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Abstract

As the size of image datasets for pre-training large im-001
age classification models grows at a rapid pace, it is be-002
coming increasingly difficult to correct the societal biases003
in these datasets and mitigate the risks of violating pri-004
vacy and copyright. Synthetic image datasets that are free005
of such risks and could be substituted for part of the pre-006
training. Unlike real image datasets that can only increase007
in quantity and resolution, the quality of images in synthetic008
datasets can be improved continuously. However, previous009
efforts to improve the quality of synthetic datasets have re-010
quired many trials guided by human intervention. In this011
study, we attempt to automate the construction of synthetic012
datasets that achieve high classification accuracy by opti-013
mizing a metric (entropy of local features) that correlates014
with the accuracy on downstream tasks. Using this metric,015
we constructed HighEnt-1k, a synthetic image dataset that016
was generated automatically by maximizing the entropy of017
local features. We applied HighEnt-1k to the pre-training018
of the DeiT-Tiny model and achieved a classification accu-019
racy of 89.0% in average on 7 fine-tuning datasets. This re-020
sult is comparable to that of the state-of-the-art VisualAtom021
model. Furthermore, only a single automated generation022
trial without any human intervention was needed to achieve023
this result.024

1. Introduction025

Billion-scale image datasets such as JFT-4B [29], LAION-026
5B [28], and IG-3.5B [23] provide researchers the capabil-027
ity to pre-train machine vision backbones at extreme scale.028
However, as the construction and expansion of datasets for029
pre-training vision models grow at a rapid rate, it is be-030
coming increasingly difficult to correct for societal biases,031
and mitigate the risks of violating privacy and copyright.032
Synthetic image datasets such as FractalDB [15], Visu-033
alAtom [30], and Kubric [9] are inherently free of such034
risks and biases. Unlike real datasets that can only in-035
crease in quantity or resolution, the quality of each im-036
age in synthetic datasets can be continuously improved.037
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Figure 1. Conceptual diagram of our proposed SIFTer. This tech-
nique involves extracting local features from a dataset and cal-
culating feature distributions through k-means clustering. SIFTer
uniformly extracts features from datasets, irrespective of whether
the images are real or synthetic.

For example, formula-driven supervised learning (FDSL) 038
datasets have been improving continuously from when the 039
fine-tuning accuracy was significantly lower than that of 040
ImageNet-1k [16], to when it became comparable to that 041
of ImageNet-1k [15], then becoming comparable to that 042
of ImageNet-21k [17], and then finally surpassing that of 043
ImageNet-21k [30]. However, without a clear guiding prin- 044
ciple as to what comprises a good synthetic image dataset, 045
the process of continuously improving it has taken many 046
years of painstaking human effort. For example, the Frac- 047
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talDB dataset [16] explores the following hyperparameters;048
the number of categories (8 levels), percentage of fractal049
region (5 levels), diversity of instances (5 levels), the IFS050
iterations (4 levels), image size (5 levels). This requires 8051
× 8× 2× 5× 5× 4× 5 = 64000 trials to cover the en-052
tire search space. One pre-training trial takes about 7 hours053
using 32 GPUs.054

In this work, we aim to develop a metric for measuring055
the pre-training effect of vision datasets, which can be used056
to continuously improve synthetic datasets without human057
intervention. By “pre-training effect,” we refer to the ability058
of the dataset to effectively pre-train vision models, so that059
they show high accuracy on a wide range of downstream060
tasks on real images and real-world scenarios. Considering061
the domain gap between real and synthetic datasets, it is sur-062
prising that the pre-training effectiveness of some of these063
synthetic datasets can surpass that of real datasets. We hy-064
pothesize that synthetic datasets comprising primitive pat-065
terns can still contain rich local features, even though they066
lack global features with semantic meaning. Preliminary067
experiments in Section 3.1 show that a model pre-trained068
on synthetic datasets can tolerate the freezing of the lower069
layers during fine-tuning (see Fig. 2). This supports our070
hypothesis that the local features present in the synthetic071
datasets are indeed useful for training the lower layers. This072
is also consistent with the results of Yosinski et al. [12],073
which show that local features acquired in the lower layers074
of the model during pre-training contribute significantly to075
the generalizability to downstream tasks.076

