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ABSTRACT

We introduce Weighted Backward Shift Neural Networks (WBSNNs), a general-
purpose learning paradigm that works across modalities and tasks without per-
dataset customization and replaces stacked nonlinearities with structured orbit
dynamics. WBSNNs comprise a purely linear, operator-theoretic stage that con-
structs an orbit dictionary that exactly interpolates selected anchors, thereby yield-
ing a faithful geometric scaffold of the dataset, and subsequent predictions reuse
this scaffold for generalization by forming data-dependent linear combinations of
these orbits—making the model inherently interpretable, as each prediction fol-
lows explicit orbit paths on this scaffold, tied to a small, structured subset of the
data. While the architecture is built entirely from linear operators, its predictions
are nonlinear—emerging from the selection and reweighting of orbit elements
rather than deep activation stacks. We further extend this exact-interpolation
guarantee to infinite-dimensional sequence Banach spaces (e.g., ℓp, c0), position-
ing WBSNNs as suitable for operator-learning problems in these spaces. WB-
SNNs demonstrate robust generalization; we provide a formal proof that their
structure induces implicit regularization in stable dynamical regimes—regimes
which, in most of our experiments, emerged automatically without any explicit
penalty or constraint on the core orbit dynamics—and consistently match or out-
perform strong baselines across different tasks involving nontrivial manifolds,
high-dimensional speech and text classification, sensor drift, air pollution fore-
casting, financial time series, image recognition with compressed features, dis-
tribution shift and noisy low-dimensional signals—often using as little as 1% of
the training data to build the orbit dictionary. Despite its mathematical depth, the
framework is computationally lightweight and requires minimal engineering to
achieve competitive results, particularly in noisy low-dimensional regimes. These
findings position WBSNNs as a highly interpretable, data-efficient, noise-robust,
and topology-aware alternative to conventional neural architectures.

1 INTRODUCTION

Deep learning excels across vision, language, and time series, but its practical success still leans
on stacked nonlinearities, heavy overparameterization, and empirical tricks (e.g., attention), which
obscures mechanism and often demands large labeled datasets and careful tuning. We ask whether
a model built around simple, structured orbit dynamics can both explain and perform. We intro-
duce Weighted Backward Shift Neural Networks (WBSNNs)—an orbit-based architecture rooted in
operator theory. WBSNNs replace deep activation stacks with orbits of weighted backward shifts:
first, the model builds an orbit dictionary and achieves exact interpolation of selected anchor subsets
using linear operators only; then a lightweight MLP forms data-dependent linear combinations of
orbit elements to generalize. Although the components are linear, the predictions are nonlinear in
the input through the combinatorics of orbits, yielding a model that is interpretable (every prediction
decomposes into explicit orbit paths), data-efficient, and topology-aware.

A distinctive property of WBSNN is its general-purpose design: the same orbit-based mecha-
nism extracts structure and generalizes across varied, demanding conditions—without bespoke per-
dataset pipelines. To evaluate WBSNN’s versatility and inductive capacity, we test it across a wide
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spectrum of datasets spanning multiple modalities, structural challenges, and learning objectives.
This includes distribution shift, financial time series (including temporally indexed data with volatil-
ity and long-range dependencies), air-pollution forecasting, high-dimensional speech and text clas-
sification, synthetic low-dimensional regimes with noise, compressed-feature image recognition,
and geometrically structured manifolds with both synthetic and natural noise: WBSNN matches
or outperforms strong baselines while often using as little as 1% of the training data to build the
orbit dictionary, offering a lightweight alternative to attention-based deep networks amid growing
environmental concerns over the compute and energy demands of modern AI systems. We prove
that the architecture induces an implicit regularization mechanism (Lemma 3.10) and we provide
an exact-interpolation theorem for finite dimensional spaces (Theorem 3.7 below), that explains the
observed data efficiency.

While all experiments are finite-dimensional, our theory is not. We also prove an exact interpo-
lation theorem in infinite-dimensional sequence Banach spaces (e.g., ℓp, c0): see Theorem A.1,
Appendix A. This establishes that WBSNN’s orbit-based representation is well-posed beyond fi-
nite dimensional spaces. This establishes a mathematically rigorous foundation for applications
such as operator learning for PDE-governed systems, weather–climate forecasting on space–time
fields, medical imaging (e.g., CT/MRI inverse problems), control and reinforcement learning for
distributed PDE dynamics, continuous-time signal processing, neuroscience, and implicit neural
fields (e.g., radiance or level-set representations), where functions or operators are the core objects.

At a holistic, system-level view, WBSNN invites a new perspective: datasets need not be arbitrary
collections of points but may admit a canonical orbit-based decomposition—a geometric signa-
ture—emerging from an optimal WBSNN configuration. In this view, WBSNN is not only a learning
architecture but also a functor, translating datasets into structured geometric representations whose
topological and dynamical properties may encode generalization. This suggests a principled frame-
work for comparing datasets and understanding learning via orbit geometry and category-theoretic
structure.

2 BACKGROUND

We acknowledge foundational texts such as (2) and (3) that have shaped the operator-theoretic con-
text of this work. Our construction is rooted in the theory of linear dynamics, where the weighted
backward shift operator plays a foundational role. In infinite-dimensional separable sequence Ba-
nach spaces, this operator acts on sequences x = (x0, x1, x2, . . . ) by shifting coordinates backward
and scaling by a bounded weight sequence w = (wi)i≥0:

Bwx = (w1x1, w2x2, w3x3, . . . ). (1)

This simple mechanism gives rise to surprisingly rich dynamical behavior—such as dense orbits
and hypercyclicity—making it a central object of study in the theory of linear dynamics in infinite-
dimensional spaces. To adapt this dynamic to finite-dimensional settings, we introduce the Weighted
Backward Shift Neural Network (WBSNN), a structured transformation that cyclically reintroduces
lost input components to preserve richness. While the operators remain linear, our model’s predic-
tions become nonlinear due to their dependence on orbit evolution, offering both interpretability and
expressive capacity. This shift-based structure is used as the backbone for a three-phase learning
architecture that blends operator theory with modern neural design.

WBSNN in an Operator-Theoretic Machine Learning Context. Operator theory has shaped ma-
chine learning in diverse ways, primarily through Koopman operator frameworks, which linearize
nonlinear dynamical systems via spectral decompositions (often approximated in practice via DMD
or neural networks) for tasks like prediction and control (9), (8), (4). Extensions such as Koop-
man autoencoders further embed states into linear subspaces for generative modeling (1). Another
class of models, such as DeepONet (7) and neural integral equations (11), learns mappings between
infinite-dimensional function spaces, often for PDEs, using architectures like branch–trunk networks
for DeepONet or attention-based solvers for neural integral equations. In contrast, models like Lin-
former (10) proposing a low-rank projection to reduce self-attention complexity from quadratic to
linear, while NAIS-Net (5) enforces stability through non-autonomous differential equation dynam-
ics. Collectively, these methods prioritize universal operator approximation or architectural con-
straints for efficiency and stability, yet they are not orbit-based and thus do not build representations
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through iterates of dynamic operators. These models serve as baselines in our experiments, against
which WBSNN demonstrates superior data efficiency and noise robustness across diverse tasks.

In contrast, WBSNNs are not based on approximating nonlinear operators or constraining spectra for
stability. Instead, they are rooted directly in dynamics of linear operators: the study of how iterates
of a single operator generate rich geometric and topological behavior. A central object here is the hy-
percyclic operator—one admitting a vector whose orbit under iteration is dense in the space—with
the weighted backward shift as the archetypal example, see (2). At first glance this notion seems
exotic, since proving hypercyclicity often requires delicate constructions. Yet the key discovery is
that hypercyclicity is not exceptional but typical: once one dense orbit exists, many do—and even
more surprising, the set of hypercyclic operators living on any infinite-dimensional separable Ba-
nach space is itself topologically large, see Theorem 1.2, Proposition 2.20 and Corollary 2.9 (2).
Motivated by these striking and unexpected facts, linear dynamics has become a crossroads where
seemingly unrelated areas of mathematics converge, revealing a rich source of insights. WBSNNs
borrow this spirit, grounding representation learning in orbit dynamics to bring interpretability and
expressive power into machine learning. By harnessing linear dynamics, WBSNN achieves data-
efficient, noise-robust generalization—often with as low as 1% of training data—while maintain-
ing exact interpolation and topological awareness, outperforming baselines in diverse regimes from
manifolds to noisy signals.

3 WBSNN

Weighted Backward Shift Neural Network’s Backbone. WBSNN is a three-phase learning
framework introduced in Definition 3.9. At its core lies a structured, shift-based architecture W (L)

(defined below), which cyclically shifts and scales input features across layers. Unlike traditional
feedforward networks, its modulo-d design preserves all input dimensions throughout depth, en-
abling persistent feature recombination. This recurrence simulates orbit dynamics from infinite-
dimensional operator theory, where iterated linear actions generate structured, dense trajectories.
With only d parameters, W (L) builds global representations from local shifts, providing an inter-
pretable and expressive backbone for interpolation and generalization.
Definition 3.1. W (L) is a layered linear model of depth L with d predictors satisfying the following:
given a layer’s activations x(l) = (x

(l)
n ) with 0 ≤ l ≤ L and 0 ≤ n ≤ d − 1, the activations at the

next layer l + 1 follow the recurrence:

x
(l+1)
i mod d = w(i+1) mod d · x

(l)
(i+1) mod d for 0 ≤ l ≤ L− 1.

where x(0) represents the input vector, x(L) the output vector and (wn)0≤n≤d−1 is a weight finite
sequence.

We refer the reader to Figure 1 in the Appendix B for a visual illustration of how W (L) operates in
the case d = 5 and L = 11.

Given L, we extend x(0) by appending its first L entries wrapped modulo d, and denote the result by
x
(0)
ext,L ∈ Rd+L. That is, we define (x

(0)
ext,L)i := x

(0)
i mod d for all 0 ≤ i ≤ d+ L− 1. Then the output

of W (L) can be given in matricial form by

(W (L)x
(0)
ext, L)i :=

(
L−1∏
k=0

w(i+k) mod d

)
· x(0)

(i+L−1) mod d (2)

for 1 ≤ i ≤ d, where the matrix W (L) ∈ Rd×(d+L) is defined as:

W
(L)
i,j =


L−1∏
k=0

w(i+k) mod d, if j = i+ L

0, otherwise

, (3)

for 1 ≤ i ≤ d and 1 ≤ j ≤ d+L. Each row i = 1, . . . , d of W (L) thus contains exactly one nonzero
entry, located at column i+ L, representing a product of L weights extended modulo d.
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Note: For practical visualization, the reader should observe that W (L)x
(0)
ext is a shift-scaling of x(0)

ext ,
beginning at the L-th entry of x(0)

ext and preserving the order of components modulo d.

Remark 3.2. Throughout the paper, in order to keep the notation simple, whenever we apply W (L)

to a vector x(0) ∈ Rd, the input is implicitly extended modulo d so that all required components
x
(0)
d , x

(0)
d+1, . . . x

(0)
d+L−1 are defined via x

(0)
d+k := x

(0)
k for k = 0, . . . , L− 1.

Example 3.3. Let d = 4, L = 2, and weights (w0, w1, w2, w3). Then for an input vector x(0) =

(x
(0)
0 , x

(0)
1 , x

(0)
2 , x

(0)
3 ) ∈ R4, then

W (2)x(0) =

0 0 w1w2 0 0 0
0 0 0 w2w3 0 0
0 0 0 0 w3w0 0
0 0 0 0 0 w0w1




x
(0)
0

x
(0)
1

x
(0)
2

x
(0)
3

x
(0)
0

x
(0)
1


=


w1w2x

(0)
2

w2w3x
(0)
3

w3w0x
(0)
0

w0w1x
(0)
1

 .

Here we adopted the convention outlined in Remark 3.2.

Remark 3.4. This extension modulo d structure ensures that no information is lost, even for large L,
and allows the model to propagate and recombine features across all positions. W (L) thus provides
a structured linear backbone for learning with global receptive fields and low parameter complexity.

Example 3.5 (Weight regimes (d = 3, L = 2)). Let w = (c, c, c). Then

W (2)x(0) =
(
c2x

(0)
2 , c2x

(0)
0 , c2x

(0)
1

)
.

Thus: c = 0.5 (vanishing) ⇒ decay by 0.52; c = 1 (neutral) ⇒ pure permutation (no scaling);
c = 1.5 (exploding) ⇒ amplification by 1.52. In general, the product

∏d−1
k=0 wk governs energy

growth/decay, providing a simple knob for stability and expressivity.

The following lemma reveals a key structural property of W that limits the distinctiveness of large
powers. (Proof deferred to Appendix A.1).
Lemma 3.6. Given W with d predictors, for every X ∈ Rd and every L ≥ 1, we have that

W (L)X = λW (L mod d)X , where λ =
(∏d−1

k=0 wk

)m
with L = md+ (L mod d).

The following is our main theoretical result. It shows that, under a technical independence condition,
any finite dataset admits an exact realization within a class of transformed weighted shifts. We now
present and prove an explicit construction of such a realization, which will serve as the foundation
for our learning algorithm. (Proof deferred to Appendix A.2).
Theorem 3.7 (Universal Representation via Transformed Weighted Shifts). Let W on Rd with
weights wn ̸= 0, and let {(Xi, Yi)}Ni=1 ⊂ Rd × Rd be a finite set of input-output pairs dataset
with N ≤ d. Suppose for each i = 1, . . . , N , there exists Li ∈ {0, . . . , d− 1} such that

W (Li)Xi /∈ span{W (L1)X1, . . . ,W
(Li−1)Xi−1}. (4)

Then, there exists a linear operator J on Rd such that Yi = JW (Li)Xi for all i = 1, . . . , N .

Remark 3.8. On J as an Isomorphism: Define the invertibility metric δ := max1≤i≤N ∥Yi −
Ji−1W

(Li)Xi∥. By iterative construction, J = Id+
∑N

i=1(Yi−Ji−1W
(Li)Xi)⊗f∗

i , so ∥J−Id∥ ≤
Nδ ·maxi ∥f∗

i ∥. Thus, J is an isomorphism if ∥J − Id∥ < 1 (see Lemma 2.1, p 192 (6)), achieved
when δ < 1/(N ·maxi ∥f∗

i ∥).

The restriction Li ∈ {0, . . . , d − 1} in Theorem 3.7 follows from Lemma 3.6, as W (L)X cycles
with period d up to scaling. Beyond this, higher L only rescales earlier terms, adding no new linear
independence information.

Optimization Framework. The constructive proof of Theorem 3.7 motivates a three-phase learning
framework grounded in orbit structure; here we detail Phases 1-3. We select a subset D of the
training set and partition it into K subsets Dk for k ∈ {0, . . . ,K − 1} so that the recursive linear
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independence condition (4) holds within each Dk. In practice this condition is easy to satisfy;
however, the cap we impose on the size of each Dk can influence generalization, and choosing this
cap optimally is left for future work (discussed later).

Phase 1. Learn a global shift operator W such that the orbit points W (Li)Xi satisfy condition (4)
across the selected subsets Dk.

Phase 2. Apply Theorem 3.7 independently to each Dk: fit a local linear map Jk on Dk to achieve
exact interpolation (equivalently, apply the theorem K times, once per subset).

Phase 3. Mimicking dynamics in infinite dimensions, we define Phase 3 of WBSNN as gener-
alization over the space

∑K−1
k=0 Jk · span

{
W (m)X : m ≥ 0

}
. Note that this formulation is the

reason why we considered unwrapping W (L) modulo d; otherwise, standard backward shifts would
vanish beyond depth d, preventing generalization along the infinite orbit. By Lemma 3.6, in finite-
dimensional spaces our generalization expression collapses—up to scalar factors—via MLP-learned
coefficients αk,m(X) to the prediction rule:

Ŷnew =

K−1∑
k=0

Jk

d−1∑
m=0

αk,m(Xnew) ·W (m)Xnew, (5)

which reuses the operators from Phases 1–2 without compromising the interpolation guarantees on
each Dk.

Note that Phase 3 is defined on infinite orbits and therefore Phases 1–3 apply to infinite-dimensional
datasets, as long as we can prove an exact interpolation theorem for infinite-dimensional Banach
spaces. As shown in Theorem A.1, Appendix A.4, the requisite theorem holds, providing the theo-
retical foundations of WBSNNs in infinite dimensions. In what follows, we restrict our attention to
the finite-dimensional case; the infinite-dimensional extension is treated in Appendix A.

We are now ready to introduce WBSNNs in the finite-dimensional setting.
Definition 3.9 (WBSNN in finite-dimensional datasets). A Weighted Backward Shift Neural Net-
work (WBSNN) on a d-dimensional vector space (with d finite) is a three-phase learning model
defined by: (i) a fixed shift operator W ∈ Rd×d,1 (ii) local linear maps {Jk} learned over subsets
Dk, and (iii) a data-dependent weight function αk,m(X), parametrized via an MLP, for combining
orbit elements. The final prediction for input X ∈ Rd is given by (5).

Visualizing WBSNN in Action: Interpretability on Swiss Roll. To illustrate WBSNN’s inter-
pretability and operational mechanics, we examine its application to the Swiss Roll dataset—a clas-
sic nonlinear manifold benchmark—with d = 3, 120 samples, and added Gaussian noise of 0.5. In
this run, Phase 1 and Phase 2 use approximately 6% of the training set (∼5 points) for learning the
shift operator W and subsets Dk for interpolation, while Phase 3 leverages the full training data for
generalization. Critical numerical details appear in Appendix B, Table 1.

Phase 1 begins by selecting a subset of training points and optimizing W = [0.8, 0.8, 0.8], partition-
ing them into 2 subsets D0 and D1 (total 5 points) with ∆ = 3.1146. In Phase 2, local operators
J0 and J1 are constructed to achieve exact interpolation (norm differences ≈ 0 within numerical
precision, e.g., 7.77 × 10−16 for Point 1 under J0), confirming Theorem 2.7’s guarantees. This
exact fit on subsets ensures the model captures local geometry without overfitting the full dataset.
The final performance, shown in Table 1, positions WBSNN as data-efficient and robust: achieving
a test accuracy of 0.9583 and train accuracy of 0.9868, competitive with baselines despite using far
fewer samples in its core phases. This extreme data efficiency (6% vs. 100% for baselines) under-
scores WBSNN’s ability to capture manifold structure with minimal data. Unlike baselines, which
may memorize the small dataset, WBSNN leverages orbit dynamics for robust generalization. Phase
3’s MLP outputs αk,m weights, which assign explicit contributions to each projection and dimen-
sion, enabling direct inspection of decision factors unlike black-box baselines, enabling traceable
predictions via Equation (5), i.e. Ŷ =

∑1
k=0 Jk

∑2
m=0 αk,m(X) ·W (m)X .

