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Abstract

Temporal validity is an important property of001
text that is useful for many downstream appli-002
cations, such as recommender systems, con-003
versational AI, or story understanding. Exist-004
ing benchmarking tasks often require models005
to identify the temporal validity duration of006
a single statement. However, in many cases,007
additional contextual information, such as sen-008
tences in a story or posts on a social media009
profile, can be collected from the available010
text stream. This contextual information may011
greatly alter the duration for which a statement012
is expected to be valid. We propose Temporal013
Validity Change Prediction, a natural language014
processing task benchmarking the capability of015
machine learning models to detect contextual016
statements that induce such change. We create017
a dataset consisting of temporal target state-018
ments sourced from Twitter and crowdsource019
sample context statements. We then benchmark020
a set of transformer-based language models on021
our dataset. Finally, we experiment with tempo-022
ral validity duration prediction as an auxiliary023
task to improve the performance of the state-of-024
the-art model.025

1 Introduction026

In human communication, temporal properties are027

frequently underspecified when authors assume028

that the recipient can infer them via commonsense029

reasoning. For example, when reading “I am mov-030

ing on Saturday”, a reader is likely to assume the031

person will be busy for most of the day. On the032

other hand, when reading “I will make a sandwich033

on Sunday”, this is likely to only take up a fraction034

of the author’s day and may not impact other plans.035

Such reasoning is referred to as temporal common-036

sense (TCS) reasoning (Wenzel and Jatowt, 2023).037

Temporal validity (Almquist and Jatowt, 2019;038

Hosokawa et al., 2023; Lynden et al., 2023) is a039

property that is vital for the proper understanding040

of a text. The temporal validity of a statement, i.e.,041
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Figure 1: A visualization of the TVCP task

whether it contains valid information at a given 042

time, often requires TCS reasoning to resolve. For 043

example, in determining whether a statement like 044

“I am driving home from work” is still valid after 045

five hours, we may use our prior understanding 046

of the typical duration of related events, such as 047

commuter traffic. While the amount of research 048

into TCS and, to a degree, temporal validity, has 049

risen over the past years (Wenzel and Jatowt, 2023), 050

there are still several properties of temporal validity 051

that have not been considered in previous research. 052

One such property is the impact of context on the 053

temporal validity duration of a statement. For ex- 054

ample, the sentence “I am driving home from work” 055

may be valid for a longer time when followed by a 056

statement such as “There is a massive traffic jam”. 057

To model this problem, we propose a new NLP 058

task format called Temporal Validity Change Pre- 059

diction (TVCP), which requires reasoning over 060

whether a context statement changes the temporal 061

validity duration of a target statement. The task is 062

visualized in Figure 1. We propose the following 063

applications for such a system. 064

Timeline Prioritization: Social media services 065

such as Twitter rely on recommender systems to 066

prioritize the vast amount of content that their users 067

produce. One possible way to improve the prioriti- 068

zation of content is to consider its temporal validity 069

(Takemura and Tajima, 2012; Koul et al., 2022), as 070
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users are likely to care about current and relevant in-071