From these preliminary findings, we choose to focus on077
the local features to design a metric for measuring the pre-078
training effect of image datasets. Local features can be ex-079
tracted from the lower layers of any vision model, but we080
must first train the model on a specific dataset to obtain such081
local features. For the purpose of making our local features082
agnostic to datasets, we have decided to use scale-invariant083
feature transform (SIFT) features [21, 22]. SIFT features084
do not require a pre-trained model, and have served a cen-085
tral role in many state-of-the-art (SoTA) image recognition086
methods [13, 25, 26]. We extract the SIFT features from087
various real and synthetic datasets and form a codebook us-088
ing k-means clustering. We then measure the entropy of the089
distribution of SIFT features from each dataset, and look090
at the correlation between the entropy and the performance091
on downstream tasks when a model is pre-trained on that092
dataset. We observe a positive correlation between the en-093
tropy and the performance on downstream tasks. We name094
our technique for extracting SIFT feature distributions from095
real and synthetic images “SIFTer”.096

Using the SIFT feature distributions obtained by SIFTer,097
we generate a new synthetic dataset that has a high entropy098
of SIFT feature distributions, which we call HighEnt. We099
are able to match the pre-training effect of SoTA synthetic100

datasets with HighEnt. A notable difference between High- 101
Ent and previous synthetic datasets is that HighEnt is able to 102
achieve a SoTA pre-training effect on its first attempt, while 103
other datasets require many months or years of trial and er- 104
ror to achieve the same pre-training effect. The generation 105
process of HighEnt is entirely automated, and the entropy 106
of SIFTer is used as a target metric. 107

We acknowledge that local features alone cannot fully 108
explain the strong zero-shot downstream performance of 109
pre-trained vision models. Co-occurrence of these local fea- 110
tures and their composition as a hierarchy of semantic labels 111
are currently missing from our synthetic datasets. However, 112
as a first step towards automating the process of continu- 113
ously improving synthetic datasets, we believe that our find- 114
ings are encouraging. We envision that risks and biases in 115
large real image datasets can be partially alleviated by sub- 116
stituting parts of the pre-training with synthetic images. By 117
automating the process of continuously improving synthetic 118
datasets, we hope to accelerate the development in this di- 119
rection. 120

Our main contributions can be summarized as follows: 121

• We proposed a pipeline SIFTer to compute statistical in- 122
dicators based on SIFT local features of image datasets. 123

• Using SIFTer, we measured the entropy of local feature 124
distributions and found that they were correlated with the 125
accuracy in downstream tasks. 126

• Using the entropy of SIFT feature distributions, we gener- 127
ated a new synthetic dataset HighEnt that maximizes this 128
metric, and showed the SoTA performance partially in 129
among synthetic dataset for pre-training the vision trans- 130
formers. 131

2. Related work 132

2.1. Synthetic datasets 133

Synthetic datasets in computer vision can be broadly cat- 134
egorized into those that try to simulate real images, and 135
those that comprise primitive patterns that do not resem- 136
ble any physical objects. The following are examples of 137
the former category. Hataya et al. [10] proposed an ex- 138
tension of ImageNet using datasets generated by the Stable 139
Diffusion model. Frid-Adar et al. [7] constructed a dataset 140
using a generative adversarial network for liver lesion clas- 141
sification. Hinterstoisser et al. [11] constructed a synthetic 142
dataset for object detection, in which they used background 143
images with realistic shapes and texture on top of which 144
they rendered the objects of interest. Chen et al. [3] pro- 145
posed a synthetic dataset for semantic segmentation, which 146
was validated on Virtual KITTI to KITTI, and from SYN- 147
THIA to Cityscapes. Ward et al. [32] produced a dataset 148
for leaf instance segmentation that contained synthetic im- 149
ages of plants inspired by domain randomization. CLEVR 150
by Johnson et al. [14] is a synthetic dataset comprising sim- 151
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ple 3D shapes that are used for visual reasoning. ScanNet152
by Dai et al. [4] is an RGB-D video dataset containing 2.5153
million views from more than 1500 scans of indoor scenes.154
SYNTHIA by Ros et al. [27] is a collection of synthetic im-155
ages with semantic labels of urban scenes. Virtual KITTI156
by Gaidon et al. [8] is a synthetic video dataset with accu-157
rate ground truth for object detection, tracking, scene and158
instance segmentation, depth, and optical flow. These syn-159
thetic datasets are all designed for a specific purpose, and160
are not aimed towards learning general visual representa-161
tions. Kubric [9] was developed to address these short-162
comings by generating photo-realistic synthetic datasets for163
myriad vision tasks, with fine-grained control over data164
complexity and rich ground truth annotations.165