To visualize WBSNN’s interpretability, we examine predictions for two points: (1) a held-out train-
ing point not used in Phase 1 (seen by the model during Phase 3 training but excluded from subset

1In our notation, W denotes the base shift operator of type Rd → Rd, while W (L) is a derived object of
type Rd+L → Rd constructed to simulate L applications of W over extended input.
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construction in Phases 1–2), and (2) an unseen test point (never encountered during any phase). This
selection highlights WBSNN’s generalization: the held-out training point tests interpolation beyond
Phase 1 subsets (demonstrating robustness within the training distribution), while the test point
evaluates true out-of-sample performance (showing adaptability to unseen manifold regions). Both
points yield correct predictions, underscoring the framework’s ability to leverage orbit dynamics for
reliable, traceable decisions.

For the held-out training point, the prediction sum from Phase 3 gives (2.328883) yielding a sig-
moid probability of 0.911241, confidently predicting label 1.0 (matching true). The high probability
(0.911241) reflects strong confidence in Class 1, driven by positive terms αk,m from dimensions
1 and 2, aligning with the spiral’s geometry. For the unseen test point, the sum (−2.475847)
yields a sigmoid probability of 0.077569, predicting label 0.0 (matching true). The low proba-
bility (0.077569) indicates robust separation from Class 1, with negative αk,m suppressing projec-
tions across all dimensions, illustrating WBSNN’s ability to generalize to unseen points by adapting
weights to the input’s position on the manifold.

These examples, detailed in Appendix B, Table 1, highlight WBSNN’s transparency: each prediction
decomposes into per-dimension contributions. The selection of these points underscores WBSNN’s
strengths: the held-out training point shows how the model interpolates within the training distri-
bution without relying on Phase 1 subsets, while the test point validates true extrapolation. This
dual view emphasizes interpretability—each prediction traces back to explicit orbit combinations—
positioning WBSNN as a transparent alternative to black-box models.

On αk,m modalities. Concerning the MLP-learned coefficient αk,m of our prediction rule (5), we
consider four WBSNN modalities along two axes—head expressivity and backbone sharing. (1)
αk,m: a full per-k, per-state head that gates all dynamical states m within each subset k (maximal
flexibility). (2) αk,L: a middle-ground head that gates only the states established by Phase 1 and 2,
meaning for each 0 ≤ k ≤ K− 1, the coefficient αk,L = 0 for all L /∈ Lk, where Lk is the set of Li

satisfying condition (4) for Xi ∈ Dk, reducing variance while retaining within-k selectivity. (3) αk

(shared backbone): a per-k head trained on a trunk primed by αk,m; operationally it aggregates over
m using features learned for the richer head, offering strong generalization with lower overfitting. (4)
αk (separate backbones): the same per-k head trained on its own trunk, decoupled from αk,m. So,
αk,L is an intermediate head that sits between αk,m and αk. Our main protocol uses variants (1) and
(3), i.e. full αk,m and αk with a shared, αk,m-primed backbone, balancing accuracy, robustness, and
efficiency. Appendix E reports the behavior of αk,m and both αk variants across datasets. We reserve
the variant αk,L exclusively for the infinite-dimensional formulation of WBSNNs (Appendix A.4),
where it plays a central role.

Interpolation modalities. While Theorem 3.7 provides a constructive proof of exact interpolation
via sequential updates of the operator J , our implementation adheres to the same design principles
while allowing a relaxed (non-exact) interpolation adapting to realistic settings for stability, effi-
ciency, and robustness. This last variant intentionally relaxes the exact fit to illustrate the model’s
behavior under noisy conditions, offering a broader view of orbit-based generalization and adaptive
weighting phenomena. Details are deferred to Appendix D. This dual approach allows us to adopt
exact interpolation in noiseless or low-noise regimes and to switch to non-exact formulations when
data is noisy or ill-conditioned.

Practical considerations. Phase 1 evaluates W (L)X across depths L≤ d and tests span member-
ship via a least–squares residual with tolerance τ (a numerically cheap proxy for exact independence;
see Appendix D); the work grows roughly quadratically with the subset size. To keep costs tractable
without losing diversity, we optimize W on mini-subsets and form Dk from a subsampled fraction
of the training pool (diversity-aware anchor policies—e.g., coverage/k-center ideas—instead of uni-
form subsampling are left for future work). In Phase 2 we compute Jk using either the constructive
rank-one update scheme given by the proof of Theorem 3.7 (yielding exact interpolation), the closed-
form pseudoinverse (still giving exact interpolation when full-rank), or a regularized pseudoinverse
for noisy/ill-conditioned cases yielding relaxed interpolation, details in (Appendix D). Our main
results default to the regularized form for stability in noisy/compressed regimes, with exact vari-
ants used when independence is clean. Crucially, we handle vector and scalar targets uniformly in
the same d-dimensional space: classification uses one-hot label vectors, and regression embeds the
scalar along a fixed direction and reads it back through a fixed linear functional. Phase 3 then reuses
the same orbit-weighted combination, preserving interpretability.
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Empirical Observation (implicit regularization). Across nine datasets and varied configurations
of input dimension and sample size, the learned shift W almost always lies in the vanishing regime,∏d−1

i=0 wi < 1. This contraction behaves as an implicit regularizer—improving generalization and
noise robustness—while rare cases favor neutral or mildly expanding dynamics to preserve signal,
reflecting a regularization–expressivity trade-off. This motivates the next lemma.

Noise Suppression via Orbit Decay. WBSNN generalizes over the infinite orbit {W (m)X}m∈N,
which, by Lemma 3.6, collapses—up to scalars—to its first d iterates. In the vanishing
regime—where ρ :=

∏d−1
i=0 |wi| < 1—each W (m)ε decays as ρ⌊m/d⌋, producing spectral regular-

ization. Though Phase 3 only uses shallow iterates, the full decay structure biases the model toward
stability. This yields noise suppression without explicit penalties (like dropout layers), driven solely
by the orbit geometry of the shift operator itself. The result is stable learning behavior in noisy or
low-sample settings, as formally shown below. (Proof deferred to Appendix A.3).

Lemma 3.10 (Noise Suppression via Orbit Decay). Let ε ∈ Rd be an additive noise vector and let
W (m) with weights w0, . . . , wd−1 ∈ R such that ρ :=

∏d−1
i=0 |wi| < 1. Then for all m ≥ 1,

∥W (m)ε∥ ≤ ρ⌊m/d⌋ · C,

for some constant C > 0 depending only on ε and d. In particular, ∥W (m)ε∥ → 0 as m→∞.

Remark 3.11. This shows that although Phase 3 in WBSNN only uses orbit powers m ≤ d − 1,
these terms implicitly encode decay across the full infinite orbit {W (m)ε}m≥0 via scalar rescaling.
The vanishing regime

∏d−1
i=0 wi < 1 induces exponential suppression of long-term perturbations,

acting as an intrinsic regularizer in the orbit geometry.

For a concrete instantiation of our main protocol: relaxed (non-exact interpolation), see Algorithm 1
in Appendix C.

4 EXPERIMENTS

Protocol and compute. We report results across nine datasets under one protocol: train-only stan-
dardization, small PCA bottlenecks, and tiny Phase-1/2 “discovery” budgets to build the orbit dic-
tionary. Unless noted otherwise, αk denotes the shared-trunk head (the main protocol), and αk,m is
the richer head gating per subset and per orbit state. All experiments run in a lightweight CPU-only
Jupyter environment—no GPUs—so the numbers reflect true data/geometry leverage rather than
horsepower.

Baselines. We report tuned baselines spanning: linear (LogReg, LinearSVM), kernel (RBF-
SVM, KRR, Nyström, RFF), tree ensembles (RF, XGBoost, ExtraTrees), neural (MLP,
CNN/LeNet/ResNet-18), sequence/dynamical (LSTM, Linformer, NAIS-Net), operator-learning
(DeepONet, FNO), spectral/graph and nonparametric (Diffusion Maps+LogReg, Laplacian-
LogReg, Scattering2D, Hankel-SVD+LDA, k-NN/Label Propagation), and domain-specific
(CORAL, time-delay ridge, EDMD).

CIFAR-100 (compressed, capped). On a small-but-stubborn CIFAR-100 variant (30 classes,
frozen ResNet-18 features, PCA to d ∈ {10, 20} and 1–3% discovery), compressing to d=10 with
a 3k budget keeps only ∼31% variance and creates a low-margin regime: linear and kernel heads
hover around 50%, while αk,m sits between 45-47% and outperforms αk at this extreme compres-
sion. Widening to d=20 (∼43% variance) and a 5k budget pushes αk,m into the high-50s, narrowing
the gap to the best shallow baselines despite discovery still capped at 3%—evidence that widening
the bottleneck and modestly enlarging the pool helps the orbit dictionary organize what signal sur-
vives projection, see Tables 2 and 3 in the Appendix for details.

Gas Sensor Drift (chronological, distribution shift). The chronology (10 batches over 36 months;
strict out-of-time split; PCA d ∈ {5, 10, 15}; discovery 1–7%) stresses noise and drift simultane-
ously. Here, WBSNN’s stability under drift and noise shone through. At d=5 with n≈ 1.6k and
5–7% discovery, all WBSNN heads land ∼59–61% with αk (separate) 7% discovery outperforming
the strongest baseline overall under drift. Opening to d=10 and n=3k (EVR=96%) reveals the scal-
ing law cleanly: αk,m peaks near 68% at 3% discovery and remains best overall; both αk variants are
more budget-hungry but converge within a point or two by 5%. A 20-seed sweep at d=10 (10% dis-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

covery) shows αk,m 0.647 ± 0.0367, αk(shared) 0.645±0.051, αk(separate) 0.65±0.037—modest
spread under drift and reproducible gains from sparse discovery. More details in Tables 4–7.

IMDb (compressed text, mean-pooled). With mean-pooled GloVe-100 embeddings, PCA d ∈
{10, 20, 50}, and 1–15% discovery, WBSNN scales predictably despite erasing word order. With 2k
samples at d=10 (EVR≈0.52), αk,m holds near 0.75 (best overall); with 4k at d=20 (EVR≈0.67)
it rises to ∼0.77 (best overall with Random Forest); with 25k at d=50 (EVR≈0.87) and just 1%
discovery it reaches∼0.793, keeping pace with RBF-SVM/Nyström and outrunning logistic/GBDT.
Exact-interpolation runs confirm the bias–variance trade: at low data they match or beat non-exact
(e.g., ∼0.73–0.77 at d∈ {10, 20} with 2–4k) with zero anchor residuals, while non-exact becomes
preferable as samples and horizon grow. More details in Tables 8–12.

MNIST (PCA bottlenecks). Compressed regimes expose structure vs. capacity. At d=5 with 2k
samples (∼33% variance), accuracy is limited by information loss; WBSNN remains competitive
with SVM and consistently beats logistic/MLP/forest. At d=15 with 5k samples (∼58% variance),
both heads climb; αk,m benefits more from the extra signal. At d=30 with 10k samples (∼73% vari-
ance), WBSNN exceeds 95% test accuracy—rivaling strong PCA baselines (in both d = 15, d = 30)
without image-specific machinery—while accuracy rises monotonically with Phase-budget. Details
in Tables 13–15.

Noisy synthetic gauntlet (heavy tails, spurious cue). A 15k×50D task with few informative co-
ordinates, heavy-tailed heteroskedastic noise, boundary-peaked label flips, and a 0.6-correlated spu-
rious feature separates information-seekers from shortcut-takers. Under tight discovery budgets,
WBSNN recovers signal reliably: at small d it achieves exact interpolation (Phase-2 residuals ≈ 0)
yet generalizes; as d (5→20) or n (1.5k→12k) grow, accuracy rises to ≈ 0.75–0.78, matching or
slightly edging strong tabular/kernel baselines (LogReg, RBF-SVM, RFF+LogReg, ExtraTrees) and
a tuned 1-layer MLP. Random forests overfit, while WBSNN remains stable and spurious-resistant,
with predictable gains from modest increases in d or n. More details in Tables 16–20.

FI-2010 (limit order book). Chronological splits; PCA d ∈ {10, 20, 40}; discovery 1–10%;
n = 1k–30k. In the harsh corner d=10, n=1k, αk,m ∼0.458 and αk 0.404→0.476 (as budget
rises) sit with LR/RBF-SVM/Nyström/MLP/RF around 0.40–0.47; Phase-2 already aligns most an-
chors exactly. At d=20, n=2k, both heads firm near 0.49 (best overall), ahead of Linformer/NAIS-
Net/DeepONet/LR/MLP. Push to d=20, n=10k: WBSNN jumps to ∼0.62; at d=20, n=30k with
just 1–3% discovery, both heads reach ∼0.65 while baselines lag in the 0.44–0.59 range. A 20-seed
small-data sweep (d=10, n=2k, 10%) yields 0.504 ± 0.046 for αk,m and 0.500 ± 0.051 for αk:
typical low-n dispersion that tightens as information grows. Details in Tables 21–26.

PRSA-2017 (air-quality regression). Four meteorological features; strict chronological split where
the last 20% (∼82k hours) is the fixed test window. WBSNN’s αk,m scales from R2 ≈ 0.27 at
n=1k to 0.29−0.30 at 3k and 0.32−0.33 at 10k with discovery ranging 1–15%, while MAE stays
∼0.58–0.60. The head hierarchy is consistent: αk,m leads; αk(shared) tracks closely and beats
αk(separate) as data grow. Exact vs. non-exact shows the intended trade-off: exact wins at n=1k
(e.g., R2 ≈ 0.283−0.284 vs. ∼ 0.27) and stays similar at 3k, but non-exact pulls ahead at 10k
(∼0.326−0.332 vs. ∼0.297−0.320), suggesting a small slack in Phase-2 improves drift-robustness
on a massive future window. Proportional 80/20 ablations (e.g., 3k/600 and 10k/2k) mirror this:
exact is stable on small tests; non-exact scales better on broader-horizon evaluations. Tables 27–31.

ISOLET (speech; 26-way). A clean compression/budget sweep. In the compressed cor-
ner (d=5, n=2000), αk,m climbs from 62.0%→64.8% as discovery rises 5%→15%, trailing
only RBF-SVM and beating logistic/MLP/RF/k-NN/Nyström/Label-Prop; αk(shared) sits just be-
hind and clearly outperforms αk(separate). A 20-seed study at d=5, 10% shows αk,m 0.62 ±
0.011, αk(shared) 0.58±0.019, αk(separate) 0.55±0.022—sharing the trunk lowers variance. At
d=10, n=4000, αk,m reaches 77.1% (5%), essentially tied with RBF-SVM (77.6%) and ahead of
other baselines. On the full train, tight d=5 caps at ∼65%, while d=20 yields ∼90% and d=35
91.9–92.4% with just 3–5% discovery—competitive with logistic/MLP and within a few points of
RBF-SVM, all while forests/k-NN overfit. More details in Tables 32–37.

Swiss Roll + RFF (classification & regression). Three tough classification tracks and a het-
eroskedastic regression confirm that tiny discovery budgets suffice when geometry is organized.
In noisy 5-class, small runs (RFF20→PCA10, Mtrain=800, 15%) already hit ∼95% (αk,m) in line
with RBF-SVM; scaling to RFF30→PCA15 with Mtrain=30k and just 7% anchors keeps both heads
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∼96%. In low-sample + label-noise (∼20% flips), the simpler αk (shared) can edge αk,m at higher d
and M (e.g., ∼75% at RFF20→PCA15, 1k, 10%), consistent with a helpful bias under uniform flip
noise. On multi-roll (4 spirals), WBSNN rides the topology: ∼94–95% at RFF20→PCA10, 2k/10%
and∼97% at RFF30→PCA15, 20k/7%, neck-and-neck with the best kernels/MLPs. For regression,
αk is the safer bias-controlled choice at scale (e.g., R2≈0.83 at 20k vs. ∼0.78 for αk,m), showing
that wider heads add variance when signal is essentially 1-D. Further details in Tables 38–46.

Swiss Roll + polynomial embedding. With explicit quadratics + interactions + six spurious chan-
nels, WBSNN behaves like a well-regularized model. At mild noise (0.2), it tracks 98.1% and
logistic wins by a hair 98.2%—exactly what you expect in a quasi-linearized space. At noise 0.5,
WBSNN holds mid-95s, with smaller d acting as a built-in denoiser (e.g., 95.3% at d=10, 5k vs.
93.6% at d=15, 5k); at noise 0.8, small-d plus small budgets remains the safe recipe, and WBSNN
stays competitive while kernel/linear baselines occasionally nip it by 0.5–1 point—again consistent
with bias–variance under noisy algebraic features. More details in Tables 47–50.

Swiss Roll (raw 3D). No feature maps, just standardization—WBSNN treats geometry as home turf.
With three noisy classes (σ=0.5) and only ∼10% discovery, it is already 99.4% at 10k. Logistic
stalls at 61%, underscoring that this is about geometry, not head capacity. Under scarcity + label
noise (10-way, 10% flips, 1k points), WBSNN holds 91.5% and matches or edges kernels. On the
3-roll topology at 20k, it again rides with the leaders (∼98.7%) with only 7% budget. For regression
on the unwrapped angle, the shared αk head ages better as scale increases (e.g., R2 ≈ 0.986 at 2k
vs. ∼0.969 for αk,m, and R2≈0.961 at 10k vs. ∼0.938), highlighting that a narrower head can be
the right bias when the target is essentially 1-D. Further details in Tables 51–56.

Conclusion. Across a deliberately eclectic suite of datasets—under stressors including
heavy/heteroskedastic noise, distribution drift, extreme PCA compression, label flips, spurious cues,
and multi-roll topology—the pattern is consistent. With tiny discovery budgets (often 1–10%) and
a small head, WBSNN scales with information: once the orbit dictionary has enough anchors, it
matches or beats strong linear, kernel, tree, neural, and operator-learning baselines (e.g., DeepONet,
FNO, NAIS-Net, EDMD). Grounded in operator theory and explicitly orbit-driven, WBSNN shines
among operator-learning counterparts with consistent improvements. The richer αk,m head is the
geometry workhorse on nonlinear class boundaries, while the shared αk head is the safer bias for
noisy 1-D regressions and flip-noise regimes. Error-bar studies (20 seeds) show moderate spreads
that contract as n or PCA retained variance grows; exact fits are preferred at small data or small d,
while relaxed fits win as samples or horizons increase. In short, WBSNN learns the data’s geometry
rather than memorizing examples—delivering competitive accuracy under CPU-only constraints.

5 FUTURE WORK.

Extension to Infinite Dimensions. We established WBSNN’s foundations in infinite-dimensional
sequence Banach spaces (Appendix A.4). Future work will systematically explore this regime on
inherently infinite-dimensional datasets, leveraging WBSNN’s orbit dictionary to model complex,
high-dimensional data structures while maintaining computational efficiency and interpretability.