formation over more general, stationary statements.072

TVCP can be used to leverage the stream of social073

media posts by a given user as possible context to074

better estimate the temporal validity duration of a075

previously observed post.076

User Status Tracking: Similarly, the content077

of a user’s posts on social media could be utilized078

for other analytical or business purposes, such as079

predicting revenue streams (Asur and Huberman,080

2010; Deng et al., 2011; Lassen et al., 2014; Lu081

et al., 2014) or identifying trends in a community’s082

or an individual user’s behaviour (Li et al., 2018;083

Abe et al., 2018; Shen et al., 2020). TVCP could084

be used to identify posts that refer to previous tem-085

poral information, to detect chains of thought about086

topics that may not be self-contained.087

Conversational AI: Foundation models, such088

as CHATGPT (Ouyang et al., 2022) and BARD089

(Manyika, 2023), could use the temporal validity090

of statements provided by the user to keep track091

of knowledge that is still relevant to the conver-092

sation. Using TVCP, new messages by the user093

could be evaluated to adjust the expected temporal094

validity period of previously learned facts. This is095

especially relevant as initial reports indicate that096

foundation models may struggle with TCS reason-097

ing (Bian et al., 2023).098

Our main contributions are the following:099

1. We define a novel NLP task (TVCP). This100

ternary classification task requires models to101

predict the impact of a context statement on a102

target statement’s temporal validity duration.103

2. We build a dataset of tuples consisting of time-104

sensitive target statements, as well as follow-105

up statements that act as context for our task.106

3. We evaluate the performance of existing pre-107

trained language models (LMs) on our dataset,108

including models fine-tuned on other TCS109

tasks as well as CHATGPT.110

4. We propose an augmentation to the training111

process that leverages temporal validity dura-112

tion information to help improve the perfor-113

mance of the state-of-the-art classifier.114

2 Related Work115

2.1 Temporal Commonsense Reasoning116

TCS reasoning is often considered one of several117

categories of commonsense reasoning (Storks et al.,118

2019a; Bhargava and Ng, 2022). A major driver 119

of research specifically into TCS appears to have 120

been the transformer architecture (Vaswani et al., 121

2017) and resulting LMs. In recent years, several 122

datasets that specifically aim to benchmark TCS 123

understanding have been published (Zhou et al., 124

2019; Ning et al., 2020; Zhang et al., 2020; Qin 125

et al., 2021; Zhou et al., 2021), while ROCSTO- 126

RIES (Mostafazadeh et al., 2016) appears to be 127

the only dataset focussing on this type of reason- 128

ing before the publication of the transformer archi- 129

tecture. Small adjustments to transformer-based 130

LMs are often proposed as state-of-the-art solu- 131

tions for these datasets (Pereira et al., 2020; Yang 132

et al., 2020; Zhou et al., 2020; Pereira et al., 2021; 133

Kimura et al., 2021; Zhou et al., 2021, 2022; Cai 134

et al., 2022; Yu et al., 2022). Similarly, temporal- 135

ized transformer models are popular solutions for 136

tasks such as document dating or semantic change 137

detection (Rosin and Radinsky, 2022; Rosin et al., 138

2022; Wang et al., 2023). 139

The TCS taxonomy defined by Zhou et al. (2019) 140

is frequently referenced. It contains the five di- 141

mensions of duration (how long an event takes), 142

temporal ordering (typical order of events), typi- 143

cal time (when an event happens), frequency (how 144

often an event occurs) and stationarity (whether a 145

state holds for a very long time or indefinitely). 146

2.2 Temporal Validity 147

Compared to TCS reasoning, temporal validity in 148

text is a less well-researched field. It effectively 149

combines three dimensions of the taxonomy by 150

Zhou et al. (2019): Stationarity, to reason about 151

whether a statement contains temporal information, 152

typical time, to reason about when the temporal 153

information occurs, and duration, to reason about 154

how long the temporal information takes to resolve. 155

Takemura and Tajima (2012) classify the lifetime 156

duration of tweets, i.e., the informational value of 157

a tweet over time. They use handcrafted, domain- 158

specific features to train a support vector classifier 159

(SVC) on supervised samples. 160

Almquist and Jatowt (2019) similarly design fea- 161

tures to estimate the temporal validity duration of 162

sentences collected from news, blog posts, and 163

Wikipedia using SVCs. Their features contain gen- 164

eral properties such as the word- or sentence length, 165

but also more complex ones, such as latent seman- 166

tic analysis. 167
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Method Task Data Source Duration Bias Model # Samples
Takemura and Tajima (2012) TVd Twitter N/A SVC 9,890
Almquist and Jatowt (2019) TVd Blogs, News, Wikipedia years SVC 1,762
Hosokawa et al. (2023) TNLI Image Captions seconds1 LM 10,659
Lynden et al. (2023) TVd WikiHow hours LM 339,184
Ours TVCP Twitter hours LM 5,055

Table 1: Summary of related work

Hosokawa et al. (2023) define the Temporal Nat-168

ural Language Inference (TNLI) task. The goal of169

TNLI is to determine whether the temporal validity170

of a given hypothesis sentence is supported by a171

premise sentence.172

Lynden et al. (2023) build a large dataset of hu-173

man annotations specifying the duration required174

to perform various actions on WikiHow as well as175

their respective temporal validity durations.176

2.3 Comparison with Related Work177

Table 1 shows the most closely related research. As178

noted, our dataset is based on the proposed TVCP179

task, whereas previous work was based on the TVd180

and TNLI tasks. All tasks are described in more181

detail in Section 3.182

Another prominent distinctive attribute is the text183

source and the resulting temporal validity duration184

bias. For example, sentences sourced from news or185

Wikipedia articles often appear to be valid for years186

or longer. On the other hand, image captions may187

only be valid for a few seconds or minutes. We de-188

cided to source our sentences from Twitter due to189

its alignment with our downstream use cases. Sim-190

ilar to Lynden et al. (2023), our collected temporal191

information tends to be valid for a few hours.192

We follow recent research by evaluating our193

dataset using transformer-based LMs, whereas ear-194

lier approaches relied on methods such as SVCs.195

Except for the COTAK dataset (Lynden et al.,196

2023), the datasets tend to be relatively small. As197

crowdsourcing is used in all datasets referenced198

in Table 1 to annotate text spans with common-199

sense information, the costs of dataset creation can200

quickly escalate. In addition, we ask participants to201

create examples of follow-up statements that cause202

temporal validity change. This approach further203

restricts the overall size of our dataset due to the204

relative difficulty of the task.205

1Based on analysis of a sample. TVd labels are not avail-
able for the full dataset.

3 Task 206

3.1 Defining Temporal Validity 207

Temporal validity, in essence, is simply the time- 208

dependent validity of a text. As shown in Equation 209

1, the temporal validity of a statement s at a time 210

t is a binary value that determines whether the 211

information in s is valid at the given time. 212

TV(s, t) =

{
True if information in s is valid at t,
False otherwise

(1) 213

In some previous research (Hosokawa et al., 214

2023; Lynden et al., 2023), the scope of evaluated 215

temporal information is limited to actions, such as 216

“I am baking bread”. However, we note that other 217

types of temporal information exist, such as events 218

(e.g., in the sentence “Job interview tomorrow”) or 219

temporary states (e.g., in the sentence “It is nice out 220

today”). In an analysis of a subset of our collected 221

statements, shown in Figure 2, we find that these al- 222

ternative types of temporal information constitute a 223

significant portion (28%) of samples. Additionally, 224

one-third of sampled statements contained at least 225

two distinct pieces of temporal information with 226

differing temporal validity spans. This indicates 227

that the true scope of determining the temporal va- 228

lidity of a text may exceed what current datasets 229

are benchmarking. 230

Figure 2: Distribution of different types of temporal
information in a sample of our dataset
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We assume that the temporal validity of station-231

