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Abstract

Conversational explainable artificial intelli-001
gence (ConvXAI) systems based on large lan-002
guage models (LLMs) have garnered signifi-003
cant interest from the research community in004
natural language processing (NLP) and human-005
computer interaction (HCI). Such systems can006
provide answers to user questions about ex-007
planations in dialogues, have the potential to008
enhance users’ comprehension and offer more009
information about the decision-making and gen-010
eration processes of LLMs. Currently available011
ConvXAI systems are based on intent recogni-012
tion rather than free chat, as this has been found013
to be more precise and reliable in identifying014
users’ intentions. However, the recognition of015
intents still presents a challenge in the case of016
ConvXAI, since little training data exist and the017
domain is highly specific, as there is a broad018
range of XAI methods to map requests onto. In019
order to bridge this gap, we present CoXQL1,020
the first dataset for user intent recognition in021
ConvXAI, covering 31 intents, seven of which022
require filling multiple slots. Subsequently, we023
enhance an existing parsing approach by in-024
corporating template validations, and conduct025
an evaluation of several LLMs on CoXQL us-026
ing different parsing strategies. We conclude027
that the improved parsing approach (MP+) sur-028
passes the performance of previous approaches.029
We also discover that intents with multiple slots030
remain highly challenging for LLMs.031

1 Introduction032

There is an increasing number of XAI systems033

that include user interfaces, facilitating natural lan-034

guage interaction with users (Chromik and Butz,035

2021; Bertrand et al., 2023). More recently, there036

has been a significant development in building Con-037

vXAI systems (Lakkaraju et al., 2022), which are038

1Conversational Explanation Query Language, a word play
on CoSQL (Yu et al., 2019). Dataset and code are available
at https://anonymous.4open.science/r/CoXQL.

Figure 1: Example utterances consisting of user ques-
tions, SQL-like queries (parsed texts) and correspond-
ing responses (not included in CoXQL) for influence
(influence), feature attribution (nlpattribute) and
rationalization (rationalize). More examples and op-
erations can be found in Table 1 and Table 5.

guided through intent recognition rather than free- 039

text chatting. The main reason for hard-coding 040

intents is that in a ConvXAI application, there 041

is a need for a maximally faithful conversation, 042

which black-box generation cannot provide (Feld- 043

hus et al., 2023; Shen et al., 2023; Wang et al., 044

2024). These systems are designed to answer user 045

questions about explainable language models in 046

dialogues. In ConvXAI, intents usually represent 047

the XAI operations supported in the system. The 048

user experience and trust in the system can be neg- 049

atively impacted when intent recognition fails (e.g., 050

an incorrect mapping of XAI operations can lead 051

to a discrepancy from users’ requests). An exten- 052

sive range of explainability questions has to be 053

processed, which can be formulated in many differ- 054

ent ways, depending on the domain of application 055

(Lakkaraju et al., 2022). For instance, the user 056

question: “Clarify id 5678 with a reason.”, is for- 057

mulated in different ways but represents the same 058

rationalization intent as depicted in Figure 1. 059
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Operation Description/Request
L

oc
.P

r. predict(instance) Get the prediction for the given instance
likelihood(instance) Calculate the model’s confidence (or likelihood) on the given instance

G
lo

b.
Pr

.

mistake({sample|count}, subset) Count or show incorrectly predicted instances
score(subset, metric) Determine the relation between predictions and labels

L
oc

.E
xp

l. nlpattribute(inst., topk, method) Provide feature attribution scores
rationalize(inst.) Explain the output/decision in natural language
influence(inst., topk) Provide the most influential training data instances

Pe
rt

rb
. cfe(instance) Generate a counterfactual of the given instance

adversarial(instance) Generate an adversarial example based on the given instance
augment(instance) Generate a new instance based on the given instance

D
at

a

show(instance) Show the contents of an instance
countdata(list) Count instances
label(dataset) Describe the label distribution
keywords(topk) Show most common words
similar(instance, topk) Show most similar instances

M
od

. editlabel(instance) Change the true/gold label of a given instance
learn(instance) Retrain or fine-tune the model based on a given instance
unlearn(instance) Remove or unlearn a given instance from the model

M
et

a

function() Explain the functionality of the system
tutorial(op_name) Provide an explanation of the given operation
data() Show the metadata of the dataset
model() Show the metadata of the model
domain(query) Explain terminology or concepts outside of the system’s functionality, but related

to the domain

Table 1: Main operations in CoXQL as they can be requested in a dialogue (Description/Request), mapped onto a
partial SQL-like query (Operation) that calls an explanation-generating or data-analyzing method. Red-highlighted
operations are currently not implemented in any existing system. Additional logic operations are in Table 7.