Toward a Geometric Theory of Datasets. While this work introduces WBSNN and demonstrates
its empirical and theoretical potential, we are still far from understanding how to optimally configure
it for a given dataset D. Interestingly, WBSNN consistently selects a vanishing regime (

∏d
i=1 wi <

1) during Phase 1 optimization—promoting orbit stability and interpolation quality. This behavior,
though not enforced, suggests the existence of dataset-specific configurations (KD,WD, JD) such
that WBSNN acts as a functor extracting the intrinsic geometry or topology ofD. Such a perspective
may ultimately allow us to reason about learning not only through data and models, but through the
geometry they induce. If formalized, this could ground a geometric or category-theoretic framework
for learning, where orbit representations encode generalization structure.

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. Our work uses only public, non-identifiable datasets and
does not involve human subjects or sensitive attributes. We release code and full result tables to
support transparency and responsible use.
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REPRODUCIBILITY STATEMENT

An anonymous repository with all code, configs, and per-dataset notebooks/markdowns is available
at https://github.com/wbsnn2025/wbsnn_for_reviewer_iclr2026. We pin ex-
act package versions and provide commands to regenerate all tables and figures from a clean clone.
We use train-only standardization and PCA across all datasets; splits and seeds are specified in the
repo README.

All assumptions and complete proofs (including the infinite-dimensional foundations for WBSNNs)
are in Appendix A. Algorithmic pseudocode appears in Appendix C (Algorithm 1); Appendix D
explains the theorem–algorithm correspondence, the Phase-1 independence proxy, and the three
Phase-2 interpolation modalities. A Swiss-Roll interpretability example is summarized in Table 1.
Comprehensive per-dataset results and ablations are in Appendix E.
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A PROOFS

A.1 PROOF OF LEMMA 3.6

Proof of Lemma 3.6. Let W with d predictors, where W (L) ∈ Rd×(d+L) applies an extended mod-
ulo d shift as defined in (3), with the action on X ∈ Rd (implicitly extended to Xext,L) given by
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(2). For 1 ≤ i ≤ d, (2) gives (W (L)X)i =
(∏L−1

k=0 w(i+k) mod d

)
Xext,L,(i+L−1) mod d, where

Xext,L,j = Xj mod d for all 0 ≤ j ≤ d+ L− 1. Similarly,

(W (L mod d)X)i =

(L mod d)−1∏
k=0

w(i+k) mod d

Xext,L mod d,(i+(L mod d)−1) mod d.

Since (i+L−1) mod d = (i+(L mod d)−1) mod d, the indices match, so Xext,L,(i+L−1) mod d =
Xext,L mod d,(i+(L mod d)−1) mod d. For L ≥ 1, there exists m ≥ 0 such that L = md+ (L mod d),
where 0 ≤ L mod d < d. The product in W (L) splits as:

L−1∏
k=0

w(i+k) mod d =

(
m−1∏
n=0

d−1∏
k=0

w(i+nd+k) mod d

)
(L mod d)−1∏

k=0

w(i+md+k) mod d.

Indeed, the first md terms of
∏L−1

k=0 w(i+k) mod d are m full cycles (of length d) with indices i +
nd+ k for n from 0 to m− 1 and k from 0 to d− 1. So, for each n, we get

w(i+nd) mod d · w(i+nd+1) mod d · . . . · w(i+nd+(d−1)) mod d

which covers one full cycle of indices. The remaining L mod d terms (from k = md to k = L− 1)
are

w(i+md) mod d · w(i+md+1) mod d · . . . · w(i+md+(L mod d)−1) mod d

which is exactly
∏(L mod d)−1

k=0 w(i+md+k) mod d.

For each n, the inner product
∏d−1

k=0 w(i+nd+k) mod d =
∏d−1

k=0 w(i+k) mod d =
∏d−1

k=0 wk, since the

indices (i+nd+k) mod d cycle through i, i+1, . . . , i+d−1. Thus, the first term is
(∏d−1

k=0 wk

)m
.

Hence, (W (L)X)i =
(∏d−1

k=0 wk

)m
(W (L mod d)X)i, and the scalar λ =

(∏d−1
k=0 wk

)m
satisfies

the lemma.

A.2 PROOF OF THEOREM 3.7 ON UNIVERSAL REPRESENTATION VIA TRANSFORMED
WEIGHTED SHIFTS

Proof of Theorem 3.7. Let W on Rd with weights wn ̸= 0. Let also (Xi, Yi)
N
i=1 ⊂ Rd × Rd be a

finite set of input-output pairs satisfying (4).

Initialize: Set J0 = Id, the identity operator on Rd.

Iterative construction: For i = 1. Pick any L1 ∈ {0, . . . , d − 1} and find a linear functional
f∗
1 ∈ (Rd)∗ with f∗

1 (W
(L1)X1) = 1. Define J1v := J0v + (Y1 − J0W

(L1)X1) ⊗ f∗
1 (v) =

v+(Y1−W (L1)X1)⊗f∗
1 (v). Thus, J1W (L1)X1 = W (L1)X1+(Y1−W (L1)X1)·f∗

1 (W
(L1)X1) =

W (L1)X1 + (Y1 −W (L1)X1) · 1 = Y1.

For i ≥ 2: Assume
Ji−1W

(Lj)Xj = Yj for j ≤ i− 1, (6)
and pick Li ∈ {0, . . . , d − 1} satisfying condition (4). By Hahn-Banach Theorem (see Corollary
3.15 on p.112 (6)), there exists a linear functional f∗

i ∈ (Rd)∗ such that f∗
i (W

(Lj)Xj) = 0 for
j ≤ i− 1, and f∗

i (W
(Li)Xi) = 1. Define Ji as follows:

Jiv := Ji−1v + (Yi − Ji−1W
(Li)Xi)⊗ f∗

i (v). (7)

Thus,
JiW

(Li)Xi = Ji−1W
(Li)Xi + (Yi − Ji−1W

(Li)Xi) · 1 = Yi, and

JiW
(Lj)Xj = Ji−1W

(Lj)Xj = Yj for j ≤ i− 1 (by f∗
i (W

(Lj)Xj) = 0 and (6)).

By induction, for 1 ≤ i ≤ N : JiW (Lj)Xj = Yj for j ≤ i. Finally, by setting J := JN , we have
that Yi = JW (Li)Xi for all 1 ≤ i ≤ N .
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A.3 PROOF OF LEMMA 3.10 ON NOISE SUPPRESSION VIA ORBIT DECAY

Proof of Lemma 3.10. By Lemma 3.6, for every m ≥ 1, there exists a scalar λm > 0 such that

W (m)ε = λm ·W (m mod d)ε.

Let m = qd+ r, with 0 ≤ r < d and q ∈ N. Then, λm =
(∏d−1

i=0 wi

)q
= ρq. Hence,

∥W (m)ε∥ = λm · ∥W (r)ε∥ ≤ ρq · max
0≤r<d

∥W (r)ε∥ = ρ⌊m/d⌋ · C,

where C := max0≤r<d ∥W (r)ε∥ depends only on ε and d. Since ρ < 1, it follows that ∥W (m)ε∥ →
0 exponentially as m→∞.

A.4 WBSNNS IN INFINITE-DIMENSIONAL DATASETS.

To extend WBSNNs to infinite dimensions, we require an exact interpolation theorem in a sequence
Banach space. We work with the standard weighted backward shift Bw as defined in (1), acting on
a sequence Banach space Z (e.g., ℓp, c0), assuming supn |wn| < ∞ so that Bw is bounded. In this
setting we no longer wrap coordinates modulo d; orbits are formed by the genuine iterates BL

w.
Theorem A.1 (Universal Representation via Transformed Weighted Backward Shifts in infinite-di-
mensional sequence Banach spaces.). Let Bw be a weighted backward shift as defined in (1) acting
on an infinite-dimensional sequence Banach space Z. LetD be a dataset living on Z, and for N ≥ 1
consider (Xi, Yi)

N
i=1 ⊂ D a finite sequence of input-output pairs. Suppose for each i = 1, . . . , N ,

there exists Li ≥ 1 such that

BLi
w Xi /∈ span{BL1

w X1, . . . , B
Li−1
w Xi−1}. (8)

Then, there exists a linear and bounded operator J on Z such that Yi = JBLi
w Xi for all i =

1, . . . , N .

Because the Hahn–Banach Theorem holds in Banach spaces and the proof of Theorem 3.7 is
dimension-free—relying only on linearity, Hahn–Banach separation, and boundedness, with no
finite-dimensional arguments—it carries over verbatim from Rd to the infinite-dimensional setting.
Thus Theorem A.1 follows by replacing the wrapped operator W (L) (modulo d) with the genuine
iterate BL

w (assuming Bw is bounded).

How to apply Theorem A.1. Given a countable sequence of input-output pairs dataset D =
(Xi, Yi)

∞
i=1 on a infinite-dimensional sequence Banach space, denote by T the training set and

pick K disjoint subsets Dk with 0 ≤ k ≤ K − 1, where

Dk = {(i, Li) : (Xi, Yi) ∈ T , Yi = JkB
Li
w Xi}

and Jk is the linear bounded operator guaranteed by Theorem A.1 applied to Dk. Note that the
number of elements of ∪Kk=1Dk can be strictly less than the training set size allowing for small
budgets of WBSNN’s Phase 1 and 2. For an unseen X , our prediction rule becomes

Ŷnew =

K−1∑
k=0

Jk
∑
L∈Lk

αk,L(Xnew) ·BL
wXnew, (9)

where Lk = {Li : (i, Li) ∈ Dk}.
Computationally, we restrict the inner sum to a finite window L ∈ Lk (or alternatively, we could
enforce ℓ1-summability/decay constraints on {αk,L}L∈N0

), ensuring the prediction map is well-
posed and efficiently implementable. For computational convenience we adopt the middle-ground
head variant αk,L as the default head (see definition in ’On (αk,m) modalities’ subsection), which
aggregates over depth L per subset k without enumerating all residue classes m.

By Theorem A.1, the Phase 1–3 pipeline extends to an infinite-dimensional sequence Banach space
Z, assuming Bw is bounded (i.e., supn |wn| <∞) : Phase 1 learns Bw; Phase 2 fits bounded linear
maps Jk over disjoint Dk; Phase 3 combines orbit features {BL

wX} via αk,L(X) to generalize
beyond the interpolation sets. Unlike the finite-dimensional case, there is no modulo-d collapse;
unleashing the broad potential of WBSNNs in infinite-dimensional settings.
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Definition A.2 (WBSNN in∞-dimensional datasets). A Weighted Backward Shift Neural Network
(WBSNN) on an infinite-dimensional sequence Banach space Z is a three-phase learning model
defined by: (i) a weighted backward shift Bw acting on Z; (ii) local bounded linear maps {Jk}
learned over subsets Dk; and (iii) a data-dependent weight function αk,L(X), parametrized via
an MLP, for combining orbit elements. The final prediction for input X ∈ Z is given by (9). For
computational well-posedness, we restrict the inner sum to a finite window L ∈ Lk or enforce
ℓ1-summability/decay constraints on {αk,L(X)}L≥0.

Although learning occurs in finite dimension, increasing the number of selected training pairs N in
Theorem A.1 and allowing larger Dk subsets expands the set of orbit positions used in Phases 1–2.
This yields a finer approximation of the orbit geometry that would arise in infinite dimensions, while
remaining computationally controlled via the learned head.
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B WBSNN BACKBONE VISUALIZED

The following diagram illustrates the computation of W (L)x(0) for a WBSNN with d = 5 and
L = 11.
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Figure 1: WBSNN with d = 5 predictors and depth L = 11.

Dynamics of W (L): WBSNN’s backbone leverages a structured weight matrix W to generate orbit
vectors, as illustrated in Figure 1 for d = 5 and L = 11. For an input x(0) ∈ Rd, each application
of W shifts the components cyclically, where x

(l+1)
i−1 = wix

(l)
i (indices modulo d), with weights

w0, w1, ..., wd−1 applied sequentially. After L iterations, W (L)x(0) emerges as a vector in Rd,
capturing a rich trajectory of transformations. This orbit underpins Phase 1’s subset construction,
enabling the model to exploit temporal and spatial patterns in the input data.
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Table 1: Interpretability Details for WBSNN on Swiss Roll (d = 3, 120 samples, noise=0.5).

Phase 1 Subset Points Point X1: [1.6078, 1.2816, 0.6559], Label: 1.0
Point X2: [−2.0611,−1.0536,−0.3633], Label: 1.0
Point X3: [0.4151, 1.5876, 0.5976], Label: 0.0
Point X4: [−2.0067,−0.6176,−0.0628], Label: 1.0
Point X5: [0.5160,−1.6329,−0.1805], Label: 0.0

Phase 1 Weights W = [0.8, 0.8, 0.8], ∆ = 3.1146, X1 ∈ D0, X2 ∈ D0, X3 ∈ D0, X4 ∈
D1, X5 ∈ D1

Phase 2 Interpolation Point X1: L1 = 1, Norm of Y1 − J0W
(2)X1 = 7.77× 10−16

Point X2 : L2 = 2, Norm of Y2 − J0W
(2)X2 = 6.66× 10−16

Point X3 : L3 = 2, Norm of Y3 − J0W
(2)X3 = 7.39× 10−16

Point X4 : L4 = 2, Norm of Y4 − J1W
(1)X4 = 8.88× 10−16

Point X5 : L5 = 2, Norm of Y5 − J1W
(2)X5 = 7.24× 10−16

Phase 3 + baselines

Model Train Acc. Test Acc. Train Loss Test Loss

WBSNN 0.9868 0.9583 0.1011 0.1930
Logistic Reg. 0.5921 0.7917 0.6636 0.6026
Random Forest 1.0000 1.0000 0.5284 0.5685
SVM (RBF) 0.9868 1.0000 0.3147 0.3330
MLP 1HL 1.0000 1.0000 0.5134 0.5233

Held-out Train Point X = [0.3204,−0.7333, 1.8079], Label: 1.0
αk,m(X) Matrix [

α0,0(X) α0,1(X) α0,2(X)
α1,0(X) α1,1(X) α1,2(X)

]
=

[
1.0000 −1.0000 1.0000
0.5943 −0.7987 0.2296

]
Prediction Breakdown Dim 1: [J0W

(0)X, J1W
(0)X] = [0.0250, 0.0763], so we have

Term =[α0,0(X), α1,0(X)] · [J0W (0)X,J1W
(0)X]T = 0.070374.

Dim 2: [J0W
(1)X,J1W

(1)X] = [−0.6677,−0.9095], so we have
Term = [α0,1(X), α1,1(X)] · [J0W (1)X, J1W

(1)X]T = 1.394070.
Dim 3: [J0W

(2)X, J1W
(2)X] = [0.8810,−0.0718], so we have

Term =[α0,2(X), α1,2(X)] · [J0W (2)X, J1W
(2)X]T = 0.864439.

Sum of Terms: 2.328883, sigmoid probability σ(2.328883) =
0.911241, indicating high confidence in Class 1 due to positive terms,
Pred Label: 1.0, True Label: 1.0.

Test Point (Unseen) X = [0.4585, 0.6298, 0.0940], Label: 0.0
αk,m(X) Matrix [

α0,0(X) α0,1(X) α0,2(X)
α1,0(X) α1,1(X) α1,2(X)

]
=

[
0.0399 −1.0000 0.1973
1.0000 0.8567 1.0000

]
Prediction Breakdown Dim 1: [J0W

(0)X, J1W
(0)X] = [0.2504,−0.8192], so we have

Term =[α0,0(X), α1,0(X)] · [J0W (0)X,J1W
(0)X]T = −0.809212.

Dim 2: [J0W
(1)X, J1W

(1)X] = [0.5423,−0.3129], so we have
Term =[α0,1(X), α1,1(X)] · [J0W (1)X,J1W

(1)X]T = −0.810256.
Dim 3: [J0W

(2)X,J1W
(2)X] = [−0.2839,−0.8004], so we have

Term =[α0,2(X), α1,2(X)] · J0W (2)X, J1W
(2)X]T = −0.856379.

Sum of Terms: -2.475847, sigmoid probability σ(−2.475847) =
0.077569, reflecting strong confidence in Class 0 via negative terms,
Pred Label: 0.0, True Label: 0.0.
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C PSEUDOCODE FOR WBSNN

Algorithm 1: WBSNN Optimization Framework
Input: Dataset {(Xi, Yi)}Mi=1, dimension d, new input Xnew

Output: Predicted Ŷnew
1 Phase 1: Subset Construction and Operator Optimization
2 Initialize shift weights W ∈ Rd (e.g., W = 1); set residual threshold τ > 0.
3 Randomly sample a subset {(Xi, Yi)}i∈S , S ⊂ {1, . . . ,M} (e.g., 10% of training data).
4 Define Dk = {(i, Li) | i ∈ Sk ⊂ S, Li ∈ {0, . . . , d−1}, (Xi, Yi) ∈ Dataset}.
5 Initialize R = S, k = 1.
6 while R ̸= ∅ do
7 Dk = ∅, S = [] (span vectors).
8 foreach i ∈ R do
9 Find Li = argmind−1

L=0 | tanh(
∑

j [W
(L)Xi]j)− Yi|.

10 if W (Li)Xi /∈ span(S) and |Dk| < d then
11 Add (i, Li) to Dk, append W (Li)Xi to S, remove i from R.

12 if Dk ̸= ∅ then
13 Store Dk, increment k.

14 else
15 Break.

16 Optimize W via gradient descent to minimize:

δ(W ) =
1

|S|
∑
i∈S

min
0≤L<d

∣∣∣∣∣tanh
(∑

j

[W (L)Xi]j

)
− Yi

∣∣∣∣∣
2

Update Dk’s using optimized W .
17 Phase 2: Local Linear Maps via Regularized Least Squares
18 foreach Subset Dk do
19 Let Ak =

[
(W (Li)Xi)

⊤]
i∈Ik

∈ R|Ik|×d

20 Let Bk =
[
onehot(Yi)

⊤]
i∈Ik

∈ R|Ik|×C

21 Solve: Jk = (A⊤
k Ak + εI)−1A⊤

k Bk (regularized pseudoinverse)

22 Phase 3: Generalization via Orbit-wise Weighting
23 For each Xi, construct orbit: Oi = {W (m)Xi}d−1

m=0.
24 For each Jk, compute predictions JkW

(m)Xi ∈ RC .
25 Train a neural network MLP : Rd → RK×d to output αk,m(Xi).
26 Minimize classification loss:

L =
∑
i

ℓ

(
Yi,

K∑
k=1

d−1∑
m=0

αk,m(Xi) · JkW
(m)Xi

)

27 At inference:
28 Construct orbit Onew = {W (m)Xnew}d−1

m=0.
29 Compute Ŷnew =

∑K
k=1

∑d−1
m=0 αk,m(Xnew) · JkW

(m)Xnew.