2.2. Formula-driven supervised learning (FDSL)166

Unlike the synthetic datasets described in the previous167
subsection, which simulate real images, FDSL [15] and168
Shader [1] provide a rich variety of primitive patterns that169
facilitate the learning of visual representations. In particu-170
lar, FDSL exploits the unique property of synthetic datasets,171
which is that the quality of the dataset can be continuously172
improved. Each reincarnation of FDSL – FractalDB [15],173
ExFractalDB [18], RCDB [17], and VisualAtom [30] – has174
shown a monotonic increase in the downstream accuracy.175
However, these empirical improvements still lack a theo-176
retical explanation as to why each FDSL generation shows177
better performance.178

2.3. Understanding the pre-training effect of FDSL179

Yosinski et al. [12] showed that local features acquired180
in the lower layers of the model during pre-training con-181
tribute significantly to its generalizability to downstream182
tasks. Previous experiments on FDSL [15] also showed183
that freezing the lower layers did not result in any accuracy184
degradation during fine-tuning. This leads us to believe that185
the coverage of local features plays an important role in the186
downstream performance when pre-training with FDSL.187

3. Method188

To construct an FDSL dataset with highly effective pre-189
training in a small number of exploratory experiments, we190
need an indicator that does not require training. To achieve191
this goal, we investigate the factors present in both real and192
synthetic images that lead to effective pre-training. First,193
we investigate which parts of the vision transformer (ViT)194
model are affected by pre-training based on layer freezing195
experiments. Next, based on the results obtained from the196
layer freezing experiments, we design SIFTer, a pipeline197
that extracts the distribution of local features acquired in198
the lower layers, which is the factor that improves the pre-199
training effect. Then, using the distribution obtained by200
SIFTer, we investigate what values are correlated with the201
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Figure 2. Transition in identification accuracy when freezing the
updates during fine-tuning from low to high layers; VisualAtom-
1k contains fewer real-world objects than ImageNet-1k, but main-
tains comparable identification accuracy when frozen at lower lay-
ers.

performance on the downstream tasks. Finally, we construct 202
a dataset HighEnt, which is expected to have highly effec- 203
tive pre-training, by SIFTer-based evaluation. 204

3.1. What layers are important in pre-training? 205

We confirm the importance of primitive features acquired in 206
the lower layers in ViT pre-training through experiments in 207
which the parameter updates in each layer are fixed (frozen) 208
during fine-tuning. We use the DeiT-Tiny model [31] pre- 209
trained on VisualAtom-1k [30] and ImageNet-1k [5] dur- 210
ing experiments, and we freeze the 12 transformer blocks 211
in the model step by step, starting from the lowest layer. 212
Then we investigate which blocks contribute to improving 213
the accuracy of the downstream task of image classification 214
using CIFAR100. The experimental results are shown in 215
Fig. 2. The results show that the performance loss during 216
fine-tuning is negligible when layers close to the input are 217
frozen, regardless of whether VisualAtom or ImageNet1k 218
is used for pre-training. Therefore, we conclude that pre- 219
training optimizes the low-layer weights of the ViT model 220
for both synthetic and real image datasets. 221

3.2. SIFTer 222

Based on the results of Section 3.1, we focus on the local 223
features of the image as an indicator to explain the pre- 224
training effect. There are several methods for extracting 225
local features from images, but we use SIFT because (1) 226
it can be applied regardless of the real or synthetic image 227
domain and (2) it is a reliable method that has been widely 228
used in past SoTA methods. 229

3.2.1 Extracting local features from the dataset 230

Algorithm 1 is used to extract SIFT features from a given 231
dataset Xt. The sampled image is resized to 224 × 224 232
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(a) Extract SIFT from a dataset (b) Clustering SIFT features (c) Examine SIFT frequency distributions

Figure 3. Procedure for extracting local feature frequency distributions from a dataset using SIFTer. (a) Sampling SIFT features ex-
tracted from image dataset Xt. (b) Constructing a k-means model f that classifies SIFT features into K clusters using the datasets
X1,X2, . . . ,XT for codebook creation. (c) Using the constructed k-means model f to classify SIFT features from the dataset X ′

t to be
analyzed into clusters and to construct the frequency distribution of local features.