In this work, we present the first dataset for060

explanation request parsing, CoXQL (§4). We061

frame the problem as a text-to-SQL-like task (§3.1).062

CoXQL consists of user questions and gold parses063

specifically designed for the XAI domain (Fig-064

ure 1). It can serve as guidance for building Con-065

vXAI systems and as a means to improve expla-066

nation intent recognition, where intents are con-067

sidered as operations supported by ConvXAI sys-068

tems. Moreover, we improve an existing parsing ap-069

proach based on multi-prompt parsing (MP) (Wang070

et al., 2024) with additional template checks (§3.3)071

and find out that our improved approach (MP+)072

easily outperforms existing approaches. Lastly, we073

evaluate several state-of-the-art LLMs with various074

parsing strategies on CoXQL for explanation in-075

tent recognition (§5). Our evaluation shows that076

CoXQL can be regarded as a benchmark for future077

research and still presents challenges for state-of-078

the-art LLMs, especially for accurately recognizing079

intents (operations) with multiple slots, where slots080

are finer-grained user preferences regarding XAI081

operations (e.g., topk and integrated gradient082

associated with feature attribution in Figure 1).083

2 Related Work084

In the majority of previous ConvXAI systems085

(Werner, 2020; Nguyen et al., 2023; Shen et al.,086

2023), the semantic similarity of sentence embed- 087

dings between user query and existing data is used 088

to match the user query with the appropriate op- 089

eration (Table 3), known as the nearest neighbor. 090

In contrast, the approach used in TALKTOMODEL 091

(Slack et al., 2023), INTERROLANG (Feldhus et al., 092

2023) and LLMCHECKUP (Wang et al., 2024) em- 093

ploys LLMs to convert user questions into SQL- 094

like queries (Figure 1). The best performance 095

is achieved in Slack et al. (2023), Feldhus et al. 096

(2023) and Wang et al. (2024) with a fine-tuned T5, 097

an adapter-based BERT, and Llama2 with few-shot 098

prompting, respectively. This parsing approach 099

demonstrates notable enhancements, exceeding a 100

doubling in parsing accuracy compared to the near- 101

est neighbor approach. While they all support no 102

more than 24 operations in their systems, CoXQL 103

contains in total 31 operations of various complex- 104

ity ranging from single term operations to opera- 105

tions with multiple slots. 106

3 Methodology 107

3.1 Task Framing 108

Building upon the strategy employed by Slack et al. 109

(2023), Feldhus et al. (2023) and Wang et al. (2024) 110

(§2), we treat XAI intent recognition as a text-to- 111

SQL-like task (Figure 1), which can be effectively 112

modeled as a seq2seq task (Sutskever et al., 2014). 113
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The generated SQL-like queries should be correctly114