D CONNECTION BETWEEN THEOREM 3.7 AND ALGORITHM 1

The pseudocode in Algorithm 1 is directly motivated by the constructive proof of Theorem 3.7,
which guarantees that, for any dataset {(Xi, Yi)}Ni=1 ⊂ Rd × Rd with N ≤ d and an appropriate
choice of shift depths Li ∈ {0, . . . , d−1}, there exists a linear map J such that Yi = JW (Li)Xi for
all i. This result relies on the condition that the shifted vectors {W (Li)Xi} are linearly independent.

In practice, checking exact linear independence (as required by condition (4)) would necessitate
costly matrix rank computations or iterative orthogonalization methods such as Gram–Schmidt. In-
stead, our implementation employs a numerically efficient proxy: for each candidate point Xi, we
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select the shift depth Li that minimizes the prediction error

Li = arg min
0≤L<d

∣∣∣∣∣∣tanh
∑

j

[W (L)Xi]j

− Yi

∣∣∣∣∣∣ .
Then, we accept W (Li)Xi only if it lies outside the span of previously selected vectors, up to a
norm threshold. This approximates the independence condition by ensuring that each new direction
contributes novel information to the interpolation system.

Finally, the Phase 1 objective δ(W ) measures the mean approximation error across all selected
shifts and provides a practical surrogate for the deviation parameter δ defined in the isomorphism
remark following Theorem 3.7. This aligns the empirical behavior of the model with the theoretical
guarantees of exact interpolation.

In Phase 2, the interpolation operator Jk is computed via three modalities explained below.

Phase 2: Constructive Interpolation from Theorem 3.7 vs. Algorithm 1 The WBSNN frame-
work supports three distinct strategies for constructing the interpolation operators Jk in Phase 2.
Each reflects a different balance between theoretical guarantees, numerical stability, and practical
considerations, and corresponds to a distinct interpretation of the core interpolation principle.

Constructive Interpolation via Rank-One Updates. Our constructive proof of Theorem 3.7 pro-
vides a direct algorithm for computing Jk using a sequence of rank-one updates. This approach
builds Jk incrementally to ensure that each training pair (Xi, Yi) ∈ Dk is exactly interpolated, i.e.,

JkW
(Li)Xi = Yi.

For each point, a linear functional f∗
i is constructed to vanish on previously selected directions and

normalize W (Li)Xi. The update

Jk ← Jk + (Yi − JkW
(Li)Xi)⊗ f∗

i

guarantees interpolation regardless of whether the matrix Ak is full-rank. This method is deeply
aligned with the recursive structure of the interpolation theorem and is especially suitable when the
independence condition can be enforced.

Closed-Form Interpolation via Pseudoinverse. In some exact interpolation experiments (e.g.,
IMDb), we instead construct Jk by solving the normal equations

Jk = (A⊤
k Ak)

−1A⊤
k Bk,

where Ak ∈ R|Dk|×d is the matrix of orbit vectors W (Li)Xi and Bk contains their targets. This
approach is efficient and widely used in regression problems, but requires Ak to be full-rank in
order to guarantee exact interpolation. It serves as a computational baseline when rank conditions
are known or likely to hold.

Regularized Least Squares for Non-Exact Interpolation. When the independence condition is
relaxed (e.g., Gas Sensor Array Drift), we allow Dk subsets to include more or noisier points,
possibly leading to rank-deficiency. To mitigate this, we solve a regularized least squares problem:

Jk = (A⊤
k Ak + εI)−1A⊤

k Bk.

This formulation does not guarantee exact interpolation but improves robustness and generalization,
especially in noisy, compressed, or overparameterized regimes where exact inversion is unstable or
ill-posed. It reflects a trade-off: sacrificing interpolation accuracy in favor of a better-conditioned
solution and broader representational capacity.

These three approaches to Phase 2 span a spectrum of interpolation strategies. Rank-one updates
are theoretically grounded and guarantee exact interpolation without requiring any rank condition,
directly implementing the constructive proof of Theorem 3.7. The standard pseudoinverse provides
the classical least-squares solution but assumes full column rank of the input matrix, performing best
when the data is clean and well-conditioned. In contrast, the regularized pseudoinverse is robust
to noise and rank deficiency, making it particularly effective in compressed or overparameterized
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settings where input representations may be low-dimensional or ill-conditioned. By integrating all
three in our experiments, we not only validate the flexibility of WBSNN but also uncover structural
differences in how interpolation affects generalization across datasets.

Implementation note. The pseudocode in Algorithm 1 adopts the regularized pseudoinverse for-
mulation for Phase 2, as the constructive approach to exact interpolation is already formalized in
Theorem 3.7. This complements the theoretical exposition while promoting numerical stability
across diverse datasets. Ultimately, for optimal performance, the interpolation modality—rank-one
update, pseudoinverse, or regularized pseudoinverse—should be selected based on dataset charac-
teristics such as noise level, dimensionality, and rank structure, as each offers distinct trade-offs in
generalization and robustness.

E EXPERIMENTAL RESULTS (ALL TABLES)

Each experiment includes a brief per-dataset setup and concise analysis rather than a data dump,
covering the data geometry, label construction, noise model, sample sizes, PCA choices (e.g.,
d ∈ {5, . . . , 50}), and the train/test protocol (IID vs. strict chronological for PRSA2017, FI-2010,
and Gas Sensor Drift). It then details the WBSNN pipeline end-to-end: Phase-1/2 “discovery”
budgets (typically 1–10%), the PCA bottleneck that defines the working latent space, Phase-2 align-
ment checks (including when interpolation residuals collapse to ∼ 0), and the Phase-3 heads, we
study—αk and the richer αk,m. All head variants share the same Phase-1/2 orbit dictionary; only
the Phase-3 MLP trunk differs. In the main protocol, αk,m and αk use a shared trunk; we also
report an ablation where αk has its own trunk, evaluated on Gas Sensor Drift, ISOLET, and Beijing
PRSA2017. We adopt αk (shared) rather than αk (separate) in the main protocol because the shared
trunk amortizes features across classes, gives higher effective expressivity at the same discovery
budget, and empirically overfits less in low-data and noisy regimes.

Convention. Unless otherwise specified, αk denotes the shared-trunk variant in all tables and plots;
runs with the separate-trunk ablation are explicitly labeled αk (separate).

For context, each experiment compares WBSNN to strong baselines organized by family and
matched to the domain: linear heads (logistic/linear regression, LinearSVC) across all tabular and
compressed-feature settings; kernel methods (RBF-SVM, Kernel Ridge, Nyström, Random Fourier
Features) on IMDb, synthetic manifolds, Isolet, and FI-2010; tree ensembles (Random Forest, Gra-
dient Boosted Trees (XGBoost), ExtraTrees) on synthetic, CIFAR-100, MNIST, and drifted sen-
sors; neural baselines tailored to modality (MLPs everywhere; CNN/LeNet/ResNet-18 for images;
Linformer and NAIS-Net as operator-theoretic-inspired sequence/dynamical models) and operator-
learning models where they’re most relevant (DeepONet, Fourier Neural Operator). We also include
Diffusion Maps+LogReg and Laplacian-regularized Logistic on Swiss-Roll and noisy-linear, Scat-
tering2D and Hankel-SVD+LDA on images and sensors, CORAL and time-delay ridge on drift.
On PRSA2017 specifically, we include sequence/dynamics baselines: LSTM (lag=24) as a neural
sequence model and EDMD (polynomial lift, lag=24, degree=2) as an operator-theoretic/Koopman
baseline. We also include nonparametric and graph-based baselines—k-NN (k=15, Euclidean) and
Label Propagation (RBF affinity)—reported on ISOLET and all Swiss-Roll tracks (RFF, polynomial,
raw 3D), and, where applicable, on other compressed-feature classification tasks; for regression we
also report k-NN regression on Swiss-Roll.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

CIFAR-100 (30 classes, 500 cap) setup and summary. We use frozen ResNet-18 features resized to 64×64
and PCA to d ∈ {10, 20} to force a low-rank head-only test under tiny discovery budgets. At d=10 (EVR≈
0.31), n=3k, and 1–3% discovery, α(k,m) reaches ≈ 0.46 while αk trails; linear/kernel baselines sit near
0.50. At d=20 (EVR≈ 0.43), n=5k, and 3% discovery, α(k,m) climbs to ∼ 0.58, closing on the best shallow
baselines (∼ 0.61–0.62) despite seeing only a few percent of the pool. Across settings αk is more budget-
hungry and consistently lags α(k,m) under the leanest discovery. k-NN, boosted trees, and small scratch-
trained CNNs hit near-perfect train yet stall on test—textbook overfit under compression. Takeaway: widening
the bottleneck (d=10→20) and modestly growing n yields steady WBSNN gains under tiny budgets, staying
competitive without heavy backbones.

Table 2: CIFAR-100, PCA d=10 (retained variance = 0.3083), ntrain=3000 (from 15000 candi-
dates). Phase1 2 budgets = 1%/3%. Inputs resized to 64×64 (features from 512-D embedding).

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (αk,m, Phase1 2:1%) 0.543333 0.453000 1.620015e+00 1.995546
WBSNN (αk,m, Phase1 2:3%) 0.531250 0.465667 1.610157e+00 1.855736
WBSNN (αk, Phase1 2:1%) 0.372083 0.322333 2.392459e+00 2.555385
WBSNN (αk, Phase1 2:3%) 0.376250 0.334333 2.293240e+00 2.432529
Logistic Regression (multinomial) 0.535000 0.505333 1.501754e+00 1.600051
Linear SVM 0.508667 0.485667 — —
RFF + Linear SVM 0.552667 0.509667 — —
MLP (2-layer, 256→128) 0.658000 0.517333 1.085272e+00 1.557001
k-NN (k=15, distance) 1.000000 0.493000 6.439294e-15 5.389224
XGBoost 1.000000 0.498333 4.425267e-02 1.865502
TabTransformer 0.676000 0.509000 9.635287e-01 1.666194
ResNet-18 (no-pretrain, 32×32) 1.000000 0.431333 3.568499e-05 2.941160
FNO2D (modes=12, width=48, L = 4) 0.993667 0.308000 5.293531e-02 3.171001

Table 3: CIFAR-100, PCA d=20 (retained variance = 0.4290), ntrain=5000 (from 15000 candi-
dates). Phase1 2 budget = 3%. Same preprocessing as Table 2.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (αk,m, Phase1 2:3%) 0.72000 0.581667 9.708972e-01 1.512999
WBSNN (αk, Phase1 2:3%) 0.51125 0.409667 1.846184e+00 2.208243
Logistic Regression (multinomial) 0.63520 0.610667 1.199386e+00 1.279528
Linear SVM 0.60160 0.589667 — —
RFF + Linear SVM 0.67820 0.617333 — —
MLP (2-layer, 256→128) 0.73400 0.617000 8.742067e-01 1.267096
k-NN (k=15, distance) 1.00000 0.580000 5.550747e-08 4.272926
XGBoost 1.00000 0.592000 2.838902e-02 1.407739
TabTransformer 0.86240 0.614667 4.440717e-01 1.482236
ResNet-18 (no-pretrain, 32×32) 0.91780 0.387333 2.898798e-01 4.473064
FNO2D (modes=12, width=48, L = 4) 1.00000 0.369000 4.228016e-04 3.740728

Gas Sensor Array Drift setup and summary. (10 batches over 36 months): train = earliest 80%, test = latest
20%; 128 features → PCA d ∈ {5, 10, 15} (EVR ≈ 0.892/0.959/0.962); tiny Phase 1/2 budgets (1–7%).
At d=5, n=1.6k WBSNN heads land ∼ 59−61% and edge most baselines under out-of-time evaluation. At
d=10, n=3k α(k,m) peaks near 68% (3%), with αk closing in by 5%. At d=15, n=11,128 gains flatten under
a discovery bottleneck; time-aware baselines can edge ahead at higher budget. Error bars (d=10, 10%, 20
seeds): α(k,m) = 64.71%± 3.67%, shared = 64.54%± 5.10%, separate = 65.01%± 3.68%.
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Table 4: Gas Sensor Drift, PCA d=5 (retained variance = 0.892), ntrain=1600. Phase1 2 budgets
= 5%/7%. Notation: (sh) = shared backbone, (sep) = separate backbone.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (αk,m, 5%) 0.875781 0.594536 0.738060 1.278195
WBSNN (αk,m, 7%) 0.867969 0.601366 0.718517 1.234991
WBSNN (αk, sh, 5%) 0.864062 0.591661 0.730100 1.273780
WBSNN (αk, sh, 7%) 0.854688 0.582674 0.754291 1.292709
WBSNN (αk, sep, 5%) 0.859375 0.573329 0.750208 1.279426
WBSNN (αk, sep, 7%) 0.867188 0.605320 0.748888 1.263373
Logistic Regression 0.845625 0.567937 0.542123 1.693421
Random Forest 1.000000 0.579439 0.044075 2.402916
SVM (RBF) 0.906250 0.493530 0.251187 1.747429
MLP (1 hidden layer) 0.741875 0.518692 0.844881 1.284910
Gradient Boosted Trees 1.000000 0.592739 0.000021 3.247211
LogReg + CORAL 0.845625 0.567937 0.542123 1.693421
Time-delay (m=5) + Ridge 0.711875 0.518692 — —
Hankel-SVD (w=9,r=50) + LDA 0.706658 0.436554 — —

Table 5: Gas Sensor Drift, PCA d=10 (retained variance = 0.959), ntrain=3000. Phase1 2 budgets
= 1%/3%/5%. Notation: (sh) = shared backbone, (sep) = separate backbone.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (αk,m, 1%) 0.957083 0.662114 0.573985 1.092595
WBSNN (αk,m, 3%) 0.959167 0.679727 0.562071 1.030740
WBSNN (αk,m, 5%) 0.964583 0.648095 0.560297 1.064336
WBSNN (αk, sh, 1%) 0.927500 0.490295 0.679134 1.533547
WBSNN (αk, sh, 3%) 0.945417 0.600288 0.591572 1.275377
WBSNN (αk, sh, 5%) 0.956667 0.664270 0.572819 1.048738
WBSNN (αk, sep, 1%) 0.903333 0.530554 0.719452 1.476455
WBSNN (αk, sep, 3%) 0.946667 0.576204 0.596316 1.297039
WBSNN (αk, sep, 5%) 0.957500 0.670022 0.570333 1.090658
Logistic Regression 0.924667 0.668943 0.306842 1.554322
Random Forest 1.000000 0.677930 0.029168 0.931260
SVM (RBF) 0.948667 0.596693 0.144756 0.904045
MLP (1 hidden layer) 0.954333 0.670022 0.203703 0.966259
Gradient Boosted Trees 1.000000 0.659597 0.000006 1.746277
LogReg + CORAL 0.924667 0.668943 0.306845 1.554307
Time-delay (m=5) + Ridge 0.757333 0.549245 — —
Hankel-SVD (w=9,r=50) + LDA 0.644719 0.396539 — —
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Table 6: Gas Sensor Drift, PCA d=15 (retained variance = 0.962), ntrain=11128. Phase1 2 budgets
= 1%/3%. Notation: (sh) = shared backbone, (sep) = separate backbone.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (αk,m, 1%) 0.994046 0.643781 0.477398 1.188471
WBSNN (αk,m, 3%) 0.993148 0.638030 0.475350 1.194606
WBSNN (αk, sh, 1%) 0.993148 0.620058 0.479604 1.211316
WBSNN (αk, sh, 3%) 0.993260 0.575845 0.480642 1.286510
WBSNN (αk, sep, 1%) 0.991463 0.596693 0.483201 1.197096
WBSNN (αk, sep, 3%) 0.994496 0.586628 0.476972 1.261074
Logistic Regression 0.968907 0.551761 0.169538 3.330403
Random Forest 1.000000 0.548526 0.014608 1.108139
SVM (RBF) 0.984004 0.540618 0.060267 1.416941
MLP (1 hidden layer) 0.993530 0.573688 0.040517 3.251694
Gradient Boosted Trees 0.999012 0.520848 0.005893 2.084236
LogReg + CORAL 0.968907 0.551402 0.169331 3.323881
Time-delay (m=5) + Ridge 0.766445 0.645219 — —
Hankel-SVD (w=9,r=50) + LDA 0.604676 0.403749 — —

Table 7: Gas Sensor Drift error bars, PCA10, Phase1 2: 10%,
20 seeds. (sh) = shared backbone, (sep) = separate backbone.