Algorithm 1 Extracting SIFT features from a dataset

Require: I ∈ N
1: procedure EXTRACT SIFT(Xt, I)
2: Xt(sampled) ← random sampling(Xt, I)
3: for i = 1 to I do
4: xt,i ← resized crop(Xt(sampled)[i])
5: st,i ← SIFT(xt,i) ▷ extract SIFT from a xt,i

6: end for
7: St ← concat(st,1, st,2, · · · , st,I)
8: return St

9: end procedure

Algorithm 2 Clustering SIFT features

Require: T,K, I ∈ N, , f : k-means model
1: for t = 1 to T do
2: St ← EXTRACT SIFT(Xt, I) ▷ extract SIFT
3: end for
4: Sall ← concat(S1,S2, · · · ,ST )
5: f.fit(Sall,K) ▷ fitting f with K clusters

Algorithm 3 Examine SIFT frequency distribution

Require: T ′,K, I ∈ N, f : k-means model (fitted)
1: for t = 1 to T ′ do
2: S′

t ← EXTRACT SIFT(X ′
t, I) ▷ extract SIFT

3: Ct ← f.pred(S′
t) ▷ predict clusters

4: Dt ← 0 ∈ RK

5: for all c← Ct do ▷ count SIFT for each clusters
6: Dt[c]←Dt[c] + 1
7: end for
8: nt ← len(S′

t)
9: for c = 1 to K do

10: Dt[c]←Dt[c]/nt

11: end for
12: end for
13: return {Dt}T

′

t=1

pixels as in training. This prevents the number of SIFT fea- 233
tures from changing due to differences in image size, thus 234
allowing a fair comparison. 235

3.2.2 Clustering of SIFT features 236

The obtained SIFT features are assigned to exist near a par- 237
ticular codebook (cluster). In this study, we use the k-means 238
model to determine cluster identities. The k-means model is 239
pre-trained using SIFT features from diverse datasets. Al- 240
gorithm 2 is used for training the k-means model. The 241
k-means model can assign a given SIFT feature to one of K 242
clusters {c1, c2, . . . , cK} of SIFT features. Let f.fit(S,K) 243
be the operation of training a k-means model f so that it 244
can classify features into K clusters using N SIFT features 245
S = {si}ni=1. The operation of predicting and mapping a 246
d-dimensional feature s ∈ Rd to the kth cluster ck by the 247
k-means model f is represented as the mapping transforma- 248
tion f.pred : Rd → N. 249

3.2.3 Obtaining the local feature frequency distribu- 250
tion by SIFTer 251

SIFT feature {S′
1,S

′
2, . . . ,S

′
T ′} is extracted from each 252

dataset {X′
1,X

′
2, . . . ,X

′
T ′} to be analyzed, and each S′

1 253
is transformed into a sequence of SIFT cluster numbers 254
C1,C2, . . . ,CT ′ by the k-means model f . The SIFT fea- 255
ture frequency distribution Dt for each cluster is then com- 256
puted by accounting for the number of SIFT features be- 257
longing to each cluster and finally dividing and normalizing 258
the result by the total number nt of SIFT features extracted 259
from X′

t. 260

3.2.4 Search for indicators using local feature fre- 261
quency distributions 262
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Figure 4. Local feature frequency distributions for multiple real and synthetic image datasets obtained using SIFTer. Datasets with real
images or similar domains (d,e,f) contain a similar proportion of clusters, while other datasets (a,b,c) show variations in the frequency of
clusters.

