
Spiking PointNet: Spiking Neural Networks
for Point Clouds

Dayong Ren, Zhe Ma, Yuanpei Chen, Weihang Peng, Xiaode Liu, Yuhan Zhang, Yufei Guo∗
Intelligent Science & Technology Academy of CASIC, China

Scientific Research Laboratory of Aerospace Intelligent Systems and Technology, China
rdyedu@gmail.com, yfguo_bit@126.com, yfguo@pku.edu.cn

Abstract

Recently, Spiking Neural Networks (SNNs), enjoying extreme energy efficiency,
have drawn much research attention on 2D visual recognition and shown gradually
increasing application potential. However, it still remains underexplored whether
SNNs can be generalized to 3D recognition. To this end, we present Spiking
PointNet in the paper, the first spiking neural model for efficient deep learning
on point clouds. We discover that the two huge obstacles limiting the application
of SNNs in point clouds are: the intrinsic optimization obstacle of SNNs that
impedes the training of a big spiking model with large time steps, and the expensive
memory and computation cost of PointNet that makes training a big spiking point
model unrealistic. To solve the problems simultaneously, we present a trained-less
but learning-more paradigm for Spiking PointNet with theoretical justifications
and in-depth experimental analysis. In specific, our Spiking PointNet is trained
with only a single time step but can obtain better performance with multiple time
steps inference, compared to the one trained directly with multiple time steps.
We conduct various experiments on ModelNet10, ModelNet40 to demonstrate
the effectiveness of Spiking PointNet. Notably, our Spiking PointNet even can
outperform its ANN counterpart, which is rare in the SNN field thus providing a
potential research direction for the following work. Moreover, Spiking PointNet
shows impressive speedup and storage saving in the training phase. Our code is
open-sourced at Spiking-PointNet.

1 Introduction

The advent of deep learning technologies, notably PointNet [38], has considerably amplified our capa-
bilities to comprehend and manipulate intricate 3D data from real-world settings. With autonomous
driving and augmented reality, which often require real-time interaction and fast response, becoming
increasingly prevalent, the reliance on efficient point cloud processing techniques has been escalated.
However, computation for the point cloud is energy-hungry and usually needs powerful devices.

Spiking Neural Networks (SNNs) [40; 4; 11; 12; 39; 35; 2; 55; 22; 57; 56; 47; 52; 44; 53; 54],
seen as more energy efficient than Artificial Neural Networks (ANNs) due to their event-driven
computation mechanism and the energy-saving multiplication-addition transformation advantage,
have received extensive attention recently in many fields. For example, in [36], SNNs were used to
handle sequential learning and show better performance and less energy cost on sequential learning
compared to ANNs with similar scales. In [31], SNNs were leveraged to study the Human Activity
Recognition (HAR) task. The results show that the SNN can reduce up to 94% energy consumption
while being comparable to homogeneous ANN counterparts in accuracy. There are also some works
that apply SNNs in autonomous driving. LaneSNNs [45] presented an SNN-based approach to detect

∗Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/DayongRen/Spiking-PointNet


Figure 1: The overall of the trained-less but learning-more framework. The Spiking PointNet is
trained with only one single time step in the training phase, while is used with multiple time steps in
the inference phase. To improve the performance of the SNN, we also add some membrane potential
perturbation in the training.

the lanes with an event-based camera input with a very low power consumption of about 1 W. For the
more challenging point cloud task, a question is naturally raised: Could SNNs be transferred to the
3D domain and retain the energy-efficient advantage?

To this end, we present Spiking PointNet, the first spiking neural network approach to deep learning
on point clouds. To better apply the SNNs in the point cloud field, we focus on solving two huge
obstacles staying on this road. The first is optimizing difficulty. Though the binary spike information
transmission paradigm makes SNNs much energy efficient, it also introduces the training challenge
since the gradients for firing procession of the spiking neuron are not well-defined, and they are all
almost zero or infinite sometimes. The zero-but-all gradient makes it impossible to train SNNs via
gradient-based optimization methods like ANNs. To handle this problem, various Surrogate Gradient
(SG) methods have been proposed [35; 49; 39; 30; 14]. This kind of method tries to find an alternative
function to replace the firing function when doing back-propagation of the spiking neurons. Thus, the
SNN can be also trained with the current gradient-based optimization framework. However, it is not
easy to find a suitable surrogate function, especially for these SNNs with large time steps. With the
increasing of time steps, the explode or vanish problem and the gradient error problem will be severe.
We will provide a detailed analysis in Sec. 3.3.

The second problem is that training networks for point clouds need more expensive memory and
computation than images since point cloud data requires more dimensions to describe itself. To
overcome this limitation in point clouds, researchers have proposed various model simplification
strategies. These strategies include but are not limited to, sparse convolution [7], optimization
during the data processing phase [27], and optimization at the local feature extraction stage [34; 33].
However, for applying the SNN to point clouds, the memory and computation will be enlarged greatly
still with the increasing of time steps, and the above methods cannot handle this problem well. Thus,
there is no existing way to train SNNs with large time steps on common deep-learning devices.