Model Mean Test Acc Std Dev
WBSNN (αk,m) 0.6471 0.0367
WBSNN (αk, sh) 0.6454 0.0510
WBSNN (αk, sep) 0.6501 0.0368

IMDB setup and summary. We use mean-pooled GloVe-100 embeddings, standardize on train only, and apply
PCA to d ∈ {10, 20, 50} with EVR ≈ 0.520, 0.667, 0.873; Phase 1/2 discovery budgets are small (1–15%),
and we scale n from 2k to 25k. In the low-d regime (d=10, n=2000) α(k,m) yields 0.725−0.750 test accuracy,
competitive with strong text baselines (LR 0.740, Nyström+SVM 0.738) and ahead of RF/XGBoost; a 20-seed
sweep at d=10 shows tight variability: 0.723 ± 0.005 for α(k,m) and 0.725 ± 0.003 for αk. At mid d
(d=20, n=4000), α(k,m) reaches 0.768−0.774, on par with SVM (0.771) and RF-cal (0.774). With higher d
and data (d=50, n=10k), α(k,m) holds 0.767−0.768 while the best PCA-view baselines land near 0.777−0.782;
scaling to the full 25k at d=50 lifts α(k,m) to 0.793 (SVM 0.803). Exact-interpolation runs mirror these trends:
at d=10, n=2000 α(k,m) achieves 0.725−0.728 with zero Phase-2 residuals; at d=20, n=4000 it reaches
0.756−0.774, matching the non-exact results. Overall, WBSNN scales predictably with d and n under tiny
budgets, stays competitive with kernel/linear baselines on the PCA view, and exact vs. non-exact interpolation
shows the expected trade-off: exact is slightly stronger in smaller settings while non-exact remains comparable
as data grow.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Table 8: IMDB, PCA d=10 (EVR = 0.520), ntrain=2000. Phase1 2 budgets = 1%/5%/10%/15%.
Notation: (rel int) = relaxed interpolation; (ex int) = exact interpolation.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (αk,m, 1%, rel int) 0.767500 0.725000 0.482649 0.524451
WBSNN (αk,m, 1%, ex int) 0.775625 0.727500 0.471238 0.532813
WBSNN (αk,m, 5%, rel int) 0.768750 0.735000 0.484133 0.523529
WBSNN (αk,m, 5%, ex int) 0.771875 0.725000 0.477851 0.530821
WBSNN (αk,m,10%, rel int) 0.748750 0.735000 0.522121 0.525146
WBSNN (αk,m,10%, ex int) 0.768125 0.727500 0.482705 0.532350
WBSNN (αk,m,15%, rel int) 0.740625 0.750000 0.531387 0.522126
WBSNN (αk,m,15%, ex int) 0.761875 0.727500 0.491159 0.537542
WBSNN (αk, 1%, rel int) 0.771875 0.730000 0.476859 0.527146
WBSNN (αk, 1%, ex int) 0.738750 0.700000 0.515740 0.545955
WBSNN (αk, 5%, rel int) 0.767500 0.747500 0.491673 0.528249
WBSNN (αk, 5%, ex int) 0.748750 0.705000 0.510704 0.539609
WBSNN (αk,10%, rel int) 0.763125 0.720000 0.500899 0.532155
WBSNN (αk,10%, ex int) 0.740625 0.700000 0.511065 0.540378
WBSNN (αk,15%, rel int) 0.751250 0.725000 0.514010 0.531611
WBSNN (αk,15%, ex int) 0.737500 0.705000 0.517594 0.543344

Logistic Regression (multinomial) 0.744000 0.740000 0.531382 0.527744
Random Forest (cal) 0.955500 0.730000 0.276034 0.533867
SVM (RBF) 0.800000 0.722500 0.455715 0.525235
MLP (1 hidden layer) 0.878500 0.702500 0.293610 0.679947
RFF + LR 0.772000 0.732500 0.493579 0.510487
Nyström + SVM 0.795500 0.737500 0.457580 0.523135
XGBoost (cal) 0.998000 0.725000 0.317532 0.553832
GPC 0.767000 0.725000 0.500395 0.516218
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Table 9: IMDB, PCA d=20 (EVR = 0.667), ntrain=4000. Phase1 2 budgets = 1%/5%/10%/15%.
Notation: (rel int) = relaxed interpolation; (ex int) = exact interpolation.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (αk,m, 1%, rel int) 0.790937 0.768750 0.447053 0.496115
WBSNN (αk,m, 1%, ex int) 0.792813 0.770000 0.440830 0.490565
WBSNN (αk,m, 5%, rel int) 0.754375 0.752500 0.506704 0.503635
WBSNN (αk,m, 5%, ex int) 0.785937 0.756250 0.456329 0.491105
WBSNN (αk,m,10%, rel int) 0.800625 0.771250 0.440414 0.490497
WBSNN (αk,m,10%, ex int) 0.805937 0.773750 0.426955 0.488658
WBSNN (αk,m,15%, rel int) 0.781875 0.767500 0.467218 0.502035
WBSNN (αk,m,15%, ex int) 0.779062 0.763750 0.470756 0.501060
WBSNN (αk, 1%, rel int) 0.788438 0.757500 0.442723 0.487152
WBSNN (αk, 1%, ex int) 0.765625 0.751250 0.516113 0.549915
WBSNN (αk, 5%, rel int) 0.786563 0.766250 0.453181 0.490996
WBSNN (αk, 5%, ex int) 0.757500 0.733750 0.490205 0.527026
WBSNN (αk,10%, rel int) 0.801562 0.755000 0.434231 0.487599
WBSNN (αk,10%, ex int) 0.756250 0.745000 0.479180 0.519474
WBSNN (αk,15%, rel int) 0.795625 0.770000 0.437185 0.493285
WBSNN (αk,15%, ex int) 0.763750 0.741250 0.477905 0.520131

Logistic Regression 0.753500 0.756250 0.512759 0.499911
Random Forest (cal) 0.992500 0.773750 0.206176 0.492799
SVM (RBF) 0.837000 0.771250 0.404263 0.486739
MLP (1 hidden layer) 0.931000 0.708750 0.200624 0.853059
RFF + LR 0.787500 0.770000 0.466287 0.481927
Nyström + SVM 0.830250 0.762500 0.411982 0.485202
XGBoost (cal) 0.995750 0.772500 0.280111 0.498930
GPC 0.781250 0.772500 0.469476 0.481767

Table 10: IMDB, PCA d=50 (EVR = 0.873), ntrain=10000. Phase1 2 budgets = 1%/3%. Nota-
tion: (rel int) = relaxed interpolation (no exact-run available for this setting).

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (αk,m, 1%, rel int) 0.809500 0.766500 0.418784 0.494805
WBSNN (αk,m, 3%, rel int) 0.818875 0.768000 0.407167 0.479718
WBSNN (αk, 1%, rel int) 0.793000 0.758500 0.442411 0.496969
WBSNN (αk, 3%, rel int) 0.814125 0.767000 0.411774 0.471454
Logistic Regression 0.785300 0.765500 0.458894 0.472291
Random Forest (cal) 0.997800 0.745500 0.164179 0.491703
SVM (RBF) 0.871600 0.780500 0.330294 0.458219
MLP (1 hidden layer) 0.996100 0.701500 0.039407 2.153109
RFF + LR 0.814800 0.782000 0.420041 0.462809
Nyström + SVM 0.835100 0.777500 0.380411 0.460669
XGBoost (cal) 0.981000 0.767500 0.244448 0.479371
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Table 11: IMDB, PCA d=50 (EVR = 0.873), ntrain=25000 (full). Phase1 2 budget = 1%. Nota-
tion: (rel int) = relaxed interpolation (no exact-run available for this setting).

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (αk,m, 1%, rel int) 0.807950 0.793200 0.414968 0.453204
WBSNN (αk, 1%, rel int) 0.811150 0.790400 0.413370 0.453350
Logistic Regression 0.784520 0.788000 0.461076 0.458522
Random Forest (cal) 0.996880 0.771800 0.164408 0.481775
SVM (RBF) 0.864880 0.802600 0.337746 0.433831
MLP (1 hidden layer) 0.874320 0.758600 0.294176 0.596718
RFF + LR 0.803640 0.789600 0.427293 0.447996
Nyström + SVM 0.820520 0.795800 0.399289 0.431335
XGBoost (cal) 0.914640 0.787400 0.287199 0.456735

Table 12: IMDB error bars, PCA d=10,
ntrain=3k, Phase1 2: 10%, 20 seeds.

Model Mean Test Acc Std Dev
WBSNN (αk,m) 0.7233 0.0049
WBSNN (αk) 0.7247 0.0030

MNIST setup and summary. We evaluate MNIST under PCA compression with d ∈ {5, 15, 30} (EVR
= 0.332/0.579/0.731), standardized on train only, and small Phase 1/2 budgets (3–10%) with n=2k, 5k, 10k.
Under a severe bottleneck (d=5, n=2k), WBSNN reaches ≈ 72.3% test (αk,m), competitive with RBF-SVM
(≈ 73.3%) and above LR/MLP/RFF, while RF shows classic overfit (train = 1.00, test ≈ 70.3%). With
moderate compression (d=15, n=5k), αk,m climbs to 94.7%−95.5% (7–10%), close to RBF-SVM (95.8%)
and behind raw-image CNNs (e.g., 98.2%), and clearly ahead of αk (91.6%− 94.1%). At higher dimen-
sion/data (d=30, n=10k), αk,m reaches 95.5%−96.1% and improves monotonically with budget (3%→5%),
trailing RBF-SVM (97.1%) and raw-image CNNs (≈ 98.3%) but outperforming LR/MLP on the PCA view.
Across settings, the richer αk,m head consistently outperforms αk, the gap narrows as variance and n increase,
and RF repeatedly exhibits train= 1.00 with lower test—an overfitting pattern not seen in WBSNN. Note:
CNN/LeNet/Scattering/DeepONet-lite use raw 28×28 images and therefore set a higher ceiling than PCA-
compressed baselines (WBSNN, LR, RF, SVM, MLP, RFF, LinearSVC).

Table 13: MNIST, PCA d=5 (EVR = 0.332), ntrain=2000. Phase1 2 budgets = 7%/10%.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (αk,m, 7%) 0.765000 0.7225 0.644133 0.737528
WBSNN (αk,m,10%) 0.769375 0.7225 0.638911 0.727872
WBSNN (αk, 7%) 0.743125 0.7150 0.697558 0.786773
WBSNN (αk,10%) 0.747500 0.7100 0.685274 0.771298
Logistic Regression 0.680000 0.6550 0.892884 0.904286
Random Forest 1.000000 0.7025 0.184180 0.965621
SVM (RBF) 0.765500 0.7325 0.676466 0.722729
MLP (1 hidden layer) 0.726500 0.6800 0.770308 0.797417
CNN 0.989000 0.9775 0.051556 0.111904
RFF + Logistic Regression 0.637000 0.6000 1.144928 1.162397
LinearSVC + CalibratedProba 0.640000 0.5950 1.069190 1.076602
LeNet-5 0.936500 0.9400 0.205647 0.216528
Scattering2D + LogReg 0.680000 0.6550 0.892885 0.904288
DeepONet-lite 0.947500 0.8950 0.142459 0.411745
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Table 14: MNIST, PCA d=15 (EVR = 0.579), ntrain=5000. Phase1 2 budgets = 7%/10%.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (αk,m, 7%) 0.98675 0.947 0.042415 0.238434
WBSNN (αk,m,10%) 0.98950 0.955 0.038959 0.231611
WBSNN (αk, 7%) 0.96425 0.916 0.119771 0.302024
WBSNN (αk,10%) 0.97350 0.941 0.090396 0.246782
Logistic Regression 0.85160 0.854 0.483875 0.454237
Random Forest 1.00000 0.917 0.131548 0.470146
SVM (RBF) 0.96500 0.958 0.115668 0.158824
MLP (1 hidden layer) 0.93560 0.926 0.219608 0.229847
CNN 0.98980 0.982 0.029340 0.053346
RFF + Logistic Regression 0.85400 0.869 0.589853 0.558888
LinearSVC + CalibratedProba 0.81920 0.821 0.635001 0.583349
LeNet-5 0.95760 0.954 0.133420 0.128897
Scattering2D + LogReg 0.85160 0.854 0.483875 0.454237
DeepONet-lite 0.99220 0.964 0.034268 0.115082

Table 15: MNIST, PCA d=30 (EVR = 0.731), ntrain=10000. Phase1 2 budgets = 3%/5%.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (αk,m, 3%) 0.999500 0.9545 0.002716 0.265305
WBSNN (αk,m, 5%) 0.999625 0.9605 0.001242 0.237277
WBSNN (αk, 3%) 0.983000 0.8830 0.081493 0.466157
WBSNN (αk, 5%) 0.995625 0.9185 0.021066 0.386950
Logistic Regression 0.895800 0.8925 0.352773 0.359067
Random Forest 1.000000 0.9295 0.122151 0.442127
SVM (RBF) 0.988100 0.9705 0.040544 0.098918
MLP (1 hidden layer) 0.980500 0.9525 0.085421 0.154138
CNN 0.993200 0.9825 0.020620 0.057102
RFF + Logistic Regression 0.922300 0.9195 0.370391 0.366083
LinearSVC + CalibratedProba 0.878900 0.8770 0.473042 0.468590
LeNet-5 0.982800 0.9760 0.061456 0.078746
Scattering2D + LogReg 0.895800 0.8925 0.352773 0.359065
DeepONet-lite 0.994500 0.9735 0.017723 0.091234

Noisy synthetic setup and summary. Noisy synthetic setup and summary. We generate 15,000 samples in
50D with 5 informative coordinates, heavy-tailed heteroskedastic noise (Student-t, df=2.5), boundary-peaked
label flips, 44 nuisance mixes, and a 0.6-correlated spurious feature; split 12k/3k, standardize on train, and
evaluate PCA views d ∈ {5, 10, 20} (EVR ≈ 0.904/0.941/0.965) under small Phase-1/2 budgets (1–15%) and
varying n (1.5k, 2k, 8k, 12k). Results scale with information, not knobs: at d=5, n=1.5k α(k,m) reaches
≈ 0.753 (near LR/LapLogReg ≈ 0.750), while RF shows the expected shortcut gap (high train, lower test).
At d=10, n=2k both heads are in the top band (≈ 0.770− 0.780), competitive with RBF-SVM/RFF and
slightly behind a tuned 1-layer MLP (≈ 0.783); at d=10, n=8k WBSNN holds ≈ 0.759−0.768. On the full
12k train, d=5 yields ≈ 0.765 and d=20 ≈ 0.767, shoulder-to-shoulder with strong linear-kernel baselines
(LR/LapLogReg ≈ 0.77). Phase-2 alignment residuals collapse to numerical zero at d=5, 10 and remain
near-zero at d=20, indicating the dictionary has captured the label geometry despite heavy tails and boundary-
peaked flips. Overall, WBSNN is stable, spurious-resistant, and improves predictably with d or n under tight
budgets, matching or slightly edging linear baselines while remaining competitive with RBF-SVM/MLP.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Table 16: Challenging Synthetic (15k, 50D), PCA d=5, (EVR=0.904), train=1500, test=300;
Phase 1 2: 5/10/15%, (ex int = exact interpolation; rel int = relaxed interpolation).

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), 5%) (ex int) 0.7733 0.7400 0.5041 0.5484
WBSNN (α(k,m), 10%) (ex int) 0.7725 0.7533 0.5062 0.5437
WBSNN (α(k,m), 15%) (ex int) 0.7733 0.7367 0.5071 0.5430
WBSNN (αk, 5%) (ex int) 0.7775 0.7400 0.5049 0.5457
WBSNN (αk, 10%) (ex int) 0.7767 0.7433 0.5040 0.5447
WBSNN (αk, 15%) (ex int) 0.7700 0.7433 0.5056 0.5449
Logistic Regression 0.7727 0.7500 0.4799 0.5242
RF + Sigmoid Cal. 0.8873 0.7333 0.3438 0.5233
SVM (RBF) 0.7913 0.7400 0.4611 0.5419
MLP (1 hidden) 0.7673 0.7367 0.4789 0.5526
RFF+LogReg (D=2000) 0.7720 0.7433 0.4786 0.5202
ExtraTrees 0.7953 0.7267 0.5363 0.5731
LapLogReg (k=25, λ=10−3) 0.7727 0.7500 0.4799 0.5240
Diffusion (τ=1, k=25) 0.7940 0.7233 0.4681 0.5504
GroupDRO-Logistic 0.7707 0.7433 0.4806 0.5258

Table 17: Challenging Synthetic (15k, 50D), PCA d=10, (EVR=0.941), train=2000, test=400;
Phase 1 2: 1/3/5%, (ex int = exact interpolation; rel int = relaxed interpolation).

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), 1%) (ex int) 0.7725 0.7725 0.4931 0.4860
WBSNN (α(k,m), 3%) (ex int) 0.7794 0.7625 0.4852 0.4930
WBSNN (α(k,m), 5%) (ex int) 0.7788 0.7750 0.4826 0.4947
WBSNN (αk, 1%) (ex int) 0.7738 0.7700 0.4952 0.4917
WBSNN (αk, 3%) (ex int) 0.7694 0.7725 0.4948 0.4949
WBSNN (αk, 5%) (ex int) 0.7713 0.7800 0.4916 0.4934
Logistic Regression 0.7605 0.7700 0.4811 0.4566
RF + Sigmoid Cal. 0.9035 0.7625 0.2963 0.4768
SVM (RBF) 0.7860 0.7725 0.4574 0.4762
MLP (1 hidden) 0.7665 0.7825 0.4782 0.4542
RFF+LogReg (D=2000) 0.7610 0.7750 0.4790 0.4616
ExtraTrees 0.8085 0.7750 0.4995 0.5207
LapLogReg (k=25, λ=10−3) 0.7605 0.7725 0.4811 0.4567
Diffusion (τ=1, k=25) 0.7775 0.7750 0.4770 0.4939
GroupDRO-Logistic 0.7540 0.7775 0.4946 0.4840
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Table 18: Challenging Synthetic (15k, 50D), PCA d=10, (EVR=0.941), train=8000, test=1600;
Phase 1 2: 5/10/15%, (ex int = exact interpolation; rel int = relaxed interpolation).

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), 5%) (ex int) 0.7664 0.7594 0.5079 0.5131
WBSNN (α(k,m), 10%) (ex int) 0.7638 0.7663 0.5149 0.5128
WBSNN (α(k,m), 15%) (ex int) 0.7598 0.7681 0.5168 0.5152
WBSNN (αk, 5%) (ex int) 0.7644 0.7625 0.5073 0.5143
WBSNN (αk, 10%) (ex int) 0.7641 0.7619 0.5150 0.5131
WBSNN (αk, 15%) (ex int) 0.7644 0.7588 0.5156 0.5132
Logistic Regression 0.7651 0.7638 0.4875 0.4865
RF + Sigmoid Cal. 0.8961 0.7531 0.3124 0.4952
SVM (RBF) 0.7770 0.7575 0.4808 0.5039
MLP (1 hidden) 0.7680 0.7563 0.4855 0.4910
RFF+LogReg (D=2000) 0.7675 0.7588 0.4856 0.4868
ExtraTrees 0.8043 0.7606 0.4838 0.5249
LapLogReg (k=25, λ=10−3) 0.7654 0.7638 0.4875 0.4865
Diffusion (τ=1, k=25) 0.7826 0.7506 0.4676 0.5032
GroupDRO-Logistic 0.7560 0.7588 0.5013 0.4976

Table 19: Challenging Synthetic (15k, 50D), PCA d=5, (EVR=0.904), train=12,000 (full),
test=3000; Phase 1 2: 1/3/10%, (ex int = exact interpolation; rel int = relaxed interpolation).

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), 1%) (ex int) 0.7588 0.7633 0.5192 0.5176
WBSNN (α(k,m), 3%) (ex int) 0.7573 0.7597 0.5220 0.5175
WBSNN (α(k,m), 10%) (ex int) 0.7576 0.7647 0.5236 0.5202
WBSNN (αk, 1%) (ex int) 0.7582 0.7603 0.5198 0.5171
WBSNN (αk, 3%) (ex int) 0.7576 0.7587 0.5207 0.5175
WBSNN (αk, 10%) (ex int) 0.7566 0.7620 0.5226 0.5172
Logistic Regression 0.7563 0.7610 0.5006 0.4929
RF + Sigmoid Cal. 0.8678 0.7497 0.3547 0.5084
SVM (RBF) 0.7614 0.7573 0.5056 0.5097
MLP (1 hidden) 0.7544 0.7570 0.5054 0.4982
RFF+LogReg (D=2000) 0.7569 0.7617 0.4994 0.4930
ExtraTrees 0.7848 0.7583 0.5153 0.5367
LapLogReg (k=25, λ=10−3) 0.7563 0.7610 0.5006 0.4929
Diffusion (τ=1, k=25) 0.7785 0.7570 0.4701 0.5064
GroupDRO-Logistic 0.7553 0.7603 0.5008 0.4933
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Table 20: Challenging Synthetic (15k, 50D), PCA d=20, (EVR=0.965), train=12,000 (full),
test=3000; Phase 1 2: 1/3/10%, (ex int = exact interpolation; rel int = relaxed interpolation).

