Retrieval-Augmented Generation

Retrieval augmentation [4–6, 15, 44] offers an orthogonal
approach to enhance generative models without increasing
network parameters or relying heavily on extensive training
datasets. Generative models equipped with retrieval aug-
mentation stop storing all relevant knowledge in their model
parameters and instead use external memory via retrieving
relevant information as needed. A common approach in-
volves retrieving the k-nearest neighbors (k-NN) based on
a pre-calculated embedding space as additional input. For
example, REALM [15] introduces a retrieval augmentation
into language models that fetch k-NN based on preceding
tokens. In image generation, RDM [5] demonstrates even a
relatively compact network can achieve state-of-the-art per-
formance by retrieval augmentation. KNN-Diffusion [44]
shows its capacity to generate out-of-distribution images.
The unique challenge in content-aware layout generation
involves encoding both image and layout modalities, which
we address using a cross-attention mechanism.

Given that tasks related to graphic design, such as content-
aware layout generation, often suffer from data scarcity prob-
lems [38], we believe that retrieval augmentation is particu-
larly beneficial. It provides an efficient training method that
leverages existing data more effectively.

3. Method
3.1. Preliminaries

Let X and Y be the sets of canvas images and graphic lay-
outs, respectively. We use I ∈ X and L ∈ Y to represent the
canvas and layout, respectively. The canvas I ∈ RH×W×3

and layout L are paired data, where H and W represent
the height and width, respectively. We obtain a saliency
map S ∈ RH×W×1 by the off-the-shelf saliency detec-
tion method [39, 40] from the canvas. We denote the lay-
out by L= {l1, . . . , lT }= {(c1, b1), . . . , (cT , bT )}, where
b ∈ [0, 1]4 indicates the bounding box in normalized coordi-
nates, ci ∈ {1, . . . , C} indicates an element category of i-th
element, and T indicates the number of elements in L.

3.2. Retrieval-Augmented Layout Transformer

We approach content-aware layout generation by referenc-
ing similar examples and generating layout tokens Ẑ au-
toregressively. Following content-agnostic layout genera-
tion works [14, 22], we quantize each value in the bound-
ing box of the i-th element bi and obtain representation
[xi, yi, wi, hi]

T ∈ {1, . . . B}4, where B denotes the number
of bins. Here, x, y, w, and h correspond to the tokens for
center coordinates, width, and height of the bounding box.

2




	���
�������

�������

������


	��� ��������

����

)����#
�������

5��������2������

666

?��������2
��9���

NOG2����������2�������D����K
N�C������G

�����W
�������

d 2
��C2��2

^

)���2e

o�m�2j

N�G2z�����x��2���	��������

)����#
�������

z�����x��2�������

�����
?�����

����O���

Figure 2. Overview of Retrieval-Augmented Layout Transformer (RALF). RALF takes a canvas image and a saliency map as input, and
then autoregressively generates a layout along with the input image. Our model uses (a) retrieval augmentation that incorporates useful
examples to better capture the relationship between the image and the layout, and (b) constraint serialization, an optional module that
encodes user-specified requirements, enabling the generation of layouts that adhere to specific requirements for controllable generation.

We represent an overall layout as a flattened 1D sequence
Z=(bos, c1, x1, y1, . . . , wT , hT , eos) ∈ N5T+2, where bos
and eos are special tokens to denote the start and end of
the sequence. We model the joint probability distribution of
Z given I and S as a product over a series of conditional
distributions using the chain rule:

Pθ(Z|I, S) =
5T+2∏
t=2

Pθ(Zt|Z<t, I, S), (1)

where θ is the parameters of our model. Similarly to au-
toregressive language modeling [41], the model is trained to
maximize the log-likelihood of the next token prediction.

Our proposed model consists of four modules: image
encoder, retrieval augmentation module, layout decoder, and
optional constraint encoder, as illustrated in Fig. 2. We
describe each module below.
Image encoder. The image encoder E takes in the input
canvas I and the saliency map S, and outputs the feature
fI = E(I, S) ∈ RH′W ′×d, where H ′ and W ′ represent
the down-sampled height and width, and d represents the
depth of the feature map. This part is common among
content-aware approaches, and we follow the architecture
of CGL-GAN [53]. The encoder builds on a CNN back-
bone and a Transformer encoder. The CNN backbone, typ-
ically ResNet50 [16], uses a multi-scale feature pyramid
network [32]. The Transformer encoder further refines the
encoded image feature.
Retrieval augmentation module. The augmentation mod-
ule transforms the image feature fI into the augmented fea-
ture fR. We describe the details in Sec. 3.3.

Constraint encoder. Optionally, our model allows control
of the layout generation process by additional instruction on
desired layout properties such as element types, coordinates,
or inter-element relationships. We adopt the Transformer
encoder-based model [22] to encode the instructions into a
fixed-dimensional vector fconst ∈ Rn×d, where n denotes
the length of the task-specific sequence. fconst is then con-
catenated with the augmented feature fR and fed to the
layout decoder.

Layout decoder. Our model autoregressively generates a
layout Ẑ using a Transformer decoder. Starting from the
bos token, our decoder iteratively produces output tokens
with cross attention to the side feature sequence fR from the
retrieval augmentation module and the optional sequence
fconst from the constraint encoder. A key distinction be-
tween our model and previous approaches is that we flatten
all the attributes into a single sequence for full attention dur-
ing generation, which is shown effective in content-agnostic
layout generation [14, 22]. As we discuss in Eq. (1), we gen-
erate layout tokens one by one in 5T+1 steps using attribute-
wise attention. In contrast, GAN-based models [18, 53] gen-
erate in one step, and ICVT [7] generates in T steps using
element-wise attention.

3.3. Retrieval Augmentation

We introduce retrieval augmentation to effectively learn the
structured layout domain with limited training data. The
retrieval augmentation module consists of the following three
stages: 1) retrieving reference layouts from a database, 2)
encoding these layouts into a feature representation, and 3)

3



fusing all features into the final augmented feature fR. We
elaborate on the details of these three stages.
Layout retrieval. Given the input canvas I , we retrieve a set
of useful layout examples {L̃1, . . . , L̃K}, where K ∈ N. A
challenge lies in the absence of joint embedding for image–
layout retrieval, unlike the CLIP [42] embedding for image–
text retrieval. We hypothesize that given an image–layout
pair (Ĩ , L̃), L̃ is more likely to be useful when Ĩ is similar
to I . From a large dataset of image–layout pairs, we retrieve
top-K pairs based on image similarity between I and Ĩ , and
extract layouts from these pairs. The choice of the image
similarity measure influences the generation quality, as we
will discuss in Sec. 4.7 in detail. We use DreamSim [12],
which better aligns with human perception of image simi-
larity in diverse aspects such as object appearance, viewing
angles, camera poses, and overall layout. All samples from
the training split serve as the retrieval source for both training
and inference, excluding the query sample from the retrieval
source during training to prevent ground-truth leakage.
Encoding retrieved layouts. Each retrieved layout
{L̃1, . . . , L̃K} is encoded into representative features f̃L=
{f̃1, . . . , f̃K} ∈ RK×d, since each layout has a different
number of elements. A layout encoder F embeds each re-
trieved layout L̃k into the representative feature, denoted
as f̃k = F (L̃k) ∈ Rd. These extracted features are then
concatenated into f̃L. Following [25], we pre-train F in a
self-supervised manner and freeze F thereafter.
Feature augmentation. The last step yields the final aug-
mented feature fR by concatenating three features:

fR = Concatenate(fI, f̃L, fC) ∈ R(2H′W ′+K)×d, (2)

where fC is a cross-attended feature between fI and f̃L:

fC = CrossAttn(fI, f̃L) ∈ RH′W ′×d.