To solve the above problems simultaneously, we present a trained-less but learning-more paradigm
for Spiking PointNet. Specifically, we propose a new framework for Spiking PointNet, that we train
the SNN using a suitable SG method with only a single time step and infer it with multiple time steps
to obtain a better performance. We will prove theoretically and experimentally that this framework
can result in a better SNN than training it with multiple time steps directly in Sec. 3.4. To improve
the framework further, we also embed a membrane potential perturbation method in the framework
based on the observation that the residual membrane potential of SNN coming from the previous
time step cannot transmit the temporal information for static point cloud datasets but a perturbation
to increase the generalization. The overall workflow of the framework is visualized in Fig. 1.

The contributions of our paper are as follows:

• We prove that it is not easy to train a well-performed SNN with large time steps directly for
point clouds with theoretical justifications and in-depth experimental analysis and propose

2



the Spiking PointNet with a trained-less but learning-more framework, a first simple yet
effective SNN framework for point clouds.

• Furthermore, we also propose a membrane potential perturbation method for the framework
to increase the SNN generalization.

• We evaluate our methods on various datasets and the experimental results show the effective-
ness of our method. Rather, our Spiking PointNet even can outperform its ANN counterpart,
which is very rare in the SNN field.

2 Related Work

2.1 Spiking Neural Networks

Generally, there are three kinds of methods to train SNNs [16]: (1) spike-timing-dependent plasticity
(STDP) [1] approaches, (2) ANN to SNN conversion approaches [25; 24; 32; 8; 10; 3; 22; 29],
and (3) directly training approaches [6; 35; 49; 39; 30; 46; 47; 18; 21; 17; 13]. STDP is a kind of
biology-inspired method [23; 9] that updates the weights with the unsupervised learning algorithm
called Hebbian learning [43]. However, it is limited to small-scale datasets yet. The ANN-to-SNN
conversion [8; 29] converts a well-trained ANN checkpoint to the SNN counterpart. Since training an
ANN is much faster than training an SNN, this kind of method provides a fast way to obtain an SNN
without using gradient descent for SNNs at all. However, it does not have its own learned feature. In
specific, all the converted SNN does is to mimic the ANN. Moreover, this type of method requires
many time steps to obtain a high-accuracy SNN. The direct training method tries to find an alternative
function to replace the firing function of the spiking neurons when doing back-propagation. This
kind of method can narrow the time steps greatly, even less than 5 [20; 15; 14], hence has received
much attention recently. However, it is not easy to find a suitable surrogate function for these SNNs
with large time steps. In this work, we focus on solving the problem.

2.2 Deep Learning on Point Clouds

Training networks for point clouds need expensive memory and computation. To address the
challenges posed by expensive computation and memory requirements, researchers have proposed a
series of model simplification strategies to overcome the limitations of current point cloud models
in practical applications [7; 41; 27; 34; 33; 42]. For instance, Lee et al. [28] introduced PillarAcc,
an innovative algorithm-hardware co-design that significantly enhances the performance and energy
efficiency of 3D object detection. However, its reliance on complex sparse convolution and dynamic
pillar pruning may introduce additional complexity in the design and implementation process. Choy
et al. [7] proposed MinkowskiConv, which provides a comprehensive solution for handling sparse
spatio-temporal data, greatly enhancing its ability to capture complex temporal patterns in the data.
Nevertheless, the inherent computational complexity and memory demands of 4D convolutions
present new challenges. Hu et al. [27] introduced RandLA-Net to conserve computational resources
in point cloud analysis by leveraging random sampling and an efficient local feature aggregation
module. However, a limitation of RandLA-Net is that random sampling may lead to the loss of critical
information and cannot be seamlessly applied to existing networks without a decline in performance.
In comparison, the SNN version of PointNet offers an effective solution by significantly improving
algorithm execution efficiency without altering the overall network structure, reducing dependence on
high-performance devices in the inference. This enables general-purpose networks to more effectively
address the computational resource consumption challenges of practical point cloud networks without
the need to redesign network structures. However, for applying the SNN to point clouds, the memory
and computation will be enlarged greatly still with the increasing of time steps in the training time.
And, there is no existing way to train SNNs with large time steps on common deep-learning devices.

3 Preliminary and Methodology

In the paper, we mainly apply the SNN for the PointNet [38], the first deep learning model that
processes raw point clouds directly, and modify it to the Spiking PointNet. Here, we first introduce
the PointNet and widely used SNN neuron model, Leaky Integrate-and-Fire (LIF) model in detail.
Then we will elucidate the difficulty of optimizing the Spiking PointNet with large time steps. Next,

3



a trained-less but learning-more framework to solve the above problem will be presented. Finally, we
further improve it with a membrane potential perturbation method.

3.1 PointNet

PointNet represents a novel application of deep learning to process point cloud data [38]. It effectively
addresses two primary challenges: permutation invariance, the unordered nature of point cloud
data, and rotational invariance, the freedom to rotate the point cloud in 3D space without altering
the represented object. Specifically, to tackle these challenges, PointNet employs a symmetric
function in conjunction with a spatial transformer network. It processes each point through a shared
fully connected network, followed by a max pooling operation. This approach inherently ensures
permutation invariance as it remains indifferent to the order of input points. Formally, given point
cloud data {x1, x2, ..., xn}, each point xi is transformed via a shared Multi-Layer Perceptron (MLP)
denoted by h, followed by a max pooling operation to enforce symmetry, yielding a global feature
descriptor. Therefore, PointNet approximates a general function f defined on a point set by applying
a symmetric function g on transformed elements in the set:

f ({x1, . . . , xn}) ≈ g (h (x1) , . . . , h (xn)) , (1)

where f : 2R
N → R, h : RN → RK and g : RK × · · · × RK︸ ︷︷ ︸

n

→ R is a symmetric function.