The correlation between the distribution of local features263
obtained by SIFTer and the accuracy of classification is264
calculated. However, since it is unclear what “correlates”265
with the pre-training effect of the distribution obtained by266
SIFTer, we visualize the actual distribution obtained. Here,267
Figure 4 shows the local feature distribution for each con-268
ventional dataset obtained using SIFTer. From figure 4, the269
feature distributions of (a) FractalDB, (b) VisualAtom, and270
(c) Kubric, which use only FDSL and 3D models, are bi-271
ased. On the other hand, the feature distributions of (d) SD-272
ImageNet, (e) Places365, and (f) ImageNet, which use real273
images or are generated based on real images, are broad.274
From the Table 1, the latter group performed better than275
the former group in this experiment, thus we claim that it is276
important to cover a wide variety of local features equally.277
To confirm this, we will conduct an investigation on more278
detailed distribution indices in 4.3.279

Based on our observations of feature frequency distribu-280
tions computed by SIFTer, we hypothesize that the distribu-281
tions obtained in the pre-training dataset that are not over-282
or under-distributed, or similar to the target task, enhance283
the performance of the downstream task.284

To demonstrate this, in this experiment, three statistics285
from the SIFT feature frequency distribution {Dt}Tt=1 mea-286
sured on the dataset Xt to be analyzed are evaluated: 1) en-287
tropy, 2) Kullback-Leibler divergence (KLD) for the target288
task, and 3) recall coverage for the target task. These were289
compared and evaluated as indicators of the coverage of lo-290
cal features. We use ImageNet100 as our target task with a291
representative real image dataset.292

(1) Entropy: The entropy H(Dt) at Dt for each dataset 293
X ′

t is calculated by the following formula: 294

H(Dt) = −
K∑
c=1

Dt[c] lnDt[c]. (1) 295

By evaluating entropy H(Dt), we can estimate whether 296
each dataset Xt contains an equal amount of diverse fea- 297
tures. 298

(2) Kullback-Leibler divergence: We evaluated the KL 299
distance in the SIFT feature frequency distribution between 300
each pre-trained dataset X ′

t and the target task. If DIN100 301
is the SIFT feature frequency distribution of ImageNet 100, 302
the KL distance KL(Dt||DIN100) from Dt can be calcu- 303
lated as follows: 304

KL(Dt||DIN100) =

K∑
c=1

Dt[c] ln
Dt[c]

DIN100[c]
. (2) 305

By calculating KL(Dt||DIN100), it is possible to 306
quantify how close the distribution obtained by SIFTer is 307
to that of IN 100. 308

(3) Recall: In addition, to more directly evaluate the cover- 309
age of local features quantitatively, we also evaluated the 310
percentage of clusters in which SIFT features in the tar- 311
get task appear at least once, also appear at least once in 312
Xt. This ratio is called recall to the target task. Recall 313
R(Dt|DIN100) for the target pre-training dataset Xt is 314
calculated by the following formula: 315
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3.983 4.261 4.469 4.594 4.671 4.730 4.7703.160

SIFTer

𝑒𝑛𝑡𝑛 = 3.160

repeat 𝑒𝑛𝑡𝑛 ≥ 𝑒𝑛𝑡𝑇ℎ

𝑒𝑛𝑡𝑛 =

add a shape

random noise image

Figure 5. Conceptual diagram of the HighEnt generation method.
An image with random noise is used as the initial input, and geo-
metric shapes are added until the entropy of local features exceeds
entth. The added shapes are circles and rectangles, each of which
contains noise.

R(Dt|DIN100) =

∑K
c=1 u(Dt[c])u(DIN100[c])∑K

c=1 u(DIN100[c])
, (3)316

u(t) =

{
1 if t > 0

0 if t = 0.
(4)317

3.3. HighEnt318

3.3.1 Generation methodology319

As discussed in later sections, the pre-training performance320
is positively correlated with the entropy of the distribution321
obtained by SIFTer. Taking advantage of this, we propose a322
pre-training dataset HighEnt consisting of only images with323
high entropy: HighEnt is a dataset of 1,000 instances of324
1,000 classes, consisting of 1 million images in total. The325
generation of HighEnt is shown in Figure. 5.326