ary statements is constant for any given timestamp232

t. A stationary statement may be continuously true233

(e.g., “Japan lies in Asia”), or continuously false234

(e.g., “Japan lies in Europe”). This includes infor-235

mation that is fully contained in the past (e.g., “I236

went to the bank yesterday”). In general, we do not237

expect the validity of such a statement to change.238

For contemporary or future information, we as-239

sume the statement is valid from the moment of240

sentence conception until the information is no241

longer ongoing. We include the duration of the242

information, rather than just its occurrence time, as243

humans are likely to still consider durative infor-244

mation relevant while it is ongoing. For example,245

we may reason that the statement “I will take a246

shower at 8 p.m.” still has informational value at247

8:05 p.m., as it allows us to infer the current action248

of the author.249

3.2 Formalizing Existing Tasks250

3.2.1 Temporal Validity Duration Estimation251

Temporal Validity Duration Estimation (TVd) is the252

primary task that is evaluated in temporal validity253

research (Takemura and Tajima, 2012; Almquist254

and Jatowt, 2019; Lynden et al., 2023). The goal255

is to estimate the duration for which the statement256

is valid, starting at the statement creation time. We257

formalize this task in Equation 2, where ts is the258

timestamp at which the statement s is created.259

TVd(s) = max
t≥ts

{t | TV(s, t) = True} (2)260

The TVd task is useful in downstream applica-261

tions such as social media, where information on262

the posting time of a statement is readily available263

and can be used to infer the span during which the264

statement is valid.265

3.2.2 Temporal Natural Language Inference266

The goal of TNLI (Hosokawa et al., 2023) is to267

infer whether a statement is temporally valid, given268

additional context, using typical NLI terminology269

(MacCartney, 2009; Storks et al., 2019b). TNLI270

requires a hypothesis statement (that we call tar-271

get statement, or st) and a premise sentence (that272

we call follow-up statement, or sf ). Implicitly, the273

inference takes place at tsf , that is, the posting274

time of the follow-up statement, but no explicit275

duration information is required to solve this task.276

Formally, we define TNLI in Equation 3 (SUO =277

supported, INV = invalidated, UNK = unknown),278

where TVc(s, t) is the temporal validity of a state- 279

ment s at a time t given context c. The UNK class 280

is assigned in cases where TVsf (st, tsf ) is neither 281

clearly supported nor invalidated by the context. 282

TNLI(st, sf ) =


SUO TVsf (st, tsf ) = True
INV TVsf (st, tsf ) = False
UNK TVsf (st, tsf ) = Unclear

(3) 283

Unlike TVd, this task format lends itself to 284

downstream applications such as story understand- 285

ing, wherein a larger text stream of individual state- 286

ments is provided with no clear explicit notion 287

of time passing between each sentence (e.g., in 288

a book). 289

3.3 Temporal Validity Change Prediction 290

We propose Temporal Validity Change Prediction 291

(TVCP), which combines ideas from both the 292

inference- and duration-based tasks. Like TNLI, 293

we require st and sf for classification, and de- 294

termine a ternary label that provides information 295

about the impact of sf on st. Unlike TNLI, our 296

goal is to predict a change in the temporal validity 297

duration of st. 298

We consider TVCP a necessary step in accu- 299

rately determining a statement’s temporal validity. 300

Simply estimating the duration of the statement 301

alone may not yield very precise results when it is, 302

as in many use cases, extracted from a rich context, 303

such as a book, a story, a news article, a step-by- 304

step guide, or a social media profile. In these cases, 305

surrounding information may provide additional 306

context that could lead us to a different TVd esti- 307

mate. Simply concatenating st and sf may lead to 308

the classification of temporal information within 309

sf , which is undesired. Our segmentation of st and 310

sf into different semantic roles, similar to TNLI, 311

prevents this issue. 312

Formally, we define TVCP in Equation 4 (DEC 313

= decreased, UNC = unchanged, INC = increased), 314

where TVc
d(s) is the temporal validity duration of 315

a statement s given context c. Figure 3 shows a 316

concrete comparative example of the goal of all 317

three tasks. 318

TVCP(st, sf ) =


DEC TVd(st) > TV

sf
d (st)

UNC TVd(st) = TV
sf
d (st)

INC TVd(st) < TV
sf
d (st)

(4) 319

Since TVCP is a signal measuring the difference 320

between TVd with- and without sf , respectively, a 321
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Figure 4: Dimensions of temporal validity change. The
frequency of each category for DEC and INC classes
in our sample is appended.