For rotational invariance, PointNet introduces a spatial transformer network - a specialized neural
network proficient at predicting the required spatial transformation matrix for the point cloud, thereby
enabling PointNet to manage rotating point cloud data.

The principal divergence between PointNet and conventional point cloud processing methodologies
resides in the implementation of deep neural networks. This represents a significant leap from the
traditional approach of manually designed features to Artificial Neural Networks (ANNs). The
proposed model, Spiking PointNet, advances this progression by transitioning from ANNs to Spiking
Neural Networks (SNNs). SNNs, which emulate the neural mechanisms of the brain more closely,
promise to enhance the efficiency and precision of point cloud processing outcomes.

3.2 Explicitly Iterative LIF Model

SNNs use the spiking neuron, which is inspired by the brain’s natural mechanisms, to transmit
information. A spiking neuron will receive input spike trains from the previous layer neuron models
along times to update its membrane potential, u. In the paper, we adopt the widely used leaky
integrate and fire (LIF) neuron model, which can be described as follows:

τm
du

dt
= − (u− urest) +R · I(t), u < Vth. (2)

In the above equation, I represents the input current, Vth is the threshold, and R and τm are the
resistance and time constant, respectively. A spike will be generated when u reaches Vth, and u is
subsequently reset to the resting potential u = urest, typically set to zero [30; 11; 39].

To use the mature machine learning framework (e.g., TensorFlow, Pytorch) to train the SNNs, an
explicitly iterative LIF spiking model was proposed in [49] given by

ui[t+ 1] = λ (ui[t]− Vthsi[t]) +
∑
j

wijsj [t] + bi,

si[t+ 1] = H (ui[t+ 1]− Vth) .

(3)

Here, Ii(t) =
∑

j wijsj(t) + bi, where the subscript i denotes the i-th current neuron, wij is the
weight from j-th neuron in the previous layer connected to the current neuron i, and bi is a bias.
H(x) signifies the Heaviside step function, si[t] is the spike train of neuron i at discrete time step t,
and λ < 1 is a leaky term for 1− 1

τm
, typically is 0.20 or 0.25 as in [30; 6; 39; 20].

The main difference between ANNs and SNNs is the nonlinear computational neuron. Replacing
the ReLU neuron from PointNet with LIF spiking neuron will transform the PointNet to Spiking
PointNet.

4



𝑠𝑡
𝑙

𝑢𝑡
𝑙+1

𝑠𝑡
𝑙+1

𝑠𝑡−1
𝑙

𝑢𝑡−1
𝑙+1

𝑠𝑡−1
𝑙+1

𝑠𝑡+1
𝑙

𝑢𝑡+1
𝑙+1

𝑠𝑡+1
𝑙+1

𝑊𝑙 𝑊𝑙 𝑊𝑙

Time

𝜕𝐿

𝜕𝑠𝑡−1
𝑙

𝜕𝐿

𝜕𝑠𝑡−1
𝑙+1

𝜕𝐿

𝜕𝑠𝑡−1
𝑙+1

Time

𝜕𝐿

𝜕𝑠𝑡−1
𝑙

𝜕𝐿

𝜕𝑠𝑡−1
𝑙+1

𝜕𝐿

𝜕𝑠𝑡−1
𝑙+1

𝜕𝐿

𝜕𝑠𝑡
𝑙

𝜕𝐿

𝜕𝑠𝑡
𝑙+1

𝜕𝐿

𝜕𝑠𝑡
𝑙+1

𝜕𝐿

𝜕𝑠𝑡+1
𝑙

𝜕𝐿

𝜕𝑠𝑡+1
𝑙+1

𝜕𝐿

𝜕𝑠𝑡+1
𝑙+1

𝜕𝐿

𝜕𝑊𝑙

𝜕𝐿

𝜕𝑊𝑙

𝜕𝐿

𝜕𝑊𝑙

𝑠𝑡−1
𝑙 𝑠𝑡

𝑙 𝑠𝑡+1
𝑙

Figure 2: Chain rule graph for gradients w.r.t. weights of SNNs

1.2 0.7 0.1 1.1 1.7 2.20.5
x

0.6

0.4

0.2

0.0

0.8

1.0

(x
)

k = 1
k = 5
k = 10

1.2 0.7 0.1 1.1 1.7 2.20.5
x

3

2

1

0

4

5

d
(x

)
dx

k = 1
k = 5
k = 10

Figure 3: The surrogate function (left) under different values of the coefficient, k and its corresponding
gradient (right). The blue curves represent the firing function (left) and its true gradient (right).