executable ensuring practical usability and func-115

tionality, since failed intent recognition results in116

incorrect XAI responses, leading to a negative im-117

pact on the user experience (Feldhus et al., 2023).118

3.2 Supported Operations119

We have determined 23 XAI and supplementary120

operations, which we show in Table 1, and 8 ad-121

ditional operations related to logic and filtering122

depicted in Table 7. The list of available operations123

(Table 1), including five newly introduced ones124

(marked in red in Table 1; App. I), are consolidated125

from HCI literature (Weld and Bansal, 2019; Liao126

et al., 2021), the state-of-the-art ConvXAI systems127

by Slack et al. (2023), Shen et al. (2023), Feldhus128

et al. (2023) and Wang et al. (2024), and the taxon-129

omy for LLM interpretation research by Singh et al.130

(2024). Moreover, several operations (Table 6) are131

associated with multiple slots, which makes pars-132

ing even more challenging for LLMs (Table 10).133

The inclusion of additional fine-grained slots is134

favored in ConvXAI systems (e.g., integrated135

gradient in Figure 1), enabling the provision of136

more informative and multi-faceted explanations137

(Nobani et al., 2021; Wijekoon et al., 2024).138

3.3 Parsing139

Nearest Neighbor Nearest neighbor (NN) relies140

on comparing semantic similarity between user141

query and existing training samples measured by142

an SBERT model2. However, as the number of oper-143

ations and additional slots (e.g., ranges of values,144

method names) associated with operations grow,145

the intent recognition accuracy tends to decrease.146

Guided Decoding Guided Decoding (GD) relies147

on a predefined grammar to restrict the generated148

output of LLMs (Figure 4) (Shin et al., 2021). The149

parsing prompt used in GD consists of demonstra-150

tions that are selected based on their semantic simi-151

larity to the desired output (Table 4) (Slack et al.,152

2023).153

Multi-prompt Parsing With GD, due to154

similarity-based pre-selection, the model might155

miss the demonstrations for the actual operation.156

Multi-prompt Parsing (MP) (Wang et al., 2024)157

first queries the model about the main operation158

by providing coarse-grained demonstrations for159

all available operations (Table 1) and then selects160

2https://huggingface.co/BAAI/bge-base-en-v1.5

Figure 2: The data collection pipeline of CoXQL.

more fine-grained operation-specific prompts in 161

the next step (Table 6). 162

Multi-prompt Parsing with template checking 163

Compared to GD, MP is not constrained by the 164

grammar and the parsed text generated by MP is not 165

guaranteed to adhere to the expected template (e.g., 166

the exact order or naming of all slots; Table 10). 167

We also find that extracting ids and numerical slots 168

poses a challenge for out-of-the-box prompting 169

with MP. Thus, we improve MP and introduce MP+ 170

that uses additional template checking. This is an 171

important step, since template checking contributes 172

to more reliable parsing that takes both grammar 173

and user input into account3. 174

4 The CoXQL Dataset 175

4.1 Dataset Creation 176

The data creation process of CoXQL is depicted in 177

Figure 2. Based on the predefined set of question 178

and parse pairs from INTERROLANG (Feldhus et al., 179

2023) and LLMCHECKUP (Wang et al., 2024), we 180

selectively choose4 pairs of question and gold parse 181

for operations marked in blue in Table 1. Mean- 182

while, we manually create new additional pairs for 183

all operations in Table 1, following the way how 184

questions are raised in Feldhus et al.’s (2023) user 185

study. Subsequently, we use ChatGPT (OpenAI, 186

2022) to augment user questions (Figure 5) to ex- 187

pand the dataset size. The generated pairs undergo 188

a review process and are post-processed by us if 189

needed (e.g., adding missing words; Figure 2). 190

3More details about MP+ are in App. F.
4E.g., by evaluating questions’ understandability or topic-

parse alignment. More details are provided in App. H.
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Figure 3: The intent distribution of CoXQL.

4.2 Data Statistics191

After all processing steps, CoXQL comprises 1179192

pairs of user questions and corresponding SQL-193

like queries over full SQL parses, 82 of which were194

post-processed manually. Figure 3 illustrates the195

intent distribution of CoXQL. Operations with ad-196

ditional slots in Table 6 have an intentionally higher197

number of instances compared to others due to their198

difficulty. Moreover, Table 5 provides examples of199

utterances along with their corresponding parses.200

Three authors of this work performed the anno-201

tations. We report a token-level inter-annotator202

agreement of Fleiss’ κ = 0.87. While LLMs find203

it challenging to understand different formulations204

of XAI questions and recognize slots associated205

with operations simultaneously, these tasks are not206

as difficult for humans. In addition, we manu-207

ally crafted 112 pairs specifically for the test set,208

which is evaluated in §5. More details about post-209

processing and test set are given in Appendix H.210

5 Evaluation211

To assess the ability of interpreting user intents212

with LLMs, we quantify the performance of seven213

LLMs5 with different sizes ranging from 1B to214

70B, employing four approaches: NN, GD, MP215

and MP+ (§3.3) (Table 2). Performance is calcu-216

lated by measuring exact match parsing accuracy217

(Talmor et al., 2017; Yu et al., 2018) on CoXQL.218

We find that MP falls short of GD on CoXQL219

except CodeQWen1.5 (Bai et al., 2023), while im-220

5Two of them, CodeQWen (Bai et al., 2023) and sqlcoder,
are designed for code and SQL generation. Deployed LLMs
are indicated in the left column of Table 2 and in Table 8.