In the cross-attention mechanism, the image feature acts as
the query, and the retrieved layout feature serves as both the
key and value. This design facilitates an interaction between
the input canvas and the reference layouts. We then feed
the augmented feature fR into the layout generator. We will
validate the design of the augmentation module in Sec. 4.7.

4. Experiments
We evaluate our RALF in the unconstrained generation as
well as in a variety of constrained generation tasks.

4.1. Datasets

We use two publicly available datasets, CGL [53] and
PKU [18], which mainly cover e-commerce posters such
as cosmetics and clothing. PKU includes three element
categories: logo, text, and underlay, and CGL additionally
contains embellishment elements. CGL comprises 60,548

annotated posters, i.e., layouts and corresponding images,
and 1,000 unannotated canvases, i.e., images only. PKU
contains 9,974 annotated posters and 905 unannotated can-
vases. To obtain canvas–layout pairs for the training, previ-
ous works [18, 53] employ image inpainting to remove the
visual elements. However, CGL does not provide inpainted
posters, and PKU provides inpainted posters with undesir-
able artifacts. We inpaint the posters of both CGL and PKU
using a state-of-the-art inpainting technique [46].

The original datasets do not provide validation and test
splits for annotated posters. This limitation prevents fair
hyper-parameter tuning, adopting evaluation metrics relying
on ground-truth annotations, and the quantitative evaluation
of constrained generation tasks since we cannot create con-
straints from the annotations. To overcome these issues,
we create new dataset splits with a train/val/test ratio of
roughly 8:1:1. For CGL, we allocate 48,544/6,002/6,002
annotated posters for train/val/test. For PKU, after exclud-
ing posters with more than 11 elements and those with ele-
ments occupying less than 0.1% of the canvas, we designate
7,735/1,000/1,000 posters for train/val/test. Both datasets
have a maximum of 10 elements. For the evaluations, we
use the annotated and unannotated test splits.

4.2. Evaluation Metrics

Inspired by the previous works [18, 53], we employ five
metrics that evaluate the layout quality both in terms of
graphic and content aspects.

Graphic metrics. These metrics evaluate the quality of the
generated layouts without considering the canvas. FID (↓)
for layout [25, 27] has been a primal metric in content-
agnostic layout generation, and we adopt this metric in our
content-aware scenario. Underlay effectiveness (Und ↑)
calculates the proportion of valid underlay elements to the
total underlay elements. An underlay element is regarded
as valid and scores 1 if it entirely covers a non-underlay
element; otherwise, it scores 0. Overlay (Ove ↓) represents
the average Intersection over Union of all element pairs,
excluding underlay elements.

Content metrics. These metrics evaluate whether the gener-
ated layouts harmonize with the canvas. Occlusion (Occ ↓)
computes the average saliency value in the overlapping re-
gion between the saliency map S and the layout elements.
Readability score (Rea ↓) evaluates the non-flatness of text
elements by calculating gradients in the image space along
both vertical and horizontal axes within these elements.

4.3. Baseline Methods

We compare the following methods in the experiments.
CGL-GAN [53] is a non-autoregressive encoder–decoder
model employing a Transformer architecture. The model
takes in the empty or layout constraint to the decoder.

4



Method #Params
PKU CGL

Content Graphic Content Graphic

Occ ↓ Rea ↓ Und ↑ Ove ↓ FID↓ Occ ↓ Rea ↓ Und ↑ Ove ↓ FID↓
Real Data - 0.112 0.0102 0.99 0.0009 1.58 0.125 0.0170 0.98 0.0002 0.79
Top-1 Retrieval - 0.212 0.0218 0.99 0.002 1.43 0.214 0.0266 0.99 0.0005 0.93
CGL-GAN [53] 41M 0.138 0.0164 0.41 0.074 34.51 0.157 0.0237 0.29 0.161 66.75
DS-GAN [18] 30M 0.142 0.0169 0.63 0.027 11.80 0.141 0.0229 0.45 0.057 41.57
ICVT [7] 50M 0.146 0.0185 0.49 0.318 39.13 0.124 0.0205 0.42 0.310 65.34
LayoutDM† [19] 43M 0.150 0.0192 0.41 0.190 27.09 0.127 0.0192 0.82 0.020 2.36
Autoreg Baseline 41M 0.134 0.0164 0.43 0.019 13.59 0.125 0.0190 0.92 0.011 2.89
RALF (Ours) 43M 0.119 0.0128 0.92 0.008 3.45 0.125 0.0180 0.98 0.004 1.32

Table 1. Unconstrained generation results on the PKU and CGL test split. Our RALF outperforms the Autoreg Baseline and achieves the
best score on almost all metrics. For reference, we show the Real Data and the Top-1 Retrieval baselines, which do not have a generator.

Method
PKU unannotated CGL unannotated

Content Graphic Content Graphic

Occ ↓ Rea ↓ Und ↑ Ove ↓ Occ ↓ Rea ↓ Und ↑ Ove ↓
CGL-GAN 0.191 0.0312 0.32 0.069 0.481 0.0568 0.26 0.269
DS-GAN 0.180 0.0301 0.52 0.026 0.435 0.0563 0.29 0.071
ICVT 0.189 0.0317 0.48 0.292 0.446 0.0425 0.67 0.301
LayoutDM† 0.165 0.0285 0.38 0.201 0.421 0.0506 0.49 0.069
Autoreg Baseline 0.154 0.0274 0.35 0.022 0.384 0.0427 0.76 0.058
RALF (Ours) 0.133 0.0231 0.87 0.018 0.336 0.0397 0.93 0.027

Table 2. Unconstrained generation results on the PKU and CGL
unannotated test split, which is real data without inpainting artifacts.

DS-GAN [18] is a non-autoregressive model using a CNN-
LSTM architecture. DS-GAN is only applicable to the un-
constrained task because of the internal sorting algorithm.
ICVT [7] is an autoregressive model that combines a Trans-
former with a conditional VAE.
LayoutDM† [19] is a discrete state-space diffusion model
that can handle many constrained generation tasks. Since
the model is originally designed for content-agnostic layout
generation, we extend the model to accept an input image.
Autoreg Baseline is the one described in Sec. 3.2 and is
equivalent to our RALF without retrieval augmentation.
RALF is our model described in Sec. 3.
Real Data is the ground truth, which can be considered the
upper bound. Since we draw the sample from the test split,
we calculate the FID score using the validation split.
Top-1 Retrieval is a nearest-neighbor layout without any
generator, which can be considered a retrieval-only baseline.