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), 1%) (rel int) 0.7894 0.7637 0.4759 0.5176
WBSNN (α(k,m), 3%) (rel int) 0.7884 0.7593 0.4755 0.5189
WBSNN (α(k,m), 10%) (rel int) 0.7816 0.7670 0.4892 0.5151
WBSNN (αk, 1%) (rel int) 0.7845 0.7630 0.4847 0.5112
WBSNN (αk, 3%) (rel int) 0.7873 0.7630 0.4842 0.5119
WBSNN (αk, 10%) (rel int) 0.7779 0.7670 0.4947 0.5115
Logistic Regression 0.7658 0.7697 0.4874 0.4810
RF + Sigmoid Cal. 0.9208 0.7580 0.2817 0.4924
SVM (RBF) 0.7791 0.7653 0.4779 0.5005
MLP (1 hidden) 0.7637 0.7657 0.4948 0.4890
RFF+LogReg (D=2000) 0.7662 0.7677 0.4850 0.4807
ExtraTrees 0.8243 0.7550 0.4787 0.5334
LapLogReg (k=25, λ=10−3) 0.7659 0.7703 0.4874 0.4810
Diffusion (τ=1, k=25) 0.7817 0.7607 0.4665 0.4971
GroupDRO-Logistic 0.7553 0.7617 0.5013 0.4940

FI-2010 (LOB) setup and summary. We use the FI-2010 limit-order-book benchmark (June 1–14, 2010;
five Helsinki stocks) with 148 normalized LOB features and a chronological 80/20 split (no look-ahead). Fea-
tures are standardized and PCA-compressed to d ∈ {10, 20, 40} (EVR ≈ 0.61/0.71/0.85); Phase 1/2 dis-
covery budgets are 1–10% with training sizes n ∈ {1k, 2k, 10k, 30k}. At small n, performance is modest
but consistent with limited information: d=10, n=1k yields α(k,m) ≈ 0.458 and αk ≈ 0.404 → 0.476,
near LR/RBF-SVM/MLP (0.40–0.47). Increasing representation and data firms results: d=20, n=2k gives
α(k,m) ≈ 0.488 and αk ≈ 0.491; pushing to d=40, n=2k shows a small-n, high-d wobble (α(k,m) ≈ 0.446,
αk ≈ 0.463/0.392), with MLP at ≈ 0.516. Scaling n is the main driver: at d=20, n=10k, both heads reach
≈ 0.618−0.620; at d=20, n=30k, α(k,m) ≈ 0.651 and αk ≈ 0.647, while linear and generic baselines remain
in the 0.44–0.59 range. A 20-seed study at d=10, n=2k, 10% yields 0.504±0.046 (α(k,m)) and 0.500±0.051
(αk), confirming higher variance in low-n, low-d settings. Throughout, subset size is capped at |Dk| ≤ 5, trad-
ing exact alignment for more local prototypes; this stabilizes generalization under tight budgets and explains
the lack of Phase-2 residual collapse at d=40. Overall, WBSNN accuracy scales smoothly with information
(d, n) under tiny budgets, while remaining auditable via Dk and alignment diagnostics.

Table 21: FI-2010 LOB: d = 10 (EVR=0.613), ntrain = 1000.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), Phase1 2:5%) 0.642500 0.458002 0.794756 1.253171
WBSNN (α(k,m), Phase1 2:10%) 0.662500 0.458320 0.781225 1.257423
WBSNN (αk, Phase1 2:5%) 0.610000 0.404222 0.838781 1.260667
WBSNN (αk, Phase1 2:10%) 0.642500 0.476118 0.795929 1.312865
Logistic Regression 0.529000 0.426587 0.983144 1.077829
Random Forest 1.000000 0.468074 0.231690 1.052151
SVM (RBF) 0.564000 0.401021 0.907460 1.077469
MLP (1 hidden layer) 0.631000 0.469578 0.864141 1.080732
Discretized DeepONet 0.559000 0.411741 0.906888 1.132754
NAIS-Net 0.645000 0.465494 0.785776 1.112392
Kernel Ridge (Nyström RBF) 0.747000 0.434396 0.716720 1.171197
Linformer 0.788000 0.453270 0.522147 1.615529
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Table 22: FI-2010 LOB: d = 20 (EVR=0.709), ntrain = 2000.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), Phase1 2:5%) 0.661875 0.487514 0.746566 1.154213
WBSNN (α(k,m), Phase1 2:10%) 0.686250 0.477014 0.709236 1.158808
WBSNN (αk, Phase1 2:5%) 0.653750 0.490563 0.761693 1.138800
WBSNN (αk, Phase1 2:10%) 0.653750 0.463549 0.751237 1.145708
Logistic Regression 0.543500 0.450731 0.949991 1.063273
Random Forest 1.000000 0.478077 0.231360 1.022263
SVM (RBF) 0.590000 0.427194 0.871935 1.057475
MLP (1 hidden layer) 0.581500 0.457354 0.862921 1.055610
Discretized DeepONet 0.561500 0.434506 0.891528 1.093523
NAIS-Net 0.648500 0.469274 0.789911 1.046069
Kernel Ridge (Nyström RBF) 0.799000 0.447710 0.662295 1.103524
Linformer 0.677500 0.488052 0.731564 1.119059

Table 23: FI-2010 LOB: d = 40 (EVR=0.850), ntrain = 2000.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), Phase1 2:7%) 0.553125 0.446689 1.213871 1.301656
WBSNN (α(k,m), Phase1 2:10%) 0.551875 0.445764 1.206899 1.310211
WBSNN (αk, Phase1 2:7%) 0.477500 0.463355 1.300635 1.299468
WBSNN (αk, Phase1 2:10%) 0.503125 0.392039 1.289421 1.344629
Logistic Regression 0.579500 0.460734 0.915455 1.058701
Random Forest 1.000000 0.461231 0.236870 1.031504
SVM (RBF) 0.634500 0.439873 0.814431 1.052494
MLP (1 hidden layer) 0.706500 0.516377 0.680691 1.043847
Discretized DeepONet 0.596500 0.464073 0.863832 1.062425
NAIS-Net 0.727000 0.487569 0.656201 1.089246
Kernel Ridge (Nyström RBF) 0.865500 0.481236 0.565842 1.065495
Linformer 0.776000 0.467522 0.561651 1.264335

Table 24: FI-2010 LOB: d = 20 (EVR=0.679), ntrain = 10000.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), Phase1 2:1%) 0.673375 0.617163 0.742650 0.916936
WBSNN (α(k,m), Phase1 2:5%) 0.668875 0.618322 0.749830 0.923892
WBSNN (αk, Phase1 2:1%) 0.659375 0.616198 0.775500 0.938115
WBSNN (αk, Phase1 2:5%) 0.663875 0.619605 0.756335 0.919158
Logistic Regression 0.522400 0.443240 0.987157 1.055377
Random Forest 0.999800 0.514708 0.228968 0.986638
SVM (RBF) 0.575400 0.467977 0.884310 1.016771
MLP (1 hidden layer) 0.618500 0.581898 0.850882 0.949489
Discretized DeepONet 0.531200 0.468377 0.936686 1.031931
NAIS-Net 0.598100 0.534382 0.870932 0.968862
Kernel Ridge (Nyström RBF) 0.736900 0.498165 0.741503 1.055312
Linformer 0.590100 0.516046 0.875227 1.009025
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Table 25: FI-2010 LOB: d = 20 (EVR=0.673), ntrain = 30000.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), Phase1 2:1%) 0.653958 0.650552 0.774376 0.856203
WBSNN (α(k,m), Phase1 2:3%) 0.654042 0.643115 0.778076 0.869560
WBSNN (αk, Phase1 2:1%) 0.649917 0.647213 0.785796 0.871965
WBSNN (αk, Phase1 2:3%) 0.649792 0.635817 0.783198 0.896413
Logistic Regression 0.528867 0.440866 0.986256 1.059975
Random Forest 0.999867 0.518433 0.219621 0.981985
SVM (RBF) 0.590367 0.478228 0.881934 1.018261
MLP (1 hidden layer) 0.620967 0.587445 0.854811 0.937810
Discretized DeepONet 0.535267 0.464280 0.965054 1.032401
NAIS-Net 0.584700 0.498744 0.896916 0.999075
Kernel Ridge (Nyström RBF) 0.707233 0.510058 0.776045 1.033917
Linformer 0.586833 0.525304 0.885875 0.992044

Table 26: FI-2010 LOB: Error bars at d = 10,
Phase1 2:10% (20 seeds).

Model Test Acc (mean ± std)
WBSNN (α(k,m)) 0.5046± 0.0458
WBSNN (αk) 0.5001± 0.0508

PRSA2017 setup and summary. We use the Beijing Multi-Site PRSA-2017 data (Mar 2013–Feb 2017) with
a chronological split: the last 20% of time (∼ 82,325 hours) is the fixed test window; inputs are four mete-
orological features (TEMP, PRES, DEWP, WSPM), standardized, with d=4 (EVR= 1.00). Under this strict
out-of-time protocol and small training windows (n ∈ {1k, 3k, 10k}), WBSNN’s test R2 scales smoothly:
∼ 0.27 (1k, 7–25%) → 0.29−0.30 (3k, 5–15%) → 0.32−0.33 (10k, 1–7%), with MAE ≈ 0.58−0.60 and
low sensitivity to head budget; the ordering αk,m ≥ αk(shared) ≥ αk(separate) holds across scales. Baselines
show expected behavior under drift: ExtraTrees reaches near-1.0 train R2 but only ∼ 0.22−0.28 test, LSTM
can turn negative (to ≈ −0.15), EDMD hovers near ∼ 0.25, while MLP/GB/Transformer-MLP top out around
0.30−0.34. Proportional 80/20 ablations (e.g., 3k/600 and 10k/2k) yield noisier metrics but the same WBSNN
ordering, with αk,m at ≈ 0.25−0.26 (3k/600) and ≈ 0.31 (10k/2k), close to the strongest MLP (0.327). Exact
vs relaxed interpolation shows a clear trade-off: exact is stronger at 1k (≈ 0.283−0.284 vs 0.269−0.271),
roughly tied at 3k, and relaxed wins at 10k (≈ 0.326−0.332 vs 0.297−0.320), indicating that small slack
improves robustness to seasonal and episodic drift as data grow.
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Table 27: Beijing PRSA2017: d = 4 (EVR=1.000), ntrain = 1000, ntest = 82,325. Notation: “rel
int” = relaxed interpolation; “ex int” = exact interpolation; “sh” = shared backbone; “sep” = separate
backbone.

Model Train MSE Test MSE Train MAE Test MAE Train R2 Test R2

WBSNN (α(k,m), 7%, rel int) 0.618570 0.641911 0.559533 0.583941 0.391600 0.269558
WBSNN (α(k,m), 10%, rel int) 0.638253 0.642331 0.566655 0.581238 0.372241 0.269080
WBSNN (α(k,m), 25%, rel int) 0.662111 0.640665 0.576373 0.582264 0.348775 0.270976
WBSNN (αk, sh, 7%, rel int) 0.624012 0.689124 0.577389 0.615779 0.386247 0.215833
WBSNN (αk, sh, 10%, rel int) 0.638667 0.663569 0.574222 0.601165 0.371834 0.244913
WBSNN (αk, sh, 25%, rel int) 0.658739 0.659042 0.585030 0.604381 0.352091 0.250064
WBSNN (αk, sep, 7%, rel int) 0.644322 0.680975 0.587492 0.618892 0.366272 0.225107
WBSNN (αk, sep, 10%, rel int) 0.666288 0.659224 0.591238 0.607368 0.344667 0.249858
WBSNN (αk, sep, 25%, rel int) 0.672573 0.657045 0.596266 0.609083 0.338485 0.252337
WBSNN (α(k,m), 7%, ex int) 0.766807 0.630164 0.627476 0.576859 0.245800 0.282925
WBSNN (α(k,m), 10%, ex int) 0.767275 0.628828 0.626281 0.574256 0.245341 0.284445
WBSNN (α(k,m), 25%, ex int) 0.780345 0.632802 0.634366 0.576375 0.232485 0.279924
WBSNN (αk, sh, 7%, ex int) 0.774323 0.651270 0.653145 0.611013 0.238408 0.258908
WBSNN (αk, sh, 10%, ex int) 0.779560 0.651303 0.655450 0.610426 0.233257 0.258870
WBSNN (αk, sh, 25%, ex int) 0.786984 0.658663 0.656443 0.612784 0.225956 0.250496
WBSNN (αk, sep, 7%, ex int) 0.801370 0.662512 0.660155 0.611078 0.211806 0.246116
WBSNN (αk, sep, 10%, ex int) 0.813325 0.676132 0.665465 0.616010 0.200048 0.230618
WBSNN (αk, sep, 25%, ex int) 0.821104 0.680059 0.670086 0.617575 0.192396 0.226149

Linear Regression 0.792422 0.740826 0.640207 0.637274 0.207578 0.157001
Gradient Boosting 0.379893 0.693600 0.447361 0.602252 0.620107 0.210740
MLP Baseline 0.485877 0.653235 0.507794 0.566028 0.514123 0.256673
Transformer MLP 0.544369 0.633099 0.528648 0.555000 0.455631 0.279585
TabTransformer 0.453626 0.713115 0.487507 0.589505 0.546374 0.188534
ExtraTreesRegressor 0.000006 0.685417 0.000112 0.599094 0.999994 0.220052
HistGB (CatBoost fallback) 0.238742 0.744962 0.351445 0.622866 0.761258 0.152295
LSTM (lag=24) 0.878913 1.040005 0.679906 0.764515 0.105908 -0.147716
EDMD (Poly lift, lag=24, deg=2) 0.693338 0.660922 0.615977 0.605961 0.293871 0.248127

Table 28: Beijing PRSA2017: d = 4 (EVR=1.000), ntrain = 3000, ntest = 82,325. Notation: “rel
int” = relaxed interpolation; “ex int” = exact interpolation; “sh” = shared backbone; “sep” = separate
backbone.

Model Train MSE Test MSE Train MAE Test MAE Train R2 Test R2

WBSNN (α(k,m), 5%, rel int) 0.656149 0.703912 0.577091 0.597687 0.319430 0.292502
WBSNN (α(k,m), 10%, rel int) 0.657450 0.696231 0.578698 0.594983 0.318081 0.300221
WBSNN (α(k,m), 15%, rel int) 0.654483 0.701072 0.578030 0.597031 0.321158 0.295356
WBSNN (αk, sh, 5%, rel int) 0.666619 0.713751 0.592692 0.613276 0.308570 0.282612
WBSNN (αk, sh, 10%, rel int) 0.661710 0.713105 0.585848 0.606728 0.313663 0.283262
WBSNN (αk, sh, 15%, rel int) 0.659058 0.710773 0.586762 0.609358 0.316413 0.285606
WBSNN (αk, sep, 5%, rel int) 0.681605 0.723789 0.604193 0.623168 0.293027 0.272523
WBSNN (αk, sep, 10%, rel int) 0.670411 0.711685 0.591879 0.610020 0.304638 0.284689
WBSNN (αk, sep, 15%, rel int) 0.674022 0.718627 0.596054 0.614956 0.300891 0.277712
WBSNN (α(k,m), 5%, ex int) 0.745485 0.702362 0.630674 0.598891 0.226769 0.294059
WBSNN (α(k,m), 10%, ex int) 0.748913 0.704946 0.632946 0.600194 0.223213 0.291462
WBSNN (α(k,m), 15%, ex int) 0.757309 0.713810 0.637084 0.603791 0.214505 0.282553
WBSNN (αk, sh, 5%, ex int) 0.753109 0.735135 0.651284 0.639383 0.218861 0.261120
WBSNN (αk, sh, 10%, ex int) 0.754657 0.736362 0.651861 0.639748 0.217255 0.259886
WBSNN (αk, sh, 15%, ex int) 0.762029 0.741674 0.655449 0.640611 0.209609 0.254547
WBSNN (αk, sep, 5%, ex int) 0.773028 0.750112 0.658795 0.641117 0.198201 0.246066
WBSNN (αk, sep, 10%, ex int) 0.777798 0.754868 0.661792 0.643159 0.193253 0.241286
WBSNN (αk, sep, 15%, ex int) 0.785708 0.766764 0.665657 0.647759 0.185049 0.229329

Linear Regression 0.810602 0.828868 0.649523 0.663098 0.189398 0.166909
Gradient Boosting 0.542878 0.705065 0.525823 0.601151 0.457122 0.291343
MLP Baseline 0.590280 0.692952 0.561343 0.599555 0.409720 0.303517
Transformer MLP 0.618047 0.685839 0.548472 0.578823 0.381953 0.310667
TabTransformer 0.573379 0.698697 0.529078 0.576363 0.426621 0.297743
ExtraTreesRegressor 0.000083 0.721530 0.000813 0.604455 0.999917 0.274794
HistGB (CatBoost fallback) 0.319057 0.761739 0.406342 0.618528 0.680943 0.234379
LSTM (lag=24) 0.907224 1.098229 0.704622 0.725680 0.085741 -0.097355
EDMD (Poly lift, lag=24, deg=2) 0.890765 0.890046 0.694420 0.663599 0.102068 0.107608
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Table 29: Beijing PRSA2017: d = 4 (EVR=1.000), ntrain = 10000, ntest = 82,325. Notation: “rel
int” = relaxed interpolation; “ex int” = exact interpolation; “sh” = shared backbone; “sep” = separate
backbone.