The generation procedure of HighEnt consists of two327
stages. In the first stage, a SIFTer is used to generate a328
number of images of the class (i.e. 1,000) whose entropy329
exceeds a certain threshold value. In the second stage, 1,000330
instances are generated from one image by splitting the im-331
age into patches and shuffling the patches. By putting the332
instances generated by the same image into the same class, a333
dataset of 1,000 instances of 1,000 classes is generated. To334
generate high-entropy images in the first stage, we adopt an335
annealing-based optimisation. A schematic diagram of the336
generation algorithm is shown in Figure 5. The initial im-337
age is a monochrome random noise image and at each step,338
a noisy figure (circle/square) is drawn at a random position339
in the image. The position, size, color and noise intensity340
of the figure are randomly selected from a pre-determined341
range. The entropy of the resulting image is measured using342
SIFTer and the difference entdiff = entn−entn−1 between343
the entropy before drawing is calculated. If entdiff is pos-344
itive (i.e. entropy has increased due to drawing), then the345

change is reflected, otherwise the change is rejected with a 346
probability depending on the magnitude of entdiff and the 347
current number of steps. This operation is repeated until 348
the entropy exceeds entTh, a threshold value. In the present 349
study, a threshold value of approximately 4.77 was used. 350
This is the maximum value of entropy obtained when the 351
distribution is calculated using SIFTer for each image in 352
ImageNet1k. This method produces 1,000 high-entropy im- 353
ages. In the second stage, the 1,000 images obtained in the 354
first stage are used to generate 1,000 instances from each 355
image. The distribution of local features is considered to 356
be somewhat robust to the operation of swapping image re- 357
gions. “ Based on this, the images were divided into 16 358
patches of 4x4 each and instances were generated by swap- 359
ping the order of each patch. We generated 1,000 permuta- 360
tions, different for each image, and used these permutations 361
to perform the above method, generating 1,000 instances 362
for each image. The detailed algorithm is described in the 363
supplementary material. 364

3.3.2 Preliminary experiments 365

HighEnt is generated to maximize the entropy of each im- 366
age, but also to check whether the dataset of these images 367
has an overall high entropy. Thus, 100,000 images are ran- 368
domly sampled from HighEnt and the entropy of the dis- 369
tribution obtained by SIFTer is calculated. The result is 370
4.787, which is a very high value compared to other FDSL 371
datasets, and the HighEnt created in this study has a high 372
entropy for the dataset as a whole. 373

4. Experiments 374

4.1. Experimental setup using the SIFT feature fre- 375
quency distribution 376

Dataset used for clustering: We conduct our experiments 377
on a wide range of image datasets than can be largely cate- 378
gorized into three: “real image data” (real), “synthetic im- 379
age data that partially use real images” (semi-synthetic), 380
and “synthetic image data synthesized by mathematical for- 381
mulas” (synthetic). We sampled 720,000 images from the 382
following 8 datasets to include images from these categories 383
as evenly as possible: ImageNet1k [5]—general-purpose 384
real image dataset; ADE-20k [34]—real image dataset suit- 385
able for scene analysis; SD-ImageNet1k [10]—ImageNet- 386
like dataset with stable diffusion; Kubric—synthetic im- 387
age dataset generated by capturing ShapeNet [2]; and two 388
formula-based synthetic datasets, VisualAtom and Frac- 389
talDB. We use these selected images to perform local fea- 390
ture clustering. Details of the image sampling are provided 391
in the supplementary material. 392

Datasets for analysis: We perform our analysis using mul- 393
tiple datasets as well. Specifically, we use ImageNet and 394

6



CVPR
#8

CVPR
#8

CVPR 2024 Submission #8. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. Comparison with fine-tuning accuracy on 7 real image datasets. Experimental results show the highest accuracy for each real/semi-
synthetic/synthetic image framework in bold.