3.3 Optimizing Difficulty for SNNs with Large Time Steps

A notorious problem in SNN training is the non-differentiability of the firing function, see Eq. (3). To
discuss this problem concretely, we denote the loss function as L and calculate the gradients w.r.t.
weights using the chain rule following [51] shown in Fig. 2 and given by

∂L

∂Wl
=

T∑
t=1

∂L

∂sl+1[t]

∂sl+1[t]

∂ul+1[t]

(
∂ul+1[t]

∂Wl
+
∑
τ<t

τ∏
i=t−1

(
∂ul+1[i+ 1]

∂ul+1[i]
+

∂ul+1[i+ 1]

∂sl+1[i]

∂sl+1[i]

∂ul+1[i]

)
∂ul+1[τ ]

∂Wl

)
,

(4)
where Wl represents the weights from layer l to l+1, T is the total time steps, and L is the loss. The
terms ∂sl[t]

∂ul[t]
for firing function is non-differentiable. Its gradient is 0 almost everywhere except for the

threshold. Therefore, the actual updates for weights would either be 0 or infinity when recalling the
gradient descent. To handle this problem, many surrogate gradient methods are proposed [49; 58; 19].
In this kind of method, when performing the forward pass, the firing function remains exactly the
same, while, when for the backward pass, the firing function will become a surrogate function, and the
surrogate gradient is computed based on it. A typically surrogate function may refer to the tanh-like
function [14; 5; 30], given by

φ(x) =
1

2
tanh (k (x− Vth)) +

1

2
, (5)

where k is a constant. The φ(x) and its gradient can be seen in Fig. 3. The surrogate gradient can be
adjusted by changing k. Other widely used surrogate functions also enjoy the same characteristic,
such as rectangular or sigmoid surrogate functions proposed in [49].

It can be seen that, when k is set as a large value, a more accurate gradient in the backward pass
can be obtained, i.e., the gradient will be sharp at a narrow range while gradual in the residual part.
However, the gradient explode or vanish problem will become more severe in this case since the final

5



(a) (b) (c)

(d) (e) (f)

Figure 4: The gradient distributions of the first layer for Spiking PointNet on ModelNet40 with
different k and time steps. (a), (b), and (c) show the distributions for the Spiking PointNet using
1 single time steps with k = 0.5, 5, 20, respectively. (e), (d), and (f) show the distributions for the
Spiking PointNet using 4 time steps with k = 0.5, 5, 20, respectively.

weight gradient is calculated by multiplying many surrogate gradients through layers and time steps
according to Eq. (4), which tends to be either very big or small. While, when k is set as a small value,
a more inaccurate gradient in the backward pass will be obtained [14]. Hence the gradient error will
be accumulated through layers and time steps, thus hurting the performance of the SNN too [48].
Consequently, it is very difficult to train a well-performed SNN with large time steps directly, limited
by the fact that there is no suitable surrogate gradient for this kind of SNN.

3.4 The Trained-less But Learning-more Framework

As aforementioned, except for the optimizing difficulty, there is no existing suitable way to train
SNNs with large time steps on common deep-learning devices for point clouds, since training network
on point clouds is much energy and memory hungry. To handle these two problems simultaneously,
we propose a trained-less but learning-more framework.

To better describe the paradigm, we first show the gradient distributions of the first layer for Spiking
PointNet on the ModelNet40 in the Fig. 4. Here, we have several baselines: (1) The Spiking PointNet
using 1 single time step along with k = 0.5, 5, 20, respectively; (2) the Spiking PointNet using 4
time steps along with k = 0.5, 5, 20, respectively. It can be seen that, when k = 5, the gradient
distribution for Spiking PointNet with 1 single time step is relatively suitable. While k = 20, the
explode or vanish problem is very significant, and when k = 0.5, the distribution is relatively flat,
which means it is different from the actual gradient greatly and the gradient error is huge. Hence, a
small k or a large k is not a good idea for SNNs. The results in Tab. 1 also show that a small k or a
large k will reduce the SNN accuracy.

Nevertheless, we can still find a relatively suitable surrogate function for the SNN with few time
steps. However, the explode or vanish problem and the gradient error problem will be more severe
with the time step increasing for SNNs. It can be seen that, although the k = 5 is a good choice for
the Spiking PointNet with 1 single time step, the explode or vanish problem will become very severe
for the Spiking PointNet with 4 time steps. Meanwhile, with the time step increasing, the gradient
error problem becomes severe too. Note that, when k = 0.5, the gradient distribution for Spiking
PointNet with 4 time steps becomes flatter, which means a huger gradient error.

6



Table 1: The accuracy for Spiking PointNet with different time steps and k on ModelNet40.

Time step k

0.5 5 20

1 80.34% 86.98% 83.46%

4 76.73% 86.70% 75.36%

Consequently, it is not easy to train a Spiking PointNet with large time steps. The Tab. 1 also shows
that the Spiking PointNet with 4 time steps even performs worse than the one with only one single
time steps. To this end, we propose a trained-less but learning-more framework. In specific, we train
our Spiking PointNet with only a single time step but use it with multiple time steps in the inference
time. By training SNNs with only one single time step, the gradient explode or vanish problem will
be mitigated greatly. Thus we can choose a relatively large k, and meanwhile, the gradient error will
be reduced at the same time. In the paper, we choose k as 5. The Tab. 2 shows the results of our
trained-less but learning-more framework for Spiking PointNet on ModelNet10 and ModelNet40. It
can be seen that training the Spiking PointNet with a suitable surrogate function will outperform the
one with 4 time steps, and if we infer the trained model with multiple time steps, the accuracy will
increase some still. Thus we name the paradigm as the trained-less but learning-more framework.

Table 2: The ablation study for the trained-less but learning-more framework.

Dataset Training: 4 T Training: 1 T

Inferring: 4 T Inferring: 1 T Inferring: 2 T Inferring: 3 T Inferring: 4 T

ModelNet10 91.05% 91.99% 92.43% 92.53% 92.32%

ModelNet40 86.70% 86.98% 87.26% 87.21% 87.13%

Training: n T denotes training the Spiking PointNet with n time steps. Inferring: n T denotes Inferring the
Spiking PointNet with n time steps.