4.4. Implementation Details

We re-implement most of the baselines since there are few
official implementations publicly available, except for DS-
GAN [18]. In RALF, we retrieve K=16 nearest neighbor
layouts． Following CGL-GAN [53], the height and width
size of the input image are set to 350 and 240, respectively.
We generate layouts on three independent trials and report
the average of the metrics. We describe the details of training

Method Retrieval Occ ↓ Rea ↓ Und ↑ Ove ↓ FID↓
CGL-GAN 0.138 0.0164 0.41 0.074 34.51
CGL-GAN ✓ 0.144 0.0164 0.63 0.039 13.28

LayoutDM† 0.150 0.0192 0.41 0.190 27.09
LayoutDM† ✓ 0.123 0.0144 0.51 0.091 10.03

Table 3. Retrieval augmentation for CGL-GAN and LayoutDM†

on the PKU test split.

and network configuration in the appendix.

4.5. Unconstrained Generation

Baseline comparison. Table 1 presents the quantitative
results on the annotated test split without user constraints.
RALF achieves the best scores, except for the Occ metric of
ICVT on CGL. Top-1 Retrieval, which almost disregards the
given content, is unsuitable for the task, as we show deficient
performance in content metrics.

Table 2 summarizes results on the unannotated test split.
RALF achieves the best scores in all the metrics. Compared
with Table 1, all the models exhibit slight performance degra-
dation in PKU due to the domain gap problem [48] between
inpainted canvases and clean canvases. We conjecture that
the significant performance degradation in CGL comes from
non-negligible spatial shifts in subject distributions, which
we demonstrate in the appendix.

Effectiveness of retrieval augmentation. Tables 1 and 2
demonstrate that retrieval augmentation significantly en-
hances the Autoreg Baseline. The only exception is the
Occ metric on CGL in Table 1, where the Autoreg Baseline
already closely matches Real Data metrics.

Qualitative results. We show the qualitative comparison in
Fig. 3. The results demonstrate that our RALF’s ability to
generate well-fitted, non-overlapping, and rational layouts.
In contrast, the baseline methods often produce misaligned
underlay embellishments and overlapped text elements as

5



	!LayoutDMCGL-GAN DS-GAN Autoreg
Baseline

RALF
(Ours)

PKU Dataset Logo Text Underlay

CGL Dataset Embellishment Logo Text Underlay

Figure 3. Visual comparison of unconstrained generation with
baselines. Input canvases are selected from the unannotated split.

we indicate by red arrows. We also indicate undesirable
elements that appear on a salient region by green arrows.

Training dataset size. Here, we show that retrieval augmen-
tation is effective regardless of the training dataset size in
Fig. 4. Notably, our RALF trained on just 3,000 samples
outperforms the Autoreg Baseline trained on the full 7,734
samples in PKU.

Retrieval size K. We show that retrieval augmentation
is not highly sensitive to the number of retrieved layouts

1000 3000 5000 7734
#TrainingDataset

0

20

40

60

80

FI
D 

Autoreg Baseline
RALF (Ours)

Figure 4. FID over the training
dataset size (#TrainingDataset),
which has up to 7,734 samples.

1 2 4 8 16
#Retrieval

0

4

8

12

FI
D 

Autoreg Baseline
RALF (Ours)

Figure 5. FID over the retrieval
size K (#Retrieval).

Input image Output 1 Output 2Retrieved example(s)

𝐾 = 16

𝐾 = 1

Figure 6. Visual comparison of retrieval and generated layouts
with different retrieval sizes (K=1 and 16). We display the top-4
examples for K=16 due to the limited space. The output layouts
are generated using different random seeds for variety.

Train Test Method Occ ↓ Rea ↓ Und ↑ Ove ↓

CGL PKU Autoreg Baseline 0.176 0.0276 0.84 0.037
RALF (Ours) 0.144 0.0249 0.96 0.023

PKU CGL Autoreg Baseline 0.341 0.0464 0.29 0.037
RALF (Ours) 0.286 0.0355 0.79 0.036

Table 4. Generation across the unannotated test splits. We train a
model on PKU and then test it on CGL with the layout database of
PKU, or vice versa.

K. As we plot in Fig. 5, retrieval augmentation significantly
enhances the performance even with a single retrieved layout
compared to the baseline. The plot indicates FID moderately
gets better as we increase the retrieval size K.

We examine how different K affects the generated results
in Fig. 6. The result of K = 1 shows that the generated
layout is similar to the reference layouts, while the result of
K=16 shows that a variety of layouts are generated.

Retrieval augmentation for other generators. While
our RALF is an autoregressive generator, we show that
retrieval augmentation also benefits other generative mod-

6



C → S + P	
“Underlay, Logo, 

Text, Text”

C + S → P	
“Logo, Text, …,

with size”

Completion
“Logo with size 
and position”

Re0inement
“Perturbed layout”

Relationship
“Logo top on Text”

Input

Figure 7. Examples of input con-
straints and generated results for each
constrained generation task. Quota-
tion marks indicate the constraints.

Method
PKU CGL

Content Graphic Content Graphic

Occ ↓ Rea ↓ Und ↑ Ove ↓ FID↓ Occ ↓ Rea ↓ Und ↑ Ove ↓ FID↓
C → S+P
CGL-GAN 0.132 0.0158 0.48 0.038 11.47 0.140 0.0213 0.65 0.047 23.93
LayoutDM† 0.152 0.0201 0.46 0.172 20.56 0.127 0.0192 0.79 0.026 3.39
Autoreg Baseline 0.135 0.0167 0.43 0.028 10.48 0.124 0.0188 0.89 0.015 1.36
RALF (Ours) 0.124 0.0138 0.90 0.010 2.21 0.126 0.0180 0.97 0.006 0.50

C+S → P
CGL-GAN 0.129 0.0155 0.48 0.043 9.11 0.129 0.0202 0.75 0.027 6.96
LayoutDM† 0.143 0.0185 0.45 0.122 24.90 0.127 0.0190 0.82 0.021 2.18
Autoreg Baseline 0.137 0.0169 0.46 0.028 5.46 0.127 0.0191 0.88 0.013 0.47
RALF (Ours) 0.125 0.0138 0.87 0.010 0.62 0.128 0.0185 0.96 0.006 0.21

Completion
CGL-GAN 0.150 0.0174 0.43 0.061 25.67 0.174 0.0231 0.21 0.182 78.44
LayoutDM† 0.135 0.0175 0.35 0.134 21.70 0.127 0.0192 0.76 0.020 3.19
Autoreg Baseline 0.125 0.0161 0.42 0.023 5.96 0.124 0.0185 0.91 0.011 2.33
RALF (Ours) 0.120 0.0140 0.88 0.012 1.58 0.126 0.0185 0.96 0.005 1.04

Refinement
CGL-GAN 0.122 0.0141 0.39 0.090 6.40 0.124 0.0182 0.86 0.024 1.20
LayoutDM† 0.115 0.0121 0.57 0.008 2.86 0.127 0.0188 0.75 0.018 1.98
Autoreg Baseline 0.131 0.0171 0.41 0.026 5.89 0.126 0.0183 0.89 0.004 0.15
RALF (Ours) 0.113 0.0109 0.95 0.004 0.13 0.126 0.0176 0.98 0.002 0.14

Relationship
Autoreg Baseline 0.140 0.0177 0.44 0.028 10.61 0.127 0.0189 0.88 0.015 1.28
RALF (Ours) 0.122 0.0141 0.85 0.009 2.23 0.126 0.0184 0.95 0.006 0.55

Table 5. Quantitative result of six constrained generation tasks on the PKU and CGL test split.

els for content-aware layout generation. Here, we adapt
CGL-GAN and LayoutDM† with retrieval augmentation and
evaluate the performance. Table 3 summarizes the results.
CGL-GAN and LayoutDM† combined with our retrieval
augmentation consistently improve many evaluation metrics.
We provide additional results in the appendix.