Pre-training Dataset Image C10 C100 Cars Flowers VOC12 P30 IN100 Average

Scratch – 80.9 64.4 13.6 73.9 56.4 76.9 74.8 63.0
ImageNet1k Real 98.4 87.9 90.2 99.0 87.9 82.1 91.3 91.0
Places365 Real 97.9 85.5 89.5 98.9 84.7 82.7 90.1 89.9

SD-ImageNet1k Semi-Synthetic 98.1 85.7 89.3 99.0 85.3 81.8 90.3 89.9
Kubric Semi-Synthetic 97.7 84.5 87.3 98.3 82.9 81.0 88.7 88.6

FractalDB Synthetic 96.8 81.6 86.0 98.3 80.6 78.4 88.3 87.1
VisualAtom Synthetic 97.6 84.9 88.8 98.9 82.0 81.2 90.3 89.1
HighEnt (ours) Synthetic 97.4 85.0 89.1 98.5 82.0 81.4 89.5 89.0

(a) SIFT Entropy
(𝑟 = 0.501)

(b) KLD from ImageNet100
(𝑟 = −0.699)

(c) Recall for ImageNet100
 (𝑟 = 0.804)

FractalDB VisualAtomSD-ImageNetPlacesImageNet Kubric HighEnt

Figure 6. Relationship between three statistics of SIFT frequency distribution Dt and fine-tuning accuracy for each pre-training
dataset Xt. (a) SIFT entropy: H(Dt); (b) KL divergence from ImageNet 100: KL(Dt||DIN100); and (c) Recall for ImageNet 100:
R(Dt|DIN100). r is the correlation coefficient between average/ImageNet 100 fine-tuning accuracy and each statistic.

Places365 [33]—real image datasets consisting of diverse395
place images; SD-ImageNet and Kubric as semi-synthetic396
image datasets that use real images; and FractalDB and Vi-397
sualAtom as synthetic datasets that do not have any real im-398
ages. We also include our HighEnt for comparison.399
Hyperparameters: In this experiment, the number of im-400
ages I to be sampled from the dataset is set to 100, 000. The401
number of clusters K is set to 128 for entropy and KLD402
evaluation for the target task, and 32, 768 for recall ealua-403
tion for the target task. Details of the hyperparameter search404
are described in the supplementary material.405

4.2. Local feature distribution obtained by SIFTer406

Figure 4 shows the local feature distribution for each con-407
ventional dataset obtained using SIFTer. It is observed that408
datasets of (a) FractalDB, (b) VisualAtom and (c) Kubric409
have significant gaps in densities, while datasets of (d) SD-410
ImageNet, (e) Places365 and (f) ImageNet have less gap.411
Table 1 shows the summary of performance on various412
downstream classification tasks. From the table, (d) SD-413
ImageNet, (e) Places365 and (f) ImageNet tend to perform414

better than (a) FractalDB, (b) VisualAtom and (c) Kubric. 415
This observation suggests that having less gaps in the den- 416
sity over the local feature space would be beneficial for 417
downstream tasks. To clarify this, we conduct further in- 418
vestigation on different distribution metrics in Section 4.3. 419

4.3. Relationship between the SIFT feature fre- 420
quency distribution and pre-training effect 421

We measure and compare each of the three statistics: en- 422
tropy of the SIFT feature frequency distribution, KL dis- 423
tance to the target task, and recall with the target task. In 424
this experiment, we use ImageNet100 as the target task. 425

To evaluate the pre-training effect of each dataset, we 426
also measure the fine-tuning accuracy of the classification 427
task on several real image datasets after pre-training ViT- 428
Tiny on the classification task. 429

We use a total of seven real image datasets for fine- 430
tuning: CIFAR10 (C10) [20], CIFAR100 (C100) [20], Stan- 431
ford Cars (Cars) [19], Stanford Flowers (Flowers) [24], Pas- 432
cal VOC 2012 (VOC12) [6], Places 30 (P30) [15], and 433
ImageNet-100 (IN100) [15]. Hyperparameters for ViT pre- 434
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Table 2. Comparison of with fine-tuning accuracy on 7 real image datasets. Each row represents the HighEnt results generated using
different EntTh.