more fine-grained TVd classification increases the322

number of TVCP instances that can be detected.323

On the other hand, evaluating TVd on a very fine-324

grained scale may be more difficult for both models325

and humans (Honda et al., 2022), and the result-326

ing uncertainty and inaccuracies could lead to a327

degradation of the system as a whole.328

In our sample analysis, we find that temporal329

validity change generally occurs along two axes,330

shown in Figure 4. The first dimension is im-331

plicit versus explicit change. For example, an ap-332

pointment may be postponed, which is an explicit333

change. On the other hand, the author may note in334

a follow-up statement that the appointment is in a335

sleep laboratory, which may cause us to re-evaluate336

for how long the original statement is valid, al-337

though the information itself has not changed.338

The second dimension is a change to the occur-339

rence time versus the duration of the information.340

For example, a flight may be delayed, in which341

case the occurrence time changes. Alternatively,342

the flight might have to be re-routed mid-air due to343

bad weather, in which case the duration changes.344

In our sample, we find that all four categories 345

are present to a reasonable degree in both the DEC 346

and INC classes. Generally, changes to the dura- 347

tion tend to be slightly more frequent than changes 348

to the occurrence time. This makes sense, as the 349

occurrence time is a dimension that is only present 350

when the information occurs in the future, whereas 351

the duration of temporal information can change 352

irrespective of the occurrence time. 353

4 Dataset 354

We create a dataset for training and benchmark- 355

ing TVCP, where each sample is a quintuple 356

< st, sf , TVd(st), TVsf
d (st), TVCP(st, sf ) >. 357

st is collected by querying the Twitter API for 358

tweets with no external context (e.g., no tweets that 359

are retweets or replies, or tweets containing media). 360

We apply several pre-processing steps to remove 361

tweets whose content may not be self-contained. 362

We aim to minimize spam and offensive content 363

by applying publicly available LMs and word-list- 364

based filters. To decrease the number of station- 365

ary statements, we employ an ensemble classifier 366

based on the ALMQUIST2019 (Almquist and Ja- 367

towt, 2019) and COTAK datasets and select the 368

most likely statements to contain temporal informa- 369

tion. Finally, crowdworkers can tag any remaining 370

stationary samples during the annotation process. 371

A summary of our pre-processing pipeline is shown 372

in Figure 5. Our code, including all preprocessing 373

steps, is published under the Apache 2.0 licence. 374

Twi er Collector

Syntac c Filtering

Seman c Filtering

Content-Based 

Filtering

Crowdsourced

Valida on

Sample standalone tweets 

without Twi er-speci c features.

Filter very short/long tweets,

and tweets with speci c syntax.

Filter by domain-speci c pa erns, 

remove oversampled events.

Model-Based

Ranking

Filter o ensive content and spam.

Rank statements by predicted . 

Priori ze temporal statements.

Ask crowdworkers to tag 

remaining sta onary statements.

During Collec on

A er Collec on

A er Filtering

Figure 5: A summary of our tweet collection pipeline

For each target statement, we ask two crowd- 375

workers to estimate TVd(st) from the logarithmic 376

class design shown in Equation 5, which is mod- 377

elled after human timeline understanding (Jatowt 378

and Au Yeung, 2011; Varshney and Sun, 2013; 379

Howard, 2018). If the annotators disagreed, we 380

supplied a third vote. We discarded any tweets that 381
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were annotated as less than one minute, more than382

one month, or no time-sensitive information (i.e.,383

stationary), as well as tweets where no majority384

agreement could be reached. Of 2,996 annotated385

target tweets, 571 were discarded without a third386

annotation, 867 were added without a third anno-387

tation, 546 were discarded after providing a third388

vote, and 1,012 were added after providing a third389

vote. The distribution of resulting TVd labels be-390

fore temporal validity change is shown in Figure391

6.392

t ∈ {< 1 minute, 1-5 minutes, 5-15 minutes,

15-45 minutes, 45 minutes-2 hours, 2-6 hours,

more than 6 hours, 1-3 days, 3-7 days,

1-4 weeks,more than 1 month}
(5)

393

1-5 m
inutes

5-15 m
inutes

15-45 m
inutes

45 m
inutes - 2 hours

2-6 hours

More than 6 hours

1-3 days

3-7 days

1-4 weeks

0

100

200

300

400

Temporal Validity Duration

C
o
u
n
t

Figure 6: Distribution of TVd labels (before temporal
validity change) in our dataset

Both sf and TVsf
d (st) were provided by a sepa-394

rate set of crowdworkers, given st and TVd(st) as395

an input. In total, we collected 5,055 samples from396

1,685 target statements. In Figure 7, we plot the397

temporal validity change delta, which is the class398

distance between the original and the updated TVd399

estimate. We find that, in most cases, the tempo-400

ral validity duration of a target statement is shifted401

only by one class.402
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Figure 7: Temporal validity change delta distribution

All crowdsourcing tasks were set up on Amazon403

Mechanical Turk, using qualification tests, partic-404

ipation criteria, and manual verification of results 405

to ensure high-quality samples (see Appendix A). 406

We publish the resulting dataset for public use un- 407

der the CC BY 4.0 licence. In accordance with 408

the Twitter developer policy2, we only publish 409

the Tweet IDs of sourced statements. This also 410

means original tweet authors retain the ability to 411

delete their content, effectively removing it from 412

the dataset. 413

5 Experiments 414

5.1 Language Models 415

We evaluate a set of transformer-based LMs on our 416

dataset. We test four different archetypes in total: 417

• TRANSFORMERCLASSIFIER: Builds a hidden 418

representation from the sentence-embedding 419

token of the concatenation of st and sf . 420

• SIAMESECLASSIFIER: Builds a hidden repre- 421

sentation from the concatenated embeddings 422

[hst , hsf , hst −hsf , hst ⊗hsf ], where hst and 423

hsf are the sentence-embedding tokens of the 424

target- and follow-up statement, respectively 425

(Bromley et al., 1993; Nandy et al., 2020). 426

• SELFEXPLAIN (Sun et al., 2020): Builds a 427

hidden representation from the embeddings of 428

spans between arbitrary tokens in either st or 429

sf , selected by the model. 430

• CHATGPT: A chain-of-thought (Wei et al., 431

2022) reasoning prompt based on few-shot 432

learning (one sample per TVCP class), passed 433

to the gpt−3.5−turbo model via the OpenAI 434

API. 3 435

For the TRANSFORMERCLASSIFIER and 436

SIAMESECLASSIFIER pipelines, we evaluate 437

BERT-BASE-UNCASED (Kenton and Toutanova, 438

2019; 110M parameters) and ROBERTA-BASE 439

(Liu et al., 2019; 125M parameters) embeddings. 440

For SELFEXPLAIN, we only test the original im- 441

plementation with ROBERTA-BASE embeddings. 442

To evaluate transfer learning from other TCS tasks, 443

we test the TRANSFORMERCLASSIFIER pipeline 444

on regular BERT-BASE-UNCASED pre-training 445

weights as well as two variants TACOLM (Zhou 446

et al., 2020) and COTAK (Lynden et al., 2023), 447

2https://developer.twitter.com/en/
developer-terms/policy, accessed 12.10.2023

3This call uses the most recent GPT3.5 model. We col-
lected CHATGPT responses in July 2023.
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which have the same underlying architecture, but448