Out-of-domain generalization. Table 4 summarizes the
results of a cross-evaluation setup where we use different
datasets for training and testing. For example, we use the
database and training data from CGL and evaluate PKU in
the upper half of Table 4. Remarkably, even in this out-of-
domain setting, retrieval augmentation shows notable im-
provement and robust generalizability.

4.6. Constrained Generation

Following the task setup of content-agnostic generation [22],
we evaluate several methods in the following constrained
tasks in content-aware generation:
Category → Size + Position (C → S + P) takes in element
types and generates the sizes and positions for each element.
Category + Size → Position (C + S → P) generates element
positions based on given element categories and sizes.
Completion generates a complete layout using partially

placed elements.
Refinement corrects cluttered layouts where elements are per-
turbed from the ground truth based on a normal distribution
with mean 0 and standard deviation 0.01, following [43].
Relationship is conditioned on both element types and their
spatial relationships, determined by the size and position of
element pairs. We randomly use 10% of these relationships
in our experiments, following [25].

Input constraints and generated examples for these tasks
are illustrated in Fig. 7.

Baseline comparison. Table 5 summarizes constrained gen-
eration results. The results indicate that RALF is effective
even for constrained generation tasks. For tasks such as C +
S → P and Refinement, RALF shows notable improvement
in the FID metric. This suggests that referencing authen-
tic examples to understand element relationships enhances
position prediction accuracy. Overall, the results highlight
RALF’s capability to significantly augment the generative
performance over the baseline approach.

4.7. Ablation Study

We investigate our design choices in our retrieval augmenta-
tion proposed in Sec. 3.3.

7



0.013 0.014
Readability score 

3.5

4.0

4.5

FI
D 

DreamSim
LPIPS
CLIP
Saliency
Random

Figure 8. Comparison across different retrieval methods on the
PKU test split. We report FID as the representative graphic metric
and Readability score as the content metric.

Layout retrieval. We employ an image feature extractor
to compute the similarity between canvases. We provide a
brief overview of possible choices. DreamSim [12] captures
diverse aspects of the similarity simultaneously. LPIPS [51]
focuses on low-level appearance similarity. CLIP [42] fo-
cuses on semantic similarity. Saliency focuses on spatial
similarity using the saliency map. We obtain embeddings
for similarity computation by down-sampling and flattening
S. Random serves as a naı̈ve baseline by randomly sampling
layouts without focusing on image similarity.

We train our RALF with each choice and assess the per-
formance. Figure 8 plots FID and Readability score for
each retrieval method, and Fig. 9 presents some retrieved
examples. DreamSim shows the best balance in the graphic
and content metrics. Random achieves a reasonable balance,
suggesting that referring to real layouts is crucial. In compar-
ison, we conjecture that increasing the chances of retrieving a
more suitable reference further boosts the generation quality.
Feature augmentation. We explore the design of our feature
augmentation module, as detailed in Table 6.
What types of features to fuse? RALF combines three fea-
tures in Eq. (2). We observe that dropping some of the
features, as in scenarios (B) and (C), leads to a slight dete-
rioration of the performance. We try adding features of the
top-K retrieved images f̃I ∈ RKH′W ′×d that are encoded
by the image encoder from the retrieved canvas. However,
adding f̃I results in decreased performance, as shown in (D).
Where to apply? Our model first applies the Transformer
encoder and then retrieval augmentation to the image fea-
ture (A). We try another design (E), which places the augmen-
tation module before the Transformer encoder, however, this
results in worse readability and underlay metrics in exchange
for the slight improvement in FID.

5. Discussion

Limitations. We acknowledge two limitations as follows: 1)
Evaluation of content metrics: The current content metrics
assume that well-designed layouts avoid placing elements
over salient or cluttered areas. If a counterexample exists, the
content metrics may not adequately measure layout quality.
Also, the graphic metrics can be easily fooled by a real

DreamSim LPIPS CLIP

Query

Saliency

Figure 9. Qualitative comparison of different retrieval methods. We
show the query and the top-3 retrieved examples for each method.

Setting Occ ↓ Rea ↓ Und ↑ Ove ↓ FID↓
A Ours (Concatenate(fI, f̃L, fC)) 0.119 0.0129 0.92 0.008 3.45

What types of features to fuse?
B Concatenate(fC, ) 0.134 0.0144 0.92 0.008 4.67
C Concatenate(fI, f̃L) 0.123 0.0133 0.91 0.007 4.08
D Concatenate(fI, f̃L, fC, f̃I) 0.141 0.0148 0.93 0.009 8.82

Where to apply?
E Before Trans enc 0.120 0.0138 0.72 0.009 2.34

Table 6. Ablation study of RALF design on the PKU test split. The
top two results are highlighted in bold and underline, respectively.
Features include the input canvas feature (fI), retrieved layouts
feature (f̃L), cross-attended feature (fC), and retrieved images
feature (f̃I). The full setting of our model (A) is described in Eq. (2).

example, as evidenced by the FID score of the Top-1 baseline
in Table 1. 2) Feature extraction of retrieved layouts: The
layout encoder depends on the number of element categories
in the dataset. For real-world creative scenarios, extending to
an unlimited number of categories, i.e. an open-vocabulary
setting [11], would be necessary.

Future work. We outline two prospective directions to
enhance retrieval augmentation for content-aware genera-
tion further: 1) Ensemble approaches: integrating multiple
retrieval results could potentially improve the generation
quality. 2) Diversifying retrieval modalities: exploring lay-
out retrieval using alternative modalities, such as language,
could widen the application scope. Yet, generating a whole
poster beyond bounding boxes, such as image content, text
copies, or styling attributes, remains challenging due to the
limited training data for layered graphic designs. Even for
such a task, we expect that the retrieval augmentation ap-
proach could alleviate the data scarcity problem.

Potential societal impacts. As common in any generative
models, our RALF may unintentionally produce counterfeit
advertisements or magazine layouts, posing risks of decep-
tion and dissemination of misleading information.

8



Acknowledgement
We would like to thank Mayu Otani, Xueting Wang, Seiji
Kurokoshi, and Atsushi Honda for their insightful feedback.
This research was partly supported by JSPS KAKENHI
22KJ1014.