Model Size NN GD MP MP+
Baseline - 44.25 - - -
Falcon 1B - 59.29 59.29 77.88
Pythia 2.8B - 79.65 74.34 83.19

Mistral 7B - 78.76 78.76 87.61
Llama3 8B - 84.07 67.26 86.73
Llama3 70B - 83.19 68.14 93.81

CodeQwen1.5 7B - 65.49 67.25 85.84
sqlcoder 7B - 86.73 79.65 88.50

Table 2: Exact match parsing accuracy (in %) for dif-
ferent models on the CoXQL test set. NN = Nearest
Neighbor; GD = Guided Decoding prompted by 20-
shots; MP = Multi-prompt Parsing; MP+ = MP with
template checks.

proved MP (MP+) can easily outperform GD and 221

MP with additional template checks. Among all 222

LLMs and parsing strategies, our findings reveal 223

that Llama3-70B with MP+ demonstrates the high- 224

est scores, exhibiting a doubling in performance 225

compared to the baseline (NN). 226

A detailed error analysis for each category is 227

given in Table 9. GD outperforms MP when opera- 228

tions involve a greater number of additional slots 229

(Table 6), which is due to MP’s tendency to gen- 230

erate a higher volume of slots and MP not being 231

constrained by grammar. Nevertheless, MP+ can 232

achieve overall better results. Additionally, Ta- 233

ble 10 shows parsed texts of the question: “Top 234

3 important features for id 3!”, generated by all 235

deployed LLMs. None of them can fully match the 236

gold parse, regardless of LLMs or parsing strate- 237

gies, which demonstrates that LLMs still face great 238

challenges when dealing with operations that in- 239

volve multiple slots (Appendix J). 240

6 Conclusion 241

The contributions of this paper are three-fold: 242

Firstly, we present and release the first dataset for 243

explanation request parsing in ConvXAI with 31 244

intents, CoXQL. Secondly, we improve the previ- 245

ous parsing strategy MP with additional template 246

checks, which considerably improves parsing accu- 247

racy. Lastly, we perform a comparative evaluation 248

of seven state-of-the-art LLMs on the CoXQL data. 249

We find that MP+ outperforms both GD and MP 250

but LLMs still struggle with intents that have mul- 251

tiple slots. In the future, we would like to consider 252

tools like LANGCHAIN6 to provide more accessible, 253

extensible framework. 254

6https://www.langchain.com/
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Limitations255

CoXQL currently supports only English, and it256

does not offer multilingual support. However, it257

is feasible to adapt CoXQL to target languages258

through translation.259

The complexity of user questions in CoXQL260

might be lower when compared to other text-to-261

SQL datasets that involve complex SQL grammar,262

such as JOINs, aggregations. Within the current263

scope, we do not take into account the concatena-264

tion of various operations, which could potentially265

be valuable for users.266

All implementations for operations shown in Ta-267

ble 1 highlighted in blue can be found in either268

TALKTOMODEL (Slack et al., 2023), INTERROLANG269

(Feldhus et al., 2023) or LLMCHECKUP (Wang270

et al., 2024). CoXQL provides annotations for271

the ones highlighted in red in Table 1. Although272

none of the existing systems supports additional273

operations, they can be implemented as described274

in Appendix I.275

While some LLMs, e.g. Llama3-70B, can276

achieve good results in explanation request pars-277

ing, their deployment may not always be feasible,278

e.g., due to resource limitations. This challenge279

can potentially be addressed by employing active280

learning techniques on smaller-sized LMs to attain281

comparable parsing accuracy.282
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Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,477
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-478
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir479
Radev. 2018. Spider: A large-scale human-labeled480
dataset for complex and cross-domain semantic pars-481
ing and text-to-SQL task. In Proceedings of the 2018482
Conference on Empirical Methods in Natural Lan-483
guage Processing, pages 3911–3921, Brussels, Bel-484
gium. Association for Computational Linguistics.485

A Approaches for intent recognition486

Table 3 displays the approaches for intent recogni-487

tion in the current XAI systems.488

XAI System Intent recognition Text-to-
SQLImplementations Embeds Fine-Tuned Few-Shot

Werner (2020) fastText
Torri (2021) GPT-2

Slack et al. (2023) MPNet T5 GPT-J ■
Nguyen et al. (2023) SimCSE
Shen et al. (2023) SciBERT

Feldhus et al. (2023) MPNet
BERT+Adap,

GPT-Neo ■
FLAN-T5

Wang et al. (2024) MPNet Llama2 ■
Ours bge-base Llama3 ■

Table 3: Approaches for intent recognition in conversa-
tional XAI systems using LM embeddings, fine-tuned
LMs and LLMs with few-shot prompting.