use weights fine-tuned on existing TCS datasets.449

We use the ADAMW optimizer (Loshchilov and450

Hutter, 2018) with ε = 1e-8, β1 = 0.9, β2 =451

0.999, weight_decay = 0.01. We optimize for452

cross-entropy loss. SELFEXPLAIN adds an addi-453

tional loss parameter in the form of squared span-454

attention weights, to encourage the model to more455

sharply choose which spans should be used to build456

the hidden representation.457

We set the dropout probabilities and learning458

rates as defined in Table 2 as a result of our hy-459

perparameter optimization (see Appendix C). For460

all models, the hidden embedding size is 768. For461

some ROBERTA-based models, we freeze embed-462

ding layers (i.e., only fine-tune intermediate and463

classification weights), as training all parameters464

leads to poor performance.465

Model Dropout LR Frozen
TF - BERT 0.25 1e-4 False
S - BERT 0.25 1e-4 False
TF - ROBERTA 0.25 1e-3 True
S - ROBERTA 0.10 1e-4 True
SELFEXPLAIN 0.00 2e-5 False

Table 2: Hyperparameter settings for different models.
TF = TRANSFORMERCLASSIFIER, S = SIAMESECLAS-
SIFIER

5.2 Multitask Implementation466

For all archetypes except CHATGPT, we provide467

a second implementation, in which we add two468

regression layers that aim to respectively predict469

TVd(st) and TVsf
d (st) from the same hidden rep-470

resentation. For these layers, we calculate the mean471

squared error between a single output neuron and472

a linear mapping of the TVd class index to the473

range [0, 1]. Our intuition is that embeddings with474

an understanding of TVd may be better suited for475

TVCP. Inspiration for this approach are models476

that utilize the interplay between temporal dimen-477

sions to improve the TCS reasoning performance478

in LMs, such as SYMTIME (Zhou et al., 2021) or479

SLEER (Cai et al., 2022).480

5.3 Evaluation481

We evaluate two metrics, accuracy and exact match482

(EM). Accuracy is simply the fraction of correctly483

classified samples. EM is the fraction of target484

statements for which all three samples were cor-485

rectly classified. This metric punishes inconsis-486

tency in the model more strictly, thus providing a487

better view of the true performance and task un- 488

derstanding of each model (Wenzel and Jatowt, 489

2023), while disincentivizing shallow reasoning 490

behaviours commonly seen in transformer models 491

(Helwe et al., 2021; Tan et al., 2023). 492

We report the mean EM and accuracy across a 493

five-fold cross-validation split. Each evaluation 494

consists of 70% training data, 10% validation data, 495

and 20% test data. If the validation EM does not 496

exceed the best previously observed value for 5 497

consecutive epochs, we stop training. The model 498

with the best validation EM is used for evaluation 499

on the test set. The results are shown in Table 3. 500

Model Acc (+ MT) EM (+ MT)
TF - ROBERTA 64.0 (+1.5) 21.2 (+2.5)
CHATGPT 66.3 (N/A) 29.3 (N/A)
S - ROBERTA 78.7 (+1.1) 48.2 (+2.1)
TF - COTAK 83.2 (+0.6) 58.2 (+1.4)
S - BERT 83.8 (−0.3) 59.1 (−1.5)
TF - TACOLM 83.5 (+1.4) 59.1 (+2.9)
TF - BERT 84.8 (−0.2) 61.2 (+0.9)
SELFEXPLAIN 88.5 (+1.1) 69.8 (+2.8)

Table 3: Model evaluation results, sorted by mean
EM score. TF = TRANSFORMERCLASSIFIER, S =
SIAMESECLASSIFIER, MT = Multitask Implementa-
tion

We note a positive impact on the EM score from 501

implementing multitasking in all models except 502

the Siamese architecture with BERT-based em- 503

beddings. We use bootstrapping to calculate the 504

statistical significance of implementing multitask 505

learning on the best-performing model, SELFEX- 506

PLAIN, evaluating the number of bootstrap sam- 507

ples in which the multitask implementation outper- 508

forms regular SELFEXPLAIN. We find p = 0.0027 509

for accuracy, with a 95% confidence interval of 510

[0.0036, 0.0192]. For EM, p = 0.0025, with a 511

95% confidence interval of [0.0089, 0.0487]. 512

The use of weights from other TCS tasks does 513

not seem to have a positive impact on the perfor- 514

mance of the TRANSFORMERCLASSIFIER pipeline. 515

It is possible that, although the resulting embed- 516

dings are more aligned with temporal properties 517

(Zhou et al., 2020), other important information 518

in the embeddings is lost, leading to an overall 519

decreased performance. 520

Due to some ROBERTA-based models having 521

frozen embedding layers, the baseline performance 522

by ROBERTA is much worse, but it improves much 523

more when switching to the SIAMESECLASSIFIER 524

implementation. We hypothesize that ROBERTA’s 525

sentence embedding token, <s>, may contain less 526
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information about the full sequence than BERT’s527