References
[1] Adobe Illustrator CC. https://www.adobe.com/

products/illustrator.html, Last accessed 22
March, 2024. 1

[2] Maneesh Agrawala, Wilmot Li, and Floraine Berthouzoz. De-
sign Principles for Visual Communication. Communications
of the ACM, 54(4), 2011. 2

[3] Diego Martin Arroyo, Janis Postels, and Federico Tombari.
Variational Transformer Networks for Layout Generation. In
CVPR, 2021. 2

[4] Akari Asai, Sewon Min, Zexuan Zhong, and Danqi Chen.
ACL 2023 Tutorial: Retrieval-based Language Models and
Applications. ACL, 2023. 2

[5] Andreas Blattmann, Robin Rombach, Kaan Oktay, and Björn
Ommer. Retrieval-Augmented Diffusion Models. In NeurIPS,
2022. 1, 2, 13

[6] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann,
Trevor Cai, Eliza Rutherford, Katie Millican, George van den
Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan
Clark, Diego de Las Casas, Aurelia Guy, Jacob Menick, Ro-
man Ring, Tom Hennigan, Saffron Huang, Loren Maggiore,
Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini,
Geoffrey Irving, Oriol Vinyals, Simon Osindero, Karen Si-
monyan, Jack W. Rae, Erich Elsen, and Laurent Sifre. Improv-
ing language models by retrieving from trillions of tokens.
arXiv preprint arXiv:2112.04426, 2021. 1, 2

[7] Yunning Cao, Ye Ma, Min Zhou, Chuanbin Liu, Hongtao Xie,
Tiezheng Ge, and Yuning Jiang. Geometry Aligned Varia-
tional Transformer for Image-conditioned Layout Generation.
In ACM MM, 2022. 2, 3, 5, 14

[8] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
End Object Detection with Transformers. In ECCV, 2020.
2

[9] Shang Chai, Liansheng Zhuang, and Fengying Yan. Lay-
outDM: Transformer-based Diffusion Model for Layout Gen-
eration. In CVPR, 2023. 2

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding. In NAACL, 2019. 2

[11] Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Ar-
jun Akula, Xuehai He, Sugato Basu, Xin Eric Wang, and
William Yang Wang. LayoutGPT: Compositional Visual
Planning and Generation with Large Language Models. In
NeurIPS, 2023. 8

[12] Stephanie Fu*, Netanel Tamir*, Shobhita Sundaram*, Lucy
Chai, Richard Zhang, Tali Dekel, and Phillip Isola. Dream-
Sim: Learning New Dimensions of Human Visual Similarity
using Synthetic Data. In NeurIPS, 2023. 4, 8

[13] Shunan Guo, Zhuochen Jin, Fuling Sun, Jingwen Li, Zhaorui
Li, Yang Shi, and Nan Cao. Vinci: An Intelligent Graphic
Design System for Generating Advertising Posters. In CHI,
2021. 1

[14] Kamal Gupta, Alessandro Achille, Justin Lazarow, Larry
Davis, Vijay Mahadevan, and Abhinav Shrivastava. Lay-
outTransformer: Layout Generation and Completion with
Self-attention. In ICCV, 2021. 2, 3

[15] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and
Ming-Wei Chang. REALM: Retrieval-Augmented Language
Model Pre-Training. In ICML, 2020. 1, 2

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In CVPR,
2016. 3

[17] Scarlett R. Herring, Chia-Chen Chang, Jesse Krantzler, and
Brian P. Bailey. Getting Inspired! Understanding How and
Why Examples Are Used in Creative Design Practice. In CHI,
2009. 1

[18] Hsiao Yuan Hsu, Xiangteng He, Yuxin Peng, Hao Kong, and
Qing Zhang. PosterLayout: A New Benchmark and Approach
for Content-Aware Visual-Textual Presentation Layout. In
CVPR, 2023. 1, 2, 3, 4, 5, 11, 12, 13, 14

[19] Naoto Inoue, Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani,
and Kota Yamaguchi. LayoutDM: Discrete Diffusion Model
for Controllable Layout Generation. In CVPR, 2023. 1, 2, 5,
14

[20] Ali Jahanian, Jerry Liu, Qian Lin, Daniel Tretter, Eamonn
O’Brien-Strain, Seungyon Claire Lee, Nic Lyons, and Jan
Allebach. Recommendation System for Automatic Design of
Magazine Covers. In IUI, 2013. 1

[21] Zhaoyun Jiang, Shizhao Sun, Jihua Zhu, Jian-Guang Lou,
and Dongmei Zhang. Coarse-to-fine generative modeling for
graphic layouts. In AAAI, 2022. 2

[22] Z. Jiang, J. Guo, S. Sun, H. Deng, Z. Wu, V. Mijovic, Z. Yang,
J. Lou, and D. Zhang. LayoutFormer++: Conditional Graphic
Layout Generation via Constraint Serialization and Decoding
Space Restriction. In CVPR, 2023. 2, 3, 7, 11

[23] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale
similarity search with GPUs. IEEE Transactions on Big Data,
7(3):535–547, 2019. 11

[24] Akash Abdu Jyothi, Thibaut Durand, Jiawei He, Leonid Si-
gal, and Greg Mori. LayoutVAE: Stochastic Scene Layout
Generation from a Label Set. In CVPR, 2019. 2

[25] Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota Ya-
maguchi. Constrained Graphic Layout Generation via Latent
Optimization. In ACM MM, 2021. 2, 4, 7, 13

[26] Xiang Kong, Lu Jiang, Huiwen Chang, Han Zhang, Yuan Hao,
Haifeng Gong, and Irfan Essa. BLT: Bidirectional Layout
Transformer for Controllable Layout Generation. In ECCV,
2022. 2

[27] Hsin-Ying Lee, Weilong Yang, Lu Jiang, Madison Le, Irfan
Essa, Haifeng Gong, and Ming-Hsuan Yang. Neural Design
Network: Graphic Layout Generation with Constraints. In
ECCV, 2019. 4

[28] Elad Levi, Eli Brosh, Mykola Mykhailych, and Meir Perez.
DLT: Conditioned Layout Generation with Joint Discrete-
Continuous Diffusion Layout Transformer. In ICCV, 2023.
2

9

https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/illustrator.html


[29] Fengheng Li, An Liu, Wei Feng, Honghe Zhu, Yaoyu Li,
Zheng Zhang, Jingjing Lv, Xin Zhu, Junjie Shen, Zhangang
Lin, and Jingping Shao. Relation-Aware Diffusion Model for
Controllable Poster Layout Generation. In CIKM, 2023. 2

[30] Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming Zhang,
and Tingfa Xu. LayoutGAN: Generating Graphic Layouts
with Wireframe Discriminators. In ICLR, 2019. 2

[31] Jianan Li, Jimei Yang, Jianming Zhang, Chang Liu, Christina
Wang, and Tingfa Xu. Attribute-Conditioned Layout GAN
for Automatic Graphic Design. IEEE TVCG, 27(10), 2021. 2,
13

[32] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature Pyramid
Networks for Object Detection. In CVPR, 2017. 3, 11

[33] Simon Lok and Steven Feiner. A Survey of Automated Layout
Techniques for Information Presentations. In SmartGraphics,
2001. 2

[34] Ilya Loshchilov and Frank Hutter. Fixing Weight Decay
Regularization in Adam. In ICLR, 2019. 11

[35] Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh,
Yunjey Choi, and Jaejun Yoo. Reliable Fidelity and Diversity
Metrics for Generative Models. In ICML, 2020. 13