3.5 Membrane Potential Perturbation Method

An interesting phenomenon in our trained-less but learning-more framework is that though the Spiking
PointNet is trained with only 1 single time step, in the inference, with the increasing of time steps,
the accuracy will increase less or more at the same time. Some work [37; 31] proves that the SNNs
can extract spatio-temporal features for sequential data with multiple time steps. However, the point
cloud is the static data, thus there is no temporal feature to extract. We guess that the reason for the
accuracy increase of Spiking PointNet with multiple time steps is that it becomes an ensemble. The
residual membrane potential along time steps in the spiking neuron can be seen as the perturbation.
The perturbation will provide different initializations for the Spiking PointNet along time steps. Thus
the Spiking PointNet at every time step can be seen as a different model. And averaging their outputs
can improve the uncertainty estimation and thus may lead to an enhancement in SNN accuracy.

To verify our guess, in this section, we conducted a series of ablation experiments on ModelNet40.
We trained the Spiking PointNet with 4 time steps and evaluated its accuracy at every time step
and all time steps respectively. The results are shown in Tab. 3. It can be seen that, the collective
results outperform those obtained from individual steps, implying that the performance improvement
associated with larger time steps might be more related to an ensemble learning effect, rather than a
direct result of the increased time steps. In specific, the Spiking PointNet at each time step can be seen
as an independent model casting a vote towards the final prediction. This ensemble learning strategy
increases the robustness of the model and subsequently improves the prediction accuracy. Our study
suggests that a rethinking and optimization of time steps in SNNs is warranted. The inherent ensemble
learning effect, which is underappreciated in the conventional SNN design, could be a viable strategy
to enhance the performance of SNNs, while also managing computational resources. Our insights
provide valuable implications for future design and optimization strategies in the field of SNNs.

7



Table 3: The verification test for the effect of the time step on the static dataset.

1-th time step 2-th time step 3-th time step 4-th time step Averaging all

Accuracy 83.70% 84.65% 85.70% 85.29% 86.70%

Under the perspective that the residual membrane potential of SNN, coming from the previous time
step cannot transmit the temporal information for static point cloud datasets but a perturbation to
increase the generalization, we further propose a membrane potential perturbation method for the
framework. In specific, we add some membrane potential perturbation randomly to initial the spiking
neurons of the Spiking PointNet at each epoch in the training phase, thus the generalization of the
model trained with only 1 single time step will be improved like those trained with multiple time
steps. The results for the trained-less-based Spiking PointNet with membrane potential perturbation
are shown in Tab. 4. It can be seen that with the perturbation method, the Spiking PointNet further
gets another performance lift, amounting to 93.31% and 88.61% final accuracy for ModelNet10 and
ModelNet40 respectively.

Table 4: The ablation study for the membrane potential perturbation.

Dataset Method Training: 1 T

Inferring: 1 T Inferring: 2 T Inferring: 3 T Inferring: 4 T

ModelNet10 without MPP 91.99% 92.43% 92.53% 92.32%

with MPP 91.66% 92.98% 92.98% 93.31%

ModelNet40 without MPP 86.98% 87.26% 87.21% 87.13%

with MPP 87.72% 88.46% 88.25% 88.61%

MPP denotes membrane potential perturbation.

4 Experiments

In this section, we conduct extensive experiments on ModelNet10 and ModelNet40 [50] to demon-
strate the superior performance of our method. ModelNet10 and ModelNet40 are two widely
recognized public datasets used for 3D object classification, curated and maintained by a research
team at Princeton University. ModelNet10 is a compact dataset comprising 4,899 3D models that
span 10 distinct categories such as tables, chairs, bathtubs, and guitars. This dataset is a subset of
ModelNet40, offering fewer categories but with more pronounced differences between each category.
This characteristic makes ModelNet10 an excellent starting point for evaluating the performance of
3D classification algorithms. ModelNet40 is a more comprehensive dataset, containing approximately
12,311 3D models across 40 different categories, including tables, chairs, airplanes, guitars, and more.
With an expanded array of categories and samples, ModelNet40 serves as a robust benchmark for
gauging the performance of 3D classification algorithms in more complex and challenging tasks. We
leverage the PointNet architecture for point cloud classification tasks. For all our SNN models, we
set Vth as 0.5, The initial perturbations, δ, range from 0 to 0.5.

4.1 Ablation Studies

We first conducted thorough ablation experiments of our method against the vanilla SNN for PointNet
on the ModelNet10/40 datasets. The Tab. 5 displays the performances of various methods under
different training and testing time steps. On the ModelNet10 dataset, our Spiking PointNet with
membrane potential perturbation (MPP) reaches an accuracy of 93.31% with a testing time step of
4, which outperforms both the one without MPP (92.32%) and the ANN-based approach (92.98%).
Even with a testing time step of 1, our Spiking PointNet with MPP still achieves an accuracy of
91.66%, surpassing the performance of vanilla Spiking PointNet trained with 4 time steps (89.62%).
This validates the effectiveness of our method. Further, on the ModelNet40 dataset, our Spiking
PointNet with MPP attains an accuracy of 88.61% with a testing time step of 4, also outperforming

8



Table 5: Comparison between our method and the vanilla SNN on ModelNet10/40 datasets.