B Guided decoding489

B.1 Example grammar490

Figure 4 shows the grammar for mistake operation491

with additional slots count and sample.492

B.2 Demonstration selection493

As described in §3.3, for guided decoding, the pars-494

ing prompt will contain demonstrations which are495

selected based semantic similarity. Table 4 shows496

the top 3 similar selected demonstrations for the497

user question “Can you show me how much data498

the model predicts incorrectly?”.499

C Example utterance from CoXQL500

Table 5 provides example utterances corresponding501

to each operation listed in Table 1.502

D Additional slots for operations503

Table 6 shows operations with additional slots.504

E Filter and logic operations505

In addition to the operations displayed in Table 1,506

we have also incorporated operations related to507

logic and filtering, as depicted in Table 7. While508

INTERROLANG (Feldhus et al., 2023) and LLM- 509

CHECKUP (Wang et al., 2024) already include 510

predfilter, labelfilter and previousfilter, 511

we introduce a new filter called lengthfilter, 512

which allows for dataset filtering based on the 513

length of the instances at various levels of gran- 514

ularity, such as character, token, or sentence. 515

Those aforementioned filters allows for a wide 516

range of possibilities in analyzing and manipulating 517

the dataset based on various conditions and inter- 518

ests. For instance, one can examine data points 519

where the predicted label differs from the golden 520

label using a combination of labelfilter and 521

predfilter. In addition, all filters can be inter- 522

connected with operations listed in Table 1. 523

F Multi-prompt parsing 524

As indicated in Section 3.3, MP is not constraint by 525

the predefined grammar. From Table 9, we found 526

that extracting ids and numerical slots poses a sig- 527

nificant challenge for out-of-the-box prompting, 528

especially for those LLMs that have less param- 529

eters (e.g., falcon-1B or Pythia-2.8B). Vanilla 530

MP shows lower performance on operations from 531

Table 6 that require several slots (e.g., Global 532

Prediction and Local Explanation, see Ta- 533

ble 9). The lower performance of MP compared 534

to GD can be attributed to the fact that MP tends 535

to generate a larger volume of tokens/slots, given 536

MP’s lack of constraints imposed by grammar. For 537

instance, in the case of score operation, which can 538

take values such as accuracy, precision, roc, 539

recall, or f1 as additional slots, MP has a ten- 540

dency to produce more than one metric name. Thus, 541

we propose MP+, which applies additional tem- 542

plate checks on the generated parsed text and can 543

achieve best performance compared to GD and MP 544

(§5). 545

G Prompt design 546

Figure 5 shows the prompt used with ChatGPT to 547

produce additional data points for CoXQL. 548

H Data collection 549

Data collection pipeline We employ a selective 550

approach where we choose question and parse 551

pairs from INTERROLANG (Feldhus et al., 2023) and 552

LLMCHECKUP (Wang et al., 2024) specifically for 553

operations that are also present in CoXQL. Subse- 554

quently, we thoroughly review all the collected user 555
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1 GRAMMAR = r"""
2 ?start: mistake
3 mistake: mistakesword mistakestypes
4 mistakesword: " mistake"
5 mistakestypes: " count" | " sample"
6 """

Figure 4: Example grammar of mistake operation with additional slots “count” and “sample”.

Type Text
User question Can you show me how much data the model predicts incorrectly?

Selected demonstration
Tell me the amount of data the model predicts falsely.

Can you demonstrate how many data points are predicted wrongly?
Show me some data you predict incorrectly.

Table 4: Selected top 3 demonstrations based on semantic similarity.

Intent class Example utterance Gold parse

L
oc

.P
r. predict What is the prediction for data point number 9130? filter id 9130 and predict

likelihood Give me the confidence score for this prediction on id 15? filter id 15 and likelihood

G
lo

b.
Pr

.

mistake Tell me the amount of data the model predicts falsely. mistake count
score Give me the accuracy on the data. score accuracy

L
oc

.E
xp

.

attribute Why do you predict instance 2451? filter id 2451 and nlpattribute default
rationalize Generate a natural language explanation for id 2222. filter id 2222 and rationalize
influence Show the most influential important data instance for id 912. filter id 912 and influence topk 1

Pe
rt

rb
. cfe How would you flip the prediction for id 23? filter id 23 and cfe

adversarial How would you construct an adversarial example for the model’s
prediction on id 23?

filter id 23 and adversarial

augment Can you modify and generate a new instance from id 100? filter id 100 and augment

D
at

a show Could you show me data point number 215? filter id 215 and show
countdata Count the total number of data points. countdata
label Please show what the gold labels are. label
keywords What are the most frequent keywords in the data? keywords topk 1
similar Is it possible to retrieve an example that is similar to id 12? filter id 12 and similarity topk 1

M
od

. editlabel Edit the label of id 2894 to the specified label. filter id 2894 and editlabel
learn Apply training to the model using instance 473. filter id 473 and learn
unlearn Can you unlearn id 530 from the model? filter id 530 and unlearn

M
et

a function Tell me a bit more about what I can do here. function
tutorial What’s data augmentation? qatutorial qada
data Tell me a bit more about the data please. data
model It would be very useful if you could provide a description of the

model!
model

domain Can you clarify terms or concepts that are relevant to the domain
but not directly related to the system’s functionality?

domain

Table 5: Intent classes, example utterance from CoXQL and corresponding gold parse.