[36] Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann.
DesignScape: Design with Interactive Layout Suggestions.
In CHI, 2015. 1, 2

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Köpf, Edward Z. Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Im-
perative Style, High-Performance Deep Learning Library. In
NeurIPS, 2019. 11

[38] Chunyao Qian, Shizhao Sun, Weiwei Cui, Jian-Guang Lou,
Haidong Zhang, and Dongmei Zhang. Retrieve-Then-Adapt:
Example-based Automatic Generation for Proportion-related
Infographics. IEEE TVCG, 27(2), 2021. 2

[39] Xuebin Qin, Zichen Zhang, Chenyang Huang, Chao Gao,
Masood Dehghan, and Martin Jagersand. BASNet: Boundary-
Aware Salient Object Detection. In CVPR, 2019. 2

[40] Xuebin Qin, Hang Dai, Xiaobin Hu, Deng-Ping Fan, Ling
Shao, and Luc Van Gool. Highly Accurate Dichotomous
Image Segmentation. In ECCV, 2022. 2

[41] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsuper-
vised multitask learners. OpenAI blog, 1(8):9, 2019. 3

[42] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning Transferable Visual
Models From Natural Language Supervision. In ICML, 2021.
4, 8

[43] Soliha Rahman, Vinoth Pandian Sermuga Pandian, and
Matthias Jarke. RUITE: Refining UI Layout Aesthetics Using
Transformer Encoder. In IUI Companion, 2021. 7

[44] Shelly Sheynin, Oron Ashual, Adam Polyak, Uriel Singer,
Oran Gafni, Eliya Nachmani, and Yaniv Taigman. KNN-

Diffusion: Image Generation via Large-Scale Retrieval. In
ICLR, 2023. 1, 2

[45] Karen Simonyan and Andrew Zisserman. Very Deep Con-
volutional Networks for Large-Scale Image Recognition. In
ICLR, 2015. 13

[46] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,
Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,
Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lem-
pitsky. Resolution-robust Large Mask Inpainting with Fourier
Convolutions. In WACV, 2022. 4

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-
eit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention Is All You Need. In NeurIPS, 2017. 2,
11

[48] Chenchen Xu, Min Zhou, Tiezheng Ge, Yuning Jiang, and
Weiwei Xu. Unsupervised Domain Adaption With Pixel-
Level Discriminator for Image-Aware Layout Generation. In
CVPR, 2023. 5

[49] Xuyong Yang, Tao Mei, Ying-Qing Xu, Yong Rui, and
Shipeng Li. Automatic Generation of Visual-Textual Pre-
sentation Layout. ACM TOMM, 12(2), 2016. 1, 2

[50] Junyi Zhang, Jiaqi Guo, Shizhao Sun, Jian-Guang Lou, and
Dongmei Zhang. LayoutDiffusion: Improving Graphic Lay-
out Generation by Discrete Diffusion Probabilistic Models.
In ICCV, 2023. 2

[51] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 8

[52] Xinru Zheng, Xiaotian Qiao, Ying Cao, and Rynson W. H.
Lau. Content-Aware Generative Modeling of Graphic Design
Layouts. ACM TOG, 38(4), 2019. 1, 2

[53] Min Zhou, Chenchen Xu, Ye Ma, Tiezheng Ge, Yuning Jiang,
and Weiwei Xu. Composition-aware Graphic Layout GAN
for Visual-textual Presentation Designs. In IJCAI, 2022. 1, 2,
3, 4, 5, 13, 14

10



Appendix
Table of contents:

• Section A: Code Availability
• Section B: Implementation Details
• Section C: Dataset Preprocessing
• Section D: Additional Results

A. Code Availability
We will make our code publicly available on acceptance.

B. Implementation Details

Architecture details. Our RALF consists of four modules:
the image encoder, retrieval augmentation, layout decoder,
and optional constraint encoder. Table A provides the num-
ber of parameters of these modules.
Image encoder consists of ResNet-50-FPN [32] and the
Transformer encoder. We obtain the saliency map following
the approach in DS-GAN [18].
Retrieval augmentation. We implement the retrieval part
using faiss [23]. The layout encoder for retrieved layouts
consists of the Transformer encoder and a feed-forward net-
work, which adapts the feature map size of retrieved layouts
to the size of the layout decoder. Before training, we pre-
train the layout encoder for each dataset and extract features
over each training dataset to construct the retrieval database.
We note that the parameters of the layout encoder (1.59M)
are excluded from the total parameters of RALF since they
are set with the retrieval database.

To calculate a cross-attended feature, the image feature
acts as the query, and the retrieved layout feature serves as
both the key and value. We use multi-head attention [47]
as our cross-attention layer. The effectiveness of the cross-
attended feature is demonstrated in the comparison of sce-
narios (B) and (C) in Table 6 in the main paper.
Layout decoder. We employ the Transformer decoder. The
configurations of the Transformer layers are as follows: 6
layers, 8 attention heads, 256 embedding dimensions, 1,024
hidden dimensions, and 0.1 dropout rate. The size of bins
for the layout tokenizer is set to 128. In the inference phase,
for the relationship task, we use a decoding space restriction
mechanism [22], which aims to prune the predicted tokens
that violate a user-specified constraint.

Training details. We implemente RALF in PyTorch [37]
and train for 50 and 70 epochs with AdamW optimizer [34]
for the PKU and CGL datasets, respectively. The training
time is about 4 hours and 20 minutes for the PKU dataset
and 18 hours for the CGL dataset on a single A100 GPU. We
divide the learning rate by 10 after 70% of the total epoch
elapsed. We set the batch size, learning rate, weight decay,
and gradient norm to 32, 10−4, 10−4, and 10−1, respectively.

Module #Params

Image encoder (ResNet50) 25.02 M
Image encoder (Trans Enc) 4.74 M
Constraint encoder 4.88 M
Retrieval augmentation 1.59 M
Layout decoder 6.59 M

Total 42.82 M

Table A. The number of parameters of each module.

(b) Original
poster w/ layout

(c) Original 
Inpainting

results

(d) Inpainting
results (Ours)

(a) Original
poster

Overview Text region (zoomed)

Figure A. Comparison of inpainting for the dataset preprocessing.

Testing details. We generate layouts on three independent
trials and report the average of the metrics. We use top-k
sampling for all the models that rely on sampling in logit
space. We set k and temperature to 5 and 1.0, respectively.

Other baselines. For the training of baseline methods, we
follow the original training setting referring to their papers
as much as possible. There are some exceptions for a fair
comparison. For example, the number of embedding dimen-
sions and hidden dimensions in Transformer is adjusted to
roughly match the number of parameters for each model.
We use ResNet-50-FPN as the image encoder for all of our
baseline methods.

11



(b) Original
poster w/ layout

(c) Original
Inpainting

results

(d) Inpainting
results (Ours)

(a) Original
poster

Figure B. Comparison of inpainting for the dataset preprocessing.

0 5 10 15
#Elements per layout

0

500

1000

1500

2000

#S
am

pl
es

Figure C. Number of elements per layout in the original PKU
dataset. A red dashed line indicates the maximum number of
elements we use.