Datasets Methods Training time steps Testing time steps

1 2 3 4

ModelNet10

ANN - 92.98%
Vanilla SNN 4 89.62% 90.83% 91.05% 91.05%

Ours without MPP 1 91.99% 92.43% 92.53% 92.32%
Ours with MPP 1 91.66% 92.98% 92.98% 93.31%

ModelNet40

ANN - 89.20%
Vanilla SNN 4 85.59% 86.58% 86.34% 86.70%

Ours without MPP 1 86.98% 87.26% 87.21% 87.13%
Ours with MPP 1 87.72% 88.46% 88.25% 88.61%

Table 6: Energy estimation of ANN (PointNet) and SNNs (Spiking PointNet) of computation.

Method Time step Acc. #Add. #Mult. Energy

PointNet - 92.98% 0.03M 13.94M 1.4 × 108pJ

Spiking PointNet 1 91.66% 0.45M 0.45M 9.2 × 106pJ
4 93.31% 1.8M 1.8M 3.7 × 107pJ

the one without MPP (87.13%) and the vanilla Spiking PointNet (86.70%). Similarly, even with a
testing time step of 1, our Spiking PointNet with MPP achieves an accuracy of 87.72%, still superior
to the performance of the vanilla one trained with 4 time steps (85.59%).

4.2 Energy Efficiency

In this section, we conducted a comprehensive investigation into the hardware efficiency of our
proposed framework, with a focus on quantifying energy consumption in computational tasks on
ModelNet10. For an ANN model, the dot product operation, or Multiply-Accumulate (MAC)
operation, involves both addition and multiplication operations. However, the SNN leverages the
multiplication-addition transformation advantage, eliminating the need for multiplication operations
in all layers except the first layer. Remarkably, in the absence of spikes, hardware can employ sparse
computation to completely avoid addition operations. To estimate energy consumption, we adopted
the methodology using 45nm CMOS technology following [26; 39]. The MAC operation in ANN
consumes 4.6pJ of energy, while the accumulation operation in SNN requires only 0.9pJ. Notably, in
line with our trained-less but learning-more paradigm, we achieved a spike firing rate of 18.7% with
k = 5. Based on our findings, we computed the energy cost and presented the results in Tab. 6. Our
network exhibits remarkable energy efficiency, necessitating only 9.2× 106pJ of energy per forward
pass, which equates to a 15.2-fold reduction in comparison to conventional ANNs. Moreover, when
we conduct inference in four time steps, the performance reaches 93.31%, while the energy required
is merely about 3.8 times less than that of its ANN counterpart.

5 Conclusion

In this paper, we have presented Spiking PointNet, the first spiking neural network (SNN) specifically
designed for efficient deep learning on point clouds. This work was motivated by the tremendous
potential of SNNs in energy efficiency and the rising demand for efficient point cloud processing
techniques, especially in fields such as autonomous driving and augmented reality. We identified two
main challenges hindering the application of SNNs in point cloud tasks: the intrinsic optimization
difficulty of SNNs, and the high computational and memory cost of point cloud processing, especially
for large time steps. To address these obstacles, we proposed a novel trained-less but learning-more
paradigm. This paradigm allows for the training of Spiking PointNet with only a single time step,
but is capable of achieving superior performance through multiple time step inference. Theoretical
justifications and experimental analysis provided in the paper support our method’s effectiveness.
Additionally, we introduced a membrane potential perturbation method, which significantly en-

9



hanced the generalization ability of the Spiking PointNet without increasing computational and
storage requirements. Our extensive experiments on multiple datasets, including ModelNet10 and
ModelNet40, demonstrated the robustness and superiority of Spiking PointNet. Notably, in certain
scenarios, Spiking PointNet was even able to outperform its Artificial Neural Network counterparts,
an uncommon achievement in the SNN field.

Acknowledgment

This work is supported by grants from the National Natural Science Foundation of China under
contracts No.12202412 and No.12202413.

References
[1] Bi, G.q., Poo, M.m.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing,

synaptic strength, and postsynaptic cell type. Journal of neuroscience 18(24), 10464–10472 (1998)

[2] Bohte, S.M.: Error-backpropagation in networks of fractionally predictive spiking neurons. In: International
Conference on Artificial Neural Networks. pp. 60–68. Springer (2011)

[3] Bu, T., Ding, J., Yu, Z., Huang, T.: Optimized potential initialization for low-latency spiking neural
networks (2022)

[4] Carnevale, N.T., Hines, M.L.: The NEURON book. Cambridge University Press (2006)

[5] Chen, Y., Zhang, S., Ren, S., Qu, H.: Gradual surrogate gradient learning in deep spiking neural networks.
In: ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). pp. 8927–8931 (2022). https://doi.org/10.1109/ICASSP43922.2022.9746774

[6] Cheng, X., Hao, Y., Xu, J., Xu, B.: Lisnn: Improving spiking neural networks with lateral interactions for
robust object recognition. In: IJCAI. pp. 1519–1525 (2020)

[7] Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convolutional neural networks.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 3075–3084
(2019)

[8] Deng, S., Gu, S.: Optimal conversion of conventional artificial neural networks to spiking neural networks.
arXiv preprint arXiv:2103.00476 (2021)

[9] Diehl, P.U., Cook, M.: Unsupervised learning of digit recognition using spike-timing-dependent plasticity.
Frontiers in computational neuroscience 9, 99 (2015)

[10] Ding, J., Yu, Z., Tian, Y., Huang, T.: Optimal ann-snn conversion for fast and accurate inference in deep
spiking neural networks. arXiv preprint arXiv:2105.11654 (2021)