1 system_prompt = (f"As an expert in data augmentation, you will involve receiving pairs of user
questions and parsed text. Your task is to rephrase the user questions in a manner that
preserves their semantic meaning while keeping the parsed text unchanged. Here are some
examples.\n")

↪→
↪→
↪→

2

3 read_instruction = f"User question: {user_question}\n Parsed text: {parsed_text}\n"
4

5 # Combine inputs to single string
6 entire_prompt = system_prompt + demonstrations + read_instruction

Figure 5: Simplified version of the Python code showing the data augmentation prompt using ChatGPT to generate
additional data points for CoXQL.
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Operation Additional Slots #Additional Slots
influence topk 1

keywords topk 1

similarity topk 1

mistake sample, count 2

score accuracy, precision, recall, f1, roc 5

attribute
all, topk, default

7
attention, lime, integrated gradient, inputxgradient

tutorial
qaattribute, qarationalize, qainfluence, qacfe

9
qaadversarial, qaaugment, qaeditlabel, qalearn, qaunlearn

Table 6: Additional slots for operations.

Operation Description/Request

Fi
lte

r filter(id) Access single instance by its ID
predfilter(label) Filter the dataset according to the model’s predicted label
labelfilter(label) Filter the dataset according to the true/gold label given by the dataset
lengthfilter(level, len) Filter the dataset by length of the instance (characters, tokens, . . . )
previousfilter() Filter the dataset according to outcome of previous operation
includes(token) Filter the dataset by token occurrence

Lo
gi

c and(op1, op2) Concatenate multiple operations
or(op1, op2) Select multiple filters

Table 7: Additional logic operations in CoXQL.

questions, assessing aspects such as readability, un-556

derstandability, and coherence. Additionally, we557

ensure that the purpose or topic conveyed within558

the user question aligns with the corresponding559

parse. If post-processing is required, such as in the560

case of pairs from INTERROLANG (Feldhus et al.,561

2023) and LLMCHECKUP (Wang et al., 2024), and562

pairs generated by ChatGPT, we may need to refor-563

mulate the user questions or potentially modify the564

parsed text based on the intended meaning or intent565

of the questions. E.g. when we use ChatGPT to566

augment the user question “Why do you predict in-567

stance id 31 using input gradient?”, which should568

be parsed as “filter id 31 and nlpattribute569

all input_x_gradient”. Since nlpattribute570

operation (feature attribution) has many additional571

slots (Table 6), ChatGPT generates the parsed text572

of the mentioned question as “filter id 31 and573

nlpattribute topk 1 input_x_gradient” (the574

additional slot should be all instead of topk 1 be-575

cause user question does not specify the top k val-576

ues and thus all should be set as default), although577

we instruct ChatGPT to not change the parsed text578

in the prompt (Figure 5). In such a case, we have579

to post-process the parsed text by changing “topk 580

1” to “all”. 581

Test set creation Feldhus et al. (2023) conducts 582

a user study to evaluate the quality of explanations 583

generated by INTERROLANG. The user questions, 584

along with their corresponding answers and parsed 585

texts from this user study, are publicly accessible7. 586

Inspired by Feldhus et al.’s (2023) approach, we 587

adopt a similar strategy and a subset of the test 588

set is created following the way how questions are 589

raised from the user study. 590

I Operations not supported in current 591

XAI dialogue systems 592

We introduce five new operations, which are cur- 593

rently not present in the existing ConvXAI sys- 594

tems outlined in Table 1 and Table 7 marked in 595

red. influence operation enables the retrieval of 596

the most influential training data contributing to 597

the result (Han et al., 2020). editlabel operation 598

allows for the modification of the golden label for 599

7https://github.com/DFKI-NLP/InterroLang/blob/
main/feedback

9

https://github.com/DFKI-NLP/InterroLang/blob/main/feedback
https://github.com/DFKI-NLP/InterroLang/blob/main/feedback