C. Dataset Preprocessing

We demonstrate the importance of adequately preprocessing
annotated poster images in Fig. A. Layout annotations in
existing datasets sometimes exhibit inaccuracies for some
underlying factors, including the semi-automatic collection
process using object detection models [18] as shown in (a)
and (b). The inaccuracy severely harms the image inpainting
quality when we fully depend on the annotations, as shown
in (c). To cope with the inaccuracy, we slightly dilate the
target region for inpainting and get better results with fewer

Test split

Unannotated test split

Averaged
saliency map 

Averaged
saliency map 

Mean=0.375

Mean=0.458

Figure D. Visual comparison of canvases and saliency maps be-
tween the test and unannotated test split of the CGL dataset. Can-
vases are randomly selected from each split. The averaged saliency
map is produced by computing the spatial average of all saliency
maps of each split. Mean represents the spatial average of all
saliency maps of each split.

artifacts, as shown in (d). We show more examples in Fig. B.
We observe that about 20% of the original inpainted images
in PKU contain significant artifacts.

We plot the number of layout elements for each poster
in Fig. C. Although we filter out posters with more than 11
layout elements, it only accounts for about 2% of the original
dataset.

D. Additional Results

Spatial distribution shift. Figure D shows the visual com-
parison of canvases and saliency maps between the test and
unannotated test split of CGL. We see that the proportion of
space occupied by the saliency map is different according
to the different values of Mean. As a result, this difference
causes the performance degradation in CGL.
Inference speed. Table B compares inference speeds. Com-
pared to Autoreg Baseline, the total inference speed of RALF

12



CGL-GAN LayoutDM† Autoreg
Baseline

RALF

DreamSim Retrieval Network Total

Time [s] 0.012 0.495 0.225 0.022 0.031 0.252 0.305

Table B. Inference time comparison on the PKU dataset. RALF
consists of three components – feature extraction (DreamSim), lay-
out retrieval (Retrieval), and layout generation (Network). The total
inference time (Total) is the sum of these individual components.

increases by about 35%. While the latency is produced, our
RALF can enhance the quality of generation.

Impact of a saliency map. We compare scenarios with and
without a saliency map in Table C since manually creating an
inaccurate saliency map is unreasonable. The result shows
that the presence of it has a negligible effect on performance.
While we follow previous works [18, 53] to use a saliency
map, we might be able to simplify our image encoder.

Comprehensive quantitative comparison. We additionally
adopt five metrics.

Graphic metrics. Alignment (Align ↓) [25, 31] computes
how well the elements are aligned with each other. For de-
tailed calculation, please refer to [25, 31]. Loose underlay
effectiveness (UndL ↑) [18] also calculates the proportion
of the total area of valid underlay elements to the total of un-
derlay and non-underlay elements. Note that we define this
loose metric as UndL ↑ to distinguish it from the strict under-
lay effectiveness UndS ↑ introduced in the main manuscript.
Density (Den ↑) and Coverage (Cov ↑) [35] compute fidelity
and diversity aspects of the generated layouts against ground-
truth layouts. Please refer to [35] for more details.

Content metrics. Salient consistency (Rshm ↓) [53] com-
putes the Euclidean distance between the output logits of
the canvases with or without layout regions masked using a
pre-trained VGG16 [45].

Tables D and E present the quantitative result on the
annotated test split without user constraints on the PKU
and CGL datasets, respectively. RALF notably improves
Density and Coverage metrics, indicating that RALF can
generate better layouts in terms of both fidelity and diversity.
RALF does not achieve the best score regarding Rshm and
Alignment. However, these metrics may not be very reliable
since the best scores for these metrics largely deviate from
the scores for Real-Data, unlike other metrics.

Retrieval augmentation for baseline method. Table F
shows the results of retrieval augmentation for CGL-GAN
and LayoutDM†. Even for constrained generation tasks,
retrieval augmentation achieves a better quality of generation
for other generators on almost all metrics.

Impact on changing #Dim in layout decoder. Table G
provides the results of RALF and Autoreg Baseline while
changing the number of parameters in the layout decoder.
We modify the number of features (#Dim) and hidden dim
to four times the number of #Dim. RALF’s performance

Method Saliency map Occ ↓ Rea ↓ Und ↑ Ove ↓ FID ↓
Autoreg Baseline 0.132 0.0169 0.45 0.021 11.78
Autoreg Baseline ✓ 0.134 0.0165 0.44 0.018 13.51

RALF 0.122 0.0129 0.90 0.007 3.97
RALF ✓ 0.119 0.0129 0.92 0.008 3.45

Table C. Quantitative results without and with a saliency map.

peaks when #Dim is 256. Autoreg Baseline’s performance
improves as #Dim increases, but the model with #Dim=768
still clearly underperforms RALF with #Dim=256. Thus,
retrieval augmentation enables us to use a relatively compact
network for content-aware layout generation. This result
aligns with the trend observed in other domains, such as im-
age generation [5]. We conjecture slight performance degra-
dation as we increase #Dim over 256 in RALF is caused by
overfitting as we watch loss curves for training and valida-
tion.
Visual comparison on constrained generation. Figures E
and F provide the qualitative comparisons of constrained
generation for the PKU and CGL datasets, respectively. The
results demonstrate that our RALF successfully generates
well-fitted, non-overlapping, and rational layouts even in
constrained generation tasks.

13



Method
PKU

Content Graphic

Occ ↓ Rea ↓ Rshm ↓ Align ↓ UndL ↑ UndS ↑ Ove ↓ Den↑ Cov↑ FID↓
Real-Data 0.112 0.0102 13.94 0.00379 0.99 0.99 0.0009 0.95 0.95 1.58
Top1-Retrieval 0.212 0.0218 16.33 0.00371 0.99 0.99 0.002 1.07 0.97 1.43
CGL-GAN [53] 0.138 0.0164 14.32 0.00311 0.81 0.41 0.074 0.70 0.68 34.51
DS-GAN [18] 0.142 0.0169 14.95 0.00347 0.89 0.63 0.027 1.10 0.82 11.80
ICVT [7] 0.146 0.0185 13.92 0.00228 0.63 0.49 0.318 0.35 0.40 39.13
LayoutDM† [19] 0.150 0.0192 13.06 0.00298 0.64 0.41 0.190 0.74 0.59 27.09
Autoreg Baseline 0.134 0.0164 14.43 0.00192 0.79 0.43 0.019 1.13 0.79 13.59
RALF (Ours) 0.119 0.0129 14.11 0.00267 0.98 0.92 0.008 1.25 0.97 3.45

Table D. Unconstrained generation results on the PKU test split.

Method
CGL

Content Graphic

Occ ↓ Rea ↓ Rshm ↓ Align ↓ UndL ↑ UndS ↑ Ove ↓ Den↑ Cov↑ FID↓
Real-Data 0.125 0.0170 14.33 0.00240 0.99 0.98 0.0002 0.93 1.00 0.79
Top1-Retrieval 0.214 0.0266 16.02 0.00254 0.99 0.99 0.0005 1.01 0.90 0.93
CGL-GAN [53] 0.157 0.0237 14.12 0.00320 0.67 0.29 0.161 0.31 0.28 66.75
DS-GAN [18] 0.141 0.0229 14.85 0.00257 0.71 0.45 0.057 0.64 0.40 41.57
ICVT [7] 0.124 0.0205 13.40 0.00319 0.55 0.42 0.310 0.16 0.22 65.34
LayoutDM† [19] 0.127 0.0192 14.15 0.00242 0.92 0.82 0.020 0.87 0.93 2.36
Autoreg Baseline 0.125 0.0190 14.22 0.00234 0.97 0.92 0.011 1.05 0.91 2.89
RALF (Ours) 0.125 0.0180 14.26 0.00236 0.99 0.98 0.004 1.09 0.96 1.32

Table E. Unconstrained generation results on the CGL test split.