[11] Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., Tian, Y.: Incorporating learnable membrane time
constant to enhance learning of spiking neural networks. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 2661–2671 (2021)

[12] Ghosh-Dastidar, S., Adeli, H.: Spiking neural networks. International journal of neural systems 19(04),
295–308 (2009)

[13] Guo, Y., Chen, Y.: Neuroclip: Neuromorphic data understanding by clip and snn. arXiv preprint
arXiv:2306.12073 (2023)

[14] Guo, Y., Chen, Y., Zhang, L., Liu, X., Wang, Y., Huang, X., Ma, Z.: IM-loss: Information maximization
loss for spiking neural networks. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K. (eds.) Advances in
Neural Information Processing Systems (2022), https://openreview.net/forum?id=Jw34v_84m2b

[15] Guo, Y., Chen, Y., Zhang, L., Wang, Y., Liu, X., Tong, X., Ou, Y., Huang, X., Ma, Z.: Reducing information
loss for spiking neural networks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.)
Computer Vision – ECCV 2022. pp. 36–52. Springer Nature Switzerland, Cham (2022)

[16] Guo, Y., Huang, X., Ma, Z.: Direct learning-based deep spiking neural networks: a review. Frontiers in
Neuroscience 17, 1209795 (2023)

[17] Guo, Y., Liu, X., Chen, Y., Zhang, L., Peng, W., Zhang, Y., Huang, X., Ma, Z.: Rmp-loss: Regularizing
membrane potential distribution for spiking neural networks. arXiv preprint arXiv:2308.06787 (2023)

10

https://openreview.net/forum?id=Jw34v_84m2b


[18] Guo, Y., Peng, W., Chen, Y., Zhang, L., Liu, X., Huang, X., Ma, Z.: Joint a-snn: Joint training of artificial
and spiking neural networks via self-distillation and weight factorization. Pattern Recognition p. 109639
(2023)

[19] Guo, Y., Tong, X., Chen, Y., Zhang, L., Liu, X., Ma, Z., Huang, X.: Recdis-snn: Rectifying membrane
potential distribution for directly training spiking neural networks. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 326–335 (June 2022)

[20] Guo, Y., Zhang, L., Chen, Y., Tong, X., Liu, X., Wang, Y., Huang, X., Ma, Z.: Real spike: Learning real-
valued spikes for spiking neural networks. In: Computer Vision–ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XII. pp. 52–68. Springer (2022)

[21] Guo, Y., Zhang, Y., Chen, Y., Peng, W., Liu, X., Zhang, L., Huang, X., Ma, Z.: Membrane potential batch
normalization for spiking neural networks. arXiv preprint arXiv:2308.08359 (2023)

[22] Han, B., Srinivasan, G., Roy, K.: Rmp-snn: Residual membrane potential neuron for enabling deeper
high-accuracy and low-latency spiking neural network. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 13558–13567 (2020)

[23] Hao, Y., Huang, X., Dong, M., Xu, B.: A biologically plausible supervised learning method for spiking
neural networks using the symmetric stdp rule. Neural Networks 121, 387–395 (2020)

[24] Hao, Z., Bu, T., Ding, J., Huang, T., Yu, Z.: Reducing ann-snn conversion error through residual membrane
potential. arXiv preprint arXiv:2302.02091 (2023)

[25] Hao, Z., Ding, J., Bu, T., Huang, T., Yu, Z.: Bridging the gap between anns and snns by calibrating offset
spikes. arXiv preprint arXiv:2302.10685 (2023)

[26] Horowitz, M.: 1.1 computing’s energy problem (and what we can do about it). In: 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC). pp. 10–14. IEEE (2014)

[27] Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., Markham, A.: Randla-net: Efficient
semantic segmentation of large-scale point clouds. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 11108–11117 (2020)

[28] Lee, M., Kim, H., Park, S., Yoon, M., Lee, J., Choi, J., Kang, M., Choi, J.: Pillaracc: Sparse pointpillars
accelerator for real-time point cloud 3d object detection on edge devices (2023)

[29] Li, Y., Deng, S., Dong, X., Gong, R., Gu, S.: A free lunch from ann: Towards efficient, accurate spiking
neural networks calibration. In: International Conference on Machine Learning. pp. 6316–6325. PMLR
(2021)

[30] Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., Gu, S.: Differentiable spike: Rethinking gradient-descent for
training spiking neural networks. Advances in Neural Information Processing Systems 34, 23426–23439
(2021)

[31] Li, Y., Yin, R., Park, H., Kim, Y., Panda, P.: Wearable-based human activity recognition with spatio-
temporal spiking neural networks. arXiv preprint arXiv:2212.02233 (2022)

[32] Liu, F., Zhao, W., Chen, Y., Wang, Z., Jiang, L.: Spikeconverter: An efficient conversion framework
zipping the gap between artificial neural networks and spiking neural networks. pp. 1692–1701. AAAI
Press (2022)

[33] Lu, T., Liu, C., Chen, Y., Wu, G., Wang, L.: App-net: Auxiliary-point-based push and pull operations for
efficient point cloud classification. arXiv preprint arXiv:2205.00847 (2022)

[34] Ma, X., Qin, C., You, H., Ran, H., Fu, Y.: Rethinking network design and local geometry in point cloud: A
simple residual mlp framework. In: International Conference on Learning Representations