a specific instance. With the learn and unlearn600

operations, the deployed model can be additionally601

fine-tuned with or without a particular instance.602

The domain operation provides information regard-603

ing terminology or concepts relevant to our domain604

but not covered by the system.605

We outline here how we would implement them:606

• influence(instance, topk): To cal-607

culate influential training instances, CAP-608

TUM provides a tutorial for the TracIn609

method: https://captum.ai/tutorials/610

TracInCP_Tutorial. However, it is quite ex-611

pensive to execute on LLMs.612

• Modification operations are related to explana-613

tory debugging, an area of research surveyed614

in Lertvittayakumjorn and Toni (2021). A rep-615

resentative system is XMD (Lee et al., 2023).616

• domain(query): The entire user question is617

provided to the LLM and the operation is618

treated as an open-domain question answering619

task similar to the rationalize operation.620

• lengthfilter(level, len) is straightfor-621

ward to implement and only considers the622

dataset instances with a length above or be-623

low some character, token, word, or sentence624

count (specified by the granularity level625

slot).626

Additionally, we want to point out that in practi-627

cal applications of XAI systems, it is common to628

encounter a significant number of questions belong-629

ing to domain operation. In such cases, the TOOL-630

FORMER (Schick et al., 2023) can be integrated and631

utilized to directly access relevant tools or APIs632

associated with the domain-specific questions.633

CoXQL deliberately excluded attention head634

and circuit analyses (Baeumel et al., 2023) which635

are not well-suited for conversational explanations636

and are dependant on visualization rather than text637

as a modality for explanation. We propose to use638

dedicated tools for those purposes (Tufanov et al.,639

2024).640

J Parsing accuracy evaluation641

J.1 Models for parsing accuracy evaluation642

Table 8 lists all LLMs that are evaluated for pars-643

ing. We used A100 and H100 for parsing accuracy644

evaluation, which is done within 1 hour per setting.645

J.2 Error analysis646

Error analysis at the category level Table 9647

displays F1 scores of each category for differ-648

ent LLMs shown in Table 8. From Table 9, we 649

find out that GD generally performs better than 650

MP in categories like Global Prediction, Local 651

Explanation, and Local Prediction. MP, how- 652

ever, performs better in categories like Data and 653

Modification. MP+ exceeds the performance 654

of both GD and MP across most categories and 655

models, indicating that the combination of Multi- 656

Prompt parsing with template checks provides a 657

consistent improvement over the individual parsing 658

strategies. 659

LLMs like Llama3-8B and CodeQWen benefit the 660

most from the MP+ approach, consistently achiev- 661

ing top scores across multiple categories. Falcon 662

and Pythia demonstrate substantial improvements 663

with MP+ over their GD and MP scores, suggest- 664

ing that MP+ enhances both small-sized and large- 665

sized LMs effectively. 666

Error analysis at the instance level Table 10 667

presents parsed texts generated by different LLMs 668

using diverse parsing strategies for the question: 669

“Top 3 important features for id 3!”. Tokens in the 670

parsed text that are matched with the gold label are 671

marked with underlines. None of the parsed texts 672

match the gold label. Table 10 reveals that GD is 673

good in generating top k values accurately, while 674

MP and MP+ tent to correctly generate method 675

names. However, there are instances where MP’s 676

generation is incomplete, e.g. the parsed text from 677

Pythia-2.8B with MP lacking a numerical value 678

for top k. Additionally, GD has a tendency to gen- 679

erate alternative method names like “lime” or “at- 680

tention”, when the “default” should be used when 681

no method name is specified in the users’ question 682

(Table 6). Thus, Table 10 illustrates that when ad- 683

ditional slots are available for operations, LLMs 684

exhibit limitations in fully accurately recognizing 685

every slot. 686
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Name Citation Size Link

Falcon Penedo et al. (2023) 1B https://huggingface.co/tiiuae/falcon-rw-1b
Pythia Biderman et al. (2023) 2.8B https://huggingface.co/EleutherAI/pythia-2.8b-v0
Mistral Jiang et al. (2023) 7B https://huggingface.co/mistralai/Mistral-7B-v0.1

CodeQwen1.5 Bai et al. (2023) 7B https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat
sqlcoder n.a.∗ 7B https://huggingface.co/defog/sqlcoder-7b-2
Llama 3 n.a.∗ 8B https://huggingface.co/meta-llama/Meta-Llama-3-8B
Llama 3 n.a.∗ 70B https://huggingface.co/meta-llama/Meta-Llama-3-70B

Table 8: Deployed LMs for parsing accuracy evaluation. *No paper published, with GitHub link only: https:
//github.com/meta-llama/llama3 and https://github.com/defog-ai/sqlcoder.