Model Train MSE Test MSE Train MAE Test MAE Train R2 Test R2

WBSNN (α(k,m), 1%, rel int) 0.695077 0.685453 0.589800 0.595902 0.303611 0.329147
WBSNN (α(k,m), 3%, rel int) 0.685843 0.682126 0.583978 0.592003 0.312863 0.332403
WBSNN (α(k,m), 7%, rel int) 0.697026 0.688120 0.589651 0.596024 0.301658 0.326537
WBSNN (αk, sh, 1%, rel int) 0.706775 0.701345 0.601163 0.610782 0.291890 0.313594
WBSNN (αk, sh, 3%, rel int) 0.696073 0.691676 0.596378 0.605414 0.302612 0.323057
WBSNN (αk, sh, 7%, rel int) 0.699206 0.698812 0.597525 0.607717 0.299474 0.316072
WBSNN (αk, sep, 1%, rel int) 0.714830 0.709229 0.609328 0.618346 0.283821 0.305878
WBSNN (αk, sep, 3%, rel int) 0.704452 0.699359 0.601241 0.611087 0.294218 0.315537
WBSNN (αk, sep, 7%, rel int) 0.712420 0.706685 0.604686 0.612484 0.286235 0.308368
WBSNN (α(k,m), 1%, ex int) 0.747853 0.695087 0.621322 0.598003 0.250735 0.319719
WBSNN (α(k,m), 3%, ex int) 0.761869 0.708098 0.629487 0.605235 0.236692 0.306985
WBSNN (α(k,m), 7%, ex int) 0.775455 0.718634 0.634631 0.607564 0.223081 0.296673
WBSNN (αk, sh, 1%, ex int) 0.772541 0.733919 0.652491 0.641724 0.226000 0.281714
WBSNN (αk, sh, 3%, ex int) 0.780478 0.741464 0.654748 0.643332 0.218048 0.274329
WBSNN (αk, sh, 7%, ex int) 0.785426 0.745418 0.655936 0.642755 0.213091 0.270460
WBSNN (αk, sep, 1%, ex int) 0.785592 0.741192 0.657928 0.642786 0.212925 0.274595
WBSNN (αk, sep, 3%, ex int) 0.792648 0.749911 0.660078 0.644612 0.205855 0.266062
WBSNN (αk, sep, 7%, ex int) 0.802719 0.762370 0.664623 0.648652 0.195765 0.253868

Linear Regression 0.825971 0.848414 0.654933 0.667590 0.174029 0.169657
Gradient Boosting 0.640431 0.694948 0.567352 0.600901 0.359569 0.319855
MLP Baseline 0.642532 0.677827 0.579014 0.597316 0.357468 0.336610
Transformer MLP 0.653198 0.687728 0.564441 0.580408 0.346802 0.326921
TabTransformer 0.615521 0.700102 0.554664 0.589814 0.384479 0.314810
ExtraTreesRegressor 0.001810 0.730956 0.004799 0.610842 0.998190 0.284613
HistGB (CatBoost fallback) 0.466135 0.722155 0.482938 0.606517 0.533865 0.293227
LSTM (lag=24) 0.976328 0.969949 0.717147 0.694659 0.022372 0.050946
EDMD (Poly lift, lag=24, deg=2) 0.957590 1.021665 0.719162 0.688723 0.039986 0.008594

Table 30: Beijing PRSA2017 (80/20 ablation): d = 4 (EVR=1.000), ntrain = 3000, ntest = 600.
Notation: “rel int” = relaxed interpolation; “ex int” = exact interpolation; “sh” = shared backbone;
“sep” = separate backbone.

Model Train MSE Test MSE Train MAE Test MAE Train R2 Test R2

WBSNN (α(k,m), 5%, rel int) 0.645593 0.667178 0.569555 0.582276 0.330379 0.258177
WBSNN (α(k,m), 10%, rel int) 0.650208 0.671631 0.572116 0.586320 0.325592 0.253226
WBSNN (α(k,m), 15%, rel int) 0.662848 0.672192 0.577766 0.589588 0.312482 0.252602
WBSNN (αk, sh, 5%, rel int) 0.654200 0.684182 0.584280 0.602350 0.321452 0.239271
WBSNN (αk, sh, 10%, rel int) 0.651857 0.676491 0.581193 0.596277 0.323882 0.247822
WBSNN (αk, sh, 15%, rel int) 0.662495 0.670283 0.586935 0.594059 0.312848 0.254725
WBSNN (αk, sep, 5%, rel int) 0.664068 0.684722 0.590508 0.604292 0.311217 0.238670
WBSNN (αk, sep, 10%, rel int) 0.664752 0.687558 0.590080 0.603413 0.310507 0.235517
WBSNN (αk, sep, 15%, rel int) 0.676833 0.685301 0.596375 0.604291 0.297976 0.238027
WBSNN (α(k,m), 5%, ex int) 0.729119 0.650090 0.618568 0.576761 0.243744 0.277177
WBSNN (α(k,m), 10%, ex int) 0.749758 0.655918 0.632943 0.582051 0.222337 0.270697
WBSNN (α(k,m), 15%, ex int) 0.757270 0.659168 0.637463 0.584623 0.214545 0.267083
WBSNN (αk, sh, 5%, ex int) 0.748659 0.681922 0.647053 0.613969 0.223477 0.241784
WBSNN (αk, sh, 10%, ex int) 0.756328 0.697906 0.652550 0.624691 0.215523 0.224012
WBSNN (αk, sh, 15%, ex int) 0.761052 0.700683 0.654605 0.625023 0.210623 0.220924
WBSNN (αk, sep, 5%, ex int) 0.762630 0.696238 0.653581 0.620080 0.208986 0.225866
WBSNN (αk, sep, 10%, ex int) 0.774878 0.709209 0.660706 0.626774 0.196282 0.211444
WBSNN (αk, sep, 15%, ex int) 0.787496 0.716508 0.666144 0.628306 0.183194 0.203328

Linear Regression 0.810602 0.801751 0.649523 0.656842 0.189398 0.108548
Gradient Boosting 0.542878 0.654196 0.525823 0.588998 0.457122 0.272612
MLP Baseline 0.598596 0.636876 0.558970 0.585497 0.401404 0.291870
Transformer MLP 0.627384 0.600555 0.545739 0.546079 0.372616 0.332254
TabTransformer 0.572121 0.688862 0.536453 0.598654 0.427879 0.234067
ExtraTreesRegressor 0.000083 0.677715 0.000813 0.600068 0.999917 0.246461
HistGB (CatBoost fallback) 0.319057 0.730615 0.406342 0.612856 0.680943 0.187643
LSTM (lag=24) 0.951910 0.951943 0.719389 0.710372 0.040771 -0.043745
EDMD (Poly lift, lag=24, deg=2) 0.890765 0.972033 0.694420 0.704489 0.102068 -0.048958
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Table 31: Beijing PRSA2017 (80/20 ablation): d = 4 (EVR=1.000), ntrain = 10000, ntest = 2000.
Notation: “rel int” = relaxed interpolation; “ex int” = exact interpolation; “sh” = shared backbone;
“sep” = separate backbone.

Model Train MSE Test MSE Train MAE Test MAE Train R2 Test R2

WBSNN (α(k,m), 1%, rel int) 0.688236 0.655980 0.584978 0.596126 0.310464 0.310791
WBSNN (α(k,m), 3%, rel int) 0.692875 0.656443 0.586684 0.597915 0.305816 0.310304
WBSNN (α(k,m), 7%, rel int) 0.694702 0.660850 0.590564 0.602104 0.303987 0.305674
WBSNN (αk, sh, 1%, rel int) 0.701060 0.676044 0.602139 0.618658 0.297617 0.289710
WBSNN (αk, sh, 3%, rel int) 0.693652 0.661718 0.592816 0.606239 0.305039 0.304762
WBSNN (αk, sh, 7%, rel int) 0.705541 0.677173 0.603850 0.618590 0.293127 0.288524
WBSNN (αk, sep, 1%, rel int) 0.707769 0.675720 0.606517 0.618128 0.290894 0.290050
WBSNN (αk, sep, 3%, rel int) 0.705138 0.671601 0.597960 0.611218 0.293531 0.294378
WBSNN (αk, sep, 7%, rel int) 0.715818 0.686460 0.609633 0.622808 0.282831 0.278766
WBSNN (α(k,m), 1%, ex int) 0.750836 0.671190 0.622406 0.605548 0.247746 0.294810
WBSNN (α(k,m), 3%, ex int) 0.764128 0.679701 0.629616 0.609747 0.234429 0.285868
WBSNN (α(k,m), 7%, ex int) 0.776267 0.688466 0.635503 0.613222 0.222267 0.276658
WBSNN (αk, sh, 1%, ex int) 0.775078 0.705512 0.653073 0.644694 0.223459 0.258749
WBSNN (αk, sh, 3%, ex int) 0.780285 0.709379 0.655377 0.646636 0.218242 0.254687
WBSNN (αk, sh, 7%, ex int) 0.784600 0.711542 0.655817 0.645119 0.213919 0.252414
WBSNN (αk, sep, 1%, ex int) 0.787757 0.710749 0.658015 0.644609 0.210756 0.253247
WBSNN (αk, sep, 3%, ex int) 0.792103 0.715195 0.659679 0.645810 0.206402 0.248576
WBSNN (αk, sep, 7%, ex int) 0.805869 0.726732 0.665550 0.648075 0.192610 0.236454

Linear Regression 0.825971 0.800074 0.654933 0.663877 0.174029 0.159397
Gradient Boosting 0.640431 0.667842 0.567352 0.604143 0.359569 0.298328
MLP Baseline 0.640004 0.658328 0.566900 0.583914 0.361744 0.327477
Transformer MLP 0.641096 0.648514 0.561987 0.589036 0.358904 0.318635
TabTransformer 0.619942 0.664196 0.559440 0.592730 0.380058 0.302158
ExtraTreesRegressor 0.001810 0.713591 0.004799 0.626595 0.998190 0.250261
HistGB (CatBoost fallback) 0.466135 0.707566 0.482938 0.620893 0.533865 0.256591
LSTM (lag=24) 0.945213 0.984680 0.720387 0.738673 0.052946 -0.030103
EDMD (Poly lift, lag=24, deg=2) 0.957590 0.966950 0.719162 0.721628 0.039986 -0.007857

ISOLET setup and summary. The Isolet dataset maps spoken letters A–Z to 26 classes (OpenML v1): 6,238
train / 1,558 test. We standardize features, apply PCA to d ∈ {5, 10, 20, 35} (components z-scored), and
evaluate budgets of 1–15% under three regimes: subsets (d=5, n=2000; d=10, n=4000) and full-data sweeps
(d=5, 20; plus d=35, EVR≈ 0.76) with small budgets (1–5%). A 20-seed study at d=5, n=2000, 10% reports
the test-accuracy distribution for both heads. Across settings, αk,m leads; αk with a shared trunk is consistently
stronger and stabler than separate backbones, especially at low d/low budget. As d and n grow, WBSNN closes
on strong baselines, while Random Forest/k-NN show classic train=100% vs lower test, indicating overfit.
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Table 32: ISOLET: PCA d = 5, (EVR=0.420), ntrain = 2000, ntest = 400. Notation: “sh” = shared
backbone; “sep” = separate backbone.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), 5%) 0.602500 0.620000 1.031726 1.000247
WBSNN (α(k,m), 10%) 0.638125 0.635000 0.933222 0.935203
WBSNN (α(k,m), 15%) 0.652500 0.647500 0.905966 0.910387
WBSNN (αk, sh, 5%) 0.487500 0.495000 1.685710 1.700538
WBSNN (αk, sh, 10%) 0.578125 0.575000 1.147624 1.121298
WBSNN (αk, sh, 15%) 0.621875 0.637500 0.979887 0.967730
WBSNN (αk, sep, 5%) 0.450000 0.457500 1.846356 1.868448
WBSNN (αk, sep, 10%) 0.545000 0.565000 1.290820 1.256991
WBSNN (αk, sep, 15%) 0.594375 0.590000 1.092682 1.058226
Logistic Regression 0.626000 0.625000 1.064762 1.023552
Random Forest 1.000000 0.632500 0.235798 1.080969
SVM (RBF) 0.680000 0.670000 0.871917 0.911077
MLP (1 hidden layer) 0.634000 0.642500 0.982878 0.939872
Kernel Ridge (Nyström RBF) 0.566000 0.557500 2.818404 2.839033
Label Propagation (RBF) 0.667500 0.617500 0.797632 1.524892
k-NN (k=15, dist) 1.000000 0.642500 0.000000 1.568800

Table 33: ISOLET: PCA d = 10 (EVR=0.545), ntrain = 4000, ntest = 800. Notation: “sh” = shared
backbone; “sep” = separate backbone.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), 5%) 0.821562 0.771250 0.472241 0.660406
WBSNN (α(k,m), 10%) 0.841875 0.753750 0.422335 0.673265
WBSNN (α(k,m), 15%) 0.854062 0.763750 0.388083 0.651753
WBSNN (αk, sh, 5%) 0.694063 0.641250 0.954818 1.122597
WBSNN (αk, sh, 10%) 0.801875 0.742500 0.555484 0.731559
WBSNN (αk, sh, 15%) 0.828438 0.752500 0.447987 0.673833
WBSNN (αk, sep, 5%) 0.649375 0.593750 1.101077 1.254728
WBSNN (αk, sep, 10%) 0.760938 0.711250 0.681077 0.822034
WBSNN (αk, sep, 15%) 0.793750 0.748750 0.556685 0.732286
Logistic Regression 0.772000 0.752500 0.663921 0.737691
Random Forest 1.000000 0.701250 0.204508 0.895178
SVM (RBF) 0.849250 0.776250 0.452041 0.635348
MLP (1 hidden layer) 0.819750 0.762500 0.495664 0.632494
Kernel Ridge (Nyström RBF) 0.738000 0.723750 2.527632 2.560071
Label Propagation (RBF) 0.775250 0.711250 0.584864 1.139011
k-NN (k=15, dist) 1.000000 0.730000 0.000000 1.055602
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Table 34: ISOLET: PCA d = 5 (EVR=0.420), full data ntrain = 6238, ntest = 1559. Notation: “sh”
= shared backbone; “sep” = separate backbone.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), 1%) 0.595591 0.592046 1.165179 1.147161
WBSNN (α(k,m), 3%) 0.644088 0.643361 0.924612 0.915943
WBSNN (α(k,m), 10%) 0.653106 0.652983 0.892467 0.901375
WBSNN (αk, sh, 1%) 0.440080 0.456062 1.879926 1.884090
WBSNN (αk, sh, 3%) 0.621844 0.617704 1.049085 1.032445
WBSNN (αk, sh, 10%) 0.644489 0.636947 0.922908 0.918281
WBSNN (αk, sep, 1%) 0.413427 0.430404 2.007891 2.011616
WBSNN (αk, sep, 3%) 0.608216 0.617062 1.109980 1.086602
WBSNN (αk, sep, 10%) 0.636673 0.633098 0.946605 0.931952
Logistic Regression 0.632575 0.637588 1.003948 0.971847
Random Forest 1.000000 0.646568 0.217297 1.055366
SVM (RBF) 0.678102 0.664529 0.827640 0.857115
MLP (1 hidden layer) 0.678903 0.655548 0.793894 0.847480
Kernel Ridge (Nyström RBF) 0.565085 0.565747 2.773107 2.793578
Label Propagation (RBF) 0.693011 0.627967 0.722494 1.619359
k-NN (k=15, dist) 1.000000 0.637588 0.000000 1.574948

Table 35: ISOLET: PCA d = 20 (EVR=0.670), full data ntrain = 6238, ntest = 1559. Notation: “sh”
= shared backbone; “sep” = separate backbone.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), 1%) 0.823246 0.796665 0.551880 0.645463
WBSNN (α(k,m), 3%) 0.934269 0.887749 0.187796 0.344252
WBSNN (α(k,m), 10%) 0.960321 0.899936 0.119269 0.324099
WBSNN (αk, sh, 1%) 0.441082 0.436818 2.097107 2.147292
WBSNN (αk, sh, 3%) 0.689980 0.658114 1.134449 1.252120
WBSNN (αk, sh, 10%) 0.905411 0.881334 0.276886 0.403693
WBSNN (αk, sep, 1%) 0.356713 0.347659 2.311550 2.342138
WBSNN (αk, sep, 3%) 0.651303 0.642078 1.254789 1.356887
WBSNN (αk, sep, 10%) 0.870942 0.842848 0.393063 0.484338
Logistic Regression 0.908945 0.892239 0.303193 0.323313
Random Forest 1.000000 0.868505 0.183865 0.738272
SVM (RBF) 0.948862 0.909557 0.174038 0.290399
MLP (1 hidden layer) 0.928182 0.898012 0.228892 0.286440
Kernel Ridge (Nyström RBF) 0.897884 0.885183 2.156269 2.204649
Label Propagation (RBF) 0.861815 0.842207 0.413167 0.713350
k-NN (k=15, dist) 1.000000 0.855035 0.000000 0.725293
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Table 36: ISOLET: PCA d = 35 (EVR=0.756), full data ntrain = 6238, ntest = 1559. Notation: “sh”
= shared backbone; “sep” = separate backbone.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), 3%) 0.976353 0.919179 0.077702 0.340435
WBSNN (α(k,m), 5%) 0.988978 0.924310 0.042586 0.352441
WBSNN (αk, sh, 3%) 0.660321 0.622194 1.343763 1.496550
WBSNN (αk, sh, 5%) 0.787575 0.740218 0.803531 1.016032
WBSNN (αk, sep, 3%) 0.580561 0.551636 1.574497 1.679204
WBSNN (αk, sep, 5%) 0.733467 0.707505 0.974586 1.153906
Logistic Regression 0.958480 0.934573 0.149727 0.223072
Random Forest 1.000000 0.907633 0.193623 0.774041
SVM (RBF) 0.983168 0.952534 0.077960 0.201624
MLP (1 hidden layer) 0.959122 0.932008 0.144147 0.211379
Kernel Ridge (Nyström RBF) 0.959763 0.932649 1.923177 1.987090
Label Propagation (RBF) 0.910388 0.878768 0.334925 0.551099
k-NN (k=15, dist) 1.000000 0.899936 0.000000 0.597966

Table 37: ISOLET: Error bars PCA5, 20 seeds,
2k train/400 test, “sh/sep” = shared/separate backbone.