[35] Neftci, E.O., Mostafa, H., Zenke, F.: Surrogate gradient learning in spiking neural networks: Bringing the
power of gradient-based optimization to spiking neural networks. IEEE Signal Processing Magazine 36(6),
51–63 (2019)

[36] Ponghiran, W., Roy, K.: Spiking neural networks with improved inherent recurrence dynamics for
sequential learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 36, pp.
8001–8008 (2022)

[37] Ponghiran, W., Roy, K.: Spiking neural networks with improved inherent recurrence dynamics for
sequential learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 36, pp.
8001–8008 (2022)

11



[38] Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and
segmentation (2017)

[39] Rathi, N., Roy, K.: Diet-snn: Direct input encoding with leakage and threshold optimization in deep
spiking neural networks. arXiv preprint arXiv:2008.03658 (2020)

[40] Rathi, N., Srinivasan, G., Panda, P., Roy, K.: Enabling deep spiking neural networks with hybrid conversion
and spike timing dependent backpropagation. arXiv preprint arXiv:2005.01807 (2020)

[41] Ren, D., Li, J., Wu, Z., Guo, J., Wei, M., Guo, Y.: Mffnet: multimodal feature fusion network for point
cloud semantic segmentation. The Visual Computer pp. 1–13 (2023)

[42] Ren, D., Wu, Z., Li, J., Yu, P., Guo, J., Wei, M., Guo, Y.: Point attention network for point cloud semantic
segmentation. Science China Information Sciences 65(9), 192104 (2022)

[43] Richardson, D.B.: Hebb, d. o. - the organization of behavior. a neuropsychological theory (1965)

[44] Shen, J., Xu, Q., Liu, J.K., Wang, Y., Pan, G., Tang, H.: Esl-snns: An evolutionary structure learning
strategy for spiking neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 37, pp. 86–93 (2023)

[45] Viale, A., Marchisio, A., Martina, M., Masera, G., Shafique, M.: Lanesnns: Spiking neural networks
for lane detection on the loihi neuromorphic processor. In: 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). pp. 79–86. IEEE (2022)

[46] Wu, J., Xu, C., Zhou, D., Li, H., Tan, K.C.: Progressive tandem learning for pattern recognition with deep
spiking neural networks (2020)

[47] Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., Tan, K.C.: A tandem learning rule for effective training and
rapid inference of deep spiking neural networks. IEEE Transactions on Neural Networks and Learning
Systems (2021)

[48] Wu, J., Xu, C., Han, X., Zhou, D., Zhang, M., Li, H., Tan, K.C.: Progressive tandem learning for pattern
recognition with deep spiking neural networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence 44(11), 7824–7840 (2021)

[49] Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., Shi, L.: Direct training for spiking neural networks: Faster, larger,
better. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 1311–1318 (2019)

[50] Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A deep representation for
volumetric shapes. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp.
1912–1920 (2015)

[51] Xiao, M., Meng, Q., Zhang, Z., He, D., Lin, Z.: Online training through time for spiking neural networks.
In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K. (eds.) Advances in Neural Information Processing
Systems (2022), https://openreview.net/forum?id=Siv3nHYHheI

[52] Xu, Q., Li, Y., Shen, J., Liu, J.K., Tang, H., Pan, G.: Constructing deep spiking neural networks from
artificial neural networks with knowledge distillation. arXiv preprint arXiv:2304.05627 (2023)

[53] Xu, Q., Li, Y., Shen, J., Zhang, P., Liu, J.K., Tang, H., Pan, G.: Hierarchical spiking-based model for
efficient image classification with enhanced feature extraction and encoding. IEEE Transactions on Neural
Networks and Learning Systems (2022)

[54] Xu, Q., Shen, J., Ran, X., Tang, H., Pan, G., Liu, J.K.: Robust transcoding sensory information with neural
spikes. IEEE Transactions on Neural Networks and Learning Systems 33(5), 1935–1946 (2021)

[55] Zenke, F., Ganguli, S.: Superspike: Supervised learning in multilayer spiking neural networks. Neural
computation 30(6), 1514–1541 (2018)

[56] Zhang, M., Qu, H., Belatreche, A., Chen, Y., Yi, Z.: A highly effective and robust membrane potential-
driven supervised learning method for spiking neurons. IEEE transactions on neural networks and learning
systems 30(1), 123–137 (2018)

[57] Zhang, M., Wang, J., Wu, J., Belatreche, A., Amornpaisannon, B., Zhang, Z., Miriyala, V.P.K., Qu, H.,
Chua, Y., Carlson, T.E., et al.: Rectified linear postsynaptic potential function for backpropagation in deep
spiking neural networks. IEEE transactions on neural networks and learning systems 33(5), 1947–1958
(2021)

[58] Zheng, H., Wu, Y., Deng, L., Hu, Y., Li, G.: Going deeper with directly-trained larger spiking neural
networks. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 11062–11070
(2021)

12

https://openreview.net/forum?id=Siv3nHYHheI

	Introduction
	Related Work
	Spiking Neural Networks
	Deep Learning on Point Clouds

	Preliminary and Methodology
	PointNet
	Explicitly Iterative LIF Model
	Optimizing Difficulty for SNNs with Large Time Steps
	The Trained-less But Learning-more Framework
	Membrane Potential Perturbation Method

	Experiments
	Ablation Studies
	Energy Efficiency

	Conclusion