Category Strat. Falcon Pythia Mistral Llama3-8B Llama3-70B CodeQWen sqlcoder

Data GD 63.43 89.77 71.88 91.67 85.42 77.08 80.21
Glb. Pr. GD 72.97 93.14 93.14 100.00 100.00 83.33 100.00
Loc. Ex. GD 53.85 80.77 80.77 84.62 84.62 73.08 84.62
Loc. Pr. GD 66.67 100.00 100.00 100.00 100.00 66.67 100.00

Meta GD 70.04 64.05 75.00 69.15 75.75 54.54 85.71
Modi. GD 36.36 63.64 54.55 63.64 63.64 54.55 72.73
Pert. GD 60.00 100.00 100.00 100.00 100.00 70.00 100.00

Data MP 65.63 70.83 91.67 81.02 85.02 82.67 100.00
Glb. Pr. MP 0.00 0.00 29.33 54.86 8.00 32.00 93.33
Loc. Ex. MP 26.92 11.54 46.15 51.65 30.77 26.92 61.53
Loc. Pr. MP 44.44 92.59 81.48 70.37 70.37 55.56 81.48

Meta MP 85.02 88.89 79.05 67.70 96.77 76.94 80.56
Modi. MP 63.63 81.82 90.91 81.82 72.73 90.91 81.82
Pert. MP 100.00 100.00 100.00 60.00 70.00 90.00 50.00

Data MP+ 73.96 91.67 100.00 95.83 95.19 97.50 100.00
Glb. Pr. MP+ 69.45 68.14 80.55 86.77 91.11 84.55 89.63
Loc. Ex. MP+ 70.94 58.65 72.22 85.04 87.18 76.07 74.79
Loc. Pr. MP+ 44.44 100.00 81.48 70.37 100.00 66.67 88.89

Meta MP+ 87.40 88.89 82.94 72.78 93.23 78.71 82.24
Modi. MP+ 90.91 90.91 100.00 100.00 100.00 100.00 100.00
Pert. MP+ 100.00 90.00 100.00 100.00 100.00 100.00 90.00

Table 9: F1 scores of each category for different LMs on CoXQL test set. GD = Guided Decoding prompted by
20-shots; MP = Multi-Prompt parsing; MP+ = MP with template checks.
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Model Strategy Parsed Text Correctness

Falcon-1B
GD filter id 3 and nlpattribute topk 3 lime ✗

MP filter id 3 and nlpattribute attention all ✗

MP+ filter id 3 and nlpattribute all default ✗

Pythia-2.8B
GD filter id 3 and nlpattribute topk 3 lime ✗

MP filter id 3 and nlpattribute input_x_gradient topk ✗

MP+ filter id 3 and nlpattribute all default ✗

Mistral-7B
GD filter id 3 and nlpattribute topk 3 lime ✗

MP filter id 3 and nlpattribute all default ✗

MP+ filter id 3 and nlpattribute all default ✗

CodeQwen1.5-7B
GD filter id 3 and nlpattribute topk 3 attention ✗

MP filter id 3 and nlpattribute all default ✗

MP+ filter id 3 and nlpattribute all default ✗

sqlcoder-7B
GD filter id 3 and nlpattribute topk 3 lime ✗

MP filter id 3 and nlpattribute all default ✗

MP+ filter id 3 and nlpattribute all default ✗

Llama3-8B
GD filter id 3 and nlpattribute topk 3 attention ✗

MP filter id 3 and nlpattribute all default ✗

MP+ filter id 3 and nlpattribute all default ✗

Llama3-70B
GD filter id 3 and nlpattribute topk 3 attention ✗

MP filter id 3 and nlpattribute topk all ✗

MP+ filter id 3 and nlpattribute all default ✗

Table 10: Parsed texts generated by various LMs employing different parsing strategies for the user question:
“Top 3 important features for id 3!”, where the gold label is filter id 3 and nlpattribute topk 3 default.
Tokens associated with additional attributes that are matched with the gold label are marked with underlines. ✗
marks a parsed text that does not match the gold label. GD = Guided Decoding prompted by 20-shots; MP =
Multi-prompt Parsing; MP+ = MP with template checks.
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