entTh Entropy C10 C100 Cars Flowers VOC12 P30 IN100 Average

3.0 3.3 96.0 81.6 80.1 97.9 77.9 81.5 88.7 86.3
3.5 3.8 97.3 84.6 87.9 98.5 80.7 81.3 89.6 88.6
4.0 4.3 97.2 84.0 87.0 98.4 80.1 81.3 88.9 88.1
4.5 4.6 97.3 84.5 87.0 98.6 81.4 81.5 89.6 88.7

training, fine-tuning and data augmentation are adopted435
from the previous study [17] More detailed settings are de-436
scribed in the supplementary material. Again, the perfor-437
mance of each pre-trained dataset for each target task is as438
summarized in Table 1, and scatter plots showing the re-439
lationship between the statistics of each SIFT feature fre-440
quency distribution and fine-tuning accuracy, as well as the441
distribution statistics for each dataset, are shown in Fig 6.442

First, we observe a positive correlation between the en-443
tropy of the SIFT feature frequency distribution and the av-444
erage accuracy of fine-tuning (Fig. 6(a)). Higher entropy445
implies that the dataset contains a greater variety of local446
features and has a wider range of local features that can be447
learned. The result shows a tendency in which higher en-448
tropy results in higher average accuracy; thus, we believe449
this provides an evidence that supports aforementioned hy-450
pothesis.451

A strong negative correlation was observed between452
the ImageNet100 accuracy and the KLD between the Im-453
ageNet100 SIFT distribution and that of the pre-trained454
dataset. This suggests that even if the entropy of the fre-455
quency distribution is high, the discrimination accuracy456
tends to deteriorate when the distribution patterns are far457
from each other in the KLD metric.458

A strong positive correlation is observed between the459
mean accuracy of fine-tuning and recall of the SIFT fea-460
ture frequency distribution. This suggests that the coverage461
of local features of the target task is important. However, in462
some of the pre-training datasets, the accuracy of the fine-463
tuning varies despite the fact that the recall for the target464
task is 1.0; that is, all the local features of the target task465
are covered. This indicates that the recall for the target task466
alone does not fully explain the pre-training effect.467

4.4. Performance evaluation of HighEnt468

The accuracy of the pre-training model with HighEnt cre-469
ated for each downstream task is shown in the bottom row470
of Table 1. As a comparison, the results are shown for a471
pre-training model using VisualAtom, which is currently472
the FDSL dataset with the best performance. This result473
confirms that HighEnt slightly outperforms VisualAtom in474
the present experimental setup. The average accuracy re-475
ported in the VisualAtom paper is 89.1, which is very close476

to that of HighEnt obtained in this study. While VisualAtom 477
performed multiple searches for the parameters used in its 478
generation, the HighEnt generated in this study achieved 479
comparable performance without such searches. This re- 480
sult suggests the possibility of automating the composition 481
of high-performance FDSL datasets by means of a search 482
based on the indices obtained by SIFTer. Table 2 shows the 483
results of generating and evaluating HighEnt using different 484
values of entTh used for generation. Although average per- 485
formance generally improves as entropy increases, it can 486
also be seen that performance is higher when entTh is 3.5 487
than when entTh is 4.0. This indicates that entropy is only a 488
rough indicator of performance. 489

4.5. Limitations 490

Although the entropy in the feature distribution of the 491
dataset obtained by SIFTer correlates with the performance 492
on downstream tasks, there are also outlier datasets such as 493
Kubric. Our findings are only an approximation, and not 494
an indicator that can precisely predict pre-training perfor- 495
mance. We used circles and rectangles as the shapes for 496
generating HighEnt, but other shapes and objects can be 497
used, and there is room for investigation as to which shape 498
has a high entropy and high pre-training effect. The aug- 499
mentation method used in the creation of HighEnt has not 500
been investigated using other methods. 501

5. Conclusion 502

In this study, a synthetic image dataset with high pre- 503
training effect was automatically constructed with fewer 504
exploratory experiments. Based on preliminary experi- 505
ments, we focused on local features of images and pro- 506
posed SIFTer, a pipeline for extracting local features. Us- 507
ing SIFTer, we found a correlation between the entropy of 508
the obtained distribution and the pre-training effect, and de- 509
veloped HighEnt, an image data set generated to have high 510
entropy. HighEnt achieved the same level of accuracy as 511
the conventional SoTA dataset VisualAtom without any pa- 512
rameter search. While the findings of this study do not re- 513
veal all of the factors that make pre-training effective, they 514
do suggest that indicator-based data improvement can auto- 515
matically generate datasets that are effective. 516
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