[SEP] token due to the lack of a next-sentence-528

prediction task during pre-training.529

CHATGPT ranks among the lower-performing530

models, which is consistent with other studies on531

TCS understanding (Bian et al., 2023). Its short-532

comings may be due to the few-shot learning ap-533

proach and a lack of knowledge about dataset534

specifics traits, which a trained classifier could535

leverage. Additionally, we do not specify our class536

design in the CHATGPT prompt, which could make537

it harder for CHATGPT to isolate the UNC class.538

To evaluate the impact of training data quan-539

tity on classifier performance, we train our best-540

performing classifier (SELFEXPLAIN with multi-541

tasking, which we dub MULTITASK) on a single542

train-val-test split (80%/10%/10%) with different543

amounts of training data. The results can be seen544

in Figure 8. We find that performance increases as545

more data is used for training, but this effect starts546

to diminish as we approach 100% of our training547

data.548
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Figure 8: Training data vs. performance metrics in
MULTITASK

In testing SELFEXPLAIN and MULTITASK on549

various temporal validity change deltas (Figure 9),550

we find they perform comparably on the UNC551

class, but MULTITASK slightly outperforms SELF-552

EXPLAIN on all delta values greater than zero.553

While CHATGPT’s subpar performance in the554

UNC class can partially be attributed to prompt555

design, it continues to lag far behind other models556

in the DEC and INC classes.557
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Figure 9: Temporal validity change delta vs. accuracy
in MULTITASK, SELFEXPLAIN and CHATGPT

All models were trained and evaluated on an 558

MSI GeForce RTX 3080 GAMING X TRIO 10G 559

GPU using CUDA 11.7. Training and evaluation 560

of all final models as well as hyperparameter tests 561

took around 15 GPU hours. 562

6 Conclusion and Future Work 563

In this work, we have introduced TVCP, an NLP 564

task, to aid in the accurate determination of the 565

temporal validity duration of text by incorporat- 566

ing surrounding context. We create a benchmark 567

dataset for our task and provide a set of baseline 568

evaluation results for our dataset. We find that the 569

performance of most classifiers can be improved 570

by explicitly incorporating the temporal validity 571

duration as a loss signal during training to improve 572

the resulting embeddings. Despite the impressive 573

feats performed by foundation models, we report, 574

similar to previous work (Bian et al., 2023), poor 575

performance in the TCS domain. These findings 576

show that users should carefully evaluate whether 577

a model like CHATGPT properly understands a 578

given task before choosing it over smaller, fine- 579

tuned LMs. We hypothesize that the performance 580

of all models could further increase with additional 581

training data. 582

Possible future work includes using the provided 583

dataset and classifiers to collect a larger number 584

of TVCP samples and annotating them with an 585

updated temporal validity duration. A comparison 586

of context-aware TVd classifiers with prior models, 587

like those by Almquist and Jatowt (2019), would 588

shed light on the significance of accurate semantic 589

segmentation between target and context. Similarly, 590

the use of our dataset for generative approaches 591

could be explored, for example, in the context of 592

generative adversarial networks. For our multi- 593

tasking implementation, directions for future work 594

could be changes to hyperparameters such as the 595

weight of the auxiliary loss, changes to the defini- 596

tion of the auxiliary task (e.g., log-scaled regression 597

or ordinal classification), or even entirely new auxil- 598

iary tasks. Finally, current methods face limitations 599

due to the effort of manual removal of stationary 600

samples (Almquist and Jatowt, 2019; ours) or alter- 601

ing task definitions to avoid them (Hosokawa et al., 602

2023; Lynden et al., 2023). Research into models 603

differentiating temporal and stationary information 604

could enhance the development and definition of 605

future TCS reasoning tasks. 606
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Limitations607

Although we focus on creating a reproducible608

training- and evaluation environment, some vari-609

ables are out of our control. For example, bit-wise610

reproducibility is only guaranteed on the same611

CUDA toolkit version and when executed on a612

GPU with the same architecture and the same num-613

ber of streaming multiprocessors. This means that614

an exact reproduction of the models discussed in615

this article may not be possible. Nevertheless, we616

expect trends to remain the same across GPU archi-617

tectures.618

The use of CHATGPT as an example of foun-619

dation model performance may be limiting due to620

its black box design. In the future, open-source621

models, such as LLAMA 2 (Touvron et al., 2023),622

could be evaluated to improve the reproducibil-623

ity of foundation model performance claims. We624

chose to benchmark CHATGPT due to its common625

use as a baseline and in end-user scenarios, but626

the evaluation results may not be transferrable to627

other foundation models or even other versions of628

CHATGPT.629

One of the major limitations of our approach630

is likely the dataset size. Although a relatively631

small dataset size is common in TCS reasoning,632

we find that our model performance still increases633

with the amount of training data used. The existing634

synthesized context statements in our dataset could635

be used to bootstrap an approach for automatically636

extracting additional samples from social media to637

alleviate this issue.638

The data we collect is not personal in nature.639

However, the possibility of latent demographic bi-640

ases in our data exists, for example, with respect641

to certain language structures or expressions used642

in the creation of follow-up statements. This could643

lead to the propagation of any such bias when the644

dataset is used to bootstrap further data collection,645

which should be considered in future work.646

Our external validity is mainly threatened by647

two factors. First, our context statements are crowd-648

sourced. While we apply several steps to ensure the649

produced context is sensible, it is unclear whether650

downstream context, such as on social media plat-651

forms, manifests in similar structures as in our652

dataset, with respect to traits such as sentence653

length, grammaticality, and phrasing.654

Second, similar to how pre-training weights655

from other TCS tasks do not seem to improve the656

classifier performance on our dataset, the weights657

generated as part of our training process are likely 658

very task-specific, and may not generalize well to 659

other tasks or text sources. 660

Overall, we recommend the use of the TVCP 661

dataset and classifiers for bootstrapping further re- 662

search into combining the duration- and inference- 663

based temporal validity tasks, as well as research 664

into directly predicting updated temporal validity 665

durations and improving the generalizability to dif- 666

ferent text sources, rather than for a direct down- 667

stream task application. 668
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A Crowdsourcing Definitions926