Model Test Acc (mean ± std)
WBSNN (α(k,m), 10%) 0.6201± 0.0108
WBSNN (αk, sh, 10%) 0.5857± 0.01918
WBSNN (αk, sep, 10%) 0.5531± 0.0217

Swiss Roll + RFF: setup and summary (αk = shared-backbone). We map (x, y, z) through Random
Fourier Features (Gaussian bandwidth σ=5.0, fixed seed) using cos / sin pairs, then compress with PCA to
d ∈ {10, 15}; features are standardized. Each variant uses a fixed-seed 80/20 split; from the 80% pool we draw
Mtrain and set Mtest=0.2Mtrain; WBSNN’s Phase 1/2 discovery sees only 7–20% of Mtrain (classification uses
one-hot targets in Phase 2; regression targets are standardized). Noisy 5-class: small run (RFF20→PCA10,
800, 15%) yields α(k,m)≈0.95, αk≈0.938; large run (30→15, 30k, 7%) lands both heads at ∼0.96, on par
with RBF-SVM/MLP. Low-sample + 20% label noise: with 400–1k train, αk often edges α(k,m) at higher
d/n (e.g., ∼0.75 @ RFF20→PCA15, 1k, 10%), suggesting the shared head’s bias helps under uniform flips.
Multi-roll (4 spirals): 2k/10% → ∼0.94–0.95; 20k/7% → ∼0.97, matching strong kernel/MLP baselines
with tiny anchor budgets. Regression (heteroskedastic): at 1k, R2≈0.78; at 20k, αk≈0.83 vs. α(k,m)≈0.78,
indicating better bias–variance from the shared head for 1-D targets. Takeaway: widening the RFF→PCA lens
and increasing n raise accuracy/R2 under small budgets; α(k,m) leads on complex classification, while αk is
sturdier under label flips and in regression.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Table 38: Swiss Roll (RFF) — noisy 5class. Embedding: RFF 20 → PCA 10. ntrain = 800.
WBSNN percentage refers to Phase 1&2 budget.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), 15%) 0.970313 0.95000 0.085 0.173
WBSNN (αk, 15%) 0.957812 0.93750 0.112 0.178
Logistic Regression 0.925000 0.90000 0.267 0.268
Random Forest 1.000000 0.93125 0.075 0.213
SVM (RBF) 0.961250 0.95000 0.121 0.148
MLP (1 hidden layer) 0.892500 0.87500 0.572 0.574
k-NN (k=15, dist) 1.000000 0.95000 1e-15 0.138
NAIS-Net 1.000000 0.91875 0.002 0.645
KRR 0.933750 0.93125 0.085 0.173

Table 39: Swiss Roll (RFF) — noisy 5class. Embedding: RFF 30→ PCA 15. ntrain = 30000.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), 7%) 0.957917 0.96100 0.106 0.104
WBSNN (αk, 7%) 0.958000 0.95983 0.107 0.103
Logistic Regression 0.905867 0.90867 0.316 0.298
Random Forest 1.000000 0.95700 0.038 0.132
SVM (RBF) [20k cap] 0.959810 0.96150 0.119 0.115
MLP (1 hidden layer) 0.959233 0.96283 0.099 0.093
k-NN (k=15, dist) 1.000000 0.95917 1e-15 0.173
NAIS-Net 0.963333 0.96033 0.085 0.097
KRR 0.958267 0.96117 0.106 0.104

Table 40: Swiss Roll (RFF) — low sample label noise (10-class, 20% label noise). Embedding:
RFF 20→ PCA 10. ntrain = 400.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), 20%) 0.80625 0.6875 0.648 1.463
WBSNN (αk, 20%) 0.75938 0.6750 0.956 1.363
Logistic Regression 0.73750 0.7000 1.042 1.448
Random Forest 0.98250 0.6750 0.480 1.256
SVM (RBF) 0.78750 0.7125 0.878 1.230
MLP (1 hidden layer) 0.71250 0.7125 1.151 1.329
k-NN (k=15, dist) 1.00000 0.7000 1e-15 6.12
Label Propagation (RBF) 0.76000 0.7000 0.736 4.044
KRR 0.76000 0.7250 0.648 1.463
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Table 41: Swiss Roll (RFF) — low sample label noise (10-class, 20% label noise). Embedding:
RFF 20→ PCA 10. ntrain = 800.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), 15%) 0.80625 0.73125 0.682 1.329
WBSNN (αk, 15%) 0.78750 0.74375 0.792 1.320
Logistic Regression 0.77375 0.73125 1.036 1.229
Random Forest 0.99500 0.70625 0.350 1.146
SVM (RBF) 0.80375 0.73125 0.841 1.124
MLP (1 hidden layer) 0.75875 0.68125 1.059 1.189
k-NN (k=15, dist) 1.00000 0.71875 1e-15 5.44
Label Propagation (RBF) 0.79625 0.68750 0.616 3.656
KRR 0.77500 0.72500 0.682 1.329

Table 42: Swiss Roll (RFF) — low sample label noise (10-class, 20% label noise). Embedding:
RFF 20→ PCA 15. ntrain = 1000.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m), 10%) 0.824 0.735 0.589 1.368
WBSNN (αk, 10%) 0.810 0.750 0.772 1.301
Logistic Regression 0.802 0.720 0.911 1.293
Random Forest 0.988 0.730 0.348 1.131
SVM (RBF) 0.811 0.745 0.809 1.157
MLP (1 hidden layer) 0.777 0.715 1.140 1.304
k-NN (k=15, dist) 1.000 0.740 1e-15 6.59
Label Propagation (RBF) 0.808 0.730 0.588 4.182
KRR 0.811 0.735 0.589 1.368
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Table 43: Swiss Roll (RFF) — multi roll (10-class, 4-roll). Embedding: RFF 20 → PCA 10.
ntrain = 2000. Phase 1–2 = 10%.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m)) 0.977500 0.9450 0.078 0.150
WBSNN (αk) 0.958125 0.9400 0.144 0.189
Logistic Regression 0.710000 0.7075 0.785 0.730
Random Forest 1.000000 0.9475 0.083 0.208
SVM (RBF) 0.955000 0.9525 0.125 0.123
MLP (1 hidden layer) 0.922500 0.9250 0.302 0.282
k-NN (k=15, dist) 1.000000 0.9575 1e-15 0.198
NAIS-Net 0.999500 0.9475 0.004 0.217
Diffusion Maps + LogReg 0.710500 0.7025 0.785 0.730
KRR 0.851500 0.8725 0.078 0.150

Table 44: Swiss Roll (RFF) — multi roll (10-class, 4-roll). Embedding: RFF 30 → PCA 15.
ntrain = 20000. Phase 1–2 = 7%.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m)) 0.975562 0.97200 0.061 0.077
WBSNN (αk) 0.972750 0.96675 0.072 0.085
Logistic Regression 0.784700 0.77450 0.641 0.684
Random Forest 1.000000 0.97250 0.022 0.086
SVM (RBF) 0.978000 0.97400 0.054 0.064
MLP (1 hidden layer) 0.978400 0.97025 0.061 0.080
k-NN (k=15, dist) 1.000000 0.96875 1e-15 0.097
NAIS-Net 0.985200 0.97150 0.037 0.073
Diffusion Maps + LogReg 0.602750 0.60525 1.175 1.192
KRR 0.962700 0.95475 0.061 0.077

Table 45: Swiss Roll (RFF) — regression. Embedding: RFF 20→ PCA 10. ntrain = 1000. Phase
1–2 = 10%.

Model Train Loss Test Loss Train MSE Test MSE Train R2 Test R2

WBSNN (α(k,m)) 0.008 0.009 0.007816 0.009461 0.812828 0.779148
WBSNN (αk) 0.008 0.009 0.007826 0.009411 0.812575 0.780305
Linear Regression 0.017 0.016 0.017445 0.016068 0.576039 0.624893
Random Forest 0.001 0.007 0.000935 0.006833 0.977286 0.840497
SVR 0.005 0.006 0.005012 0.006056 0.878196 0.858630
MLP (1 hidden layer) 0.008 0.009 0.008447 0.009382 0.794704 0.780983
k-NN (k=15, dist) 0.000 0.005 0.000000 0.004952 1.000000 0.884408
KRR 0.008 0.009 0.008866 0.008799 0.784527 0.794587
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Table 46: Swiss Roll (RFF) — regression. Embedding: RFF 30→ PCA 15. ntrain = 20000. Phase
1–2 = 7%.

Model Train Loss Test Loss Train MSE Test MSE Train R2 Test R2

WBSNN (α(k,m)) 0.009 0.009 0.008925 0.009185 0.775105 0.777464
WBSNN (αk) 0.006 0.007 0.006355 0.006979 0.839865 0.830914
Linear Regression 0.021 0.022 0.021082 0.022086 0.467190 0.464876
Random Forest 0.001 0.005 0.000689 0.005421 0.982576 0.868646
SVR 0.005 0.005 0.004622 0.005114 0.883175 0.876097
MLP (1 hidden layer) 0.005 0.006 0.004877 0.005561 0.876738 0.865261
k-NN (k=15, dist) 0.000 0.005 0.000000 0.005128 1.000000 0.875762
KRR 0.009 0.009 0.004701 0.005127 0.881200 0.875785

Swiss Roll + Polynomial (setup). From 13k points on the 3D roll with noise ∈ {0.2, 0.5, 0.8}, we build a 15-
D feature stack: (x, y, z), quadratics (x2, y2, z2), pairwise products (xy, xz, yz), plus six N (0, 0.1) spurious
channels; 80/20 split, Mtrain ∈ {500, 2k, 5k, 10k}, Mtest=0.2Mtrain, PCA bottleneck d ∈ {5, 10, 15}, z-score,
Phase 1–2 discovery 10–20% with Phase 2 one-hot (10-way).
Why polynomial (vs. RFF). Deterministic low-degree interactions expose curvature and spurious correlations
explicitly; we then ask WBSNN to compress (PCA) and still separate under rising noise and tiny discovery
budgets.
Summary at noise 0.2. At d=10, 10k test 98.05%, tracking RBF-SVM/MLP; LogReg nip at the top, as the
poly space is near-linear.
Summary at noise 0.5. At d=10, 5k→95.3%; widening to d=15 at fixed 5k dips to 93.6%—smaller d acts
like a low-pass under noise.
Summary at noise 0.8. Small-d wins: with 500 points, d=5 WBSNN hits 96.0% top performer; Nyström
KRR and Random Forest overfit (100% train, low-82% test on Nyström vs. 93% on RF).
Takeaways. Prefer small d as noise rises; gains come from more samples and lean discovery, not bigger heads;
WBSNN stays competitive/robust while baselines might memorize drift.
Selected runs (representative runs shown; complete runs (all configs) are in the accompanying GitHub
repository). (i) Low-noise ceiling: noise 0.2, d=10, Mtrain=10k (shows near-linear separability and WBSNN
parity: ≈98.05%). (ii) Noise+variance trade-off: d=10 vs. 15 at 5k, noise 0.5 (95.3% vs. 93.6%) to illustrate
“small-d denoises.” (iii) High-noise, small-data efficiency: d=5, Mtrain=500, noise 0.8 (96.0%) to highlight
discovery-budget efficiency.

Table 47: Swiss Roll (Polynomial) — noise = 0.2. PCA d=10, ntrain=10,000, discovery 10%.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m)) 0.982625 0.9805 0.049220 0.048053
Logistic Regression 0.983500 0.9820 0.058884 0.059518
Random Forest 1.000000 0.9805 0.013727 0.048484
SVM (RBF) 0.983100 0.9775 0.043808 0.052378
MLP (1 hidden layer) 0.985400 0.9815 0.034195 0.040197
NAIS-Net 0.985200 0.9825 0.037436 0.042702
Kernel Ridge (Nyström RBF) 0.994700 0.9485 0.818758 0.888262
Label Propagation (RBF) 0.981700 0.9760 0.051147 0.059930
Diffusion Maps + LogReg 0.979500 0.9780 0.096964 0.096583

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Table 48: Swiss Roll (Polynomial) — noise = 0.5. PCA d=10, ntrain=5,000, discovery 10%.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m)) 0.96375 0.953 0.090803 0.114413
Logistic Regression 0.95880 0.954 0.104122 0.115466
Random Forest 1.00000 0.945 0.031183 0.159319
SVM (RBF) 0.95900 0.950 0.095327 0.116598
MLP (1 hidden layer) 0.96260 0.955 0.082152 0.105968
NAIS-Net 0.96200 0.951 0.087675 0.122909
Kernel Ridge (Nyström RBF) 0.99640 0.910 0.794089 0.937682
Label Propagation (RBF) 0.95740 0.943 0.099558 0.158828
Diffusion Maps + LogReg 0.95620 0.941 0.156893 0.177376

Table 49: Swiss Roll (Polynomial) — noise = 0.5. PCA d=15, ntrain=5,000, discovery 10%.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m)) 0.98525 0.936 0.053564 0.196517
Logistic Regression 0.96280 0.950 0.099798 0.119264
Random Forest 1.00000 0.945 0.038015 0.139064
SVM (RBF) 0.97060 0.937 0.080215 0.148304
MLP (1 hidden layer) 0.99840 0.938 0.011080 0.232138
NAIS-Net 0.96160 0.950 0.087023 0.121348
Kernel Ridge (Nyström RBF) 0.99480 0.910 0.797563 0.930236
Label Propagation (RBF) 0.95740 0.943 0.099558 0.158828
Diffusion Maps + LogReg 0.95620 0.941 0.156893 0.177376

Table 50: Swiss Roll (Polynomial) — noise = 0.8. PCA d=5, ntrain=500, discovery 20%.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m)) 0.9475 0.9600 0.200217 0.162914
Logistic Regression 0.9040 0.9300 0.364154 0.343107
Random Forest 1.0000 0.9300 0.082212 0.242832
SVM (RBF) 0.9120 0.9400 0.272589 0.253670
MLP (1 hidden layer) 0.9480 0.9500 0.137418 0.139910
NAIS-Net 0.9800 0.9400 0.061205 0.200780
Kernel Ridge (Nyström RBF) 1.0000 0.8200 0.734382 1.278720
Label Propagation (RBF) 0.9060 0.8900 0.262146 0.294173
Diffusion Maps + LogReg 0.9380 0.9400 0.321441 0.344973
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Swiss Roll (raw 3D) — Setup & Summary Swiss Roll (raw 3D) – setup: Data: raw (x, y, z), standardized;
no feature maps. Variants: noisy 3class (σ = 0.5, 3 bins), low sample label noise (10 bins, 10% label flips),
multi roll (3 spirals, 10 bins), regression (unwrapped t ∈ [0, 1], σ = 0.1).
Splits/budgets: 80/20 pool; sample Mtrain with Mtest = 0.2Mtrain. Phase-1/2 discovery 10–20% at small M ,
shrinking to 7% by 20k.
Summary: noisy 3class ∼ 99.4% test at 10% discovery; while logistic ∼ 61%.
low sample label noise: 91–91.5% at 500–1k despite 10% flips; small MLP collapses at 500 (46%).
multi roll: 98.7% as 20k with 7% discovery budget; topology handled well under tight budgets.
regression: shared αk generalizes best (e.g., R2 ≈ 0.986 at 2k vs 0.969 for α(k,m)); wider head not needed.
Selected runs (representative runs shown; complete runs (all configs) are in the accompanying GitHub
repository)): noisy 3class (10k, 10%), low sample label noise (500, 20%) and (1k, 15%), multi roll (20k,
7%), regression (2k, 10%) and (10k, 10%).
Why: geometry win without features; robustness under scarcity+noise; topology+scaling+budget efficiency;
clear bias–variance readout.

Table 51: Swiss Roll (raw 3D) — noisy 3class. ntrain=10,000, discovery 10%.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m)) 0.994625 0.9935 0.014 0.018
WBSNN (αk) 0.994125 0.9935 0.014 0.016
Logistic Regression 0.624200 0.6100 0.611 0.622
Random Forest 1.000000 0.9940 0.006 0.024
SVM (RBF) 0.994500 0.9945 0.014 0.015
MLP (1 hidden layer) 0.994100 0.9930 0.055 0.056
k-NN (k=15, dist) 1.000000 0.9915 1e-15 0.014
NAIS-Net 0.994800 0.9930 0.012 0.015

Table 52: Swiss Roll (raw 3D) — low sample label noise (10% flips). ntrain=500, discovery
20%.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m)) 0.89500 0.910 0.488 0.787
WBSNN (αk) 0.90000 0.910 0.512 0.900
Logistic Regression 0.88000 0.880 0.939 1.120
Random Forest — — — —
SVM (RBF) 0.89400 0.890 0.616 0.715
MLP (1 hidden layer) 0.54600 0.460 1.605 1.753
k-NN (k=15, dist) 1.00000 0.870 9.99e-16 3.04
Label Propagation (RBF) 0.87400 0.840 0.412 1.931
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Table 53: Swiss Roll (raw 3D) — low sample label noise (10% flips). ntrain=1,000, discov-
ery 15%.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m)) 0.90250 0.915 0.483 0.654
WBSNN (αk) 0.90125 0.915 0.508 0.652
Logistic Regression 0.87400 0.900 1.008 1.082
Random Forest 0.99600 0.920 0.204 0.516
SVM (RBF) 0.88800 0.915 0.588 0.603
MLP (1 hidden layer) 0.87700 0.875 1.012 1.034
k-NN (k=15, dist) 1.00000 0.905 1e-15 2.47
Label Propagation (RBF) 0.88400 0.885 0.381 1.657

Table 54: Swiss Roll (raw 3D) — multi roll (3 roll). ntrain=20,000, discovery 7%.

Model Train Acc Test Acc Train Loss Test Loss
WBSNN (α(k,m)) 0.989688 0.98675 0.028 0.033
WBSNN (αk) 0.987500 0.98600 0.035 0.040
Logistic Regression 0.984550 0.98525 0.103 0.099
Random Forest 1.000000 0.99100 0.010 0.040
SVM (RBF) 0.990950 0.98850 0.027 0.031
MLP (1 hidden layer) 0.988800 0.98700 0.056 0.057
k-NN (k=15, dist) 1.000000 0.98100 1e-15 0.052
NAIS-Net 0.993650 0.98975 0.016 0.021
Diffusion Maps + LogReg 0.990200 0.99000 0.048 0.048

Table 55: Swiss Roll (raw 3D) - regression (t/tmax). ntrain = 2000, discovery 10%.

Model Train Loss Test Loss Train MSE Test MSE Train R2 Test R2

WBSNN (α(k,m)) 0.001 0.001 0.001436 0.001281 0.960250 0.968505
WBSNN (αk) 0.001 0.001 0.000597 0.000581 0.983486 0.985709
Linear Regression 0.034 0.038 0.034445 0.038237 0.064788 0.060128
Random Forest 0.000 0.000 0.000030 0.000002 0.999198 0.999956
SVR 0.007 0.007 0.006636 0.006758 0.819834 0.833899
MLP (1 hidden layer) 0.001 0.001 0.001272 0.001383 0.965477 0.966017
k-NN (k=15, dist) 0.000 7.23e-6 0.000000 0.000007 1.000000 0.999822

Table 56: Swiss Roll (raw 3D) — regression (t/tmax). ntrain=10,000, discovery 10%.

Model Train Loss Test Loss Train MSE Test MSE Train R2 Test R2

WBSNN (α(k,m)) 0.002 0.002 0.002452 0.002416 0.934906 0.937793
WBSNN (αk) 0.002 0.002 0.001532 0.001530 0.959314 0.960600
Linear Regression 0.035 0.036 0.035059 0.035947 0.070930 0.074468
Random Forest 0.000 0.000 0.000003 0.000001 0.999911 0.999966
SVR 0.006 0.006 0.006382 0.006499 0.830884 0.832676
MLP (1 hidden layer) 0.000 0.000 0.000479 0.000476 0.987302 0.987735
k-NN (k=15, dist) 0.000 1.65e-6 0.000000 0.000002 1.000000 0.999958
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