14



Task Method Retrieval
PKU CGL

Content Graphic Content Graphic

Occ ↓ Rea ↓ Und ↑ Ove ↓ FID↓ Occ ↓ Rea ↓ Und ↑ Ove ↓ FID↓

Unconstraint

Real Data 0.112 0.0102 0.99 0.0009 1.58 0.125 0.0170 0.98 0.0002 0.79
Top-1 Retrieval 0.212 0.0218 0.99 0.002 1.43 0.214 0.0266 0.99 0.0005 0.93

CGL-GAN 0.138 0.0164 0.41 0.074 34.51 0.157 0.0237 0.29 0.161 66.75
CGL-GAN ✓ 0.144 0.0164 0.63 0.039 13.28 0.172 0.0245 0.42 0.157 60.67
LayoutDM† 0.150 0.0192 0.41 0.190 27.09 0.127 0.0192 0.82 0.020 2.36
LayoutDM† ✓ 0.123 0.0144 0.51 0.091 10.03 0.126 0.0187 0.85 0.019 1.97

C → S + P

CGL-GAN 0.132 0.0158 0.48 0.038 11.47 0.140 0.0213 0.65 0.047 23.93
CGL-GAN ✓ 0.140 0.0153 0.66 0.030 10.23 0.138 0.0202 0.82 0.021 10.01
LayoutDM† 0.152 0.0201 0.46 0.172 20.50 0.127 0.0192 0.79 0.026 3.39
LayoutDM† ✓ 0.121 0.0141 0.55 0.088 9.02 0.127 0.0189 0.81 0.026 3.36

C+ S → P

CGL-GAN 0.129 0.0155 0.48 0.043 9.11 0.129 0.0202 0.75 0.027 6.96
CGL-GAN ✓ 0.146 0.0178 0.57 0.036 7.74 0.135 0.0207 0.78 0.020 6.01
LayoutDM† 0.143 0.0185 0.45 0.122 24.90 0.127 0.0190 0.82 0.021 2.18
LayoutDM† ✓ 0.123 0.0144 0.59 0.071 10.68 0.127 0.0188 0.83 0.020 1.77

Completion

CGL-GAN 0.146 0.0175 0.42 0.076 27.18 0.174 0.0231 0.21 0.182 78.44
CGL-GAN ✓ 0.146 0.0169 0.71 0.039 12.46 0.155 0.0230 0.46 0.102 48.82
LayoutDM† 0.135 0.0175 0.35 0.134 21.70 0.127 0.0192 0.76 0.020 3.19
LayoutDM† ✓ 0.120 0.0143 0.45 0.071 12.96 0.126 0.0189 0.79 0.018 2.55

Refinement

CGL-GAN 0.122 0.0141 0.39 0.090 6.40 0.124 0.0182 0.86 0.024 1.20
CGL-GAN ✓ 0.129 0.0157 0.37 0.072 4.91 0.133 0.0194 0.85 0.013 1.56
LayoutDM† 0.115 0.0121 0.57 0.008 2.86 0.127 0.0188 0.75 0.018 1.98
LayoutDM† ✓ 0.115 0.0121 0.57 0.007 2.91 0.126 0.0186 0.76 0.019 1.79

Table F. Retrieval augmentation for CGL-GAN and LayoutDM† on the PKU and CGL test split for unconstrained and constrained generation.

Method #Dim #ParamsDec
PKU CGL

Content Graphic Content Graphic

Occ ↓ Rea ↓ Und ↑ Ove ↓ FID↓ Occ ↓ Rea ↓ Und ↑ Ove ↓ FID↓
Autoreg Baseline 128 2.55M 0.146 0.0184 0.41 0.030 18.86 0.127 0.0196 0.86 0.013 3.60
RALF 0.123 0.0141 0.71 0.007 4.14 0.125 0.0180 0.97 0.005 1.27

Autoreg Baseline♢ 256 6.59M 0.134 0.0165 0.44 0.018 13.51 0.125 0.0190 0.92 0.011 2.90
RALF♢ 0.119 0.0129 0.92 0.008 3.45 0.125 0.0180 0.98 0.004 1.31

Autoreg Baseline 512 19.46M 0.128 0.0150 0.57 0.011 10.85 0.122 0.0184 0.95 0.009 2.74
RALF 0.122 0.0131 0.94 0.010 3.61 0.128 0.0182 0.97 0.004 1.72

Autoreg Baseline 768 38.82M 0.122 0.0150 0.70 0.012 8.46 0.124 0.0183 0.95 0.008 2.26
RALF 0.126 0.0131 0.93 0.008 3.19 0.131 0.0187 0.97 0.004 1.72

Table G. Qualitative result of varying network parameters on unconstrained generation metrics on the PKU and CGL test split. We modify
the number of features (#Dim) in the input of cross-attention layers and the sequence to the decoder layer. #ParamsDec indicates the number
of parameters of the layout decoder. ♢ represents the setting of our experiments in the main manuscript.

15



C + S → P

Completion

Re/inement

C → S + P	

Relationship

Constraint
RALF (Ours)

Output 1 Output 2 Output 3CGL-GAN 	!LayoutDM
Autoreg
BaselineGround truthInput image

Category:
Logo,
Text,

Underlay

Category
+ Size:

Logo, …,
Underlay
with Size

Category
+ Relation:

e.g. 
Underlay 
bottom 

Canvas,…

PKU Dataset Logo TextUnderlay

Figure E. Visual comparison of constrained generation with baselines on the PKU annotated test split.

16



C + S → P

Completion

Re/inement

C → S + P	

Relationship

Constraint
RALF (Ours)

Output 1 Output 2 Output 3CGL-GAN 	!LayoutDM
Autoreg
BaselineGround truthInput image

Category
+ Size:

Logo, …,
Underlay
with Size

Category
+ Relation:

e.g. 
Underlay 
bottom 

Canvas,…

CGL Dataset Embellishment Logo Text Underlay

Category:
Logo,
Text,

Underlay

Figure F. Visual comparison of constrained generation with baselines on the CGL annotated test split.

17


	. Introduction
	. Related Work
	. Content-agnostic Layout Generation
	. Content-aware Layout Generation
	. Retrieval-Augmented Generation

	. Method
	. Preliminaries
	. Retrieval-Augmented Layout Transformer
	. Retrieval Augmentation

	. Experiments
	. Datasets
	. Evaluation Metrics
	. Baseline Methods
	. Implementation Details
	. Unconstrained Generation
	. Constrained Generation
	. Ablation Study

	. Discussion
	. Code Availability
	. Implementation Details
	. Dataset Preprocessing
	. Additional Results