In this section, we provide details on the crowd-927

sourcing implementation. As noted, we use Ama-928

zon Mechanical Turk to collect crowdsourced data929

from participants.930

A.1 Temporal Validity Duration Estimation931

We assume the average layman is not familiar with932

the term temporal validity. Thus, we define the task933

as “determining how long the information within934

the tweet remains relevant after its publication”,935

i.e., for how long the user would consider the tweet936

timely and relevant. We provide the option no time-937

sensitive information, which should be selected938

when tweets do not contain any information, when939

information is not expected to change over time, or940

when it is fully contained in the past.941

The task is otherwise a relatively straightforward942

classification task. We split our dataset into batches943

of 10 samples that are grouped into a single human944

intelligence task (HIT). For each HIT, we offer a945

compensation of USD0.25, based on an estimated946

6-9 seconds of processing time per individual state-947

ment (i.e., 60-90 seconds per HIT). Figures 10 to948

13 show the crowdsourcing layout.949

A.2 Follow-Up Content Generation950

Compared to the temporal validity duration esti-951

mation task, the follow-up content generation task952

requires a much more robust understanding of the953

overall concept of temporal validity and the respec-954

tive semantic roles of the target- and follow-up955

statements. Hence, we focus on providing a more956

detailed explanation of the task. Figures 14 to 16957

show the crowdsourcing setup. The detailed in-958

structions tab is not listed due to its length, but959

contains instructions that can also be found in the960

public repository.961

Notably, we labelled the target statement as con-962

text tweet rather than target tweet in this crowd-963

sourcing task to emphasize that participants should964

not alter this statement directly, as this was a prob-965

lem that occurred somewhat frequently during pilot966

tests. This contrasts with our formal definition of967

TVCP, where providing context is the role of the968

follow-up statement.969

Each HIT requires participants to provide three970

follow-up statements, one for each TVCP class971

(DEC, UNC, INC). For each HIT, we offer a com-972

pensation of USD0.35. We base our compensation973

on an estimated 30–40 seconds of processing time974

per follow-up statement (i.e., 90–120 seconds per 975

HIT) due to the creative writing involved . 976

A.3 Discouraging Dishonest Activity 977

In initial pilot runs, we find that many submissions 978

are the result of spam, dishonest activity, or a com- 979

plete lack of task understanding, with many pro- 980

vided annotations being inexplicable by common 981

sense in any possible interpretation of the state- 982

ment. 983

To increase the quality of work on both tasks, 984

we introduced three measures. First, we required 985

participants to have an overall approval rate of 90% 986

on the platform, as well as 1,000 approved HITs. 987

Without these requirements, the amount of blatant 988

spam (e.g., copy-pasted content) increases signifi- 989

cantly. 990

Second, we devised qualification tests for both 991

tasks. Participants had to determine the temporal 992

validity durations for a set of sample statements 993

to work on the temporal validity duration estima- 994

tion task, and determine the correctness of follow- 995

up statements and their updated duration labels to 996

work on the follow-up content generation task. 997

Finally, we vet all participants’ responses indi- 998

vidually up to a certain threshold. For each task, we 999

manually verify the first 20 submissions of each an- 1000

notator on their quality. We provide feedback and 1001

manually adapt submissions when they are partially 1002

incorrect. If submission quality is appropriate by 1003

the time a participant reaches 20 submitted HITs, 1004

we consider them as trusted, and only spot-check 1005

every 5th submission thereafter. If submission qual- 1006

ity does not sufficiently improve at this point, we 1007

prohibit the participant from further working on 1008

the task. 1009

Despite these efforts, the follow-up content gen- 1010

eration task specifically still received several low- 1011

quality submissions that had to be manually filtered 1012

out and corrected. In future work, a preferable ap- 1013

proach may be to replace the qualification test with 1014

an unpaid qualification HIT, in which a feedback 1015

loop between participants and requesters can be 1016

established on data that will not be included in the 1017

final dataset, and participants can manually be as- 1018

signed a qualification once their quality of work is 1019

sufficient. 1020

B ChatGPT Setup 1021

We provide the following system prompt to the 1022

CHATGPT API: 1023

12



Figure 10: The interface of the temporal validity duration estimation task

Figure 11: The summary section of the temporal validity duration estimation task guidelines
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Figure 12: The detailed description of the temporal validity duration estimation task guidelines

Figure 13: The examples section of the temporal validity duration estimation task guidelines
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Figure 14: The interface of the follow-up content generation task
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Figure 15: The summary section of the follow-up content generation task guidelines

Figure 16: The examples section of the follow-up content generation task guidelines
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“You are a language model specializ-1024

ing in temporal commonsense reason-1025

ing. Each prompt contains Sentence1026

A and Sentence B. You should deter-1027

mine whether Sentence B changes the ex-1028

pected temporal validity duration of Sen-1029

tence A, i.e., the duration for which the1030

information in Sentence A is expected to1031

be relevant to a reader.1032

To achieve this, in your responses, first,1033

estimate for how long the average reader1034

may expect Sentence A to be relevant on1035

its own. Then, consider if the informa-1036

tion introduced in Sentence B increases1037

or decreases this duration. Surround this1038

explanation in triple backticks (```).1039

After your explanation, respond with one1040

of the three possible classes correspond-1041

ing to your explanation: Decreased, Neu-1042

tral, or Increased.”1043

After this system prompt, we provide three sam-1044

ple responses, one for each of the classes. These1045

sample responses are shown in Figure 17.1046

Similar to the crowdsourcing task setup, we use1047

the concept of the expected relevance duration of1048

the target statement (called Statement A in the1049

CHATGPT prompt) to explain statement-level tem-1050

poral validity. Additionally, instead of prompting1051

the model to classify the sample directly, we ask1052

it to provide an explanation for its decision based1053

on chain-of-thought reasoning. Wei et al. (2022)1054

show that chain-of-thought prompting significantly1055

increases several types of reasoning capabilities,1056

including commonsense, in LLMs. We prompt1057

CHATGPT to first estimate the temporal validity1058

duration of the target statement on its own. In a1059

second step, the model should then determine if the1060

information introduced in the follow-up statement1061

changes this temporal validity duration. After giv-1062

ing its explanation, the model should respond with1063

one of the three target classes.1064

C Hyperparameters1065

We perform hyperparameter testing regarding1066

dropout probability before the classification layer1067

(0.1, 0.25, 0.5), the base learning rate (1e-2, 1e-3,1068

1e-4), and whether to freeze embedding layers (i.e.,1069

training only intermediary and classification lay-1070

ers). For both BERT and ROBERTA in the frozen1071

and unfrozen setting, we perform grid-search over1072

Sentence A: I’m ready to go to the beach
Sentence B: I forgot all the beach towels are still
in the dryer, but I’ll be ready to go as soon as the
dryer’s done running.
Target Class: Increased
Sample Explanation: Going to the beach may
take a few minutes to an hour, depending on the
distance. However, if the author first needs to wait
on the dryer to finish in order to retrieve their beach
towels, this may take an additional 30-60 minutes.

Sentence A: taking bad thoughts out of my mind
thru grinding my assignments
Sentence B: I just have to get through a short
math homework assignment and memorize a few
spelling words so it shouldn’t take long.
Target Class: Decreased
Sample Explanation: Grinding through assign-
ments may take several hours, depending on the
number of assignments to complete. In Sentence B,
the author states they only have a few short assign-
ments remaining, so they may only take an hour or
less to finish them.

Sentence A: Slide to my dm guys, come on
Sentence B: Instagram DMs are such a fun way to
communicate.
Target Class: Neutral
Sample Explanation: The author encourages peo-
ple to direct message them, which may be relevant
for several minutes to a few hours. Sentence B does
not change the duration for which Sentence A is
expected to be relevant.

Figure 17: Sample items, target classes, and explana-
tions provided to CHATGPT for few-shot reasoning

the learning rate and dropout probability. For these 1073

benchmarks, we use a predefined train-val-test split 1074

(80%/10%/10%). The remaining setup is the same 1075

as in Section 5. 1076

Table 4 shows the three best-performing config- 1077

urations for BERT and ROBERTA in the freeze 1078

and nofreeze settings, respectively, on the TRANS- 1079

FORMERCLASSIFIER pipeline. Table 5 shows 1080

the same results for the SIAMESECLASSIFIER 1081

pipeline. 1082

The most notable finding appears to be that 1083
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Model DO LR #Epochs EM
BERT-nofreeze 0.25 1e-4 5 0.613
BERT-nofreeze 0.10 1e-4 6 0.548
BERT-nofreeze 0.50 1e-4 4 0.548
BERT 0.25 1e-4 17 0.321
BERT 0.10 1e-4 8 0.315
BERT 0.10 1e-3 10 0.304
ROBERTA 0.25 1e-3 14 0.262
ROBERTA 0.10 1e-4 16 0.256
ROBERTA 0.50 1e-3 15 0.238
ROBERTA-nofreeze 0.25 1e-3 1 0.000
ROBERTA-nofreeze 0.50 1e-3 1 0.000
ROBERTA-nofreeze 0.10 1e-4 1 0.000

Table 4: Best three models for each of the proposed con-
figurations in the TRANSFORMERCLASSIFIER pipeline

Model DO LR #Epoch EM
BERT-nofreeze 0.25 1e-4 7 0.589
BERT-nofreeze 0.10 1e-4 4 0.577
BERT-nofreeze 0.50 1e-4 2 0.565
ROBERTA 0.10 1e-4 21 0.548
ROBERTA 0.50 1e-4 13 0.518
ROBERTA 0.25 1e-4 17 0.512
BERT 0.50 1e-4 9 0.387
BERT 0.25 1e-3 8 0.357
BERT 0.25 1e-4 5 0.339
ROBERTA-nofreeze 0.25 1e-3 1 0.000
ROBERTA-nofreeze 0.50 1e-3 1 0.000
ROBERTA-nofreeze 0.10 1e-4 1 0.000

Table 5: Best three models for each of the proposed
configurations in the SIAMESECLASSIFIER pipeline

ROBERTA gets stuck in a false minimum of pre-1084

dicting a constant class when embedding layers are1085

unfrozen, leading to an accuracy of 0.33 and an1086

EM of 0. Hence, we freeze embedding layers for1087

these model types in our main evaluation. As noted1088

in Section 5, a possible reason for this behaviour1089

could be differences in the embeddings contained1090

within BERT’s [CLS] and ROBERTA’s <s> token.1091
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